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Structure of matter

Quarks and gluons are the building blocks of nuclear matter 
Main interaction: Strong interaction (QCD)
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The QCD potential

S. Deldar, hep-lat/9909077

QCD
strong interaction

QED
electromagnetic interaction

PotentialField lines 
in dipole system

QCD is very different from EM, gravity; common intuition may fail
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QCD strings

G.S. Bali, hep-ph/0411206

A simple picture of the strong interaction

QCD potential for 2-quark system 
rises indefinitely

For larger separation: generating a qqbar pair is energetically favoured

Thought experiment:  
separating charges

Color charges (quarks and gluons) cannot be freed
Confinement important at length scale 1/ΛQCD ~ 1 fm
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The extremes of QCD

This is the basic theory, but what is the phenomenology?

Small coupling  
Quarks and gluons  

are quasi-free

Calculable with pQCD

Two basic regimes in which QCD theory gives quantitative results: 
Hard scattering and bulk matter

QCD Lagrangian

Nuclear matter Quark Gluon Plasma

High density 
Quarks and gluons  

are quasi-free 

Bulk QCD matter

Calculable with Lattice QCD

Hard scattering
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The Quark Gluon Plasma

Bernard et al. hep-lat/0610017

Tc ~ 170 -190 MeV

Energy density from Lattice QCD

Deconfinement transition: sharp rise of energy density at Tc 

Increase in degrees of freedom: hadrons (3 pions) -> quarks+gluons (37)

εc ~ 1 GeV/fm3

4gT∝ε
g: deg of freedom

Nuclear matter
Quark Gluon Plasma
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RHIC and LHC

STARSTAR

RHIC, Brookhaven LHC, Geneva
Au+Au √sNN= 200 GeV Pb+Pb √sNN= 2760 GeV

First run: 2000 First run: 2009/2010

STAR, PHENIX,
PHOBOS, BRAHMS

ALICE, ATLAS,  
CMS, (LHCb)

Currently under maintenance
Restart 2015 with higher energy:  

pp √s = 13 TeV, PbPb √sNN = 5.02 TeV



A nucleus-nucleus collision
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Colored spheres: quarks
White spheres: hadrons, i.e. bound quarks

In a nuclear collision, a Quark-Gluon Plasma (liquid) is formed
⇒ Study this new state of matter
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Size: 16 x 26 meters 
Weight: 10,000 tons

Technologies:18 
 Tracking: 7    
 PID:   6    
 Calo. :  5    
Trigger, Nch:11

ALICE

Optimised for low momentum, high-multiplicity  
tracking and Particle Identification
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Heavy ion collisions

‘Hard probes’ 
Hard-scatterings produce ‘quasi-free’ partons 

⇒ Probe medium through energy loss 
pT > 5 GeV

Heavy-ion collisions produce 
‘quasi-thermal’ QCD matter 

Dominated by soft partons  
p ~ T ~ 100-300 MeV

‘Bulk observables’ 
Study hadrons produced by the QGP 

Typically pT < 1-2 GeV

Two basic approaches to learn about the QGP 
1) Bulk observables 
2) Hard probes
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Part I: the bulk; QGP fragments
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pT-spectra – radial flow

Mass dependence: same Lorentz boost (β) gives larger momentum for heavier particles 
(mp > mK > mπ)

Large increase in mean pT from RHIC (√sNN=200 GeV) to LHC

First indication of collective behaviour; pressure

PRL109, 252301, PRC, arXiv:1303.0737
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Hydrodynamics

K
olb, S

ollfrank, H
einz, P

R
C

62, 054909 

0=∂ µν
µT

Energy-momentum conservation

Continuity equations for 
conserved currents

0=∂ µ
µ ij

Equation of state

Measured spectra shapes agree 
with hydrodynamical calculation 
⇒ It really looks like a fluid

Heinz&Song

PLB, arXiv:1401.1250
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Time evolution

All observables integrate over evolution

Radial flow integrates over entire ‘push’
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Elliptic flow

Hydrodynamical calculation

Rea
cti

on plan
e

Anisotropy reduces during evolution  
v2 more sensitive to early times

Elliptic flow: 
Yield modulation in-out reaction plane

reaction 
plane

ϕ

b

( )ϕ
ϕ

2cos21 2vN
d
dN
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Elliptic flow

Mass-dependence of v2 measures flow velocity
Good agreement between data and hydro

( )ϕ
ϕ

2cos21 2vN
d
dN

+=
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Higher harmonics
Alver and Roland, PRC81, 054905

3rd harmonic ‘triangularity’ v3 is large 
(in central events)

Dominant effect in azimuthal correlations  
at pT = 1-3 GeV

Mass ordering also seen for v3  
indicates collective flow
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Higher harmonics
Schenke and Jeon, Phys.Rev.Lett.106:042301

In general: initial state may be ‘lumpy’ 
(not a smooth ellipse)

η/s = 0

η/s = 0.16

How much of this is visible in the final state, 
depends on shear viscosity η
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Viscosity
Viscous liquids dissipate energy

For a dilute gas:

η increases with T

Liquid, densely packed, so:
TEvace /−∝η

Evac: activation energy for jumps of vacancies

η decreases with T

Liquid

gas
TEvace /−∝η

2
1

T∝η

Viscosity minimal at liquid-gas transition

QGP viscosity lower than any atomic matter



Probing the Quark-Gluon Plasma
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D
etector

Probe beam

particles

Not feasible:
Short life time

Small size (~10 fm)
Use self-generated probe:

quarks, gluons from hard scattering  
 large transverse momentum
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Nuclear modification factor at RHIC

Oversimplified calculation: 
-Fit pp with power law 
-Apply energy shift or relative E loss 

Not even a model !

Ball-park numbers: ΔE/E ≈ 0.2, or ΔE ≈ 3 GeV  
for central collisions at RHIC

π0 spectra Nuclear modification factorP
H

E
N

IX
, P

R
D

 76, 051106, arX
iv:0801.4020

RHIC √sNN = 200 GeV
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From RHIC to LHC

RHIC: 200 GeV 
LHC: 2.76 TeV  per nucleon pair

LHC: spectrum less steep,  
larger pT reach

RHIC: n ~ 8.2 
LHC: n ~ 6.4

Fractional energy loss:

RAA depends on n, steeper spectra, smaller RAA
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From RHIC to LHC

RHIC LHC

RHIC: n ~ 8.2 LHC: n ~ 6.4

( ) 20.023.01 2.6 =− ( ) 32.023.01 4.4 =−

Energy loss at LHC is larger than at RHIC 
RAA is similar due to flatter pT dependence
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Towards a more complete picture

• Geometry: couple energy loss model to model of 
evolution of the density (hydrodynamics) 

• Energy loss not single-valued, but a distribution 
• Energy loss is partonic, not hadronic 

– Full  modeling: medium modified shower 
– Simple ansatz for leading hadrons: energy loss followed by 

fragmentation 
– Quark/gluon differences
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Medium-induced radiation

2ˆ~ LqE Smed αΔ

propagating  
parton

radiated 
gluon

Key parameter: 
Transport coefficient

Mean transverse kick per unit path length

Depends on density ρ through mean free path λ



Fitting the model to the data
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Burke et al, JET C
ollaboration, arXiv:1312.5003
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Comparing several models
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Transport coefficient and viscosity
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Transport coefficient:
momentum transfer per unit path length

Viscosity: General relation:

Expect for a QCD medium

Majumder, Muller and Wang, PRL99, 192301



Relation transport coefficient and viscosity
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H
. Song et al, PRC

83, 054912
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Summary

• Heavy ion collisions study hot and dense nuclear matter
• Two main experimental approaches:

• Study QGP fragments, e.g. elliptic/triangular flow  
Indicates very low value of η/s 

• Probe QGP with self-generated probes, e.g. high-pT particle 
production  
Large density, energy loss 

• Both observations consistent with very dense system, small mean 
free path 
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Run 2 of the LHC: larger data samples to explore  
flow, parton energy loss mechanisms



Extra slides
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The Inner Tracking System

1698 double sided strip sensors 
73 * 40 mm2  300 um thick 

768 strips on each side 

Strip detector, cross section

• Charged particle generates  
free electrons+holes 

• Drift (E-field) to p, n-doped strips 
• Detect image charge in Al strips

+ 2 layers of Silicon Drift detectors 
+ 2 layers of Silicon Pixel detectors

Dutch contribution to ALICE
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Geometry

Density profile

Profile at τ ~ τform known

Density along parton path

Longitudinal expansion  
dilutes medium 
⇒ Important effect

Space-time evolution is taken into account in modeling
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)/()( , jethadrT
jetshadrT

EpDEP
dE
dN

dp
dN

⊗Δ⊗=

`known’ from e+e-known 
pQCDxPDF

extract

Parton spectrum Fragmentation (function)Energy loss distribution

This is where the information about the medium is
P(ΔE) combines geometry  
with the intrinsic process 

– Unavoidable  for many observables

Notes: 
• This is the simplest ansatz – most calculation to date use it (except some 

MCs) 
• Jet, γ-jet measurements ‘fix’ E, removing one of the convolutions

A simplified approach
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Burke et al, JET C
ollaboration, arXiv:1312.5003
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RHIC and LHC
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Nuclear geometry: Npart, Ncoll

b

Two limiting possibilities: 
- Each nucleon only interacts once, ‘wounded nucleons’ 

Npart = nA + nB  (ex: 4 + 5 = 9 + …)  
Relevant for soft production; long timescales: σ ∝ Npart   

- Nucleons interact with all nucleons they encounter 
Ncoll = nA x nB (ex: 4 x 5 = 20 + …)  
Relevant for hard processes; short timescales: σ ∝ Nbin
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Nuclear modification factor RAA

p+p

A+A

pT

1/
N

bi
n d

2 N
/d

2 p
T

‘Energy loss’

Shift spectrum to left

‘Absorption’

Downward shift

Measured RAA is a ratio of yields at a given pT 
The physical mechanism is energy loss; shift of yield to lower pT

The full range of physical pictures can be  
captured with an energy loss distribution P(ΔE)
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Nuclear modification factor

ppTcoll

PbPbT
AA dpdNN

dpdN
R

+

+=
/

/

Suppression factor 2-6 
Significant pT-dependence 
Similar at RHIC and LHC?

So what does it mean?



Quarks and the strong interaction
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Atom Electron  
elementary, point-particle

Protons, neutrons 
Composite particle 
     ⇒ quarks

up        charm     top 
down   strange   bottom

Quarks: 
Electrical charge 
Strong charge (color)

electron   Muon  Tau  
νε             νµ        ντ

Leptons: 
Electrical charge

Force carriers:
photon         EM force 
gluon           strong force 
W,Z-boson  weak force

Standard Model: elementary particles

+anti-particles

EM force binds electrons 
to nucleus in atom 

Strong force binds nucleons 
in nucleus and quarks in nucleons
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QCD and quark parton model

At low energies, quarks  
are confined in hadrons

Goal of Heavy Ion Physics: 
Study dynamics of QCD and confinement 

in many-body systems

gqqee →−+

At high energies, quarks and 
gluons are manifest

protons, neutrons,  
pions, kaons 

+ many others
Experimental signature: jets of hadrons
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ALICE in real life
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Collision centrality

Central collisionPeripheral collision

top/side  
view:

front view:

b~0 fm

b

Nuclei are large compared to the range of strong force

b finite

This talk: concentrate on central collisions 
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Centrality continued
centralperipheral

Multiplicity distribution

Experimental measure of centrality: multiplicity
Need to take into account volume of collision zone for production rates
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Testing volume (Ncoll) scaling in Au+Au 

PHENIX

Direct γ spectra

Scaled by Ncoll

PHENIX, PRL 94, 232301

Direct γ in A+A scales with Ncoll

Centrality

A+A initial production is incoherent superposition of p+p for hard probes
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π0 RAA – high-pT suppression

Hard partons lose energy in the hot matter

γ: no interactions

Hadrons: energy loss

RAA = 1

RAA < 1

π0: RAA ≈ 0.2

γ: RAA = 1

PHENIX@RHIC
√sNN = 200 GeV


