

A short, pragmatic and INCOMPLETE
intro to

C++/ROOT
programming.

Mikołaj Krzewicki
Nikhef/UU

C++

● Middle-level, statically typed, free-form, multi-
paradigm, compiled language(wikipedia.org).

● Development started in 1979 by Bjarne Stroustrup at
Bell Labs (C with classes)
● Renamed to “C++” in 1983

● One of most popular programming languages ever
created.

C++ middle level language

● High level abstractions:
● Hardware 'independent' data types (int, float,...)

● Data structures (classes, arrays, streams,...)

● Execution flow control (functions, methods, loops,...)

● Portability (to a reasonable degree)

● Additionally a large standard (and non-standard) library

● Low level features:
● Explicit memory access & management (!)

● Bit-level operations

● ...

C++ multi paradigm language

● Procedural programming:
● Use of subroutines (functions) to add structure to the

program

● Object-oriented programming:
● Association of data structures and functions (methods)

that can operate on them

● ...

C++/ROOT

● ROOT is a C++ framework and environment used and
developed at CERN.

● Gives you ready to use data types (histograms, trees)
and constructs for math, IO and more...

● Provides an interpreter (no need for compilation)
● No need to write independent programs.
● All in all simplifies a lot of tasks (most of the time).
● Full documentation at http://root.cern.ch/

Programming
(in C/C++/ROOT/...)

● Declare what data we want to operate on (memory)
● Make functions to operate on the data (cpu)

Declaring variables

● Reserves space in memory
to hold data of specific type
(integer, float,
structure,pointer)

● The curly brackets { }
define scope – a logical
block with it's own local
data (and instructions)

● Inside a block only data
explicitly declared in there
are available (for now)

● Closing brace deletes all
declared variables from
memory

{

 int i=0;

 float f=3.1415;

}

Declaring functions

● Functions are named
blocks that can return a
value of a certain type.

● Once defined a function
can be executed (called)
anywhere (almost).

int MyFunction()

{

 int i=0;

 return i;

}

int DoSomething()

{

 int result;

 result=MyFunction();

 return result;

}

Declaring functions

● Functions can take input
of a certain type.
Just like mathematical
equivalents:
y=f(x1,x2,..)

● The (call to) function can
be used as a value of its
return type – in this case
an integer (it doesn't
matter if you use y or
f(x) in an expression)

int MyFunction(int input)

{

 int i=0;

 i+=input;

 return i;

}

int DoSomething()

{

 int result=0;

 int value=2;

 result=MyFunction(value);

 return result;

}

Essential basics

● Checking for a condition:

if (condition) {…}

else {…}

condition is either (something that returns a) true or
false or NULL or not NULL for pointers (you can check
if a pointer points to something useful)

More essential basics

● Most arithmetic operators work 'intuitively', e.g.
● a=b, a+b, a-b, a*b, a/b, a%b

● Beware of implicit type conversions: results depend on
type of arguments: 3.0/2=1.5 but 3/2=1 (integer
division)

● Comparison operators, result is always a boolean:
● a==b, a<b, a<=b

● Beware of comparison a==b vs assignment a=b.

Loops

● Often you want to repeat some
calculation a specified number
of times, or repeat it until some
condition occurs

● Most commonly used: for-loop.
● Syntax:

for(init;condition;finish){...}

init executed once after {

condition (must be bool) every
iteration after {

finish at } (also every time)

int MyFunction(int input)

{

 return ++input;

}

int DoSomething()

{

 int value;

 for (int i=0; i<20; i++)

 {

 value=MyFunction(value);

 }

 return value;

}

Loops

● Controlling loops:

continue – skips to the next iteration

break – jumps out of the loop, no more iterations

for (Int_t i=0; i<1000 ;i++)

{

 if (i>10) {break;} //after 10 no more loop

 if (i>0) {continue;}

 printf(“this text will appear only once\n”);

}

Final touches: prototypes and
#include statement

● A compiler (or interpreter)
runs over the code from
top to bottom while
compiling/parsing it.

● Sometimes it is not
desirable/possible to
always have the functions
implemented before you
use them.

● External libraries: we
don't have to reinvent the
wheel, we can use
someone elses code.

int main(){

 printf(“result is:
%i\n”,DoSomething());

}

int MyFunction(int input){

 return ++input;

}

int DoSomething(){

 int value;

 for (int i=0; i<20; i++){

 value=MyFunction(value);

 }

 return value;

}

Final touches: prototypes and
#include statement

● Placing prototypes of functions
at the beginning makes them
available throughout the code.

● If the prototypes are specified in
a separate file (as is a case with
external libraries) we can
#include it with the same
benefit.

● Of course the implementation
has to be there somewhere (in
the search path of the linker) or
else the compiler will complain.

#include <cstdio>

int MyFunction(int input);

int DoSomething();

int main(){

 printf(“result is: %i\n”,DoSomething());

}

int MyFunction(int input){

 return ++input;

}

int DoSomething(){

 int value;

 for (int i=0; i<20; i++){

 value=MyFunction(value);

 }

 return value;

}

Exercise: compile&run

● Type the code and save in a file
named test.cxx; compile it with:

g++ test.cxx -o test

● It will produce an executable file
test which you can run in the
terminal a few times by typing:

./test

● Do you understand the output?

#include <cstdio>

int MyFunction(int input);

int DoSomething();

int main(){

 printf(“result is: %i\n”,DoSomething());

}

int MyFunction(int input){

 return ++input;

}

int DoSomething(){

 int value;

 for (int i=0; i<20; i++){

 if (i=10) continue;

 value=MyFunction(value);

 }

 return value;

}

Object-oriented programming
with ROOT

● An object is a data structure

● Can contain simple data (integers, floats,...)
as well as other objects (members)

● Objects have a type: their class

● The class also specifies the operations that
are allowed for manipulation of the data it
holds, most often the data members are not
directly accessible (only by methods).

● members/methods only accessible if made
public.

● Much much more (like inheritance, friends,
…) will not be covered now.

 class ExampleHistogramType

{

 protected:

 …

 Int_t fNentries;

 Int_t fNbins;

 …

 public:

 …

 Int_t GetEntries();

 Int_t GetNbins();

 …

}

Objects

● Instantiation of an object
goes like with any other
variable

● Special syntax for
accessing members and
methods:
object.member
object.method()

#include <TH1F.h>

#include <TRandom.h>

void PlotHistogram()

{

 TH1F histogram;

 TRandom rndGener;

 histogram.SetBins(50,-4.0,4.0);

 for (Int_t i=0;i<10000;i++)

 {

 Float_t rndNumber;

 rndNumber=rndGener.Gaus(0.0,1.0);

 histogram.Fill(rndNumber);

 }

 histogram.DrawCopy();

}

Exercise: objects

● Call the file
PlotHistogram.C

● Start root by typing root
in the terminal

● Run the code:
.x PlotHistogram.C

● Change last line to:
histogram.Draw() and
run

● What happened?

#include <TH1F.h>

#include <TRandom.h>

void PlotHistogram()

{

 TH1F histogram;

 TRandom rndGener;

 histogram.SetBins(50,-4.0,4.0);

 for (Int_t i=0;i<10000;i++)

 {

 Float_t rndNumber;

 rndNumber=rndGener.Gaus(0.0,1.0);

 histogram.Fill(rndNumber);

 }

 histogram.DrawCopy();

}

Dynamic memory, pointers,
references

● Sometimes it is useful to have the data outlive the
scope boundaries

● Sometimes we don't know a priori how much memory
to reserve (eg. for an array)

● local variables are allocated on the stack and destroyed
when they go out of scope.

● We can also allocate memory in a different memory
pool (the heap) using the “new” keyword – this is
persistent, so we have to make sure we also free the
allocated memory after we're done with it

Dynamic memory

code

} stack

} heap

#include <TH1F.h>

void PlotHistogram()

{

 {

 Int_t i;

 TH1F histogram;

 new TH1F;

 }

}

Dynamic memory

Int_t

TH1F

code

} stack

} heap

#include <TH1F.h>

void PlotHistogram()

{

 {

 Int_t i;

 TH1F histogram;

 new TH1F;

 }

}

Dynamic memory

Int_t

code

} stack

} heapTH1F

#include <TH1F.h>

void PlotHistogram()

{

 {

 Int_t i;

 TH1F histogram;

 new TH1F;

 }

}

TH1F

Dynamic memory

code

} stack

} heap

#include <TH1F.h>

void PlotHistogram()

{

 {

 Int_t i;

 TH1F histogram;

 new TH1F;

 }

 //object still there

 //but no way to get to it

}

TH1F

Pointers
#include <TH1F.h>

void PlotHistogram()

{

 //pointer type

 //can only contain an address

 //of an object or NULL

 TH1F* p_histogram=NULL;

 {

 Int_t i;

 TH1F histogram;

 p_histogram = new TH1F;

 }

}

Int_t

TH1F

code

} stack

} heap

TH1F*

Pointers
#include <TH1F.h>

void PlotHistogram()

{

 //pointer type

 //can only contain an address

 //of an object or NULL

 TH1F* p_histogram=NULL;

 {

 Int_t i;

 TH1F histogram;

 p_histogram = new TH1F;

 }

}

Int_t

TH1F

code

} stack

} heap

TH1F*

TH1F

Pointers
#include <TH1F.h>

void PlotHistogram()

{

 //pointer type

 //can only contain an address

 //of an object or NULL

 TH1F* p_histogram=NULL;

 {

 Int_t i;

 TH1F histogram;

 p_histogram = new TH1F;

 }

 delete p_histogram;

} code

} stack

} heap

TH1F*

TH1F

Pointers & addresses by
example

● Syntax:
TH1F* pointerToHistogram; // declaration, contains address

TH1F histogram; // ”regular” object on stack

pointerToHistogram = &histogram; // now it points to histogram

TH1F histogram2;

histogram2 = histogram1; // possible, both are regular objects

histogram2 = *pointerToHistogram; // otherwise the types clash

// so in short: & gets the address of an object

// * returns the actual object referenced by the pointer

// also note:

// &pointerToHistogram will get us the address of the pointer(address of address)

Pointers & objects by example

//let's make an object to point to:

TH1F* pointerToHistogram = new TH1F;

//the following will NOT work:

pointerToHistogram.Draw(); //pointers have no methods

//this WILL work:

(*pointerToHistogram).Draw(); //call to method of object

//mostly used with this shorthand:

pointerToObject->Draw();

Some ROOT types

● Some more commonly used ROOT types:

Bool_t – boolean (kTRUE,kFALSE)

Int_t – integer

Float_t – floating point number

Double_t – double-precision float

How to get to out software

● Boot Linux
● Login
● Open a terminal
● Type:

. /home/projects/ns-sap/ns-sap-env.sh v4-19-Rev-05
● (there is a dot-space at the beginning)
● You can start root by typing:

root

Example

● Start root.
● Run this program in root:

.x PlotHistogram.C

● Do you understand what
the program does?

● Note also that we no
longer need to use:

TH1F::DrawCopy()

why?

#include <TH1F.h>

#include <TRandom.h>

void PlotHistogram()

{

 TH1F* histogram=new TH1F;

 histogram->SetBins(50,-4.0,4.0);

 TRandom rndGener;

 for (Int_t i=0;i<10000;i++)

 {

 Float_t rndNumber;

 rndNumber=rndGener.Gaus(0.0,1.0);

 if (i=10) continue;

 if (rndNumber>0)

 histogram->Fill();

 }

 histogram->Draw();

}

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32

