Lecture 2: Single and di-hadron measurements and energy loss modelling

Marco van Leeuwen, Nikhef and Utrecht University

Helmholtz School Manigod 17-21 February 2014

From RHIC to LHC

$$(1-0.23)^{6.2} = 0.20$$
 $(1-0.23)^{4.4} = 0.32$

Remember: still 'getting a sense for the numbers'; this is not a model!

Towards a more complete picture

- Energy loss not single-valued, but a distribution
- Geometry: density profile; path length distribution
- Energy loss is partonic, not hadronic
 Full modeling: medium modified shower
 - Simple ansatz for leading hadrons: energy loss followed by fragmentation
 - Quark/gluon differences

Geometry

Space-time evolution is taken into account in modeling

A simplified approach

Notes:

- This is the simplest ansatz most calculation to date use it (except some MCs)
- Jet, γ-jet measurements 'fix' E, removing one of the convolutions

Situation at RHIC, ca 2008

3 main calculations; comparison with same medium density profile

ASW: $\hat{q} = 10 - 20 \text{ GeV}^2/\text{fm}$ HT: $\hat{q} = 2.3 - 4.5 \text{ GeV}^2/\text{fm}$ AMY: $\hat{q} \approx 4 \text{ GeV}^2/\text{fm}$

Large density: AMY: T ~ 400 MeV Transverse kick: qL ~ 10-20 GeV

Large uncertainty in absolute medium density

R_{AA} at LHC & models

ALICE: arXiv:1208.2711 CMS: arXiv:1202.2554

Many model curves: need more constraints and/or selection of models

Medium-induced radition

Landau-Pomeranchuk-Migdal effect Formation time important

If $\lambda < \tau_f$, multiple scatterings add coherently

 $\Delta E_{med} \sim \alpha_S \hat{q} L^2$

Four formalisms

Multiple gluon emission

Hard Thermal Loops (AMY)

- Dynamical (HTL) medium
- Single gluon spectrum: BDMPS-Z like path integral
- No vacuum radiation
- Multiple soft scattering (BDMPS-Z, ASW-MS)
 - Static scattering centers
 - Gaussian approximation for momentum kicks
 - Full LPM interference and vacuum radiation

Opacity expansion ((D)GLV, ASW-SH)

- Static scattering centers, Yukawa potential
- Expansion in opacity L/λ
 - (N=1, interference between two centers default)
- Interference with vacuum radiation

Higher Twist (Guo, Wang, Majumder)

- Medium characterised by higher twist matrix elements
- Radiation kernel similar to GLV
- Vacuum radiation in DGLAP evolution

Fokker-Planck rate equations

Poisson ansatz (independent emission)

DGLAP evolution

Large angle radiation

Gluon momentum k (GeV) V)

Calculated gluon spectrum extends to large k_{\perp} at small k Outside kinematic limits

GLV, ASW, HT cut this off 'by hand'

Effect of large angle radiation

Different large angle cut-offs: $k_T < \omega = x_E E$ $k_T < \omega = 2 x_+ E$

Factor ~2 uncertainty from large-angle cut-off

Energy loss distributions

L-dependence; regions of validity?

Energy loss formalisms

- Large differences between formalisms understood
 - Large angle cut-off
 - Length dependence (interference effects)
- Mostly (?) 'technical' issues; can be overcome
 - Use path-integral formalism
 - Monte Carlo: exact *E*, *p* conservation
 - Full $2 \rightarrow 3$ NLO matrix elements
 - Include interference
- Next step: interference in multiple gluon emission

Many new developments; see Carlos' lectures for more **Plenty of room for interesting and relevant theory work!**

In-medium showers: energy loss MC

Theory calculations on previous slides: 'factorised' approach, P(ΔE) FF

Alternative (more realistic):

in-medium shower: every radiation is affected by the medium

(N.B.: coherence effects may be more complicated; see Carlos' lectures)

Implemented in MC codes: JEWEL, YaJEM

R_{AA} at LHC and JEWEL

JEWEL: Monte Carlo event generator with radiative+collisional energy loss

- Modified showers with MC-LPM implementation
- Geometry: expanding Woods-Saxon density

JEWEL energy loss model agrees with measurements (tuned at RHIC, LHC 'parameter-free')

Effects in R_{AA}

• Parton p_T spectra

- − Less steep at LHC \rightarrow less suppression
- Steepness decreases with p_T : R_{AA} rises

Quark vs gluon jets

- More gluon jets at LHC \rightarrow more suppression
- More quark jets at high p_T : R_{AA} rises

Medium density (profile)

- Larger density at LHC → more suppression (profile similar?)
- Path length dependence of energy loss

Parton energy dependence

- Expect slow (log) increase of ΔE with $E \rightarrow R_{AA}$ rises with p_T
- Running of α_{s} (A Buzzatti@QM2012) ?
- Energy loss distribution
 - Expect broad distribution $P(\Delta E)$; kinematic bounds important

'Known', external input Energy loss theory Determine/ constrain from measurements

Use different observables to disentangle effects contributions

Part II: Path length dependence

Geometry

Most models take space-time evolution into account

Path length I: centrality dependence

Comparing Cu+Cu and Au+Au

R_{AA}: inclusive suppression

Away-side suppression

Inclusive and di-hadron suppression seem to scale with N_{part}

N_{part} scaling?

Geometry (thickness, area) of central Cu+Cu similar to peripheral Au+Au Cannot disentangle density vs path length

Nuclear geometry: N_{part}, N_{coll}

Non-central collisions: eccentric matter distribution Transverse view

R_{AA} vs ϕ and elastic eloss

However, also quite sensitive to medium density evolution

Modelling azimuthal dependence

R_{AA} vs reaction plane sensitive to geometry model

Path length dependence: R_{AA} vs ϕ

PHENIX, arXiv:1208.2254

Suppression depends on angle, path length Not so easy to model: calculations give different results

Reaction plane dependence at LHC: High-p_T v₂

A unexpected angle on path length dependence: di-hadron correlations

Dihadron correlations

Use di-hadron correlations to probe the jet-structure in p+p, d+Au and Au+Au

Di-hadrons at high- p_T : recoil suppression

High- p_T hadron production in Au+Au dominated by (di-)jet fragmentation

Suppression of away-side yield in Au+Au collisions: energy loss

Dihadron yield suppression

Near side: No modification ⇒ Fragmentation outside medium? Away-side: Suppressed by factor 4-5 \Rightarrow large energy loss

Path length II: 'surface bias'

Near side trigger, biases to small E-loss

Away-side large L

Away-side (recoil) suppression I_{AA} samples longer path-lengths than inclusives R_{AA}

NB: other effects play a role: quark/gluon composition, spectral shape (less steep for recoil)

Di-hadron modeling

Model 'calibrated' on single hadron R_{AA}

 L^2 (ASW) fits data L^3 (AdS) slightly below

L (YaJEM): too little suppresion L^2 (YaJEM-D) slightly above Modified shower generates increase at low z_T

Di-hadrons and single hadrons at LHC

Di-hadron with high- p_T trigger

pt^{trig} > 20 GeV at LHC: strong signals even at low p_T^{assoc} 1-3 GeV CMS-PAS-HIN-12-010

CMS di-hadrons: near side

Transition enhancement \rightarrow suppression @ $p_T \sim 3$ GeV

also compatible with I_{AA} =1 at p_T > 3 GeV?

CMS di-hadrons: away side

Transition enhancement \rightarrow suppression @ p_T ~ 2 GeV

Summary RAA, IAA

- Energy loss is a large effect: fractional loss ~0.2-0.3, several GeV
- For radiative energy loss: momentum exchange with medium ~ several GeV
- Quantitative relation between medium density and energy loss not (yet) available
- Path length dependence: L² strongly favoured by comparing inclusive and recoil data

Fixing the parton energy with γ -jet events

38

γ-jet in Au+Au

Use shower shape in EMCal to form π^0 sample and γ -rich sample

Combinatorial subtraction to obtain direct-y sample

Direct-y recoil suppression

$$I_{AA}(z_T) = \frac{D_{AA}(z_T)}{D_{DD}(z_T)}$$

Large suppression for away-side: factor 3-5

Reasonable agreement with model predictions

NB: gamma p_T = jet p_T still not very large

Extra slides

Questions about energy loss

- What is the dominant mechanism: radiative or elastic?
 - Heavy/light, quark/gluon difference, L² vs L dependence
- How important is the LPM effect?
 - L² vs L dependence
- Can we use this to learn about the medium?
 - Density of scattering centers?
 - Temperature?
 - Or 'strongly coupled', fields are dominant?

Phenomenological questions:

Large vs small angle radiation Mean ΔE ? How many radiations? Virtuality evolution/interplay with fragmentation?

In- vs out-of-plane difference also seen for charm → Additional constraint for models?

Medium-induced radiation

Landau-Pomeranchuk-Migdal effect Formation time important

Transport coefficient

Energy loss

$$\Delta E_{med} \sim \alpha_S C_R \hat{q} L^n F(m, E)$$

 C_R : color factor (q, g) \hat{q} : medium densityL: path lengthm: parton mass (dead cone eff)E: parton energy

Path-length dependence Lⁿ n=1: elastic n=2: radiative (LPM regime) n=3: AdS/CFT (strongly coupled)