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From RHIC to LHC

RHIC LHC

RHIC: n ~ 8.2 LHC: n ~ 6.4

( ) 20.023.01 2.6 =− ( ) 32.023.01 4.4 =−

Remember: still ‘getting a sense for the numbers’; this is not a model!
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Towards a more complete picture

• Energy loss not single-valued, but a distribution 
• Geometry: density profile; path length distribution 
• Energy loss is partonic, not hadronic 

– Full  modeling: medium modified shower 
– Simple ansatz for leading hadrons: energy loss 

followed by fragmentation 
– Quark/gluon differences



!4

Geometry

Density profile

Profile at τ ~ τform known

Density along parton path

Longitudinal expansion  
dilutes medium 
⇒ Important effect

Space-time evolution is taken into account in modeling
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This is where the information about the medium is
P(ΔE) combines geometry  
with the intrinsic process 

– Unavoidable  for many observables

Notes: 
• This is the simplest ansatz – most calculation to date use it (except some 

MCs) 
• Jet, γ-jet measurements ‘fix’ E, removing one of the convolutions

A simplified approach
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Situation at RHIC, ca 2008
B

ass et al, P
R

C
79, 024901ASW: 

HT: 
AMY:

/fmGeV2010ˆ 2−=q
/fmGeV5.43.2ˆ 2−=q

/fmGeV4ˆ 2≈q

Large density: 
AMY: T ~ 400 MeV 
Transverse kick: qL ~ 10-20 GeV

Large uncertainty in  
absolute medium density

P
H

E
N

IX
, arX

iv:1208.2254

3 main calculations; comparison  
with same medium density profile
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RAA at LHC & models

ALICE: arXiv:1208.2711 
CMS: arXiv:1202.2554

Broad agreement 
between models and 

LHC RAA

Extrapolation from RHIC 
tends to give too much 

suppression at LHC

Many model curves: need more constraints and/or selection of models
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Medium-induced radition

If λ < τf, multiple scatterings  
add coherently

2ˆ~ LqE Smed αΔ

2
2
T

f k
ω

τ =

Zapp, QM09

Lc = τf,max
propagating  

parton

radiated 
gluon

Landau-Pomeranchuk-Migdal effect 
Formation time important

Radiation sees  
length ~τf at once

Energy loss depends on density:
ρ

λ
1

∝

λ

2

ˆ
⊥

≡
q

q

and nature of scattering centers 
(scattering cross section)

Transport coefficient
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Four formalisms

• Hard Thermal Loops (AMY) 
– Dynamical (HTL) medium 
– Single gluon spectrum: BDMPS-Z like path integral 
– No vacuum radiation 

• Multiple soft scattering (BDMPS-Z, ASW-MS) 
– Static scattering centers 
– Gaussian approximation for momentum kicks 
– Full LPM interference and vacuum radiation 

• Opacity expansion ((D)GLV, ASW-SH) 
– Static scattering centers, Yukawa potential  
– Expansion in opacity L/λ  

(N=1, interference between two centers default) 
– Interference with vacuum radiation 

• Higher Twist (Guo, Wang, Majumder) 
– Medium characterised by higher twist matrix elements 
– Radiation kernel similar to GLV 
– Vacuum radiation in DGLAP evolution

Multiple gluon emission

Fokker-Planck 
rate equations

Poisson ansatz 
(independent emission)

DGLAP 
evolution

See also: arXiv:1106.1106
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Large angle radiation
Emitted gluon distribution 

Opacity expansion

Calculated gluon spectrum extends to large k⊥ at small k 
Outside kinematic limits

kT < k

GLV, ASW, HT cut this off ‘by hand’
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Effect of large angle radiation
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Different large angle cut-offs: 
kT < ω = xE E 
kT < ω = 2 x+ E

Blue: kTmax = xE 
Red: kTmax = 2x(1-x)E

Single-gluon spectrum

Different definitions of x:

ASW: GLV:

Factor ~2 uncertainty  
from large-angle cut-off

H
orow

itz and C
ole, P

R
C

81, 024909

Opacity expansion formalisms 
!
!
Expand in powers of

λ
L
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Energy loss distributions

Radiated gluon distribution

Main theory uncertainty: 
Large angle radiation

Multiple gluon emission: 
Poisson AnsatzEnergy loss probability distribution

Broad distribution 
Significant contributions at ΔE=0, ΔE=E
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L-dependence; regions of validity?
Emission rate vs τ (=L)

Caron-Huot, Gale, arXiv:1006.2379

AMY, small L, 
no L2, boundary effect

Full =  
numerical solution of  

Zakharov path integral  
= ‘best we know’

GLV N=1 
Too much radiation  
at large L 
(no interference  
between scatt centers)

H.O = ASW/BDMPS like (harmonic oscillator) 
Too little radiation at small L 

(ignores ‘hard tail’ of scatt potential)

E = 16 GeV 
k = 3 GeV 
T = 200 MeV
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Energy loss formalisms

Many new developments; see Carlos’ lectures for more 
Plenty of room for interesting and relevant theory work!

• Large differences between formalisms understood 
– Large angle cut-off 
– Length dependence (interference effects) 

• Mostly (?) ‘technical’ issues; can be overcome 
– Use path-integral formalism 
– Monte Carlo: exact E, p conservation 

• Full 2→3 NLO matrix elements 
• Include interference 

• Next step: interference in multiple gluon emission
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In-medium showers: energy loss MC

High-energy !
parton 

(from hard scattering)

H
adrons

Theory calculations on previous slides: ‘factorised’ approach, P(ΔE) FF

Alternative (more realistic):  
in-medium shower: every radiation is affected by the medium 

(N.B.: coherence effects may be more complicated; see Carlos’ lectures)

Implemented in MC codes: JEWEL, YaJEM
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RAA at LHC and JEWEL

JEWEL energy loss model agrees with measurements 
(tuned at RHIC, LHC ‘parameter-free’)

JEWEL: Monte Carlo event generator with radiative+collisional energy loss 
- Modified showers with MC-LPM implementation 
- Geometry: expanding Woods-Saxon density 
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Effects in RAA

• Parton pT spectra 
– Less steep at LHC ! less suppression 
– Steepness decreases with pT: RAA rises 

• Quark vs gluon jets 
– More gluon jets at LHC ! more suppression 
– More quark jets at high pT: RAA rises 

• Medium density (profile) 
– Larger density at LHC ! more suppression 

(profile similar?) 
– Path length dependence of energy loss 

• Parton energy dependence 
– Expect slow (log) increase of ΔE with E ! RAA rises with pT 

– Running of αS (A Buzzatti@QM2012) ? 

• Energy loss distribution 
– Expect broad distribution P(ΔE); kinematic bounds important 

‘Known’, 
external 

input

Energy loss  
theory

Determine/ 
constrain from 
measurements

Use different observables to disentangle effects contributions 
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Part II: Path length dependence
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Geometry

Density profile

Profile at τ ~ τform known

Density along parton path

Longitudinal expansion  
dilutes medium 
⇒ Important effect

Most models take space-time evolution into account
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Path length I: centrality dependence

Modified frag: nucl-th/0701045 - H.Zhang, J.F. Owens, E. Wang, X.N. 
Wang

6 < pT trig < 10 GeV

Away-side suppressionRAA: inclusive suppression

B. Sahlmüller, QM08

O. Catu, QM2008

Inclusive and di-hadron suppression seem to scale with Npart

Comparing Cu+Cu and Au+Au
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Npart scaling?

PQM - Loizides – private 
communication

Geometry (thickness, area) of  
central Cu+Cu similar to peripheral Au+Au
Cannot disentangle density vs path length



y
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Nuclear geometry: Npart, Ncoll

b

Transverse view

Eccentricity

Density profile ρ: ρpart or ρcoll

22

22
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Non-central collisions: eccentric matter distribution
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RAA vs ϕ and elastic eloss
T. R

enk, P
R

C
76, 064905, J. A

uvinen et al, P
R

C
82, 051901

Elastic E-loss gives 
small v2

Data require L2 or  
stronger path length  

dependence

However, also quite sensitive to medium density evolution

In Plane

Out of Plane
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Modelling azimuthal dependence
A. Majumder, PRC75, 021901

RAA

pT (GeV) pT (GeV)

RAA

RAA vs reaction plane sensitive to geometry model
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Path length dependence: RAA vs ϕ
PHENIX, arXiv:1208.2254

In Plane

Out of Plane

Suppression depends on angle, path length
Not so easy to model: calculations give different results



Reaction plane dependence at LHC: High-pT v2
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Model: B. Betz, M. Gyulassy, arXiv:1201.0281	
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Reasonable agreement between calculation  
and data for pT > 10 GeV!
(NB: simplified geometry, E-loss; 
 paper claims scale-dependence of 𝛼s main effect)



A unexpected angle on path length 
dependence: di-hadron correlations
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Dihadron correlations

associated
Δϕ

trigger

8 < pT
trig < 15 GeV

pT
assoc > 3 GeV

Use di-hadron correlations to probe the jet-structure in p+p, d+Au

Near side Away side

and Au+Au

Combinatorial 
background
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p
T assoc > 3 G

eV
p

T assoc > 6 G
eV

d+Au Au+Au 20-40% Au+Au 0-5%

Suppression of away-side yield in Au+Au collisions: energy loss

High-pT hadron production in Au+Au dominated by (di-)jet fragmentation

Di-hadrons at high-pT: recoil suppression
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Dihadron yield suppression

Away-side: Suppressed by factor 4-5  
⇒ large energy loss

Near side Away side

STAR PRL 95, 152301

8 < pT,trig < 15 GeV

Yield of additional 
particles in the jet

Yield in balancing  
jet,  after energy loss

Near side: No modification  
⇒ Fragmentation outside medium?

Near side 
associated

trigger

Away side associated

trigger
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Path length II: ‘surface bias’
Near side trigger,  

biases to small E-loss

Away-side large L

Away-side (recoil) suppression IAA samples longer path-lengths  
than inclusives RAA

NB: other effects play a role: quark/gluon composition, spectral shape (less steep for recoil) 
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Di-hadron modeling
T. R

enk, P
R

C
, arX

iv:1106.1740

L2 (ASW) fits data 
L3 (AdS) slightly below

Modified shower  
generates increase at low zT

L (YaJEM): too little suppresion 
L2 (YaJEM-D) slightly above

Model ‘calibrated’ on single hadron RAA
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Di-hadrons and single hadrons at LHC

Need simultaneous comparison to  
several measurements  

to constrain geometry and E-loss

Here: RAA and IAA

Three models: 
ASW: radiative energy loss 
YaJEM: medium-induced virtuality 
YaJEM-D: YaJEM with L-dependent  
                 virtuality cut-off (induces L2)
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Di-hadron with high-pT trigger

pt
trig > 20 GeV at LHC: strong signals even at low pT

assoc 1-3 GeV
CMS-PAS-HIN-12-010

19.2 - 24.0 GeVpT
trig (GeV): 14.0 - 28.8 GeV 28.8-35.2 GeV 35.2-48.0 GeV
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CMS di-hadrons: near side
19.2 - 24.0 GeV

pT
trig (GeV):

14.0 - 28.8 GeV 28.8-35.2 GeV 35.2-48.0 GeV

Transition enhancement → suppression @ pT ~ 3 GeV

also compatible with IAA=1 at pT > 3 GeV?

peripheral 50-60%

central 0-10%

C
M

S
-PA

S
-H

IN
-12-010
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CMS di-hadrons: away side

Transition enhancement → suppression @ pT ~ 2 GeV

C
M

S
-PA

S
-H

IN
-12-010

19.2 - 24.0 GeV
pT

trig (GeV):
14.0 - 28.8 GeV 28.8-35.2 GeV 35.2-48.0 GeV

peripheral 50-60%

central 0-10%



Summary RAA, IAA

• Energy loss is a large effect: fractional loss ~0.2-0.3,  
several GeV!

• For radiative energy loss: momentum exchange with 
medium ~ several GeV!

• Quantitative relation between medium density and energy 
loss not (yet) available!

• Path length dependence: L2 strongly favoured by 
comparing inclusive and recoil data

!37
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Fixing the parton energy with γ-jet events
T. Renk, PRC74, 034906

γ-jet: know jet energy ⇒ sensitive to P(ΔE)

RAA insensitive to P(ΔE)

Nuclear modification factor

Away-side spectra in γ-jet

Eγ = 15 GeV

Away-side spectra for γ-jet  
are sensitive to P(ΔE)

γ
Input energy loss distribution
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γ-jet in Au+Au

Use shower shape in EMCal to form π0 sample and γ-rich sample

Combinatorial subtraction to obtain direct-γ sample
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IAA(zT) =
DAA (zT)

Dpp (zT)

Direct-γ recoil suppression

Large suppression for  
away-side: factor 3-5

Reasonable agreement  
with model predictions

γ
8 < ET,γ < 16 GeV

S
TA

R
, arX

iv:0912.1871

NB: gamma pT = jet pT still not very large
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Extra slides
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Questions about energy loss

• What is the dominant mechanism: radiative or elastic? 
– Heavy/light, quark/gluon difference, L2 vs L dependence 

• How important is the LPM effect? 
– L2 vs L dependence 

• Can we use this to learn about the medium?  
– Density of scattering centers? 
– Temperature? 
– Or ‘strongly coupled’, fields are dominant?

Phenomenological questions: 
Large vs small angle radiation 
Mean ΔE? 
How many radiations? 
Virtuality evolution/interplay with fragmentation?



RAA vs ϕ: heavy flavour

In- vs out-of-plane difference also seen for charm 
! Additional constraint for models?
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Medium-induced radiation

),(ˆ~ EmFLqCE n
RSmed αΔ

propagating  
parton

radiated 
gluon

Landau-Pomeranchuk-Migdal effect 
Formation time important

Radiation sees  
length ~τf at once

Energy loss depends on density:
ρ

λ
1

∝

λ

2

ˆ
⊥

≡
q

q

and nature of scattering centers 
(scattering cross section)

Transport coefficient

CR: color factor (q, g) 
   : medium density 
L: path length 
m: parton mass (dead cone eff) 
E: parton energy

q̂

2
2
T

f k
ω

τ =

Path-length dependence Ln 

n=1: elastic 
n=2: radiative (LPM regime) 
n=3: AdS/CFT (strongly coupled)

Energy loss


