Outline

- Strong Interaction and the Quark-Gluon Plasma
- High-Energy Nuclear Reactions
- Basic Measurements
 - multiplicity and transverse energy
 - particle yields

Strong Interaction

- one of the four fundamental interactions
 - gravitational
 - electromagnetic
 - strong
 - weak
- strongest coupling, but not "visible" macroscopically

- first observed as nuclear
 interaction
 - binding of protons and neutrons in nuclei
 - not fundamental, but effective interaction
- fundamental interaction between quarks

Meson Exchange vs Quark Model

- quark model description of nuclear interaction extremely complicated
- treat hadrons as effective degrees of freedom
 - still useful description

Strong Interaction Potential

- Rutherford-like cross section
 - well consistent with Coulomb-like potential

$$V \approx -\frac{4}{3} \cdot \frac{\alpha_s}{r}$$

Running Coupling

- coupling of the strong interaction depends on momentum transfer Q^2 !
- coupling small at large Q^2
 - perturbation theory usable
- coupling large at small Q^2
 - non-perturbative
 - difficult, but interesting phenomena!

Quark-Antiquark Potential

QCD Potential Long-Range Behaviour

- short range
 Coulomb-like
- long range (phenomenological)
 - linearly increasing
 - infrared slavery
 - confinement
 - to separate a quarkantiquark pair an infinite amount of energy is needed: no free quarks!

Bag model of hadrons

- QCD vacuum is perfect colourdielectric
 - no net colour charge allowed
 - only singlet states have finite energy
- quarks are confined in a "bag" of perturbative vacuum
 - inside bag $\varepsilon_c = 1$
 - quarks are free inside (asymptotic freedom)
- QCD vacuum expels color field
 - analogy to superconductor (no magnetic field inside)
 - "color-electric Meissner effect"

The Quark-Gluon-Plasma

- higher density or temperature leads to overlap of hadrons
 - intuitive in bag model:
 inner pressure balances
 bag pressure
- new state of matter: quark-gluon-plasma
 - deconfinement
 - restoration of chiral symmetry

Latent Heat

- "discontinuity" of energy density
 - critical temperature
 - $T_c = 160 180 \text{ MeV}$
 - $\varepsilon = 2 3 \text{ GeV/fm}^3$
 - strong increase in number of degrees of freedom
- smoother increase in pressure
 - interactions reduce pressure
 - no ideal gas

0.01

Debye-Screening

- coupling $\alpha_{\rm S}$ depends on • temperature T
- **Debye-screening reduces** • interaction at large distances

$$V(r) = -\frac{4}{3} \cdot \frac{\alpha(T)}{r} \cdot \exp\left[-\mu(T) \cdot r\right]$$

What happens to bound • states?

Phase Diagram

- hadronic phase
 - low baryon density and low temperature
- quark-gluon-plasma (QGP)
 - high baryon density and high temperature
- phase transition
 - realized in early universe and neutron stars
 - order of the transition?

The Big Bang in the Laboratory

duration: a few (10?) fm/c size: a few (10?) fm

long enough? large enough?

The Initial State: Creating Energy Density

- nucleon-nucleon collision
 - strong interaction creates color field: string

The Initial State: Creating Energy Density

 nucleus-nucleuscollisions as a superposition of nucleonnucleon

The Initial State: Creating Energy Density

- higher energy density
 - more strings
 - increases with number of participants
 - stopping of baryons?
 - interaction of strings??
 - non-abelian fields

Relativistic Collisions

- collisions are highly relativistic
 - binding energy of nucleons small compared to collision energy
 - treat as unbound
 - wavelength very small compared to sizes
 - no wave effects: "billiard balls"
 - boost direction special
 - separate:
 - longitudinal (beam)
 - transverse

Space-Time Picture

- longitudinal boostinvariance (approx.)
 - evolution depends on proper time
- different time scales
 - formation
 - equilibration(?)
 - transition
 - mixed phase, hadronisation
 - freeze-out
 - interactions stop
 - inelastic: chem. f.-o.
 - elastic: kinetic f.-o.

Participant-Spectator Model

- not always central collisions
- approximation:
 - independent nucleons
 (binding energy negligible)
 - classical scattering (small deBroglie wavelength)
- geometry determines reaction volume
 - participants

Global Variables and Geometry

- global variables (E_T, N_{ch}) are determined by the geometry of the collisions
- use to determine impact parameter (centrality)
 - $E_T, N_{ch} \text{ increase with} \\ \text{decreasing } b \text{ or} \\ \text{increasing } N_{part}$

Energy Dependence of Multiplicity

- charged multiplicity per participant pair as a function of beam energy
- heavy ion collisions and e⁺e⁻ similar at high energies
- higher than pp
 - different "efficiency" of converting energy into new particles?
 - different initial conditions

First Measurements at LHC

- uncertainty on particle multiplicity corresponds to uncertainty on the initial density of the system
- first measurements in p+p collisions help to reduce uncertainty (even for extrapolation to A+A)

Simple Observables

- transverse energy \rightarrow energy density ε
- multiplicity of produced particles \rightarrow entropy *S*
- mean transverse momentum, chemical composition \rightarrow temperature T
- intensity interferometry \rightarrow volume V
- asymmetric emission patterns \rightarrow pressure *p*

Energy Density Estimate

$$\varepsilon = \frac{\sum_{i} E_{i}}{V} = \frac{\sum_{i} m_{Ti} \cdot \cosh y_{i}}{S_{T} \cdot dz}$$

$$\sum_{i} m_{Ti} \cdot \cosh y_i \to dE_T \cdot \cosh y$$

$$dz = dy \cdot \tau_0 \cdot \cosh y$$

$$\varepsilon = \frac{\cosh y \cdot dE_T}{S_T \cdot \tau_0 \cdot \cosh y \cdot dy} = \frac{1}{S_T \cdot \tau_0} \cdot \frac{dE_T}{dy}$$

Transverse Energy Measurement

- Bjorken formula: $\varepsilon = \frac{1}{\tau_0 S_T} \cdot \frac{dE_T}{d\eta}$
 - formation au_0
 - canonical value: 1fm/c
 - transverse area S_T
- experimentally:
 - SPS $\sqrt{s} = 17.3 \,\text{GeV}$: $\varepsilon = 2.5 \,\text{GeV/fm}^3$

- RHIC $\sqrt{s} = 200 \text{ GeV}: \epsilon = 4.5 \text{ GeV/fm}^3$

Chemical Freeze-Out Temperature

- thermal models describe
 particle ratios
 - production probability depends on particle mass, temperature and chemical potentials
- characteristic parameters:

$$T = 160 \text{ MeV}, \mu_B = 20 \text{ MeV}$$

Freeze-Out and the Phase Diagram

- freeze-out parameters at high energy close to expected phase transition
 - hadron abundances frozen at the phase transition, i.e. at "hadronization"
 - consistent with existence of QGP and thermalization at SPS and RHIC
 - no hints for phase transition at lower energy

Summary

- strong interaction
 - running coupling
 - most phenomena nonperturbative
 - confinement
- quark-gluon plasma
 - deconfinement transition
 - latent heat
 - phase diagram

- heavy-ion collisions
 - evolution
 - centrality
 - multiplicity
 measurements
- simple observables
 - energy density estimate
 - chemical equilibration