# Approximating Largest Convex Hulls for Imprecise Points 

Maarten Löffler Marc van Kreveld


Center for Geometry, Imaging and Virtual Environments

Utrecht University

## Overview

- Introduction
- Data Imprecision
- Convex Hulls
- Problem Statement
- Exact Time Bounds
- Approximation
- Core-Sets
- Approximation Time Bounds
- Algorithms
- Concluding remarks


## Imprecision

- Traditional algorithms assume exact input
- In practice, input data is often not exact
- Measured from the real world
- Stored with limited precision
- Computed by inexact algorithms
- Output of traditional algorithms is unreliable
- Given exact description of input imprecision, we can exactly predict output imprecision


## Imprecise Points

- Unknown location
- Known region of possible locations
- Regions are simple geometric objects
- Disc
- Square
- Rectangle
- Convex polygon


## Imprecise Points

- Unknown location
- Known region of possible locations
- Regions are simple geometric objects
- Disc
- Square
- Rectangle
- Convex polygon


## Imprecise Points

- Unknown location
- Known region of possible locations
- Regions are simple geometric objects
- Disc
- Square
- Rectangle
- Convex polygon


## Imprecise Points

- Unknown location
- Known region of possible locations
- Regions are simple geometric objects
- Disc
- Square
- Rectangle
- Convex polygon


## Imprecise Points

- Unknown location
- Known region of possible locations
- Regions are simple geometric objects
- Disc
- Square
- Rectangle
- Convex polygon


## Convex Hull

- Given a set $P$ of $n$ points
- Smallest convex set containing $P$
- Can be computed in $O(n \log n)$ time
- Solved long ago


## Convex Hull

- Given a set $P$ of $n$ points
- Smallest convex set containing $P$
- Can be computed in $O(n \log n)$ time
- Solved long ago


## Imprecise Convex Hull

- Given a set $\mathcal{L}$ of $n$ imprecise points
- What is the convex hull?
- Multiple possibilities
- True structure is unknown
- We want to capture the imprecision in the output


## Imprecise Convex Hull



- Given a set $\mathcal{L}$ of $n$ imprecise points
- What is the convex hull?
- Multiple possibilities
- True structure is unknown
- We want to capture the imprecision in the output


## Imprecise Convex Hull



- Given a set $\mathcal{L}$ of $n$ imprecise points
- What is the convex hull?
- Multiple possibilities
- True structure is unknown
- We want to capture the imprecision in the output


## Imprecise Convex Hull



- Given a set $\mathcal{L}$ of $n$ imprecise points
- What is the convex hull?
- Multiple possibilities
- True structure is unknown
- We want to capture the imprecision in the output


## Imprecise Convex Hull



- Given a set $\mathcal{L}$ of $n$ imprecise points
- What is the convex hull?
- Multiple possibilities
- True structure is unknown
- We want to capture the imprecision in the output


## Imprecise Convex Hull



- Given a set $\mathcal{L}$ of $n$ imprecise points
- What is the convex hull?
- Multiple possibilities
- True structure is unknown
- We want to capture the imprecision in the output


## Bounds on Measures



- If we measure the size the convex hull...
- Area
- Perimeter
- Any other measure
- ... we can compute bounds on the possible values


## Bounds on Measures



- If we measure the size the convex hull...
- Area
- Perimeter
- Any other measure
- ... we can compute bounds on the possible values
- Smallest convex hull


## Bounds on Measures



- If we measure the size the convex hull...
- Area
- Perimeter
- Any other measure
- ... we can compute bounds on the possible values
- Smallest convex hull
- Largest convex hull


## Time Bounds for Computing Them

- Area
- Largest area, parallel line segments
- Largest area, arbitrary line segments
- Largest area, unit squares

NP-hard
$O\left(n^{5}\right)$

- Largest area, disjoint squares
- Smallest area, parallel line segments
$O\left(n^{7}\right)$
- Smallest area, squares
- Perimeter
- Largest perimeter, parallel line segments
- Largest perimeter, disjoint squares
$O\left(n^{10}\right)$
- Smallest perimeter, squares


## Approximate Largest Convex Hull

- Computing the largest possible convex hull is hard
- Instead, we will compute the almost-largest convex hull
- A $(1-\varepsilon)$-approximation of the convex hull gives only a slightly weaker bound on the real size


## Core-Sets

- Let $P$ be a set of $n$ points in $\mathbb{R}^{2}$
- Suppose we want to compute $\mu(P)$
- $P^{\prime} \subset P$ is a core-set w.r.t. $\mu$ if:
- $\mu\left(P^{\prime}\right) \geq(1-\varepsilon) \mu(P)$
- $\left|P^{\prime}\right|$ is constant
- $\left|P^{\prime}\right|$ does depend on $\varepsilon$
- Compute first $P^{\prime}$ and then $\mu\left(P^{\prime}\right)$


## Core-Sets

- Let $P$ be a set of $n$ points in $\mathbb{R}^{2}$
- Suppose we want to compute $\mu(P)$
- $P^{\prime} \subset P$ is a core-set w.r.t. $\mu$ if:
- $\mu\left(P^{\prime}\right) \geq(1-\varepsilon) \mu(P)$
- $\left|P^{\prime}\right|$ is constant
- $\left|P^{\prime}\right|$ does depend on $\varepsilon$
- Compute first $P^{\prime}$ and then $\mu\left(P^{\prime}\right)$


## Core-Sets

- Let $P$ be a set of $n$ points in $\mathbb{R}^{2}$
- Suppose we want to compute $\mu(P)$
- $P^{\prime} \subset P$ is a core-set w.r.t. $\mu$ if:
- $\mu\left(P^{\prime}\right) \geq(1-\varepsilon) \mu(P)$
- $\left|P^{\prime}\right|$ is constant
- $\left|P^{\prime}\right|$ does depend on $\varepsilon$
- Compute first $P^{\prime}$ and then $\mu\left(P^{\prime}\right)$


## Imprecise Core-Sets



- Let $\mathcal{L}$ be a set of $n$ regions in $\mathbb{R}^{2}$
- Suppose we want to compute $\mu(\mathcal{L})$
- $\mathcal{L}^{\prime} \subset \mathcal{L}$ is a core-set w.r.t. $\mu$ if:
- $\mu\left(\mathcal{L}^{\prime}\right) \geq(1-\varepsilon) \mu(\mathcal{L})$
- $\left|\mathcal{L}^{\prime}\right|$ is constant
- $\left|\mathcal{L}^{\prime}\right|$ does depend on $\varepsilon$
- Compute first $\mathcal{L}^{\prime}$ and then $\mu\left(\mathcal{L}^{\prime}\right)$


## Imprecise Core-Sets



- Let $\mathcal{L}$ be a set of $n$ regions in $\mathbb{R}^{2}$
- Suppose we want to compute $\mu(\mathcal{L})$
- $\mathcal{L}^{\prime} \subset \mathcal{L}$ is a core-set w.r.t. $\mu$ if:
- $\mu\left(\mathcal{L}^{\prime}\right) \geq(1-\varepsilon) \mu(\mathcal{L})$
- $\left|\mathcal{L}^{\prime}\right|$ is constant
- $\left|\mathcal{L}^{\prime}\right|$ does depend on $\varepsilon$
- Compute first $\mathcal{L}^{\prime}$ and then $\mu\left(\mathcal{L}^{\prime}\right)$


## Imprecise Core-Sets



- Let $\mathcal{L}$ be a set of $n$ regions in $\mathbb{R}^{2}$
- Suppose we want to compute $\mu(\mathcal{L})$
- $\mathcal{L}^{\prime} \subset \mathcal{L}$ is a core-set w.r.t. $\mu$ if:
- $\mu\left(\mathcal{L}^{\prime}\right) \geq(1-\varepsilon) \mu(\mathcal{L})$
- $\left|\mathcal{L}^{\prime}\right|$ is constant
- $\left|\mathcal{L}^{\prime}\right|$ does depend on $\varepsilon$
- Compute first $\mathcal{L}^{\prime}$ and then $\mu\left(\mathcal{L}^{\prime}\right)$


## Results

- Line segments, parallel
- Line segments
- Squares, disjoint
- Squares, same size
- Squares
- Regular $k$-gons, disjoint
- Regular k-gons
- Circles, disjoint
- Circles

$$
\begin{array}{r}
O\left(n+\eta^{3}\right) \\
O(n)+2^{O\left(\eta^{2}\right)} \\
O\left(n+\eta^{14}\right) \\
O\left(n+\eta^{12}\right) \\
O(n)+2^{O\left(\eta^{2}\right)}
\end{array}
$$

$$
O(n)+2^{O(k \log \eta)}
$$

$$
O(n)+2^{O\left(\eta^{2} \log k\right)}
$$

$$
O(n)+2^{O(\sqrt{\eta} \log \eta)}
$$

$$
O(n)+2^{O\left(\eta^{2} \log \eta\right)}
$$

## Vertical Line Segments

- Given a set $\mathcal{L}$ of line segments
- Divide them into strips of width $O(\varepsilon)$
- Take the two topmost and bottommost segments in each strip
- The result is a core-set $\mathcal{L}^{\prime}$
- This takes $O(n)$ time


## Vertical Line Segments



- Given a set $\mathcal{L}$ of line segments
- Divide them into strips of width $O(\varepsilon)$
- Take the two topmost and bottommost segments in each strip
- The result is a core-set $\mathcal{L}^{\prime}$
- This takes $O(n)$ time


## Vertical Line Segments



- Given a set $\mathcal{L}$ of line segments
- Divide them into strips of width $O(\varepsilon)$
- Take the two topmost and bottommost segments in each strip
- The result is a core-set $\mathcal{L}^{\prime}$
- This takes $O(n)$ time


## Vertical Line Segments



- Given a set $\mathcal{L}$ of line segments
- Divide them into strips of width $O(\varepsilon)$
- Take the two topmost and bottommost segments in each strip
- The result is a core-set $\mathcal{L}^{\prime}$
- This takes $O(n)$ time


## Vertical Line Segments



- Given a set $\mathcal{L}$ of line segments
- Divide them into strips of width $O(\varepsilon)$
- Take the two topmost and bottommost segments in each strip
- The result is a core-set $\mathcal{L}^{\prime}$
- This takes $O(n)$ time


## Vertical Line Segments

- Given a set $\mathcal{L}$ of line segments
- Divide them into strips of width $O(\varepsilon)$
- Take the two topmost and bottommost segments in each strip
- The result is a core-set $\mathcal{L}^{\prime}$
- This takes $O(n)$ time


## Why Is This A Core-Set?



- It has constant size:
- $O(\eta)$ strips
- At most four segments per strip
- It approximates the optimal solution:
- Vertical difference per strip at most 0
- Horizontal difference per strip at most $O(\varepsilon)$
- At most $O(\varepsilon h)$


## Arbitrary Line Segments

- Given a set $\mathcal{L}$ of line segments
- Put the longest segment $l_{\text {max }}$ into $\mathcal{L}^{\prime}$
- Divide the remaining segments into cells of size $O(\varepsilon)$ by $O(\varepsilon)$
- For any pair of cells, put at most one segment into $\mathcal{L}^{\prime}$


## Arbitrary Line Segments

- Given a set $\mathcal{L}$ of line segments
- Put the longest segment $l_{\text {max }}$ into $\mathcal{L}^{\prime}$
- Divide the remaining segments into cells of size $O(\varepsilon)$ by $O(\varepsilon)$
- For any pair of cells, put at most one segment into $\mathcal{L}^{\prime}$


## Arbitrary Line Segments

- Given a set $\mathcal{L}$ of line segments
- Put the longest segment $l_{\text {max }}$ into $\mathcal{L}^{\prime}$
- Divide the remaining segments into cells of size $O(\varepsilon)$ by $O(\varepsilon)$
- For any pair of cells, put at most one segment into $\mathcal{L}^{\prime}$


## Arbitrary Line Segments

- Given a set $\mathcal{L}$ of line segments
- Put the longest segment $l_{\text {max }}$ into $\mathcal{L}^{\prime}$
- Divide the remaining segments into cells of size $O(\varepsilon)$ by $O(\varepsilon)$
- For any pair of cells, put at most one segment into $\mathcal{L}^{\prime}$


## Arbitrary Line Segments

- Given a set $\mathcal{L}$ of line segments
- Put the longest segment $l_{\text {max }}$ into $\mathcal{L}^{\prime}$
- Divide the remaining segments into cells of size $O(\varepsilon)$ by $O(\varepsilon)$
- For any pair of cells, put at most one segment into $\mathcal{L}^{\prime}$


## Why Is This A Core-Set?

- It has constant size:
- $O\left(\eta^{2}\right)$ cells
- At most one segments for any two cells
- It approximates the optimal solution:
- Vertical difference per strip at most $O(\varepsilon)$
- Horizontal difference per strip at most $O(\varepsilon)$


## Concluding Remarks

- Data imprecision is a problem in computational geometry
- The largest possible area convex hull cannot be computed exactly efficiently
- Imprecise core-sets yield strongly linear time approximation schemes

$$
\begin{aligned}
& 88008 \\
& 8088 \\
& \hline
\end{aligned}
$$

