Lecture 4: Intermediate p_T, pp and p+Pb

Marco van Leeuwen, Nikhef and Utrecht University

> Helmholtz School Manigod 17-21 February 2014

Reminder: di-hadron correlations

Use di-hadron correlations to probe the jet-structure in p+p, d+Au and Au+Au

Near-side ridge in AA – Flow

CMS, arXiv:1201.3158

v_3 , triangular flow

Participant fluctuations lead to triangular component of initial state anisotropy

v₃ in Hydro

Schenke, Jeon, Gale, PRL 106, 042301

Evolution of initial state spatial anisotropy preserved in expansion Exact size depends on viscosity

How does flow enter in $\Delta \varphi$ distributions?

Event plane angle changes from event to event Ψ₂ and Ψ₃ mostly independent

Pair distribution

More examples

Conditions for forming a ridge

- Long range correlation in η
 - In case of flow: initial state + Bjorken expansion
- Trigger and associated subject to same effect
 - Flow (+path length dep E-loss): both are correlated to event plane(s)
 - Others have suggested radial flow: implies that both trigger and associated feel a radial push
 - Other alternatives: coherent emission of some sort (CGC? Di-jet color flow/ropes)

Di-hadron correlations and flow at low p_{T}

Also NB: v₁ can mimick jet (near or away-side)

Going to lower p_T

Low p_T di-hadron shapes at LHC

Departure from Gaussian

- The lowest p_{T} bin shows a structure with a flat top in $\Delta\eta$
- This feature is reproduced by AMPT

 Qualitative and quantitative agreement of peak shapes with AMPT compatible with hypothesis of interplay of jets with the flowing bulk

Peak Deformation

Calculation + STAR prel:

Longitudinal flow deforms jet shape

Armesto, Salgado, Wiedemann PRL 93,242301 (2004)

Significant increase of $\sigma_{\!\Delta\eta}$ towards central events

$$-\sigma_{\Delta\eta} > \sigma_{\Delta\phi}$$
 (eccentricity ~ 0.2)

AMPT Comparison

AMPT (A MultiPhase Transport Code) describes collective effects (e.g. v₂, v₃, v₄) in HI collisions at LHC

- Here version with string melting (2.25) is shown

- RMS of the near-side peak reasonably described by AMPT
 - Detailed mechanism not known; Interplay of jet and flow ?

Low p_T di-hadrons at RHIC

Low p_t : jet-like peak broadened in $\Delta \eta$ High p_t : jet-like peak similar to p+p reference + ridge

Qualitatively similar to results at LHC

Ridge in pp

Near side ridge seen in pp, small effect, only high multiplicity corrections What is this? Some form of directed radiation (color connections, three-jet events?) or a collective effect?

Intermediate p_T: identified particles

Charged hadron identification

Other techniques identify π , K, p by measuring mass (velocity)

Depends on $\beta\gamma$ Mostly at low $p_T < 1$ GeV Time-of-flight (TOF)

Depends on β < 100 ps resolution, PID up to few GeV

TPC-*dE/dx* and TOF are basic features of most Heavy-Ion detectors (PHENIX, STAR, ALICE)

Ring Imaging Cherenkov (RICH)

Ó

Ring reconstruction

0

O

° ° ° °

0

0

Cherenkov angle depends on index of refraction \rightarrow tunable

Advantage: RICH can be optimised for large momentum Not so easy with high track densities

PID: weak decays in tracker

'topological reconstruction'

Advantages: can be done with tracking detectors; momentum range not limited

Identified hadron R_{AA} (strangeness)

Identified hadron R_{AA}

M. Ivanov, A. Ortiz@QM2012

Low-intermediate p_T (1-6 GeV): Large baryon/meson ratio

Probably due to: 1)radial flow 2)parton recombination Baryon, meson R_{AA} similar at $p_T > 8$ GeV As expected from *parton* energy loss

Spectra at intermediate p_T

Schukraft et al, arXiv:1202.3233

Low-intermediate p_T (1-6 GeV): Large baryon/meson ratio Probably due to:

- 1) radial flow
- 2) parton recombination

Hadronisation by recombination

'Shower-thermal' recombination

 $\begin{array}{c} Recombination \ of \\ thermal \ ('bulk') \ partons \\ produces \ baryons \ at \ larger \ p_T \end{array}$

Expect large baryon/meson ratio associated with high- p_T trigger

Change of color flow may also affect hydrochemistry

Di-hadrons: p/π in jets

ALI-PERF-15359

p/π bulk vs jets

Pb-Pb, \ s_{NN} = 2.76TeV, 0-10% central

No effect of shower-thermal recombination and/or modified color flow observed in the associated yield in jets

p+Pb and Color Glass Condensate

p+Pb and 'cold nuclear matter effects'

- Initial state effects: change of proton wave function in nucleus
 - 'Shadowing': nuclear PDFs
 - Saturation of gluon density at low x; Color Glass Condensate
- Final state
 - (Hadronic) Energy Loss in Cold Nuclear Matter

Initial state effects: nPDFs — data

Similar procedure like proton PDFs, but less data available in particular: no data for $x < 10^{-2}$

Initial state effects: nPDFs nPDF results shown as ratio to proton R_V^{Pb} $R_S^{\rm Pb}$ R_G^{Pb} 1.4 $R_i^{\text{Pb}}(x,Q^2=1.69 \text{ GeV}^2)$ 1.4 Enhancement $Q^2 = 1.69 \text{ GeV}^2$ 1.2 at intermediate x: 1.0 1.0 0.8 'anti-shadowing' 0.8 0.6 0.6 0.4 0.4 0.2 0.2 1.4 1.4 Low-x suppression: $(x,Q^2 = 100 \text{ GeV}^2)$ $Q^2 = 100 \text{ GeV}^2$ 1.2 1.2 shadowing 1.0 1.0 0.8 0.8 0.6 0.6 work, EPS09NLO 0.4 0.4 HKN07 (NLO) R^{Pb}_i 0.2 0.2 nDS (NLO 0.0 0.0 $10^{-\overline{1}}$ $10^{-\overline{3}}$ 10^{-2} 10^{-4} 10^{-1} 10^{-2} 10^{-4} 10^{-3} 10^{-1} 10 \boldsymbol{x} Valence quarks Sea quarks Gluons u+u + d+du-u + d-dSignificant effects in gluons at low Q²

Sea quarks 'follow' gluons

Significant effects in gluons at low Q² No experimental information for small x (large uncertainty)

Effects of shadowing/anti-shadowing

 $R_{dAu} > 1$ at intermediate p_T could be anti-shadowing; shadowing at higher p_T Photons: largest effect: isospin Shadowing (EKS98) has only small impact at mid-rap, higher p_T

Hadron R_{pPb} at LHC

Changing x-ranges in di-hadrons

When both outgoing partons are at positive η , asymmetric collision: large x + small x parton

 η dependence of production in pp sensitive to x dependence of PDFs

Varying x in p+Pb: di-jets

 $\eta_{\text{dijet}} = (\eta_1 + \eta_2)/2$

Di-hadrons in p+A

Ridge in p+Pb

Near-side ridge visible in central p+Pb events

What is this?

A more quantitative look at the ridge

рт

Effect largest at low p_T, high multiplicity

Fourier coefficient $v_2 \sim 0.066$

Is there an away-side ridge?

Away-side yield also increases with centrality Not expected for di-jets, excess yield could be a ridge-effect

Extracting the double-ridge/flow

Hypothesis: associated jet yields (recoil) are the same in central and peripheral p+Pb Use peripheral to subtract jet contribution from central

Result: 'v₂' in p+Pb

It's really symmetric in $\Delta \varphi$

 v_2 values: increase with p_T (as for PbPb) and centrality

Mass dependence of double ridge

Same procedure: subtract peripheral from central and fit $\Delta \varphi$ distribution

Different p_⊤ dependence for protons and light hadrons, suggestive of flow (common velocity)

Summary

- Intermediate p_T (2-6 GeV) in A+A
 - Baryon enhancement in single particle spectra (radial flow and/ or coalescence)
 - Di-hadrons: interplay between flow and jets
 - Di-hadrons: no baryon enhancement in associated particle production
- p+Pb
 - Nuclear effects in PDFs: shadowing at low x, anti-shadowing
 - Nuclear effects at mid-rapidity at LHC are small (R_{pPb}; puzzling result from CMS)
 - Probe x-dependence by η-dependence: asymmetry in di-jets due to (anti-)shadowing
 - Di-hadrons: double ridge. Can it be flow?

Extra slides

Integrated vs differential

- Inclusive hadron suppression R_{AA}
 - Overall magnitude + p_T dependence: limited dynamical information
 - Only useful when the energy loss mechanism is understood
- Di-hadrons; I_{AA}
 - Two 'degrees of freedom'
 - Adds constraints when compared to R_{AA} ; mostly geometry?
- Low p_T , shape info
 - More differential, but also more difficult to model