the Algorithm Experience

CONVEX HULL

WELCOME!

With this book, you will be able to feel like a computer. You will sort cards from small to large without even knowing what you are doing.
Are you ready?

What you need
 - 7 identical envelopes
 - scissors
 - a large empty surface
 - line indicator
 - a stopwatch or timer

Contents

Welcome! 1
Sorting 2
Materials 3
Instructions 4
Algorithm A 6
Algorithm B
Algorithm C 8
Results

CONVEX HULL

A convex hull is the smallest convex shape that contains an input.

We can think of it as the shape we would get when releasing a rubber band.

To find a convex hull, we need to be able to check whether three points are in clockwise or counterclockwise order.
$3 \bigcirc$
(1)
©

MATERIALS

Cut these shapes, fold the dotted lines.

INSTRUCTIONS

Before the experience

- cut out the yellow point cards
- put each card into an envelope
- shuffle the envelopes
- cut and fold the orange stack markers - pick one of the algorithms to execute - point the marker to the first line
- start the timer

During the experience

- follow the instructions in the algorithm
- keep track of where you are in the algorithm with the marker
- do exactly what the algorithm tells you to do (even if you think it is silly)

After the experience

- stop the timer
- check if the result is correct
- write down your time on page 9
- try again with another algorithm

CONVEX HULL
ALGORITHM 1
input: stack S make three copies A, B, C of S
\rightarrow take a from A

yes: next c
no: restore C next b
is C empty?
put ab on stack R
restore B and C
next a
is B empty?
restore B and C
next a
is A empty?
output: stack R

CONVEX HULL
ALGORITHM 2
input: stack S
sort S from left to right
$\left[\begin{array}{r}\text { take } p \text { from } S \\ \text { put } p \text { on } R\end{array}\right.$
p take a, b, c from R
check: is a b c Ω ?
yes: put a, b, c back on R next p
no: put a, c back on R next b
not enough points on R ?
next p
is S empty?
output: stack R
collect all points in S again replace all y coordinates by -y repeat

SCORES

Keep track of your times here.

date	name	algorithm	time

