Lecture 3: Jets

Marco van Leeuwen, Nikhef and Utrecht University

Helmholtz School Manigod 17-21 February 2014

Jets and parton energy loss

Motivation: understand parton energy loss by tracking the gluon radiation

Qualitatively two scenarios:

- 1) In-cone radiation: $R_{AA} = 1$, change of fragmentation
- 2) Out-of-cone radiation: $R_{AA} < 1$

Jets at LHC

Jet reconstruction algorithms

Two categories of jet algorithms:

- Sequential recombination k_T , anti- k_T , Durham
 - Define distance measure, e.g. $d_{ij} = min(p_{Ti}, p_{Tj})^*R_{ij}$
 - Cluster closest
- Cone
 - Draw Cone radius R around starting point
 - Iterate until stable $\eta, \varphi_{jet} = \langle \eta, \varphi \rangle_{particles}$

Sum particles inside jet

Different prescriptions exist, most natural: E-scheme, sum 4-vectors

Jet is an object defined by jet algorithm If parameters are right, may approximate parton

For a complete discussion, see: http://www.lpthe.jussieu.fr/~salam/teaching/PhD-courses.html

Collinear and infrared safety

Jets should not be sensitive to soft effects (hadronisation and E-loss)

- Collinear safe
- Infrared safe

Collinear safety

Note also: detector effects, such as splitting clusters in calorimeter (π^0 decay)

Infrared safety

Soft emission, collinear splitting are both infinite in pert. QCD. Infinities cancel with loop diagrams if jet-alg IRC safe

Some calculations simply become meaningless

Infrared safety also implies robustness against soft background in heavy ion collisions

Clustering algorithms – k_T algorithm

Majority of QCD branching is soft & collinear, with following divergences:

$$[dk_j]|M_{g\to g_ig_j}^2(k_j)| \simeq \frac{2\alpha_s C_A}{\pi} \frac{dE_j}{\min(E_i, E_j)} \frac{d\theta_{ij}}{\theta_{ij}}, \qquad (E_j \ll E_i, \ \theta_{ij} \ll 1).$$

To invert branching process, take pair with strongest divergence between them — they're the most *likely* to belong together.

This is basis of $k_t/Durham$ algorithm (e^+e^-) :

1. Calculate (or update) distances between all particles *i* and *j*:

$$y_{ij} = \frac{2\min(E_i^2, E_j^2)(1 - \cos\theta_{ij})}{Q^2}$$

2. Find smallest of y_{ij}

NB: relative k_t between particles

- ► If > y_{cut}, stop clustering
- Otherwise recombine i and j, and repeat from step 1

Catani, Dokshitzer, Olsson, Turnock & Webber '91

k_{T} algorithm

Various distance measures have been used, e.g. Jade, Durham, Cambridge/Aachen

Current standard choice:

- Calculate
 - For every particle i: distance to beam
 - For every pair *i*,*j* : distance
- Find minimal d
 - If d_{iB} , *i* is a jet
 - If d_{ij} , combine *i* and *j*
- Repeat until only jets

$$m \quad d_{iB} = p_{t,i}^{2} \\ d_{ij} = \min(p_{t,i}^{2}, p_{t,j}^{2}) \frac{R_{ij}^{2}}{R^{2}}$$

k_{T} algorithm demo

k_T algorithm properties

- Everything ends up in jets
- k_T-jets irregular shape

 Measure area with 'ghost particles'
- k_T-algo starts with soft stuff
 'background' clusters first, affects jet
- Infrared and collinear safe
- Naïve implementation slow (N³). Not necessary → Fastjet

Alternative: anti-
$$k_{T}$$
 $d_{ij} = min\left(\frac{1}{p_{t,i}^2}, \frac{1}{p_{t,j}^2}\right)\frac{R_{ij}^2}{R^2}$ $d_{iB} = \frac{1}{p_{t,i}^2}$

Cambridge-Aachen:
$$d_{ij} = \frac{R_{ij}^2}{R^2}$$

Cone algorithm

- Jets defined as cone
- Iterate until stable: $(\eta, \varphi)_{\text{Cone}} = \langle \eta, \varphi \rangle_{\text{particles in cone}}$
- Starting points for cones, seeds, e.g. highest p_{T} particles
- Split-merge prescription for overlapping cones

Cone algorithm demo

Seedless cone

1D: slide cone over particles and search for stable cone Key observation: content of cone only changes when the cone boundary touches a particle

Extension to 2D (η , ϕ)

Limiting cases occur when two particles are on the edge of the cone

Jet algorithm examples

simulated p+p event

0

6

Measuring the jet spectrum

PbPb jet background

Background density vs multiplicity

Background contributes up to ~180 GeV per unit area Subtract background: $p_{T,jet}^{sub} = p_{T,jet}^{raw} - \rho A$ Statistical fluctuations remain after subtraction

PbPb jet background

Main challenge: large fluctuations of uncorrelated background energy

Size of fluctuations depends on p_T cut, cone radius

Background jets

Raw jet spectrum

Low p_T : 'combinatorial jets'

- Can be suppressed by requiring leading track
- However: no strict distinction at low p_T possible

Next step: Correct for background fluctuations and detector effects by unfolding/deconvolution

Removing the combinatorial jets

Raw jet spectrum

Fully corrected jet spectrum

Correct spectrum and remove combinatorial jets by unfolding

Results agree with biased jets: reliably recovers all jets and removed bkg

PbPb jet spectra

Charged jets, R=0.3

Jet spectrum in Pb+Pb: charged particle jets Two cone radii, 4 centralities

Pb+Pb jet R_{AA}

Jet R_{AA} measured by ATLAS, ALICE, CMS

Good agreement between experiments

Despite different methods: ATLAS+CMS: hadron+EM jets

ALICE: charged track jets

R_{AA} < 1: not all produced jets are seen; out-of-cone radiation and/or 'absorption' For jet energies up to ~250 GeV; energy loss is a very large effect

Comparing hadrons and jets

Suppression of hadron (leading fragment) and jet yield similar Is this 'natural'? No (visible) effect of in-cone radiation?

Comparison to JEWEL energy loss MC

 p_{\perp} [GeV]

Generic expectations from energy loss

- Longitudinal modification:
 - out-of-cone ⇒ energy lost, suppression of yield, di-jet energy imbalance
 - in-cone \Rightarrow softening of fragmentation
- Transverse modification
 - out-of-cone \Rightarrow increase acoplanarity k_T
 - in-cone \Rightarrow broadening of jet-profile

Jet broadening: transverse fragment distributions

Jet broadening: R dependence of RAA

Jet R_{AA} increases with R (but slowly)

Jet broadening: R dependence

Larger jet cone: 'catch' more radiation → Jet broadening

Ratio of spectra with different R

However, R = 0.5 still has $R_{AA} < 1$ – Hard to see/measure the radiated energy

Comparing to JEWEL energy loss MC

JEWEL gets the right suppression for R=0.2, but not the increase with R May be treatment of recoil patrons

Recap

- So, jet R_{AA} is not close to 1
- Large out-of-cone radiation
- Also means: measured jet energy ≠ initial parton energy!

Next sections: more jet measurements Why so many?

- Different observables sensitive to different aspects of energy loss
- Finding a balance between what you want to know and what you can measure

Generic expectations from energy loss

- Longitudinal modification:
 - out-of-cone ⇒ energy lost, suppression of yield, di-jet energy imbalance
 - in-cone \Rightarrow softening of fragmentation
- Transverse modification
 - out-of-cone \Rightarrow increase acoplanarity k_T
 - in-cone \Rightarrow broadening of jet-profile

Jet fragment distributions

PbPb measurement

Jet fragment distributions

CMS, Frank Ma@QM12 **CMS** Preliminary 10 | Jet p₋ > 100 GeV/c, |η| < 2 PbPb Track $p_{\tau} > 1$ GeV/c, r < 0.3 pp reference dN track /dp 50-100% 30-50% 10-30% 0-10% 10-2 1.5 PbPb - pp 0.5 -0.5 10 10 10 10 p_{τ}^{track} (GeV/c) p_{τ}^{track} (GeV/c) p_{τ}^{track} (GeV/c) p_track (GeV/c) Low p_{T} enhancement: Intermediate z, p_{T} : soft radiation

depletion: E-loss

Azimuthal modulation of RAA 'jet flow'

Path length dependence: elliptic flow of Jets

Significant azimuthal modulation of jet yield jet $v_2 \sim 0.03$ at high p_T

Comparing to JEWEL energy loss MC

5-10% centrality

Good agreement between JEWEL and jet v₂ results

Geometry: Glauber overlap with Bjorken expansion

Di-jet imbalance measurements

Di-jet asymmetry

Observation: some events have two jets with different energy (However: one swallow does not make spring)

Jet energy asymmetry

Centrality

Jet-energy asymmetry

 $A_{J} = \frac{E_{2} - E_{1}}{E_{2} + E_{1}}$

Large asymmetry seen for central events

Suggests large energy loss: many GeV
 compatible with expectations from RHIC+theory

However:

- Only measures reconstructed di-jets (don't see lost jets)
- Not corrected for fluctuations from detector+background
- Both jets are interacting Not a simple observable

Energy dependence of asymmetry

(Relative) asymmetry decreases with energy However: difference pp vs PbPb remains – energy loss finite at large E

Energy dependence of A_J

Asymmetry decreases for larger jet energy Similar effect in pp (Pythia): difference stays ~constant

Studying the imbalance

42

γ-jet imbalance

Centrality

Advantage: γ is a parton: know parton kinematics Disadvantage: low rate (+background $\pi^0 \rightarrow \gamma \gamma$) Translates into: low $p_{T,\gamma}$ cut > 60 GeV Dominant contibution: $qg \rightarrow q\gamma$

Hadron-recoil jet measurements

Hadron trigger vs jet trigger

Centrality and reaction plane biases:

• Finite, but only weak trigger p_T dependence for high p_T^{trig}

20-50 GeV Trigger, 0-10% 2.76 ATeV PbPb

Hadron-triggered recoil jet distributions

G. de Barros et al., arXiv:1208.1518

Background subtraction: Δ_{recoil}

 Δ_{recoil} measures the change of the recoil spectrum with p_T^{trig}

Unfolding correction for background fluctuations and detector response

Ratio of Recoil Jet Yield ΔI_{AA}^{PYTHIA}

pp reference: PYTHIA (Perugia 2010) R=0.4 Constituents: $p_T^{const} > 0.15$ GeV/c no additional cuts

(fragmentation bias) on recoil jets

Recoil jet yield $\Delta I_{AA}^{PYTHIA} \approx 0.75$, approx. constant with jet p_T

Recoil Jet ΔI_{AA}^{PYTHIA} : R dependence

R=0.4

R=0.2

Similar ΔI_{AA}^{PYTHIA} for R=0.2 and R=0.4

No visible broadening within R=0.4 (within exp uncertainties)

Hadrons vs jets II: recoil

Hadron $I_{AA} = 0.5-0.6$

In approx. agreement with models; elastic E-loss would give larger I_{AA}

Jet $I_{AA} = 0.7-0.8$ Jet $I_{AA} >$ hadron I_{AA} Not unreasonable

NB/caveat: very different momentum scales !

Model comparison I_{AA}

Pythia AA 1.8 $\Delta I_{AA}^{Pythia} = \Delta_{recoil}^{Pb-Pb} / \Delta_{recoil}^{Pythia}$ JEWEL preliminary Pb-Pb \ s_{NN}=2.76 TeV anti- k_{τ} , R=0.4, $p_{\tau}^{const} > 0.15$ GeV/c Centrality 0-10% ALICE (15-20) ALICE (15-20) ALICE Charged Jet JEWEL Δ I_AA (20-50)-(15-20) 1.6 PYTHIA+JEWEL 1.4 **Charged Jets** Anti- $k_{\tau} R = 0.3$ 1.2 p_rack > 0.15 GeV/c 0.8 0.6 0.8 0.4 0.6 0.2 0.4 Pb-Pb 0-20% Vs_{NN} = 2.76 TeV 0.2 70 p^{ch}_{T,jet} (GeV/c) 20 30 50 60 10 70 110 60 80 90 100 p_{T,jet}^{ch} (GeV/c) JEWEL correctly describes Predicts $\Delta I_{AA} \sim 0.4$, below measured

inclusive jet R_{AA}

JEWEL: Zapp et al., EPJ C69, 617

A consistent view of jet quenching

Consistent message from charged hadron R_{AA} , inclusive jet R_{AA} and fragmentation functions!

Summary

- Jets: a new tool for parton energy loss measurements

 Large out-of-cone radiation (R = 0.2-0.4)
 - Energy asymmetry
 - R_{AA} < 1
 - I_{AA} < 1
 - Radial shapes
 - Remaining jet is pp-like:
 - Fragment distribution at large z same as pp
 - R_{AA} similar for jets and hadrons
 - Most of the radiation is at low $\ensuremath{p_{\text{T}}}$
 - Scale set by medium temperature?
- Direct photons
 - γ-jet allows to measure initial parton energy; jet asymmetry seen

JEWEL energy loss MC agrees with many of the observed effects Does this constrain the energy loss mechanism(s)? Need to test for kinematic effects/alternative explanations (e.g. YaJEM)

Extra slides

γ, hadrons, jets compared

Suppression of hadron (leading fragment) and jet yield similar Is this 'natural'? No effect of in-cone radiation?

Model comparison

At least one model calculation reproduces the observed suppression \Rightarrow Understand mechanism for out-of-cone radiation?