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Jets and parton energy loss

Motivation: understand parton energy loss by tracking the gluon radiation

Qualitatively two scenarios: 
1) In-cone radiation: RAA = 1, change of fragmentation 
2) Out-of-cone radiation: RAA < 1
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Jets at LHC
ALICE

η

ϕ

Transverse energy map of 1 event

Clear peaks: jets of fragments  
from high-energy quarks and gluons
And a lot of uncorrelated ‘soft’ background
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Jet reconstruction algorithms

Two categories of jet algorithms: 
• Sequential recombination kT, anti-kT, Durham 

– Define distance measure, e.g. dij = min(pTi,pTj)*Rij 

– Cluster closest 
• Cone 

– Draw Cone radius R around starting point 
– Iterate until stable η,ϕjet = <η,ϕ>particles

For a complete discussion, see: http://www.lpthe.jussieu.fr/~salam/teaching/PhD-courses.html

Sum particles inside jet  
Different prescriptions exist, most natural: E-scheme, sum 4-vectors

Jet is an object defined by jet algorithm 
If parameters are right, may approximate parton
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Collinear and infrared safety
Illustration by G

. S
alam

Jets should not be sensitive to soft effects  
(hadronisation and E-loss) 

- Collinear safe 
- Infrared safe
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Collinear safety

Note also: detector effects,  
such as splitting clusters in calorimeter (π0 decay)

Illustration by G
. S

alam
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Infrared safety

Infrared safety also implies robustness  
against soft background in heavy ion collisions

Illustration by G
. S

alam
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Clustering algorithms – kT algorithm
S

lide by G
. S

alam
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kT algorithm

• Calculate  
– For every particle i: distance to beam 
– For every pair i,j : distance 

• Find minimal d 
– If diB, i is a jet 
– If dij, combine i and j 

• Repeat until only jets

Various distance measures have been used,  
e.g. Jade, Durham, Cambridge/Aachen

Current standard choice:
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kT algorithm demo
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kT algorithm properties

• Everything ends up in jets 
• kT-jets irregular shape 

– Measure area with ‘ghost particles’ 
• kT-algo starts with soft stuff 

– ‘background’ clusters first, affects jet 
• Infrared and collinear safe 
• Naïve implementation slow (N3). Not necessary ! 

Fastjet

Alternative: anti-kT 2
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Cone algorithm

• Jets defined as cone 
• Iterate until stable: 

(η,ϕ)Cone = <η,ϕ>particles in cone 
• Starting points for cones, seeds, e.g. highest pT 

particles 
• Split-merge prescription for overlapping cones
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Cone algorithm demo
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Seedless cone

Limiting cases occur when two particles are on the 
edge of the cone

1D: slide cone over particles and search for stable cone 
Key observation: content of cone only changes when  
the cone boundary touches a particle

Extension to 2D (η,ϕ)
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Jet algorithm examples
C

acciari, S
alam

, S
oyez, arX

iv:0802.1189
simulated p+p event
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Measuring the jet spectrum
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PbPb jet background

Cacciari et al

Background density vs multiplicity

η-ϕ space filled with jets 
Many ‘background jets’

Background contributes up to ~180 GeV per unit area

Statistical fluctuations remain after subtraction

Subtract background: App raw
jetT

sub
jetT ρ−= ,,

Jet finding illustration
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PbPb jet background

Toy Model

Main challenge: large fluctuations of uncorrelated background energy

Size of fluctuations depends on pT cut, cone radius
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Background jets
Raw jet spectrum

Event-by-event background subtracted

Low pT: ‘combinatorial jets’ 
- Can be suppressed by requiring 

leading track 
- However: no strict distinction at 

low pT possible

Next step: Correct for background 
fluctuations and detector effects by 
unfolding/deconvolution
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Removing the combinatorial jets

Correct spectrum and remove combinatorial jets by unfolding

Results agree with biased jets: reliably recovers all jets and removed bkg

Raw jet spectrum Fully corrected jet spectrum

ALIC
E arXiv:1311.0633
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PbPb jet spectra
Charged jets, R=0.3

Jet spectrum in Pb+Pb: charged particle jets 
Two cone radii, 4 centralities

RCP, charged jets, R=0.3

Jet reconstruction does not 
‘recover’ much of the radiated energy

ALIC
E arXiv:1311.0633
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Pb+Pb jet RAA

Jet RAA measured by 
ATLAS, ALICE, CMS

RAA < 1: not all produced jets are seen;  
out-of-cone radiation and/or ‘absorption’

For jet energies up to ~250 GeV; energy loss is a very large effect

ATLAS+CMS: hadron+EM jets

ALICE: charged track jets

Good agreement 
between experiments

Despite different methods:



Comparing hadrons and jets
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Suppression of hadron (leading fragment) and jet yield similar 
Is this ‘natural’? No (visible) effect of in-cone radiation?



Comparison to JEWEL energy loss MC
JEWEL+PYTHIA

ALICE data
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JEWEL shows the same feature:  
jet RAA ~ hadron RAA
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Generic expectations from energy loss

• Longitudinal modification: 
– out-of-cone ⇒ energy lost, suppression of yield, di-jet energy 

imbalance 
– in-cone ⇒ softening of fragmentation 

• Transverse modification 
– out-of-cone ⇒ increase acoplanarity kT 

– in-cone ⇒ broadening of jet-profile

λ

kT~µEjet

fragmentation 
 after energy loss?
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Jet broadening: transverse fragment distributions

PbPb PbPb

C
M

S
 PA

S
 H

IN
-12-013

Jet broadening: radiation at large angles

C
M

S
, arX

iv:1310.0878



Jet broadening: R dependence of RAA
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Jet RAA increases with R (but slowly)
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Jet broadening: R dependence
Ratio of spectra with different R

Larger jet cone: 
‘catch’ more radiation 
! Jet broadening

However, R = 0.5 still has RAA < 1 
– Hard to see/measure the radiated energy
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Comparing to JEWEL energy loss MC
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K. Zapp et al, arXiv:1212.1599

JEWEL gets the right suppression for R=0.2,!
but not the increase with R!

May be treatment of recoil patrons



Recap

• So, jet RAA is not close to 1!
• Large out-of-cone radiation!
• Also means: measured jet energy ≠ initial parton 

energy!
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Next sections: more jet measurements!
Why so many?!

- Different observables sensitive to different aspects of 
energy loss!

- Finding a balance between what you want to know 
and what you can measure
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Generic expectations from energy loss

• Longitudinal modification: 
– out-of-cone ⇒ energy lost, suppression of yield, di-jet energy 

imbalance 
– in-cone ⇒ softening of fragmentation 

• Transverse modification 
– out-of-cone ⇒ increase acoplanarity kT 

– in-cone ⇒ broadening of jet-profile

λ

kT~µEjet

fragmentation 
 after energy loss?
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Jet fragment distributions
PbPb measurement Ratio to pp

Low pT enhancement: 
soft radiation 

Intermediate z: 
depletion: E-lossNB: z is wrt observed Ejet ≠ initial Eparton

ATLA
S

 M
.R

ybar@
Q

M
12

M. Rybar@QM2012
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Jet fragment distributions

Low pT enhancement: 
soft radiation 

Intermediate z, pT: 
depletion: E-loss

CMS, Frank Ma@QM12



Azimuthal modulation of RAA ‘jet flow’



Path length dependence: elliptic flow of Jets
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Comparing to JEWEL energy loss MC
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ATLAS data
JEWEL+PYTHIA
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Good agreement between JEWEL and jet v2 results

K. Zapp, arXiv:1312.5563

Geometry: Glauber overlap with Bjorken expansion



Di-jet imbalance measurements



Di-jet asymmetry

Observation: some events have two jets with different energy!
(However: one swallow does not make spring)
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Jet energy asymmetry
Centrality

12

12

EE
EEAJ +

−
=

ATLA
S

, arX
iv:1011.6182 (P

R
L)

Jet-energy asymmetry Large asymmetry seen  
for central events

However: 
• Only measures reconstructed di-jets (don’t see lost jets) 
• Not corrected for fluctuations from detector+background 
• Both jets are interacting – Not a simple observable 

Suggests large energy loss: many GeV 
~ compatible with expectations from RHIC+theory
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Energy dependence of asymmetry
C

M
S

, arX
iv:1202.5022

(Relative) asymmetry decreases with energy
However: difference pp vs PbPb remains – energy loss finite at large E



Energy dependence of AJ
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Studying the imbalance
C

M
S

, arX
iv:1102.1957

In Cone R<0.8 Out of Cone R>0.8

PYTHIA+HYDJET

CMS measured

∑ −=
tracks

jetTpp
missT

)cos(//
,

ϕϕ

Momentum imbalance  
restored by hadrons at  
large angle R>0.8 and  

small pT < 2 GeV/c
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γ-jet imbalance

CMS, arXiv:1502.0206
Centrality

γγ
T

jet
T

J p
px =γ-jet asymmetry

Advantage: γ is a parton: know parton kinematics 
Disadvantage: low rate (+background π0→ γγ)

γ

Dominant contibution: qg → qγ
Translates into: low pT,𝛾 cut > 60 GeV



Hadron-recoil jet measurements
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!
      
       

Centrality and reaction plane biases: 
• Finite, but only weak trigger pT dependence for high pT

trig

Jet trigger

Hadron trigger

Hadron trigger vs jet trigger

Hadron trigger: strong “surface bias”  
maximizes recoil path length 

                                     (T.Renk, private com.)  

Full jet trigger: no geom. bias 
partially cancelled by bkg fluctuations

T.R
enk, P

R
C

85 064908
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G. de Barros et al., arXiv:1208.1518

pT,jet< 20 GeV/c:  
No change with trigger pT 

Combinatorial background

Hadron-triggered recoil jet distributions

pT,jet> 20 GeV/c:  
Evolves with trigger pT 

Recoil jet spectrum
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Remove background by 
subtracting spectrum with 
lower pT

trig:  

Δrecoil =[(20-50)-(15-20)]    

Reference spectrum (15-20) 
scaled by ~0.96 to account for 

conservation of jet density

Background subtraction: Δrecoil

Unfolding correction for background fluctuations and detector response

Δrecoil measures the change of the recoil spectrum with pT
trig
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Recoil jet yield  ΔIAA
PYTHIA ≈0.75, approx. constant with jet pT

R=0.4 
!
Constituents:  
pT

const > 0.15 GeV/c 
!
no additional cuts 
(fragmentation bias) on 
recoil jets

pp reference: PYTHIA  
(Perugia 2010)  

 

Ratio of Recoil Jet Yield  ΔIAA
PYTHIA
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R=0.4

  
 

Recoil Jet ΔIAA
PYTHIA: R dependence

Similar ΔIAA
PYTHIA for R=0.2 and R=0.4

R=0.2

No visible broadening within R=0.4
(within exp uncertainties)
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Hadrons vs jets II: recoil

P
R

L108 092301

Hadrons Jets

Hadron IAA = 0.5-0.6
In approx. agreement with models;  
elastic E-loss would give larger IAA

Jet IAA = 0.7-0.8
Jet IAA > hadron IAA 
Not unreasonable

NB/caveat: very different momentum scales !
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Predicts ΔIAA~0.4, below measured 

JEWEL preliminary

Model comparison IAA

JEWEL: Zapp et al., EPJ C69, 617

JEWEL correctly describes 
inclusive jet RAA



!52

A consistent view of jet quenching

Consistent with 2010 result 
!
Recall (2010 vs 2011): 
•Track pT > 4 GeV vs pT > 1 GeV 
•Leading vs inclusive jet 
•0-30% vs 0-10% and 10-30%

2010 data: arXiv:1205.5872

arXiv:1205.5872

Change  
from  

“ξ” to “pT” 

P
bP

b 
– 

pp
 (1

/G
eV

)

Broadening/excess at 
large r, low pT 

!
(~2% of jet energy)

Narrowing/depletion 
at intermediate r, pT

No change at 
small r, high pT

Radius r

G. Roland@QM2012
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A consistent view of jet quenching

Charged particles from 
 pT =50-100 GeV:  

z = pT(track)/pT(jet) = 0.4-0.6  
ξ < 1

Looking at the same  
parton pT range

Consistent message from charged hadron RAA, 
 inclusive jet RAA and fragmentation functions!

PbPb fragmentation function = pp  for ξ <1

G. Roland@QM2012
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Summary
• Jets: a new tool for parton energy loss measurements 

– Large out-of-cone radiation (R = 0.2-0.4) 
• Energy asymmetry 
• RAA < 1 
• IAA < 1 
• Radial shapes 

– Remaining jet is pp-like: 
• Fragment distribution at large z same as pp 
• RAA similar for jets and hadrons 

– Most of the radiation is at low pT 
• Scale set by medium temperature? 

• Direct photons 
– 𝛾-jet allows to measure initial parton energy; jet asymmetry 

seen

JEWEL energy loss MC agrees with many of the observed effects!
Does this constrain the energy loss mechanism(s)?!

Need to test for kinematic effects/alternative explanations (e.g. YaJEM)



Extra slides
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γ, hadrons, jets compared
γ, hadrons Jets

Suppression of hadron (leading fragment) and jet yield similar 
Is this ‘natural’? No effect of in-cone radiation?
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Model comparison

M. Verweij@HP, QM2012

JE
W

E
L: K

. Zapp et al, E
ur P

hys J C
69, 617

U. Wiedemann@QM2012

Hadron RAA
Jet RAA

S
chukraft et al, arX

iv:1202.3233

At least one model calculation reproduces the observed suppression 
 ⇒ Understand mechanism for out-of-cone radiation?


