Point feature map labeling is a geometric problem, in which a set of input points must be labeled with a set of disjoint rectangles (the bounding boxes of the label texts). Typically, labeling models either use internal labels, which must touch their feature point, or external (boundary) labels, which are placed on one of the four sides of the input points' bounding box and which are connected to their feature points by crossing-free leader lines. In this paper we study polynomial-time algorithms for maximizing the number of internal labels in a mixed labeling model that combines internal and external labels. The model requires that all leaders are parallel to a given orientation θ ∈ [0, 2π), whose value influences the geometric properties and hence the running times of our algorithms.