Heavy Ion Physics

Concepts, recent results and (some) future directions

Marco van Leeuwen Nikhef and Utrecht University

XLV International Meeting on Fundamental Physics 24-28 April 2017, Granada, Spain

Introduction: Heavy Ion Physics

- Study the properties of many-body QCD systems
 - Properties of equilibrium matter: equation of state, transport coefficient
 - Dynamics: hadronisation, interactions of partons with the medium

Intro: RHIC and LHC

RHIC, Brookhaven Au+Au $\sqrt{s_{NN}}$ = 200 GeV

LHC, Geneva Run 2: Pb+Pb √s_{NN}= 5020 GeV

First run: 2000

STAR, PHENIX, (PHOBOS, BRAHMS) First run: 2009/2010

ALICE, ATLAS, CMS, LHCb

Soft probes: anisotropic flow

MADAI

Initial state (spatial) anisotropy \Rightarrow Pressure gradients \Rightarrow anisotropic flow: momentum space anisotropy

Soft probes: anisotropic flow

MADAI

Initial state (spatial) anisotropy \Rightarrow Pressure gradients \Rightarrow anisotropic flow: momentum space anisotropy

MC event: location of nucleons

Initial state spatial anisotropies ε_n are transferred into final state momentum anisotropies v_n by pressure gradients, flow of the Quark Gluon Plasma

Initial state spatial anisotropies ε_n are transferred into final state momentum anisotropies v_n by pressure gradients, flow of the Quark Gluon Plasma

Azimuthal distribution single event

Anisotropic flow results

Mass-dependence of v_2 measures flow velocity: $p = \gamma m\beta$ Tests hydrodynamical description, freeze-out models

Higher harmonics and viscosity

Global fit: input

Experimental input: yields, mean p_T and harmonic flow vs p_T

Model: initial anisotropies + medium response

Explores a large parameter space to investigate reliability/robustness of the modelling

Global fit of initial state+hydrodynamics

 ϵ_n : initial spatial anisotropies from initial state model

 v_n : observed final state momentum anisotropy Response: modeled by hydrodynamic evolution

Total 9 parameters:

- 3 initial state $\Rightarrow \epsilon_n$
- 4 QGP \Rightarrow response
- 2 model parameters

A global fit to anisotropic flow: main results

maximum

arithmetic: $\frac{T_A + T_B}{2}$

geometric:

 $\sqrt{T_A T_B}$

harmonic:

 $\frac{2T_A T_B}{T_A + T_B}$

minimum

 $\frac{WN}{1.0}$

0

 $n \propto (T_A^p + T_B^p)^{1/p}$

Total 9 parameters:

- 3 initial state $\Rightarrow \epsilon_n$
- 4 QGP \Rightarrow response
- 2 model parameters

Generalized mean ansatz:

-2

0

x [fm]

2

-4

-0.5

Pb+Pb 2.76 TeV

Thickness [fm^{-2}]

4

-8

-1.0

-6

KLN

J. E. Bernhard et al, arXiv: 1605.03954

Fit constrains initial state geometry and transport properties at the same time

Viscosity close to lower bound

Multiplicity production model Follows an effective 'saturation' model

EKRT

0.0

p

 $\frac{dS}{d^2 r \, dv} \propto \left(\frac{T_A^p + T_B^p}{2}\right)^{1/p}$

6

8

0.5

 $T_{\min} < T < T_{\max}$

-1

4

10

Viscosity and mean free path (density)

Large mean free path $\lambda \Rightarrow$ momentum transport over large distance

Viscosity is proportional to mean free path λ is inversely proportional to density n $\lambda = \frac{1}{n\sigma}$

> Low viscosity means large density! (In the gas phase)

Future directions

ຶ

We have stress-tested the baseline (standard) model for flow from initial stages + hydrodynamics

More differential observables to:

- Further disentangle initial stages and evolution
- Improve sensitivity to temperature dependence η/s

Flow amplitude correlations

S

Niemi et al, arXiv:1509.02767, PRC93, 024907

Small systems: pp and p-Pb

Exploring the limits of fluid/collective behaviour

Strangeness production in pp, p+Pb

particle yields in multiplicity bins

Fraction of strange hadrons increases with multiplicity Large effect for multi-strange Ξ and Ω

Similar enhancement in PbPb has been interpreted as thermalisation; global equilibration of the strangeness yield. Are they related?

Paper out today: Nature Physics

Two-particle correlations in pp and Pb+Pb

Central Pb+Pb

p+p low multiplicity

p+p high multiplicity

Two-particle correlations in pp and Pb+Pb

p+p low multiplicity

p+p high multiplicity

Two-particle correlations in pp and Pb+Pb

p+p low multiplicity

p+p high multiplicity

Two-particle correlations

ATLAS-CONF-2016-026

High-multiplicity p+p

High-multiplicity p+Pb

Clear change in shape from low multiplicity to high multiplicity: no near-side peak in low multiplicity events Away-side also affected: well described by quadrupole term (cos (2 $\Delta \phi$)) Smooth evolution from pp to p+Pb: effect stronger in p+Pb

Multi-particle correlations: testing collectivity

Multi-particle methods suppress few-particle (non-flow) correlations

Flow-like effect is indeed a multi-particle effect

Changing the projectile

Spatial profile of the collision

PHENIX, PRL 115, 142301

RHIC has collided a variety of small nuclei with Au to explore geometric effects

³He gives explicit triangular contribution in initial state Effect is driven by initial spatial configuration

Flow effects in small systems

Many aspects of the observed ridge have a natural explanation in hydrodynamics:

- Long range correlation
- 2- and 3-fold symmetries
- Dependence on initial geometry
- Many-particle correlations
- Particle mass dependence

Why would the system behave as a fluid? Is there enough time, volume to thermalise?

- Hydrodynamisation (isotropisation) of a dense gluon system?
- Partonic/hadronic rescattering?
- How many scatterings/what density is needed to approximate fluid behaviour?

Naive expectation: need at least a few collisions for each parton to reach thermal equilibrium and apply hydrodynamic

1) System size: $R > \lambda$

Would not expect azimuthal asymmetries in pp and p-Pb

2) Thermalisation time: $\tau > \frac{\lambda}{v}$

Fits to data: thermalisation times $\tau \approx 0.1$ -1 fm/c

pQCD calculation: $\tau \gtrsim 6.9$ fm/c

Heiselberg and Levy, nucl-th/9812034,

W Lin et al,

Baier et al, PLB 502, 51, PLB 539, 46

Naive expectation: need at least a few collisions for each parton to reach thermal equilibrium and apply hydrodynamic

1) System size: $R > \lambda$

Would not expect azimuthal asymmetries in pp and p-Pb

Turns out to be too strict: asymmetries also generated in kinetic with $R < \lambda$
Density tomographyDensity tomographyHeiselberg and Levy, nucl-th/9812034,
W Lin et al,2) Thermalisation time: $\tau > \frac{\lambda}{v}$ Fits to data: thermalisation times $\tau \approx 0.1-1$ fm/cpQCD calculation:
 $\tau \ge 6.9$ fm/c

Baier et al, PLB 502, 51, PLB 539, 46

Naive expectation: need at least a few collisions for each parton to reach thermal equilibrium and apply hydrodynamic

1) System size: $R > \lambda$

Would not expect azimuthal asymmetries in pp and p-Pb

Turns out to be too strict: asymmetries also generated in kinetic with $R < \lambda$
Density tomographyDensity tomographyHeiselberg and Levy, nucl-th/9812034,
W Lin et al,2) Thermalisation time: $\tau > \frac{\lambda}{v}$ Fits to data: thermalisation times $\tau \approx 0.1-1$ fm/cpQCD calculation:
 $\tau \ge 6.9$ fm/cBaier et al, PLB 502, 51, PLB 539, 46

Turns out to be too strict: (viscous) hydro describes non-thermal systems, see next slide

Naive expectations can be 'bypassed' in nature?

Naive expectation: need at least a few collisions for each parton to reach thermal equilibrium and apply hydrodynamic

Turns out to be too strict: (viscous) hydro describes non-thermal systems, see next slide

Naive expectations can be 'bypassed' in nature?

Hydrodynamic behaviour in non-thermalised system

Emerging understanding:

Hydrodynamical description valid before thermalisation/isotropisation

Estimate of smallest (possible) system size with fluid behaviour: $r \approx 0.15$ fm

Weller, Romatschke, EPJC 77, 21

Looking at sub-nucleon size fluctuations

Flow in p-Pb collisions shows sensitivity to proton sub-structure

Sensitivity even larger in pp

Looking at sub-nucleon size fluctuations

Flow in p-Pb collisions shows sensitivity to proton sub-structure

Sensitivity even larger in pp
Looking at sub-nucleon size fluctuations

Flow in p-Pb collisions shows sensitivity to proton sub-structure

Sensitivity even larger in pp

Looking at sub-nucleon size fluctuations

Flow in p-Pb collisions shows sensitivity to proton sub-structure

Sensitivity even larger in pp

Looking at sub-nucleon size fluctuations

Flow in p-Pb collisions shows sensitivity to proton sub-structure

Sensitivity even larger in pp

Higher p_T : probes of the QGP

R Bertens, JEWEL simulation

Hard probes Hard-scatterings produce quasi-free partons ⇒ Probe medium through energy loss

Expected to be dominant for $p_T > 5$ GeV or so

Higher p_T : probes of the QGP

R Bertens, JEWEL simulation

Hard probes Hard-scatterings produce quasi-free partons ⇒ Probe medium through energy loss

Expected to be dominant for $p_T > 5$ GeV or so

Nuclear modification: Pb+Pb

ALICE, PLB720, 52 CMS, EPJC, 72, 1945 ATLAS, arXiv:1504.04337

Charged particle p_T spectra

Nuclear modification: Pb+Pb

Charged particle p_T spectra

1/N_{coll} 1/2[⊥] p_T dN/dp_T 10^{−1} 10^{−1} Nuclear modification factor R AA **PbPb** pp ALICE LHC $\sqrt{s_{NN}} = 2,76 \text{ TeV}$ Pb+Pb 0-5% CMS ALICE **ATLAS** 0.8 CMS \wedge \wedge **ATLAS** \bigcirc \bigcirc 0.6 0.4 **10⁻⁷** 0.2 0 **10**⁻¹⁰ 20 0 40 p_ (GeV) $\frac{dN/dp_T|_{A+A}}{N_{coll} \left. \frac{dN/dp_T}{p_{p+p}} \right|_{p+p}}$ $R_{AA} =$ Δ 10^{-13} Energy loss 50 100 0 p_T (GeV) R_{AA} < 1 *N*_{coll}: number of binary nucleon-nucleon collisions

Pb+Pb: clear suppression ($R_{AA} < 1$): parton energy loss

ALICE, PLB720, 52 CMS, EPJC, 72, 1945 ATLAS, arXiv:1504.04337

Nuclear modification: Pb+Pb

Charged particle p_T spectra

Nuclear modification factor **10**⁻¹ R AA **PbPb** pp ALICE LHC $\sqrt{s_{NN}} = 2,76 \text{ TeV}$ Pb+Pb 0-5% CMS ALICE **ATLAS** 0.8 CMS \wedge \wedge **ATLAS** \bigcirc \bigcirc 0.6 **10⁻⁷** 0.2 **10⁻¹⁰** 20 40 p_{_} (GeV) Low $p_{\rm T}$: $dN/dp_T|_{A+A}$ soft production, R_{AA} $N_{coll} dN/dp_T|_{p+p}$ N_{part} scaling 10^{-13} Energy loss 50 100 0 p_T (GeV) R_{AA} < 1 $N_{\rm coll}$: number of binary

nucleon-nucleon collisions

Pb+Pb: clear suppression ($R_{AA} < 1$): parton energy loss

ALICE, PLB720, 52 CMS, EPJC, 72, 1945 ATLAS, arXiv:1504.04337

Medium-induced radiation

Transport coefficient

$$\hat{q} = \frac{\left\langle q_{\perp}^{2} \right\rangle}{\lambda}$$

Medium-induced radiation

Landau-Pomeranchuk-Migdal effect Formation time important

and nature of scattering centers (scattering cross section)

Transport coefficient

$$=\frac{\left\langle q_{\perp}^{2}\right\rangle }{\lambda}$$

Â

Medium-induced radiation

Landau-Pomeranchuk-Migdal effect Formation time important

RHIC and LHC

Systematic comparison of energy loss models with data Medium modelled by Hydrodynamics (2+1D, 3+1D) p_{T} dependence matches reasonably well

Summary of transport coefficient study

RHIC: $\sqrt{s_{NN}} = 200 \text{ GeV}$ $\hat{q} = 1.2 \pm 0.3 \text{ GeV}^2/fm$ (*T_i* = 370 MeV) LHC: $\sqrt{s_{NN}} = 2760 \text{ GeV}$ $\hat{q} = 1.9 \pm 0.7 \text{ GeV}^2/fm$ (*T_i* = 470 MeV)

 $\frac{\hat{q}}{T^3} \approx \begin{cases} 4.6 \pm 1.2 & \text{at RHIC,} \\ 3.7 \pm 1.4 & \text{at LHC,} \end{cases}$

q values from different models consistent

Summary of transport coefficient study

Arnold and Xiao, arXiv:0810.1026

HTL expectation: $\hat{q} \approx 24 \alpha_s^2 T^3 \approx 2 T^3$

Sizeable uncertainties from α_S , treatment of logs etc expected

Summary of transport coefficient study

Arnold and Xiao, arXiv:0810.1026

HTL expectation: $\hat{q} \approx 24 \alpha_s^2 T^3 \approx 2 T^3$

Sizeable uncertainties from $\alpha_{\rm S}$, treatment of logs etc expected

Values found are in the right ballpark compared (p)QCD estimate Magnitude of parton energy loss is understood

Heavy flavour *R_{AA}*; mass dependence

ALICE, JHEP11, 205

Heavy flavour *R_{AA}*; mass dependence

ALICE, JHEP11, 205

Indicates radiative energy loss: induced gluon bremsstrahlung

Azimuthal anisotropy: two mechanisms

Conversion of pressure gradients into momentum space anisotropy

Parton energy loss Dominant effect at high pT

 $\Delta E_{med} \sim \alpha_s \hat{q} L^2$

More energy loss along long axis than short axis

Expect different mechanisms at low, high p_T , qualitatively similar effects Heavy flavour probes the full range

$Charm \ v_{2,} \ v_{3}$

Models: PRC 94 014909, PLB 735 445, JHEP 1602 169 and PRD 91 074027

Azimuthal anisotropy of heavy quarks very similar to light quarks (pions)

Charm v₂, v₃

Models: PRC 94 014909, PLB 735 445, JHEP 1602 169 and PRD 91 074027

Azimuthal anisotropy of heavy quarks very similar to light quarks (pions)

Heavy quarks 'feel' the flow of the Quark Gluon Plasma

Heavy Flavour diffusion coefficients

Duke fit: *R*AA, *v*₂, RHIC+LHC

STAR 0⁴, 04005

PT [GeV]

ALC: D⁴, D⁴, D⁴

PAAPAG2 75 TW/

0.20

STAR OF, 10-10%

PT [GeV]

Phillips2.75 TeV

6 6 10 12 14 PT [GeV]

Y Xu, Quark Matter 2017

STAR 0⁴, 0-105

PT [GeV]

ALICE D⁴, D⁴, D⁴

01-4 Ph 02.76 TeA

F.Riek,and R.Rapp,H.Ding,A.Francis,O.Kaczmarek,et.al,Phys.Rev.C 82,035201(2010)Phys.Rev.D 86,014509(2012)M.He,R.J.Fries,and R.Rapp,D.Banerjee,S.Datta,R.Gavai,P.Majumdar,Phys.Rev.Lett 11,112301(2013)Phys.Rev.D 85,014510(2012)

First comparisons of heavy flavour transport coefficients Still early days; work needed to understand (dis-)agreements

Jets at LHC

ALICE

And a lot of uncorrelated 'soft' background

Di-jet momentum balance

CMS, PRC 84, 024906

Balanced di-jet: $A_j = 0$

Already pp, balance is not perfect: out-of-cone radiation and three-jet events Imbalance in Pb-Pb is much larger: energy loss

Photon-jet *p*_T balance

Photon does not lose energy in the QGP Directly measures energy loss of jets Sensitive to energy loss fluctuations

Recoil jet loses energy in the Quark Gluon Plasma

Jets: zooming in on energy loss

Goal: measure energy loss distributions

- Longitudinal (fragmentation function)
- Transverse (jet profiles)

For finite R: study out-of-cone radiation and in-cone jet modifications Limiting behaviour: for *large enough R*, expect $R_{AA} = 1$ (no suppression)

In-cone: longitudinal distributions

ATLAS, arXiv:1702.00674

also: CMS, PRC90, 024908

In-cone: radial distribution of momentum flow

Radial distribution of momentum flow

Most of the jet energy is at small *r*

In-cone: radial distribution of momentum flow

Most of the jet energy is at small *r*

/lodification in Pb—Pb: decrease at intermediate r, increase at large r CMS, arXiv:1310.0878

CMS PAS HIN-12-013

In-cone: radial distribution of momentum flow

Will this continue at

Most of the jet energy is at small *r*

Modification in Pb—Pb: decrease at intermediate *r*, increase at large *r*

Radial distribution, large R

or 'typical radiation angle'

The emerging picture

Jet core

Structure almost unmodified, but energy lost

- Fragmentation in the vacuum after energy loss?
- Or scales: medium does not resolve hard fragments?

Lost energy distributed to large angles and soft fragments

Multiple interactions? Related to thermalisation in the medium?

The emerging picture

Jet core

Structure almost unmodified, but energy lost

- Fragmentation in the vacuum after energy loss?
- Or scales: medium does not resolve hard fragments?

Y Tachibana et al, arXiv:1701.07951

Lost energy distributed to large angles and soft fragments

Multiple interactions? Related to thermalisation in the medium?

Future directions

- Further understanding of momentum balance; transport to large angles
- Direct measurements of angular decorrelation, measure transverse kicks
- Jet shape variables to zoom in on particular aspects of the radiation

Jet shape variables **jet-by-jet quantity** access to **strongly modified jets**?

- Jet mass
- $p_{\rm T}$ dispersion
- *z*_g groomed splitting variable

z_g splitting variable

Summary

Things that we know:

- QGP behaves like a liquid with extremely low viscosity $\eta/s\approx 0.1$
 - Implies short mean free path: high density, strong interactions (quasi-particle picture may not be applicable)
- High-momentum partons lose energy in the QGP
 - Magnitude of basic effect in agreement with expectations from (p)QCD
 - Charm/beauty difference indicates radiative energy loss dominates

Summary

Things that we know:

- QGP behaves like a liquid with extremely low viscosity $\eta/s\approx 0.1$
 - Implies short mean free path: high density, strong interactions (quasi-particle picture may not be applicable)
- High-momentum partons lose energy in the QGP
 - Magnitude of basic effect in agreement with expectations from (p)QCD
 - Charm/beauty difference indicates radiative energy loss dominates

Things that we wonder about:

- pp, p+Pb show flow-like behaviour
 - What is the physical mechanism?
 - Does this have implications for understanding Pb+Pb? Or vice versa?
- Energy loss: can we study the large-angle radiation?
 - Theory tools for jet-measurements under active development
 - Can we calculate soft radiation?

Summary

Things that we know:

- QGP behaves like a liquid with extremely low viscosity $\eta/s\approx 0.1$
 - Implies short mean free path: high density, strong interactions (quasi-particle picture may not be applicable)
- High-momentum partons lose energy in the QGP
 - Magnitude of basic effect in agreement with expectations from (p)QCD
 - Charm/beauty difference indicates radiative energy loss dominates

Things that we wonder about:

- pp, p+Pb show flow-like behaviour
 - What is the physical mechanism?
 - Does this have implications for understanding Pb+Pb? Or vice versa?
- Energy loss: can we study the large-angle radiation?
 - Theory tools for jet-measurements under active development
 - Can we calculate soft radiation?

Bright future for LHC, RHIC runs: heavy flavour R_{AA} , v_2 , including low p_T , high-statistics jet observables; zoom in on jet quenching; di-leptons for thermal radiation
Thank you for your attention

NB, several topics not covered due to time:

- Thermal radiation
- Quarkonia: melting and regeneration
- QCD critical point

Connecting the concepts

QCD phase diagram

Time evolution in a heavy ion collision

Pre-equilibrium

Freeze-out (post-equilibrium)

Expectation: main difference between heavy ion collisions and pp, p+Pb volume + density \Rightarrow rescattering during evolution \Rightarrow approach to thermal equilibrium

Elliptic flow

Hydrodynamical calculation

Anisotropy reduces during evolution v_2 more sensitive to early times

Radial and elliptic flow

Spectra change from pp to Pb+Pb:

- Increase in mean p_T
- Larger effect for larger mass

First indication of collective behaviour

Pressure leads to radial flow Same Lorentz boost (β) gives larger momentum for heavier particles $(m_p > m_K > m_\pi)$

Transverse momentum distribution

Flow in small systems: comparisons to hydro P. Bozek, W. Broniowski and G. Torrieri,

Many aspects of the observed ridge have a natural explanation in hydrodynamics:

- Long range correlation
- 2- and 3-fold symmetries
- Dependence on initial geometry
- Particle mass dependence

Why would the system behave as a fluid? Is there enough time, volume to thermalise?

- Hydrodynamisation (isotropisation) of a dense gluon system?
- Partonic/hadronic rescattering?
- How many scatterings/what density is needed to approximate fluid behaviour?

Many recent developments; active discussion on interpretation

Large sample of p-Pb collisions from 2016 run to shed more light on the

Lumpiness of the proton — fits

nucleon width fixed, w = 0.5 fm

Ad-hoc model for proton lumpiness:

- nucleon width
- number of sources/partons
- parton width

Gaussian Process Emulator + Bayesian fit technique also being applied for p-Pb

Access to lumpiness of the proton

Data: ALICE, PRC 90, 054901 [1406.2474]

Lumpiness of the proton — Fits

Jet reconstruction

Experiment view

Theory/model view

Jet reconstruction

Experiment view

Theory/model view

Jet reconstruction: group particles together and add momenta Several algorithms available; conceptually: draw cones, size *R*

Jet reconstruction

Experiment view

Theory/model view

Jet reconstruction: group particles together and add momenta Several algorithms available; conceptually: draw cones, size *R* The summed momentum is a measure of the parton energy; accuracy depends on *R*

Comparing hadrons and jets

parton

Suppression of hadron (leading fragment) and jet yield similar Lost energy is transported to large angles (R > 0.3)

Increasing R to recover the energy

Longitudinal distribution in jets: ATLAS vs CMS

Ratio: Pb-Pb/pp Difference: PbPb - pp $R_{D(z)}$ ATLAS **CMS** 0-10% central Pb+Pb 0-10% 100 < p_{T,jet} < 120 GeV 0.8 1.8 |y| < 2.1dd 0.6 1.6 PbPb – 1.4 0.4 1.2 0.2 C **0.8** -0.2 CMS, PRC90, 024908 ATLAS, arXiv:1702.00674 -0.4 0.01 0.2 0.4 0.04 0.1 10 Ζ p_T^{track} (GeV/c)

> Subtle, but qualitative difference: no modification at large *z* in CMS, enhancement in ATLAS measurement

In-cone: longitudinal distributions

(anti-) Angular ordering in the medium

Vacuum radiation: angular ordering subsequent radiations are at smaller angles In-medium: opposite effect radiation outside cone preferred Salgado, Mehtar-Tani, Tywoniuk et al PRL106, 122002 and follow-ups

arXiv:1210.7765

(anti-) Angular ordering in the medium

Vacuum radiation: angular ordering subsequent radiations are at smaller angles In-medium: opposite effect radiation outside cone preferred Two resolution scales: medium scale vs opening angle

Ongoing development Full implications not yet worked out

Radial profiles in pT bins

CMS-PAS-HIN-16-020

Jet structure and medium response

Jet radial profile

Measurements with soft fragments are sensitive to medium response/reinteractions Theory treatment of medium response/momentum balance under development

NB: distinction jet/medium is not unique: model/prescription dependent

Hints of collective effects in p+p, p+Pb

p_T spectra, mean p_T vs multiplicity in pp

 $\ensuremath{p_{T}}$ spectra in multiplicity-selected pp collisions

Mean p_T increases with multiplicity

What drives this increase? Can it be pressure or something equivalent?

Mean *p*_T overview pp

QM15 talk, L Bianchi 1.8 $\langle p_{\mathrm{T}} \rangle$ (GeV/c) ALICE Preliminary - pp vs=7 TeV - |y|<0.5 1.6 Mean $p_{\rm T}$ in pp collisions also increases 1.4 with multiplicity and particle mass 1.2 Multiple (initial state) interactions or proto-flow? 0.8 0.6 Or are they the same? 0.4 ---- Logarithmic fit $\Box K_S^0$ • $\pi^+ + \pi^-$ K⁺+K⁻ ▲ p+p 0.2 ▼ Ξ⁻+Ξ⁺ $\Phi \Omega + \overline{\Omega}^+$ $\circ \Lambda + \overline{\Lambda}$ $|\diamond|\phi$ Logarithmic fit 'to guide the eye': 10 $\left<\mathrm{d}N_{\mathrm{ch}}/\mathrm{d}\eta\right>_{\left|\eta
ight|<~0.5}$ $\langle p_{\rm T} \rangle \propto \log dN/d\eta$ ALI-PREL-99175

Mean *p*_T overview pp, p+Pb, Pb+Pb

QM15 talk, A Ortiz

Increasing mean p_T trend continues in p+Pb

Raises question: is there flow, collective behaviour in pp, p+Pb? And how is it generated?

Flow in small systems: comparisons to hydro

Many aspects of the observed ridge have a natural explanation in hydrodynamics:

- Long range correlation
- 2- and 3-fold symmetries
- Dependence on initial geometry
- Particle mass dependence

Why would the system behave as a fluid? Is there enough time, volume to thermalise?

- Hydrodynamisation (isotropisation) of a dense gluon system?
- Partonic/hadronic rescattering?
- How many scatterings/what density is needed to approximate fluid behaviour?

Many recent developments; active discussion on interpretation 2016 p+Pb run to shed more light on this

P. Bozek, W. Broniowski and G. Torrieri,

Hydro fit model parameters

J. E. Bernhard et al, arXiv: 1605.03954

Parameter	Description	Range
Norm	Overall normalization	100–250
p	Entropy deposition parameter	-1 to $+1$
\boldsymbol{k}	Multiplicity fluct. shape	0.8 - 2.2
w	Gaussian nucleon width	0.4– $1.0 fm$
$\eta/s~{ m hrg}$	Const. shear viscosity, $T < T_c$	0.3–1.0
$\eta/s ~{ m min}$	Shear viscosity at T_c	0-0.3
η/s slope	Slope above T_c	$0-2 ~\mathrm{GeV}^{-1}$
ζ/s norm	Prefactor for $(\zeta/s)(T)$	0–2
$T_{ m switch}$	Particlization temperature	$135165~\mathrm{MeV}$

TABLE I. Input parameter ranges for the initial condition and hydrodynamic models.

Nuclear geometry: N_{part}, N_{coll}

Two limiting possibilities:

- Each nucleon only **interacts once**, 'wounded nucleons' $N_{part} = n_A + n_B$ (ex: 4 + 5 = 9 + ...) Relevant for soft production; long timescales: $\sigma \propto N_{part}$
- Nucleons interact with all nucleons they encounter
 N_{coll} = n_A x n_B (ex: 4 x 5 = 20 + ...)

Relevant for hard processes; short timescales: $\sigma \propto N_{coll}$

Nuclear modification factor RAA

Expect $\Delta E \propto \hat{q} \ln E$ in high energy limit $E >> \Delta E$

Soft-collinear Effective Theory

Y-T Chien, I Vitev, JHEP 1412, 061 and 1605, 023

Need resummation to properly describe radial profile

Radial profile well described by SCET

R dependence too strong?

Predictions for γ -jet available

Radial profile Pb+Pb

Jet shapes: radial moment

Radial moment smaller in Pb+Pb than pp (PYTHIA)

JEWEL model shows similar trend

Jets in medium narrower than in vacuum

Splitting fraction

SoftDrop grooming, momentum fraction of the first splitting: sensitive to splitting function

Larkoski et al, PRD 91, 111501

 $\langle z_g \rangle$ lower in Pb+Pb: softer fragmentation

Near-side peak: jets (+decays): larger at high pT

Flow v₂, v₃: long range correlation (early times+ long expansion) Near side long range correlation: flow (v₂, v₃) Most prominent at lower p_T

Near-side peak: jets (+decays): larger at high pT

Flow v₂, v₃: long range correlation (early times+ long expansion) Near side long range correlation: flow (v₂, v₃) Most prominent at lower p_T

Most prominent at lower p_T

Near-side peak: jets (+decays): larger at high pT

Flow v₂, v₃: long range correlation (early times+ long expansion) Near side long range correlation: flow (v₂, v₃) Most prominent at lower p_T
Multiplicity $dN_{ch}/d\eta$ in pp, Pb+Pb

First results from Run-2: multiplicity at new energies

Trend continues to rise faster for AA than pp: conversion of energy to particles in AA is more efficient (larger 'stopping')

Multiplicity vs centrality PbPb

v₂ from di-hadron correlations

Similar 'mass ordering' observed for v₂ from two-particle correlations in p+Pb

Is this also pressure-driven?

Quarkonia: J/Ψ suppression

ALICE, arXiv:1606.08197

Run 2: 5 TeV Pb+Pb

Quarkonia: Y suppression

Run 2: 5 TeV Pb+Pb

Y suppression at 5 TeV similar to 2.76 TeV

MC event: location of nucleons

Characterise shape by angular moments:

$$\varepsilon_n = \frac{\sum r^2 \langle \cos^2 n\varphi + \sin^2 n\varphi \rangle}{\sum r^2}$$

MC event: location of nucleons

Characterise shape by angular moments:

$$\varepsilon_n = \frac{\sum r^2 \langle \cos^2 n\varphi + \sin^2 n\varphi \rangle}{\sum r^2}$$

MC event: location of nucleons

with gaussian smoothing

Characterise shape by angular moments:

$$\varepsilon_n = \frac{\sum r^2 (\cos^2 n\varphi + \sin^2 n\varphi)}{\sum r^2}$$

Symmetry planes change from event to event Orientation measured for every event

Changing the projectile

³He gives explicit triangular contribution in initial state

Changing the projectile

Sizable v_3 contribution seen with ³He —> Effect is driven by initial spatial configuration v₂ smallest for p+Au, as expected from geometry

R_{AA} overview

R_{AA} < 1 for hadrons: Parton energy loss

Hadrons: energy loss

ALI-DER-95222

R_{AA} overview

ALI-DER-95222

R_{AA} overview

No/very small 'cold nuclear matter' effects on high-p_T probes

Z-jet imbalance

Recoil jet p_T reduced by energy loss

Effect persists up to high p_T

Jet RAA comparison

Good agreement between the experiments

Direct photons

arXiv:1509.07324

Main expected sources:

- High p_T: hard scattering; quark-gluon Compton process
- Low p_T: thermal radiation

Excess at low p_T in central collisions indicates thermal photon production

Jet shapes

Measure particle distribution inside jets on a jet-by-jet basis

Radial moment (girth)pt-dispersion $g \equiv \frac{\sum_{\text{tracks}} p_{T,i} \ r}{p_{T,jet}}$ $p_{T,D} \equiv \frac{\sqrt{\sum_{\text{tracks}} p_{T,i}^2}}{p_{T,jet}}$ $p_{\text{T-weighted jet width}}$ $p_{T,pr} \equiv \sum_{r,i} p_{T,i}$

Large range of jet shape variables can be explored So far, focused on two: 1 transverse, 1 longitudinal

Jet shapes: *p*_{T,D}

QM talk, Cunqueiro

p_{T,D} slightly larger in Pb+Pb than pp (PYTHIA)

JEWEL model shows similar trend

Larger p_{T,D}: smaller multiplicity and/or harder fragment distribution

MC tools: JEWEL

Publicly available

Zapp, Krauss, Wiedemann, arXiv:1212.1599

LHC

Elastic+radiative energy loss; follows BDMPS-Z in appropriate limits Medium: Bjorken-expanding Glauber overlap

RHIC

 \mathbf{R}_{AA}

 $T_{\rm i} = 350 \text{ MeV} @ \tau_0 = 0.8 \text{ fm/}c$

 $T_{\rm i} = 530 \text{ MeV} @ \tau_0 = 0.5 \text{ fm/}c$

Good agreement with JET collaboration values