QCD and the QGP at the LHC

Marco van Leeuwen, Nikhef and Utrecht University

IoP colloquium UvA, Amsterdam 19 March 2015

Structure of matter

Quarks and gluons are the building blocks of nuclear matter Main interaction: Strong interaction (QCD)

The QCD potential

QCD is very different from EM, gravity; common intuition may fail

QCD strings

A simple picture of the strong interaction

For larger separation: generating a qqbar pair is energetically favoured Color charges (quarks and gluons) cannot be freed Confinement important at length scale 1/AqCD ~ 1 fm

The extremes of QCD

QCD Lagrangian $\mathcal{L}_{QCD} = \bar{\psi}(i\partial \!\!\!/ - gA \cdot t - m)\psi + \frac{1}{4} \mathrm{Tr}G_{\mu\nu}G^{\mu\nu}$

This is the basic theory, but what is the phenomenology?

Bulk QCD matter

Nuclear matter

Calculable with Lattice QCD

High density Quarks and gluons are quasi-free Hard scattering

Calculable with pQCD

Small coupling Quarks and gluons are quasi-free

Two basic regimes in which QCD theory gives quantitative results: Hard scattering and bulk matter

The Quark Gluon Plasma

Deconfinement transition: sharp rise of energy density at T_c Increase in degrees of freedom: hadrons (3 pions) -> quarks+gluons (37)

RHIC and LHC

RHIC, Brookhaven Au+Au √s_{NN}= 200 GeV

LHC, Geneva Pb+Pb √s_{NN}= 2760 GeV

First run: 2000

STAR, PHENIX, PHOBOS, BRAHMS

First run: 2009/2010

Currently under maintenance Restart 2015 with higher energy: pp $\sqrt{s} = 13$ TeV, PbPb $\sqrt{s_{NN}} = 5.02$ TeV

> ALICE, ATLAS, CMS, (LHCb)

A nucleus-nucleus collision

Colored spheres: quarks White spheres: hadrons, i.e. bound quarks In a nuclear collision, a Quark-Gluon Plasma (liquid) is formed \Rightarrow Study this new state of matter

Heavy ion collisions

2) Hard probes

Part I: the bulk; QGP fragments

Pb+Pb @ sqrt(s) = 2.76 ATeV

2010-11-08 11:30:46 Fill : 1482 Run : 137124 Event : 0x00000000D3BBE693

p_T -spectra – radial flow

Large increase in mean p_T from RHIC ($\sqrt{s_{NN}}$ =200 GeV) to LHC

First indication of collective behaviour; pressure

Mass dependence: same Lorentz boost (β) gives larger momentum for heavier particles ($m_p > m_K > m_\pi$)

Hydrodynamics

Time evolution

All observables integrate over evolution

Radial flow integrates over entire 'push'

Elliptic flow

Hydrodynamical calculation

Anisotropy reduces during evolution v_2 more sensitive to early times

Elliptic flow

$$\frac{dN}{d\varphi} = N(1 + 2v_2\cos 2\varphi)$$

Mass-dependence of v_2 measures flow velocity Good agreement between data and hydro

Higher harmonics

17

Higher harmonics

Viscosity

Viscous liquids dissipate energy

Liquid, densely packed, so:

$$\eta \propto e^{-E_{vac}/2}$$

 E_{vac} : activation energy for jumps of vacancies

T

 η decreases with T

Viscosity minimal at liquid-gas transition

QGP viscosity lower than any atomic matter

Probing the Quark-Gluon Plasma

Small size (~10 fm)

Use self-generated probe: quarks, gluons from hard scattering large transverse momentum

Nuclear modification factor at RHIC

Ball-park numbers: ∆E/E ≈ 0.2, or ∆E ≈ 3 GeV for central collisions at RHIC

From RHIC to LHC

 R_{AA} depends on *n*, steeper spectra, smaller R_{AA}

From RHIC to LHC

RHIC

RHIC: n ~ 8.2 LHC: n ~ 6.4 $(1-0.23)^{6.2} = 0.20$ $(1 - 0.23)^{4.4} = 0.32$

> Energy loss at LHC is larger than at RHIC R_{AA} is similar due to flatter p_T dependence

Towards a more complete picture

- Geometry: couple energy loss model to model of evolution of the density (hydrodynamics)
- Energy loss not single-valued, but a distribution
- Energy loss is partonic, not hadronic
 - Full modeling: medium modified shower
 - Simple ansatz for leading hadrons: energy loss followed by fragmentation
 - Quark/gluon differences

Medium-induced radiation

Depends on density ρ through mean free path λ

Fitting the model to the data

Factor ~2 larger at LHC than RHIC

Comparing several models

 \hat{q} values from different models agree \hat{q}/T^3 larger at RHIC than LHC

Transport coefficient and viscosity

Relation transport coefficient and viscosity

Scaled transport coefficient slightly smaller at LHC

Increase of η /s and decrease of q/T^3 with collision energy are probably due to a common origin, e.g. running α_S Results agree reasonably well with expectation: $\frac{\eta}{s} \approx 1.25 \frac{T^3}{\hat{a}}$

Summary

- $\cdot\,$ Heavy ion collisions study hot and dense nuclear matter
- Two main experimental approaches:
 - Study QGP fragments, e.g. elliptic/triangular flow Indicates very low value of η/s $\frac{\eta}{\pi} \approx 0.1-0.3$
 - Probe QGP with self-generated probes, e.g. high-p_T particle production Large density, energy loss $\hat{q} \approx 1-2$ GeV²/fm
 - Earge density, energy loss $q \sim 1^{-2}$ GeV /Th
- Both observations consistent with very dense system, small mean free path

Run 2 of the LHC: larger data samples to explore flow, parton energy loss mechanisms

Extra slides

The Inner Tracking System

Dutch contribution to ALICE

1698 double sided strip sensors 73 * 40 mm² 300 um thick 768 strips on each side

+ 2 layers of Silicon Drift detectors+ 2 layers of Silicon Pixel detectors

Strip detector, cross section

- Charged particle generates
 free electrons+holes
- Drift (E-field) to p, n-doped strips
- Detect image charge in AI strips

Geometry

Space-time evolution is taken into account in modeling

A simplified approach

Notes:

- This is the simplest ansatz most calculation to date use it (except some MCs)
- Jet, γ-jet measurements 'fix' E, removing one of the convolutions

RHIC and LHC

Systematic comparison of energy loss models with data Medium modeled by Hydro (2+1D, 3+1D) pT dependence matches reasonably well

RHIC and LHC

CUJET: α_s is medium parameter Lower at LHC HT: transport coeff is parameter Higher at LHC

Nuclear geometry: N_{part}, N_{coll}

Two limiting possibilities:

- Each nucleon only **interacts once**, 'wounded nucleons' $N_{part} = n_A + n_B$ (ex: 4 + 5 = 9 + ...)

Relevant for **soft production**; long timescales: $\sigma \propto N_{\text{part}}$

Nucleons interact with all nucleons they encounter
 N_{coll} = n_A x n_B (ex: 4 x 5 = 20 + ...)

Relevant for hard processes; short timescales: $\sigma \propto N_{\text{bin}}$

Measured R_{AA} is a ratio of yields at a given p_T The physical mechanism is energy loss; shift of yield to lower p_T

The full range of physical pictures can be captured with an energy loss distribution $P(\Delta E)$

Nuclear modification factor

Suppression factor 2-6 Significant p_T -dependence Similar at RHIC and LHC?

So what does it mean?

Quarks and the strong interaction

EM force binds electrons to nucleus in atom Strong force binds nucleons in nucleus and quarks in nucleons Electron elementary, point-particle

Protons, neutrons Composite particle ⇒ quarks

Standard Model: elementary particles

Quarks: Electrical charge Strong charge (color)	up charm top down strange bottom	+a
Leptons: Electrical charge	$\begin{array}{c} \text{electron} Muon \ Tau \\ \nu_{\epsilon} \qquad \nu_{\mu} \qquad \nu_{\tau} \end{array}$	nti-particle
Force carriers:	photonEM forcegluonstrong forceW,Z-bosonweak force	Se

QCD and quark parton model

At low energies, quarks are confined in hadrons

protons, neutrons, pions, kaons + many others At high energies, quarks and gluons are manifest

Experimental signature: jets of hadrons

Goal of Heavy Ion Physics: Study dynamics of QCD and confinement in many-body systems

ALICE in real life

Collision centrality

Nuclei are large compared to the range of strong force

Peripheral collision **Central collision** top/side view: þ b finite b~0 fm front view:

This talk: concentrate on central collisions

Centrality continued

peripheral

central

Experimental measure of centrality: multiplicity

Need to take into account volume of collision zone for production rates

Testing volume (N_{coll}) scaling in Au+Au

Direct y spectra

PHENIX, PRL 94, 232301

Direct γ in A+A scales with N_{coll}

A+A initial production is incoherent superposition of p+p for hard probes

$\pi^0 R_{AA}$ – high-p_T suppression

Hard partons lose energy in the hot matter

Hadrons: energy loss