
Introduction to C++ and ROOT

Introduction to C++ and ROOT

M. van Leeuwen

February 7, 2013

M. van Leeuwen

Introduction to C++ and ROOT

C++ and ROOT

C++ is a programming language

ROOT is a collection of useful C++ code
e.g.: Histograms, graphs, ntuples (lists) en file I/O

AliRoot is an extension of ROOT with ALICE-specific code
Detector geometry, track reconstruction, detector simulation, event generators, ...

ROOT uses a C++ interpreter as command line interface

M. van Leeuwen

Introduction to C++ and ROOT

Compiler vs interpreter

A program can only be executed by a computer after it has been
converted into machine instructions:

Compiler: the whole program is converted into executable; can be
run multiple times
This is the normal way for C++

Interpreter: read code line by line, convert and execute

ROOT interface works this way
Convenient for quick writing and testing of code
Can be slow for excecution of complex code
Other interpreted languages: java, VBScript, perl, python

M. van Leeuwen

Introduction to C++ and ROOT

Exercise 1

Create a file with the following content:

simple.C

{

// Very simple test program

for (int i = 0; i < 10; i++) {

cout << "i " << i << endl;

}

}

(Text editor: use Emacs or nedit)
and run it from the ROOT command line (.x simple.C)

M. van Leeuwen

Introduction to C++ and ROOT

Variables: declaration and initialisation

int i;

declaration: i is an integer

int i = 0;

declaration and initialisation: i is an integer; set i to 0

TH1F *h1;

declaration: h1 is a pointer to a TH1F object

TH1F *h1 = 0;

declaration and initialisation: h1 is ...; set h1 to 0

Common variable types:

integer: int, Int t, long int, Long64 t

floating point number: float, Float t, double, Double t

character (strings): char, Char t, TString

The names with ’ t’ are platform-independent types defined in/by
ROOT

M. van Leeuwen

Introduction to C++ and ROOT

Exercise 2

Extend the file
simple.C

{

TH1F *histo = new TH1F("histo","test histogram",10,0,1);

for (int i = 0; i < 10; i++) {

float r = gRandom->Rndm();

cout << "i " << i << " r " << r << endl;

histo->Fill(r);

}

histo->Draw();

}

and run it from the ROOT command line (.x simple.C)

M. van Leeuwen

Introduction to C++ and ROOT

Objects and classes

A Class or Object is combination of data and algorithms:

Data members
Often not directly accessible; use Getters instead, e.g.
hist->GetXaxis()

Member functions
Most can be called by used, e.g. hist->Draw() or
hist->Fill()

e.g.: the histogram class TH1F
Formally:

Class is the defintion of a type (e.g.: TH1F)

Object is the instance of a class (i.e. a variabele, e.g.: hist)

M. van Leeuwen

Introduction to C++ and ROOT

ROOT files

ROOT provides a way to store objects in a file.

simple.C

{

TFile *fout = new TFile("myhist.root", "RECREATE");

TH1F *histo = new TH1F("histo", "test histogram",10,0,1);

for (int i = 0; i < 10; i++) {

float r = gRandom->Rndm();

cout << "i " << i << " r " << r << endl;

histo->Fill(r);

}

histo->Draw();

fout->Write();

}

after execution, there is a file myhist.root

open with: root myhist.root

new TBrowser

M. van Leeuwen

Introduction to C++ and ROOT

Instantiating an Object

Creating an instance of a class in memory is instantiation
Two ways to instantiate an object in C++:

TH1F hist("hist", "my hist", 10, 0, 1)

Makes a local variable that contains the object
Object is discarded when the variable goes out of scope (on the
next closing accolade ’}’)
Call member functions with dot operator: hist.Fill(1)

TH1F *hist = new TH1F("hist", "my hist", 10, 0, 1)

Allocates the object on the heap and makes a pointer to it
Object not discarded when delete hist; is called
Call member functions with arrow operator: hist->Fill(1)

It is commons to have multiple instances of the same class, e.g.
different histograms

M. van Leeuwen

Introduction to C++ and ROOT

Exercise 3: a simple Monte Carlo

Extend/change simple.C to add 2, 5, 10, 50 random numbers
and fill the histogram

What does the distribution look like?

Fit the distribution

M. van Leeuwen

Introduction to C++ and ROOT

Exercise 4: a simple decay generator

1 Download gen eta phi.C from the website

2 Run it and look at the output tree
dec tree->Print(), dec tree->Show(0);

dec tree->Draw("px"),

dec tree->Draw("sqrt(px*px+py*py)")

3 Now add decays π0 → γγ and inspect the result

M. van Leeuwen

Introduction to C++ and ROOT

How to generate a decay

1 Start in the restframe of the decaying particle

1 The 2 decay products have equal and opposite momentum p =
1

2
m

2 Direction: uniform in cos θ and φ

2 Boost to lab frame

For a single axis (take line of flight):

p′L = γpL − βγE
E′ = γE − βγpL

3 Store E, px, py, pz for both decay photons in the output tree
4 Some things to look at:

Compare pt distribution of π0 and decay particles
Energy asymmetry: α = E2−E1

E1+E2

E1 vs E2 for bins in E

M. van Leeuwen

Introduction to C++ and ROOT

Appendix: C++ syntax

Common C++ syntax:

{ block }
Block of code

for (init; cond; incr) { }
Loop with counter

if (expr) { } else { }
Condition execution

while (expr) {}
Conditional loop (executed as long as expr is true)

do while (expr);

Conditional loop (executed at least once; until expr is fals)

cout << expr << endl;

print expr on screen (see also printf)

M. van Leeuwen

Introduction to C++ and ROOT

Appendix: Useful ROOT classes

Commonly used ROOT classes:

TH1F, TH2F, TH3F

histograms

TGraph, TGraphErrors

graphs (collection of points x,y)

TStyle/gStyle

graphics settings for drawing

TCanvas

window for drawing graphs/histograms

TFile

root file

TTree

Tree-object; (structured) list of data

refer to the ROOT website and User Guide for explanations

M. van Leeuwen

Introduction to C++ and ROOT

Compiled code: libraries and executables

Two types of compiled files:

executables
Run by double-click or type the name on the shell command line
Windows: .exe files

Linux: executable bit set (use ’ls -l’ to see, or ’file <filename>’)

libraries
Compiled collection of routines/algorithms; used in conjuction
(loaded by) executables
Most of the root code is packaged as libraries, e.g. libHist.so

M. van Leeuwen

