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C++

● Middle-level, statically typed, free-form, multi-
paradigm, compiled language(wikipedia.org).

● Development started in 1979 by Bjarne Stroustrup at 
Bell Labs (C with classes)
● Renamed to “C++” in 1983

● One of most popular programming languages ever 
created.



  

C++ middle level language

● High level abstractions:
● Hardware 'independent' data types (int, float,...)

● Data structures (classes, arrays, streams,...)

● Execution flow control (functions, methods, loops,...)

● Portability (to a reasonable degree)

● Additionally a large standard (and non-standard) library

● Low level features:
● Explicit memory access & management (!)

● Bit-level operations

● ...



  

C++ multi paradigm language

● Procedural programming:
● Use of subroutines (functions) to add structure to the 

program

● Object-oriented programming:
● Association of data structures and functions (methods) 

that can operate on them

● ...



  

C++/ROOT

● ROOT is a C++ framework and environment used and 
developed at CERN.

● Gives you ready to use data types (histograms, trees) 
and constructs for math, IO and more...

● Provides an interpreter (no need for compilation)
● No need to write independent programs.
● All in all simplifies a lot of tasks (most of the time).
● Full documentation at http://root.cern.ch/



  

Programming 
(in C/C++/ROOT/...)

● Declare what data we want to operate on (memory)
● Make functions to operate on the data (cpu)



  

Declaring variables

● Reserves space in memory 
to hold data of specific type 
(integer, float, 
structure,pointer)

● The curly brackets { } 
define scope – a logical 
block with it's own local 
data (and instructions)

● Inside a block only data 
explicitly declared in there 
are available (for now)

● Closing brace deletes all 
declared variables from 
memory 

{

  int i=0;

  float f=3.1415;

}



  

Declaring functions

● Functions are named 
blocks that can return a 
value of a certain type.

● Once defined a function 
can be executed (called) 
anywhere (almost).

int MyFunction()

{

  int i=0;

  return i;

}

int DoSomething()

{

  int result;

  result=MyFunction();

  return result;

}



  

Declaring functions

● Functions can take input 
of a certain type.
Just like mathematical 
equivalents: 
y=f(x1,x2,..)

● The  (call to) function can 
be used as a value of its 
return type – in this case 
an integer (it doesn't 
matter if you use y or 
f(x) in an expression)

int MyFunction(int input)

{

  int i=0;

  i+=input;

  return i;

}

int DoSomething()

{

  int result=0;

  int value=2;

  result=MyFunction(value);

  return result;

}



  

Essential basics

● Checking for a condition:

if (condition) {…}

else {…}

condition is either (something that returns a) true or 
false or NULL or not NULL for pointers (you can check 
if a pointer points to something useful)



  

More essential basics

● Most arithmetic operators work 'intuitively', e.g.
● a=b, a+b, a-b, a*b, a/b, a%b

● Beware of implicit type conversions: results depend on 
type of arguments: 3.0/2=1.5 but 3/2=1 (integer 
division)

● Comparison operators, result is always a boolean:
● a==b, a<b, a<=b

● Beware of comparison a==b vs assignment a=b.



  

Loops

● Often you want to repeat some 
calculation a specified number 
of times, or repeat it until some 
condition occurs

● Most commonly used: for-loop.
● Syntax:

for(init;condition;finish){...}

init executed once after {

condition (must be bool) every 
iteration after {

finish at } (also every time)

int MyFunction(int input)

{

  return ++input;

}

int DoSomething()

{

  int value;

  for (int i=0; i<20; i++)

  {  

    value=MyFunction(value);

  }

  return value;

}



  

Loops

● Controlling loops:

continue – skips to the next iteration

break – jumps out of the loop, no more iterations

for (Int_t i=0; i<1000 ;i++)

{

  if (i>10) {break;} //after 10 no more loop

  if (i>0) {continue;}

  printf(“this text will appear only once\n”);

}

  



  

Final touches: prototypes and 
#include statement

● A compiler (or interpreter) 
runs over the code from 
top to bottom while 
compiling/parsing it.

● Sometimes it is not 
desirable/possible to 
always have the functions 
implemented before you 
use them.

● External libraries: we 
don't have to reinvent the 
wheel, we can use 
someone elses code.

int main(){

 printf(“result is: 
%i\n”,DoSomething());

}

int MyFunction(int input){

  return ++input;

}

int DoSomething(){

  int value;

  for (int i=0; i<20; i++){  

    value=MyFunction(value);

  }

 return value;

}



  

Final touches: prototypes and 
#include statement

● Placing prototypes of functions 
at the beginning makes them 
available throughout the code.

● If the prototypes are specified in 
a separate file (as is a case with 
external libraries)  we can 
#include it with the same 
benefit.

● Of course the implementation 
has to be there somewhere (in 
the search path of the linker) or 
else the compiler will complain.

#include <cstdio>

int MyFunction(int input);

int DoSomething();

int main(){

  printf(“result is: %i\n”,DoSomething());

}

int MyFunction(int input){

  return ++input;

}

int DoSomething(){

  int value;

  for (int i=0; i<20; i++){  

    value=MyFunction(value);

  }

 return value;

}



  

Exercise: compile&run

● Type the code and save in a file 
named test.cxx; compile it with:

g++ test.cxx -o test

● It will produce an executable file 
test which you can run in the 
terminal a few times by typing:

./test

● Do you understand the output?

#include <cstdio>

int MyFunction(int input);

int DoSomething();

int main(){

  printf(“result is: %i\n”,DoSomething());

}

int MyFunction(int input){

  return ++input;

}

int DoSomething(){

  int value;

  for (int i=0; i<20; i++){

    if (i=10) continue;  

    value=MyFunction(value);

  }

 return value;

}



  

Object-oriented programming 
with ROOT

● An object is a data structure

● Can contain simple data (integers, floats,...) 
as well as other objects (members)

● Objects have a type: their class

● The class also specifies the operations that 
are allowed for manipulation of the data it 
holds, most often the data members are not 
directly accessible (only by methods).

● members/methods only accessible if made 
public.

● Much much more (like inheritance, friends, 
…) will not be covered now.

 class ExampleHistogramType

{

  protected:

    …

    Int_t fNentries;

    Int_t fNbins;

    … 

  public:

    … 

    Int_t GetEntries();

    Int_t GetNbins();

    … 

}



  

Objects

● Instantiation of an object 
goes like with any other 
variable

● Special syntax for 
accessing members and 
methods:
object.member
object.method()

#include <TH1F.h>

#include <TRandom.h>

void PlotHistogram()

{

  TH1F histogram;

  TRandom rndGener;

  histogram.SetBins(50,-4.0,4.0);

  for (Int_t i=0;i<10000;i++)

  {

    Float_t rndNumber;

    rndNumber=rndGener.Gaus(0.0,1.0); 

    histogram.Fill(rndNumber);

  }

  histogram.DrawCopy();  

}



  

Exercise: objects

● Call the file 
PlotHistogram.C

● Start root by typing root 
in the terminal

● Run the code:
.x PlotHistogram.C

● Change last line to:
histogram.Draw() and 
run

● What happened?

#include <TH1F.h>

#include <TRandom.h>

void PlotHistogram()

{

  TH1F histogram;

  TRandom rndGener;

  histogram.SetBins(50,-4.0,4.0);

  for (Int_t i=0;i<10000;i++)

  {

    Float_t rndNumber;

    rndNumber=rndGener.Gaus(0.0,1.0); 

    histogram.Fill(rndNumber);

  }

  histogram.DrawCopy();  

}



  

Dynamic memory, pointers, 
references

● Sometimes it is useful to have the data outlive the 
scope boundaries

● Sometimes we don't know a priori how much memory 
to reserve (eg. for an array)

● local variables are allocated on the stack and destroyed 
when they go out of scope.

● We can also allocate memory in a different memory 
pool (the heap) using the “new” keyword – this is 
persistent, so we have to make sure we also free the 
allocated memory after we're done with it



  

Dynamic memory

code

} stack

} heap

#include <TH1F.h>

void PlotHistogram()

{

  {

    Int_t i;

    TH1F histogram;

    new TH1F;

  }

}



  

Dynamic memory

Int_t

TH1F

code

} stack

} heap

#include <TH1F.h>

void PlotHistogram()

{

  {

    Int_t i;

    TH1F histogram;

    new TH1F;

  }

}



  

Dynamic memory

Int_t

code

} stack

} heapTH1F

#include <TH1F.h>

void PlotHistogram()

{

  {

    Int_t i;

    TH1F histogram;

    new TH1F;

  }

}

TH1F



  

Dynamic memory

code

} stack

} heap

#include <TH1F.h>

void PlotHistogram()

{

  {

    Int_t i;

    TH1F histogram;

    new TH1F;

  }

  //object still there

  //but no way to get to it

}

TH1F



  

Pointers
#include <TH1F.h>

void PlotHistogram()

{

  //pointer type

  //can only contain an address

  //of an object or NULL

  TH1F* p_histogram=NULL;

  {

    Int_t i;

    TH1F histogram;

    p_histogram = new TH1F;

  }

}

Int_t

TH1F

code

} stack

} heap

TH1F*



  

Pointers
#include <TH1F.h>

void PlotHistogram()

{

  //pointer type

  //can only contain an address

  //of an object or NULL

  TH1F* p_histogram=NULL;

  {

    Int_t i;

    TH1F histogram;

    p_histogram = new TH1F;

  }

}

Int_t

TH1F

code

} stack

} heap

TH1F*

TH1F



  

Pointers
#include <TH1F.h>

void PlotHistogram()

{

  //pointer type

  //can only contain an address

  //of an object or NULL

  TH1F* p_histogram=NULL;

  {

    Int_t i;

    TH1F histogram;

    p_histogram = new TH1F;

  }

  delete p_histogram;

} code

} stack

} heap

TH1F*

TH1F



  

Pointers & addresses by 
example

● Syntax:
TH1F* pointerToHistogram;               // declaration, contains address

TH1F histogram;                         // ”regular” object on stack

pointerToHistogram = &histogram;        // now it points to histogram

TH1F histogram2;

histogram2 = histogram1;                // possible, both are regular objects

histogram2 = *pointerToHistogram;       // otherwise the types clash

// so in short: & gets the address of an object

//             * returns the actual object referenced by the pointer

// also note:

// &pointerToHistogram will get us the address of the pointer(address of address) 



  

Pointers & objects by example

//let's make an object to point to:

TH1F* pointerToHistogram = new TH1F;

//the following will NOT work:

pointerToHistogram.Draw();     //pointers have no methods 

//this WILL work:

(*pointerToHistogram).Draw();  //call to method of object

//mostly used with this shorthand:

pointerToObject->Draw();



  

Some ROOT types

● Some more commonly used ROOT types:

Bool_t – boolean (kTRUE,kFALSE)

Int_t – integer

Float_t – floating point number

Double_t – double-precision float



  

How to get to out software

● Boot Linux
● Login
● Open a terminal
● Type:

. /home/projects/ns-sap/ns-sap-env.sh v4-19-Rev-05
● (there is a dot-space at the beginning)
● You can start root by typing:

root



  

Example

● Start root.
● Run this program in root:

.x PlotHistogram.C

● Do you understand what 
the program does?

● Note also that we no 
longer need to use:

TH1F::DrawCopy()

why?

#include <TH1F.h>

#include <TRandom.h>

void PlotHistogram()

{

  TH1F* histogram=new TH1F;

  histogram->SetBins(50,-4.0,4.0);

  TRandom rndGener;

  for (Int_t i=0;i<10000;i++)

  {

    Float_t rndNumber;

    rndNumber=rndGener.Gaus(0.0,1.0); 

    if (i=10) continue;

    if (rndNumber>0)

      histogram->Fill();

  }

  histogram->Draw();  

}
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