the **Algorithm Experience**

CONVEX HULL
WELCOME!

With this book, you will be able to feel like a computer. You will sort cards from small to large without even knowing what you are doing.

Are you ready?

What you need

- 7 identical envelopes
- scissors
- a large empty surface
- line indicator
- a stopwatch or timer

Contents

Welcome! 1
Sorting 2
Materials 3
Instructions 4
Algorithm A 6
Algorithm B 7
Algorithm C 8
Results 9
A convex hull is the smallest convex shape that contains an input.

We can think of it as the shape we would get when releasing a rubber band.

Checks

To find a convex hull, we need to be able to check whether three points are in clockwise or counterclockwise order.
MATERIALS

Cut these shapes, fold the dotted lines.

A B C R S

(1,4) (2,6) (3,1) (4,5) (5,3) (6,7) (7,2)
INSTRUCTIONS

Before the experience
- cut out the yellow point cards
- put each card into an envelope
- shuffle the envelopes
- cut and fold the orange stack markers
- pick one of the algorithms to execute
- point the marker to the first line
- start the timer

During the experience
- follow the instructions in the algorithm
- keep track of where you are in the algorithm with the marker
- do exactly what the algorithm tells you to do (even if you think it is silly)

After the experience
- stop the timer
- check if the result is correct
- write down your time on page 9
- try again with another algorithm
CONVEX HULL

ALGORITHM 1

input: stack S

make three copies A, B, C of S

take a from A

take b from B

take c from C

check: is a b c Ω?

yes: next c

no: restore C

next b

is C empty?

put a b on stack R

restore B and C

next a

is B empty?

restore B and C

next a

is A empty?

output: stack R
CONVEX HULL

ALGORITHM 2

input: stack S

- sort S from left to right
- take p from S
 - put p on R
- take a, b, c from R
 - check: is a, b, c ⊙?
 - yes: put a, b, c back on R
 - no: put a, c back on R

- not enough points on R?
 - next p
- is S empty?

output: stack R

- collect all points in S again
- replace all y coordinates by $-y$

repeat
Scores

Keep track of your times here.

<table>
<thead>
<tr>
<th>date</th>
<th>name</th>
<th>algorithm</th>
<th>time</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>