Lecture 3: Jets

Marco van Leeuwen, Nikhef and Utrecht University

Helmholtz School Manigod
17-21 February 2014

Jets and parton energy loss

Motivation: understand parton energy loss by tracking the gluon radiation

Qualitatively two scenarios:

1) In-cone radiation: $R_{A A}=1$, change of fragmentation
2) Out-of-cone radiation: $R_{A A}<1$

Jets at LHC

And a lot of uncorrelated 'soft' background

Jet reconstruction algorithms

Two categories of jet algorithms:

- Sequential recombination k_{T}, anti- k_{T}, Durham
- Define distance measure, e.g. $\mathrm{d}_{\mathrm{ij}}=\min \left(\mathrm{p}_{\mathrm{T},}, \mathrm{p}_{\mathrm{T}}\right)^{*} \mathrm{R}_{\mathrm{ij}}$
- Cluster closest
- Cone
- Draw Cone radius R around starting point
- Iterate until stable $\eta, \varphi_{j e t}=\langle\eta, \varphi\rangle_{\text {particles }}$

Sum particles inside jet

Different prescriptions exist, most natural: E-scheme, sum 4-vectors

Jet is an object defined by jet algorithm
If parameters are right, may approximate parton

Collinear and infrared safety

Jet Def n
jet 1
jet 2
jet 1

parton shower

$$
\text { Jet } \| \text { Def }^{n}
$$

$$
\text { jet } 1
$$

hadron level
Jet \mid Def ${ }^{n}$
jet 1
jet 2

Jets should not be sensitive to soft effects (hadronisation and E-loss)

- Collinear safe
- Infrared safe

Collinear safety

Collinear Safe

Infinities cancel

Collinear Unsafe

Infinities do not cancel

Note also: detector effects, such as splitting clusters in calorimeter (π^{0} decay)

Infrared safety

Soft emission, collinear splitting are both infinite in pert. QCD.
Infinities cancel with loop diagrams if jet-alg IRC safe

IRC unsafe

sum is infinite

Some calculations simply become meaningless

Infrared safety also implies robustness against soft background in heavy ion collisions

Clustering algorithms $-k_{T}$ algorithm

Majority of QCD branching is soft \& collinear, with following divergences:

$$
\left[d k_{j}\right]\left|M_{g \rightarrow g_{i} E_{j}}^{2}\left(k_{j}\right)\right| \simeq \frac{2 \alpha_{\mathrm{s}} C_{A}}{\pi} \frac{d E_{j}}{\min \left(E_{i}, E_{j}\right)} \frac{d \theta_{i j}}{\theta_{i j}}, \quad\left(E_{j} \ll E_{i}, \theta_{i j} \ll 1\right) .
$$

To invert branching process, take pair with strongest divergence between them - they're the most likely to belong together.

This is basis of $\mathrm{k}_{\mathrm{t}} /$ Durham algorithm $\left(e^{+} e^{-}\right)$:

1. Calculate (or update) distances between all particles i and j :

$$
y_{i j}=\frac{2 \min \left(E_{i}^{2}, E_{j}^{2}\right)\left(1-\cos \theta_{i j}\right)}{Q^{2}}
$$

2. Find smallest of $y_{i j}$

NB: relative k_{t} between particles

- If $>y_{\text {cut }}$, stop clustering
- Otherwise recombine i and j, and repeat from step 1

Catani, Dokshitzer, Olsson, Turnock \& Webber '91

k_{T} algorithm

Various distance measures have been used, e.g. Jade, Durham, Cambridge/Aachen

Current standard choice:

- Calculate
- For every particle i : distance to beam $\quad d_{i B}=p_{t, i}^{2}$
- For every pair i, j : distance $\quad d_{i j}=\min \left(p_{t, i}^{2}, p_{t, j}^{2}\right) \frac{R_{i j}^{2}}{R^{2}}$
- Find minimal d
- If $d_{i B}, i$ is a jet
- If $d_{i j}$, combine i and j
- Repeat until only jets

k_{T} algorithm demo

k_{T} algorithm properties

- Everything ends up in jets
- k_{T}-jets irregular shape
- Measure area with 'ghost particles'
- k_{T}-algo starts with soft stuff
- 'background' clusters first, affects jet
- Infrared and collinear safe
- Naïve implementation slow (N^{3}). Not necessary \rightarrow Fastjet

Alternative: anti- $\mathrm{K}_{\mathrm{T}} \quad d_{i j}=\min \left(\frac{1}{p_{t, i}^{2}}, \frac{1}{p_{t, j}^{2}}\right) \frac{R_{i j}^{2}}{R^{2}} \quad d_{i B}=\frac{1}{p_{t, i}^{2}}$
Cambridge-Aachen: $\quad d_{i j}=\frac{R_{i j}^{2}}{R^{2}}$

Cone algorithm

- Jets defined as cone
- Iterate until stable:
$(\eta, \varphi)_{\text {Cone }}=\langle\eta, \varphi\rangle_{\text {particles in cone }}$
- Starting points for cones, seeds, e.g. highest p_{T} particles
- Split-merge prescription for overlapping cones

Cone algorithm demo

Seedless cone

1D: slide cone over particles and search for stable cone
Key observation: content of cone only changes when the cone boundary touches a particle

Extension to 2D (η, φ)

Limiting cases occur when two particles are on the edge of the cone

Jet algorithm examples

simulated $p+p$ event

Measuring the jet spectrum

PbPb jet background

Jet finding illustration

Many 'background jets'

Background density vs multiplicity

Background contributes up to $\sim 180 \mathrm{GeV}$ per unit area
Subtract background: $\quad p_{T, j e t}^{s u b}=p_{T, j e t}^{r a w}-\rho A$
Statistical fluctuations remain after subtraction

PbPb jet background

Main challenge: large fluctuations of uncorrelated background energy
Size of fluctuations depends on p_{T} cut, cone radius

Background jets

Raw jet spectrum
Event-by-event background subtracted

Low p_{T} : ‘combinatorial jets’

- Can be suppressed by requiring leading track
- However: no strict distinction at low p_{T} possible

Next step: Correct for background fluctuations and detector effects by unfolding/deconvolution

Removing the combinatorial jets

Raw jet spectrum

Fully corrected jet spectrum

Correct spectrum and remove combinatorial jets by unfolding
Results agree with biased jets: reliably recovers all jets and removed bkg

PbPb jet spectra

Charged jets, $R=0.3$

R_{CP}, charged jets, $R=0.3$

Jet reconstruction does not 'recover' much of the radiated energy

Jet spectrum in $\mathrm{Pb}+\mathrm{Pb}$: charged particle jets Two cone radii, 4 centralities

$\mathrm{Pb}+\mathrm{Pb}$ jet R_{AA}

Jet R_{AA} measured by ATLAS, ALICE, CMS

Good agreement between experiments

Despite different methods:
ATLAS+CMS: hadron+EM jets
ALICE: charged track jets

$R_{\text {AA }}<1$: not all produced jets are seen; out-of-cone radiation and/or 'absorption'
For jet energies up to $\sim 250 \mathrm{GeV}$; energy loss is a very large effect

Comparing hadrons and jets

Suppression of hadron (leading fragment) and jet yield similar Is this 'natural'? No (visible) effect of in-cone radiation?

Comparison to JEWEL energy loss MC

Generic expectations from energy loss

- Longitudinal modification:
- out-of-cone \Rightarrow energy lost, suppression of yield, di-jet energy imbalance
- in-cone \Rightarrow softening of fragmentation
- Transverse modification
- out-of-cone \Rightarrow increase acoplanarity k_{T}
- in-cone \Rightarrow broadening of jet-profile

Jet broadening: transverse fragment distributions

(89) Jet broadening: radiation at large angles

Jet broadening: R dependence of R_{AA}

Jet R_{AA} increases with R (but slowly)

Jet broadening: R dependence

Larger jet cone: 'catch' more radiation \rightarrow Jet broadening

Ratio of spectra with different R

However, $R=0.5$ still has $R_{A A}<1$

- Hard to see/measure the radiated energy

Comparing to JEWEL energy loss MC

JEWEL gets the right suppression for $R=0.2$,
but not the increase with R
May be treatment of recoil patrons

Recap

- So, jet $R_{A A}$ is not close to 1
- Large out-of-cone radiation
- Also means: measured jet energy $=$ initial parton energy!

Next sections: more jet measurements

Why so many?

- Different observables sensitive to different aspects of energy loss
- Finding a balance between what you want to know and what you can measure

Generic expectations from energy loss

- Longitudinal modification:
- out-of-cone \Rightarrow energy lost, suppression of yield, di-jet energy imbalance
- in-cone \Rightarrow softening of fragmentation
- Transverse modification
- out-of-cone \Rightarrow increase acoplanarity k_{T}
- in-cone \Rightarrow broadening of jet-profile

Jet fragment distributions

PbPb measurement

NB: z is wrt observed $E_{\text {jet }} \neq$ initial $E_{\text {parton }}$

Ratio to pp

M. Rybar@QM2012

1
Low p_{T} enhancement:
soft radiation
Intermediate z:
depletion: E-loss

Jet fragment distributions

Low p_{T} enhancement: soft radiation

Intermediate z, p_{T} :
depletion: E-loss

Azimuthal modulation of R $\mathrm{RAA}^{\text {'jet flow’ }}$

Path length dependence: elliptic flow of Jets

ATLAS, arXiv:1306.6469

Significant azimuthal modulation of jet yield
jet $\mathrm{v}_{2} \sim 0.03$ at high p_{T}

Comparing to JEWEL energy loss MC

5-10\% centrality

40-50\% centrality

Good agreement between JEWEL and jet v_{2} results Geometry: Glauber overlap with Bjorken expansion

Di-jet imbalance measurements

Di-jet asymmetry

Observation: some events have two jets with different energy (However: one swallow does not make spring)

Jet energy asymmetry

Centrality

Jet-energy asymmetry $A_{J}=\frac{E_{2}-E_{1}}{E_{2}+E_{1}}$

Large asymmetry seen for central events

Suggests large energy loss: many GeV
~ compatible with expectations from RHIC+theory
However:

- Only measures reconstructed di-jets (don't see lost jets)
- Not corrected for fluctuations from detector+background
- Both jets are interacting - Not a simple observable

Energy dependence of asymmetry

(Relative) asymmetry decreases with energy
However: difference pp vs PbPb remains - energy loss finite at large E

Energy dependence of A_{\lrcorner}

Asymmetry decreases for larger jet energy Similar effect in pp (Pythia): difference stays ~constant

Studying the imbalance

In Cone $\mathrm{R}<0.8 \quad$ Out of Cone $\mathrm{R}>0.8$

γ-jet imbalance

Centrality
CMS, arXiv:1502.0206

γ-jet asymmetry $\quad x_{J_{\gamma}}=\frac{p_{T}^{\text {jet }}}{p_{T}^{\gamma}}$

Advantage: γ is a parton: know parton kinematics Disadvantage: low rate (+background $\pi^{0} \rightarrow \gamma \gamma$)

Translates into: low $\mathrm{p}_{\mathrm{T}, r}$ cut $>60 \mathrm{GeV}$
Dominant contibution: $q g \rightarrow q \gamma$

Hadron-recoil jet measurements

Hadron trigger vs jet trigger

Hadron trigger: strong "surface bias" maximizes recoil path length
(T.Renk, private com.)

Full jet trigger: no geom. bias
partially cancelled by bkg fluctuations

Centrality and reaction plane biases:

- Finite, but only weak trigger p_{T} dependence for high p_{T} trig

Hadron-triggered recoil jet distributions

G. de Barros et al., arXiv:1208.1518

Background subtraction: $\Delta_{\text {recoil }}$

Remove background by subtracting spectrum with lower p_{T} trig:
$\Delta_{\text {recoil }}=[(20-50)-(15-20)]$

Reference spectrum (15-20) scaled by ~ 0.96 to account for conservation of jet density

$\Delta_{\text {recoil }}$ measures the change of the recoil spectrum with p_{T} trig
Unfolding correction for background fluctuations and detector response

Ratio of Recoil Jet Yield $\Delta I_{A A}$ PYTHIA

pp reference: PYTHIA (Perugia 2010)
$\mathrm{R}=0.4$
Constituents:
$p_{\text {T }}$ const $>0.15 \mathrm{GeV} / \mathrm{c}$
no additional cuts
(fragmentation bias) on recoil jets

Recoil jet yield $\Delta \mathrm{I}_{\mathrm{AA}}{ }^{\text {PYTHA }} \approx 0.75$, approx. constant with jet p_{T}

Recoil Jet $\Delta I_{A A}$ PYTHIA: R dependence

$\mathrm{R}=0.4$

$\mathrm{R}=0.2$

Similar $\Delta \mathrm{I}_{\mathrm{AA}} \mathrm{PYTHIA}$ for $\mathrm{R}=0.2$ and $\mathrm{R}=0.4$
No visible broadening within $\mathrm{R}=0.4$
(within exp uncertainties)

Hadrons vs jets II: recoil

Hadrons

Hadron $I_{A A}=0.5-0.6$
In approx. agreement with models; elastic E-loss would give larger I ${ }_{\text {AA }}$

Jets

Jet $\mathrm{I}_{\mathrm{AA}}=0.7-0.8$ Jet $I_{A A}>$ hadron $I_{A A}$ Not unreasonable

NB/caveat: very different momentum scales !

Model comparison I_{AA}

JEWEL: Zapp et al., EPJ C69, 617

JEWEL correctly describes inclusive jet R_{AA}

Predicts $\Delta \mathrm{I}_{\mathrm{AA}} \sim 0.4$, below measured

A consistent view of jet quenching

G. Roland@QM2012

A consistent view of jet quenching

Consistent message from charged hadron R_{AA}, inclusive jet $R_{A A}$ and fragmentation functions!

Summary

- Jets: a new tool for parton energy loss measurements
- Large out-of-cone radiation ($\mathrm{R}=0.2-0.4$)
- Energy asymmetry
- $\mathrm{R}_{\mathrm{AA}}<1$
- $\mathrm{I}_{\mathrm{AA}}<1$
- Radial shapes
- Remaining jet is pp-like:
- Fragment distribution at large z same as pp
- R_{AA} similar for jets and hadrons
- Most of the radiation is at low p_{T}
- Scale set by medium temperature?
- Direct photons
- γ-jet allows to measure initial parton energy; jet asymmetry seen

JEWEL energy loss MC agrees with many of the observed effects Does this constrain the energy loss mechanism(s)?
Need to test for kinematic effects/alternative explanations (e.g. YaJEM)

Extra slides

γ, hadrons, jets compared

γ, hadrons

Jets

Suppression of hadron (leading fragment) and jet yield similar Is this 'natural'? No effect of in-cone radiation?

Model comparison

At least one model calculation reproduces the observed suppression \Rightarrow Understand mechanism for out-of-cone radiation?

