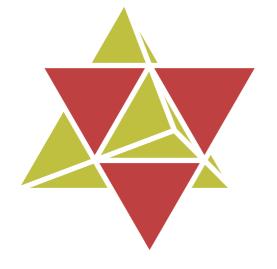
Approximating Largest Convex Hulls for Imprecise Points

Maarten Löffler Marc van Kreveld



Center for Geometry, Imaging and Virtual Environments

Utrecht University

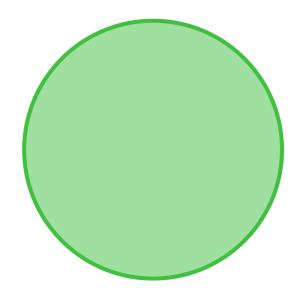
Overview

Introduction

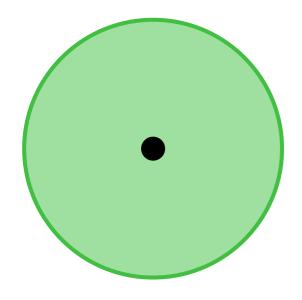
- Data Imprecision
- Convex Hulls
- Problem Statement
- Exact Time Bounds
- Approximation
 - Core-Sets
 - Approximation Time Bounds
 - Algorithms
- Concluding remarks

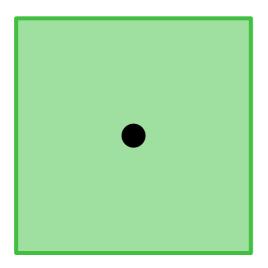
Imprecision

- Traditional algorithms assume exact input
- In practice, input data is often not exact
 - Measured from the real world
 - Stored with limited precision
 - Computed by inexact algorithms
- Output of traditional algorithms is unreliable
- Given exact description of input imprecision, we can exactly predict output imprecision

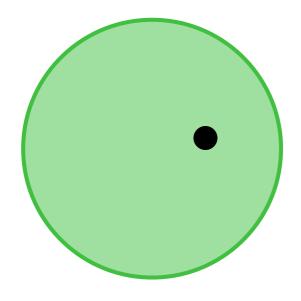


- Unknown location
- Known region of possible locations
- Regions are simple geometric objects
 - Disc
 - Square
 - Rectangle
 - Convex polygon



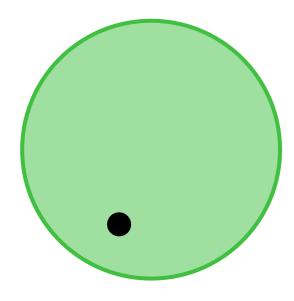


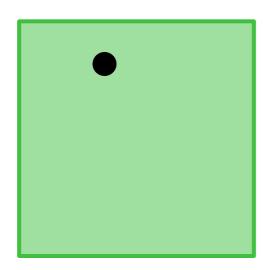
- Unknown location
- Known region of possible locations
- Regions are simple geometric objects
 - Disc
 - Square
 - Rectangle
 - Convex polygon



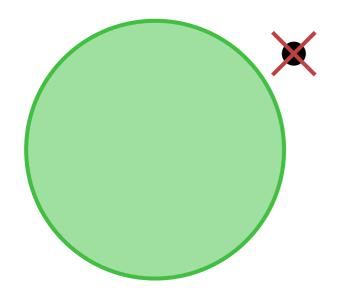
•	

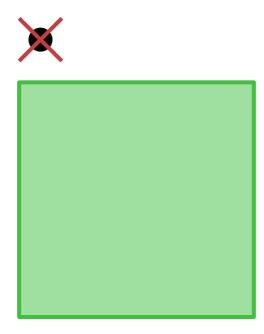
- Unknown location
- Known region of possible locations
- Regions are simple geometric objects
 - Disc
 - Square
 - Rectangle
 - Convex polygon





- Unknown location
- Known region of possible locations
- Regions are simple geometric objects
 - Disc
 - Square
 - Rectangle
 - Convex polygon



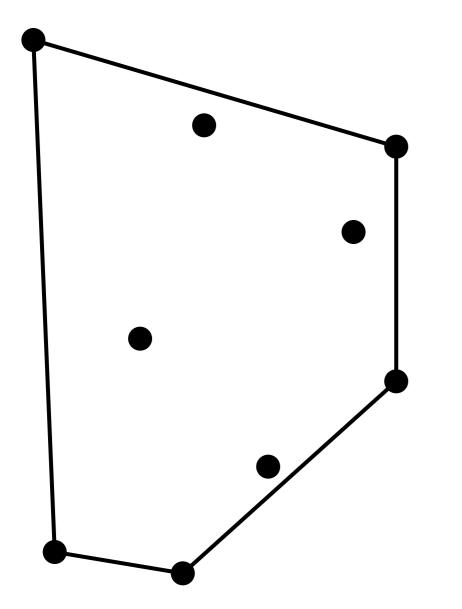


- Unknown location
- Known region of possible locations
- Regions are simple geometric objects
 - Disc
 - Square
 - Rectangle
 - Convex polygon

Convex Hull

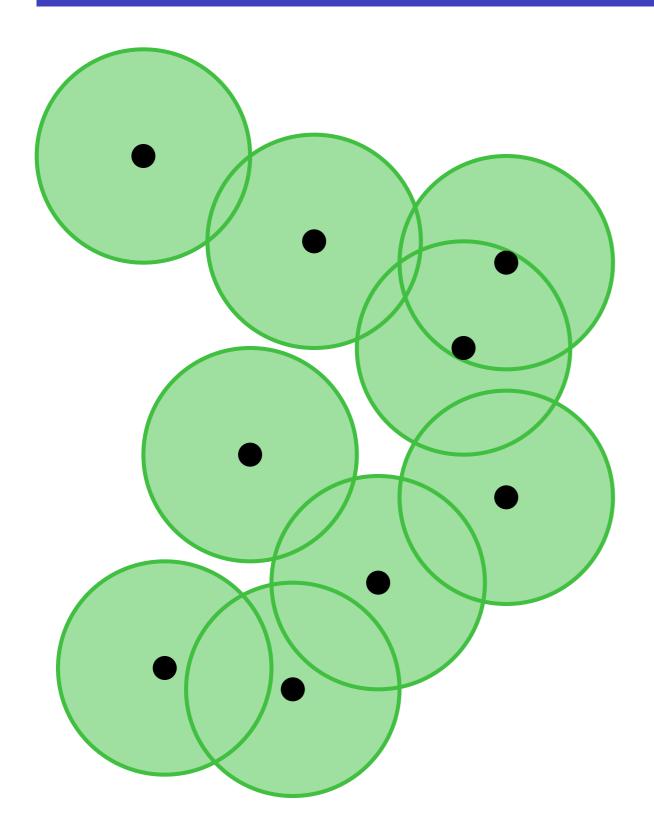
- Given a set *P* of *n* points
- Smallest convex set containing ${\cal P}$
- Can be computed in $O(n \log n)$ time
- Solved long ago

Convex Hull

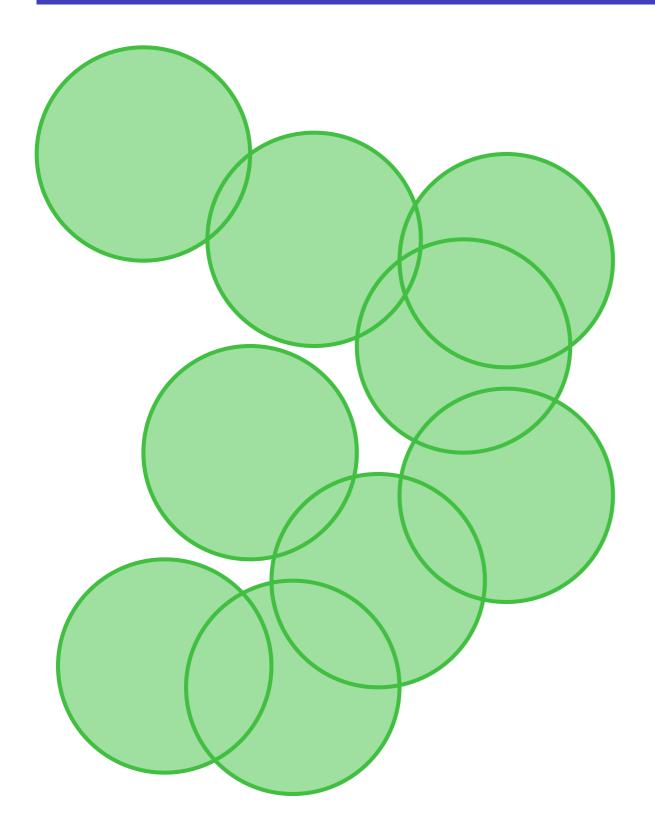


- Given a set *P* of *n* points
- Smallest convex set containing ${\cal P}$
- Can be computed in $O(n \log n)$ time
- Solved long ago

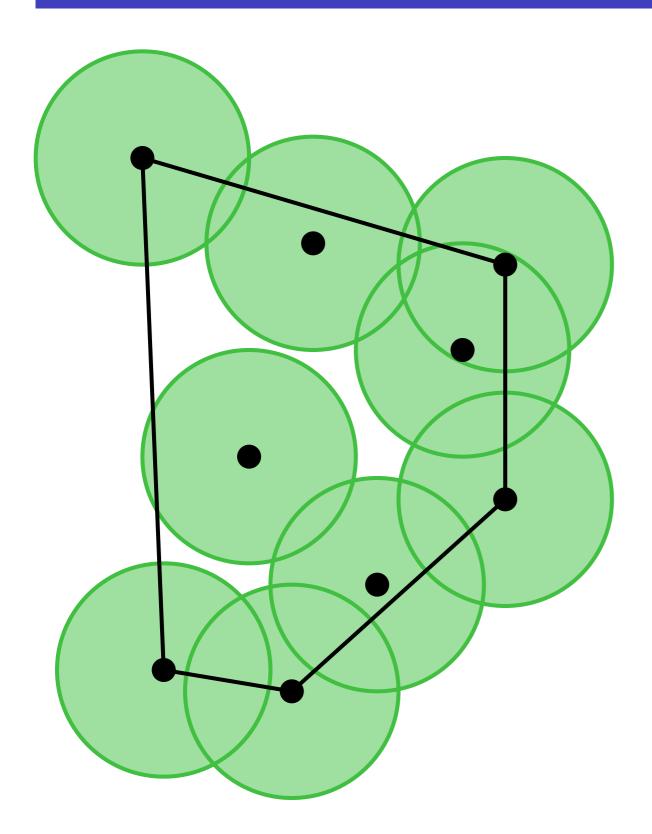
- Given a set \mathcal{L} of n imprecise points
- What is the convex hull?
- Multiple possibilities
- True structure is unknown
- We want to capture the imprecision in the output



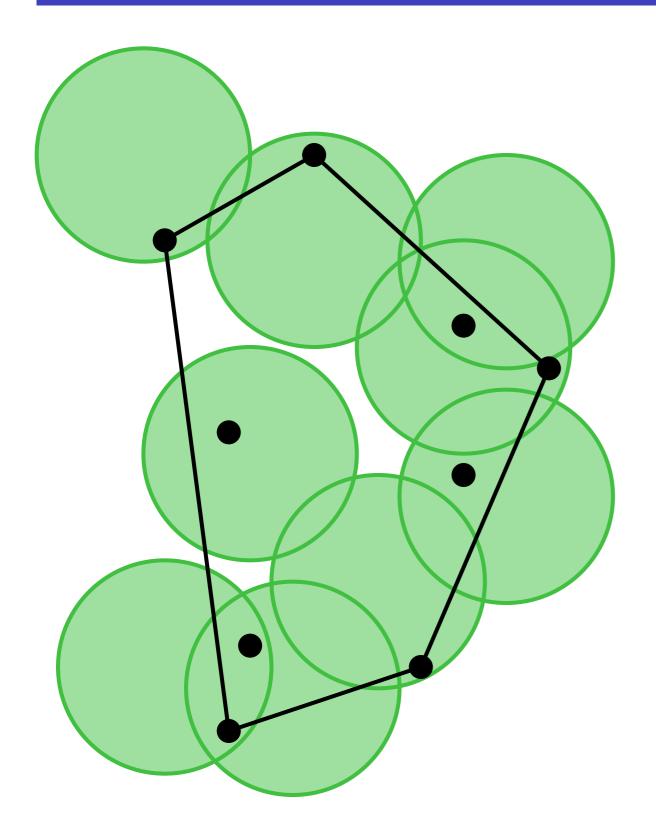
- Given a set \mathcal{L} of n imprecise points
- What is the convex hull?
- Multiple possibilities
- True structure is unknown
- We want to capture the imprecision in the output



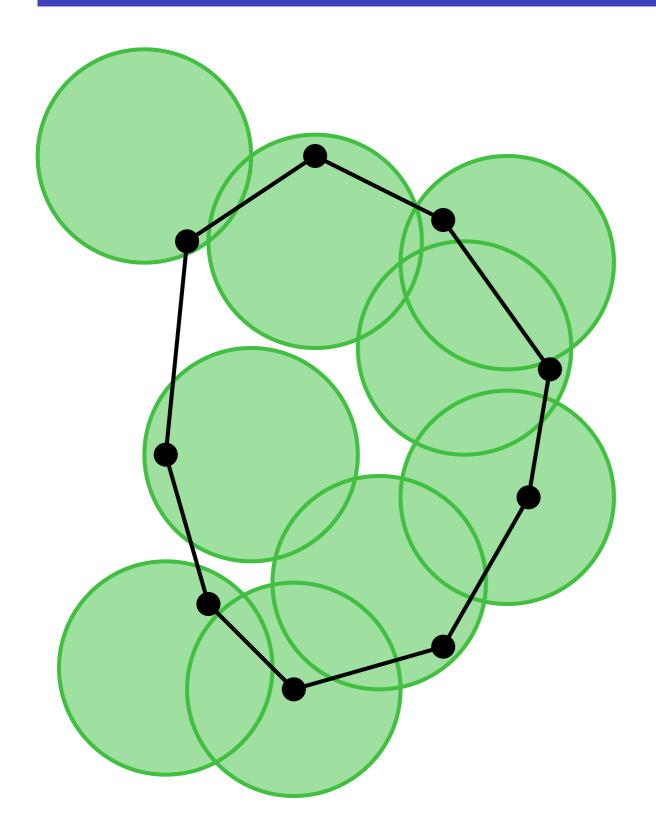
- Given a set \mathcal{L} of n imprecise points
- What is the convex hull?
- Multiple possibilities
- True structure is unknown
- We want to capture the imprecision in the output



- Given a set \mathcal{L} of n imprecise points
- What is the convex hull?
- Multiple possibilities
- True structure is unknown
- We want to capture the imprecision in the output

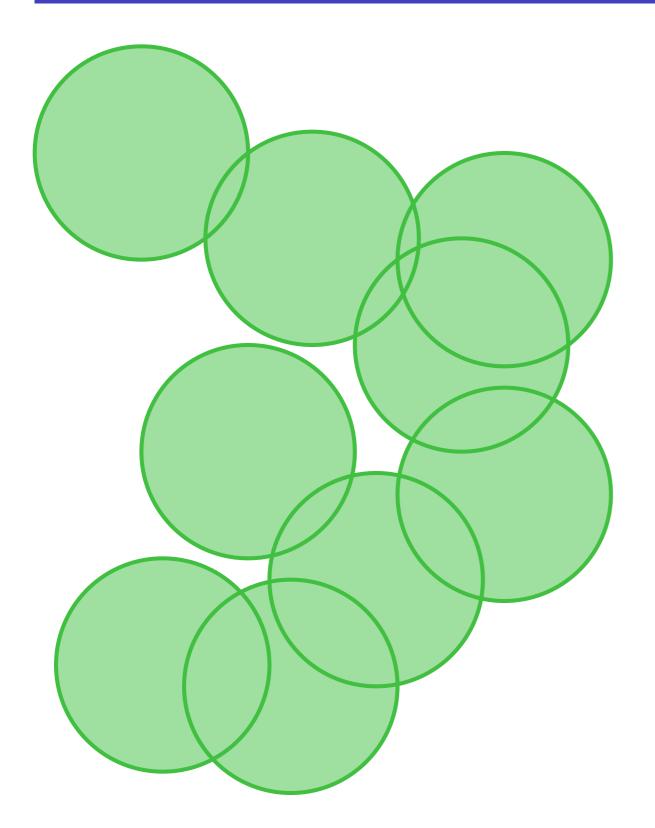


- Given a set \mathcal{L} of n imprecise points
- What is the convex hull?
- Multiple possibilities
- True structure is unknown
- We want to capture the imprecision in the output



- Given a set \mathcal{L} of n imprecise points
- What is the convex hull?
- Multiple possibilities
- True structure is unknown
- We want to capture the imprecision in the output

Bounds on Measures

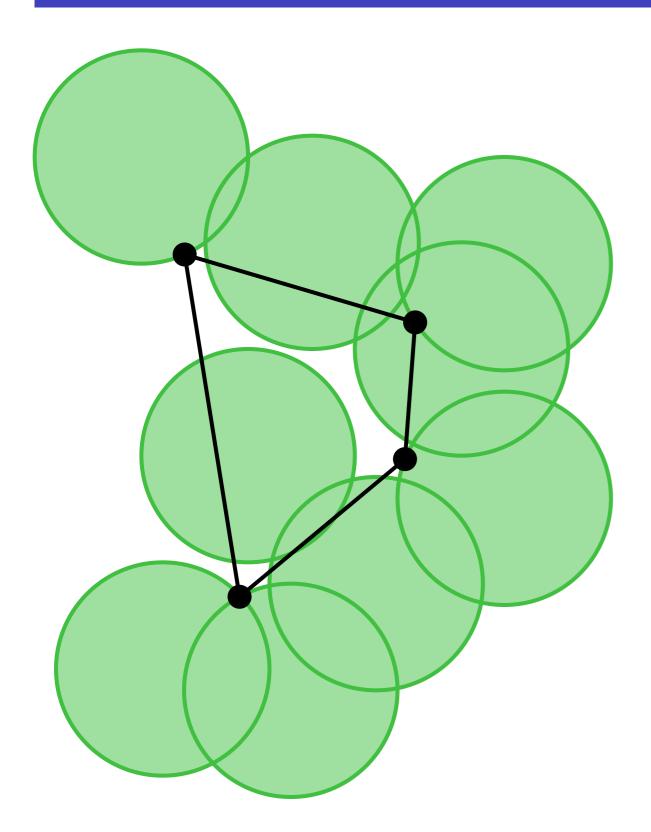


• If we measure the *size* the convex hull . . .

- Area
- Perimeter
- Any other measure

• . . . we can compute *bounds* on the possible values

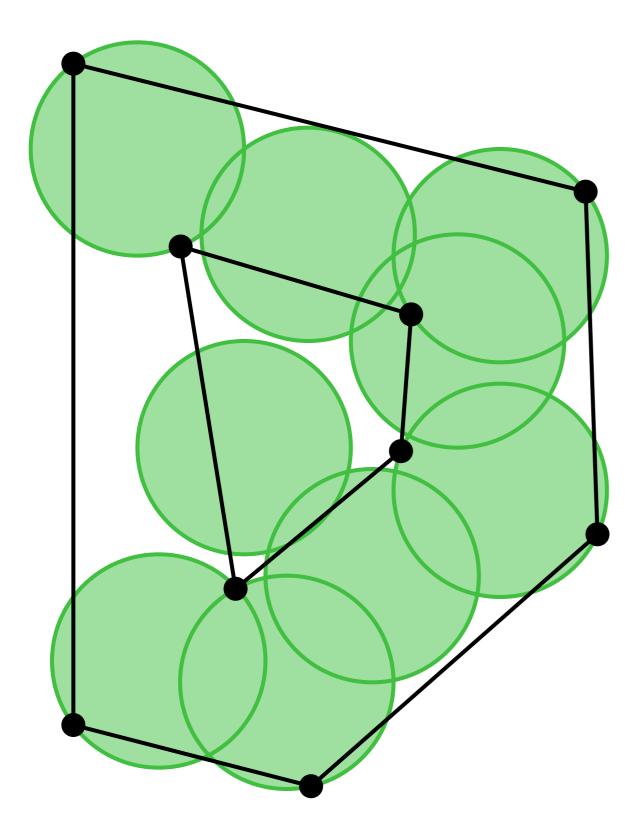
Bounds on Measures



• If we measure the *size* the convex hull . . .

- Area
- Perimeter
- Any other measure
- ... we can compute
 bounds on the
 possible values
 - Smallest convex hull

Bounds on Measures



• If we measure the *size* the convex hull . . .

- Area
- Perimeter
- Any other measure
- ... we can compute
 bounds on the
 possible values
 - Smallest convex hull
 - Largest convex hull

Time Bounds for Computing Them

• Area

- Largest area, parallel line segments
- Largest area, arbitrary line segments
- Largest area, unit squares
- Largest area, disjoint squares
- Smallest area, parallel line segments
- Smallest area, squares

• Perimeter

- Largest perimeter, parallel line segments
- Largest perimeter, disjoint squares
- Smallest perimeter, squares

 $O(n^{3})$

 $O(n^{5})$

 $O(n^7)$

 $O(n^2)$

 $O(n^{5})$

 $O(n \log n)$

NP-hard

Approximate Largest Convex Hull

- Computing the largest possible convex hull is hard
- Instead, we will compute the almost-largest convex hull
- A (1ε) -approximation of the convex hull gives only a slightly weaker bound on the real size

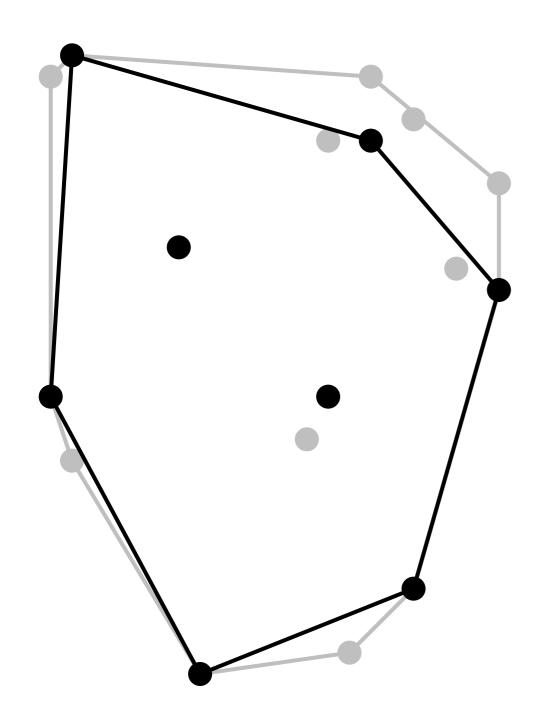
Core-Sets

- Let P be a set of n points in \mathbb{R}^2
- Suppose we want to compute $\mu(P)$
- $P' \subset P$ is a core-set w.r.t. μ if:
 - $\mu(P') \ge (1-\varepsilon)\mu(P)$
 - |P'| is constant
 - |P'| does depend on ε
- Compute first P' and then $\mu(P')$

Core-Sets

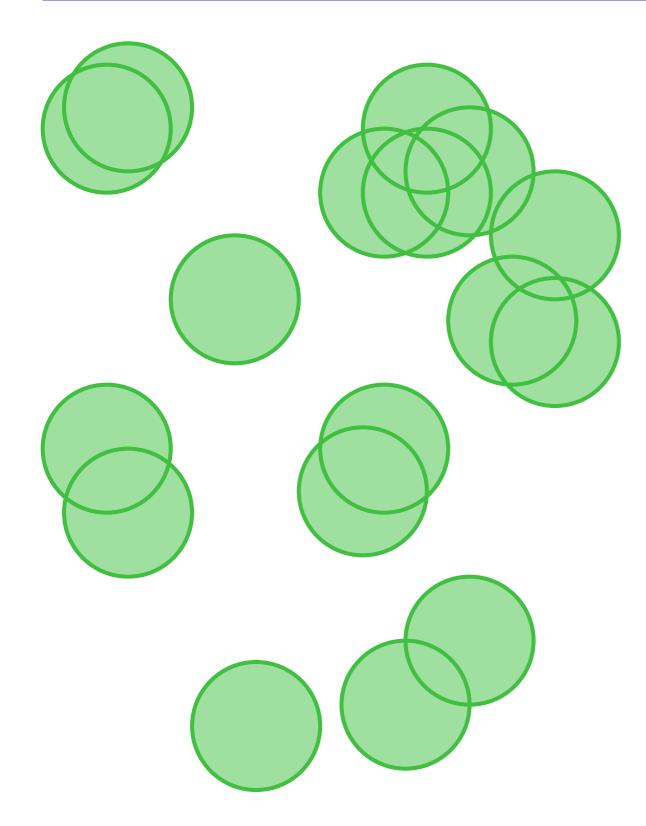
- Let P be a set of n points in \mathbb{R}^2
- Suppose we want to compute $\mu(P)$
- $P' \subset P$ is a core-set w.r.t. μ if:
 - $\mu(P') \ge (1-\varepsilon)\mu(P)$
 - |P'| is constant
 - |P'| does depend on ε
- Compute first P' and then $\mu(P')$

Core-Sets



- Let P be a set of n points in \mathbb{R}^2
- Suppose we want to compute $\mu(P)$
- $P' \subset P$ is a core-set w.r.t. μ if:
 - $\mu(P') \ge (1-\varepsilon)\mu(P)$
 - |P'| is constant
 - |P'| does depend on ε
- Compute first P' and then $\mu(P')$

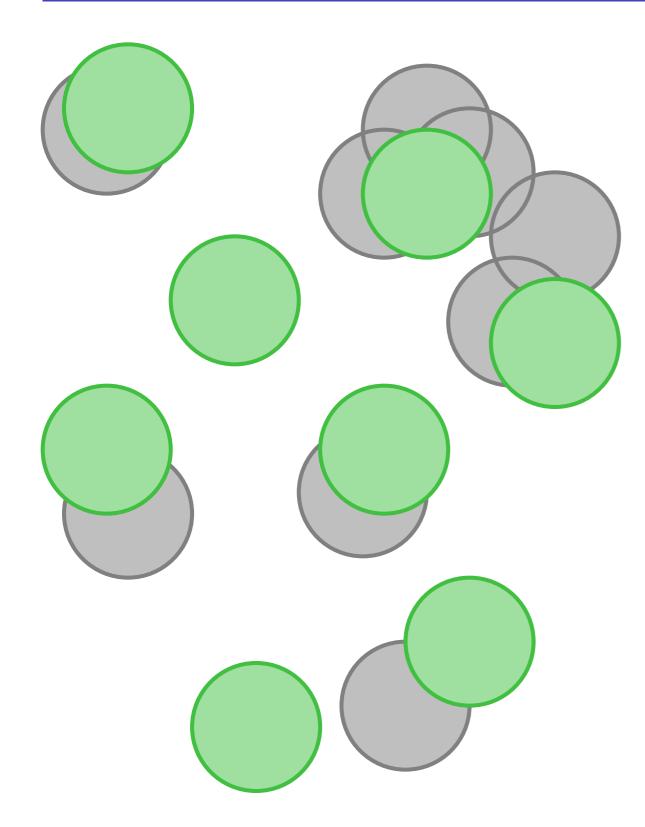
Imprecise Core-Sets



- Let ${\mathcal L}$ be a set of n regions in ${\mathbb R}^2$
- Suppose we want to compute $\mu(\mathcal{L})$
- $\mathcal{L}' \subset \mathcal{L}$ is a core-set w.r.t. μ if:
 - $\mu(\mathcal{L}') \ge (1-\varepsilon)\mu(\mathcal{L})$
 - $|\mathcal{L}'|$ is constant
 - $|\mathcal{L}'|$ does depend on ε

- Compute first \mathcal{L}' and then $\mu(\mathcal{L}')$

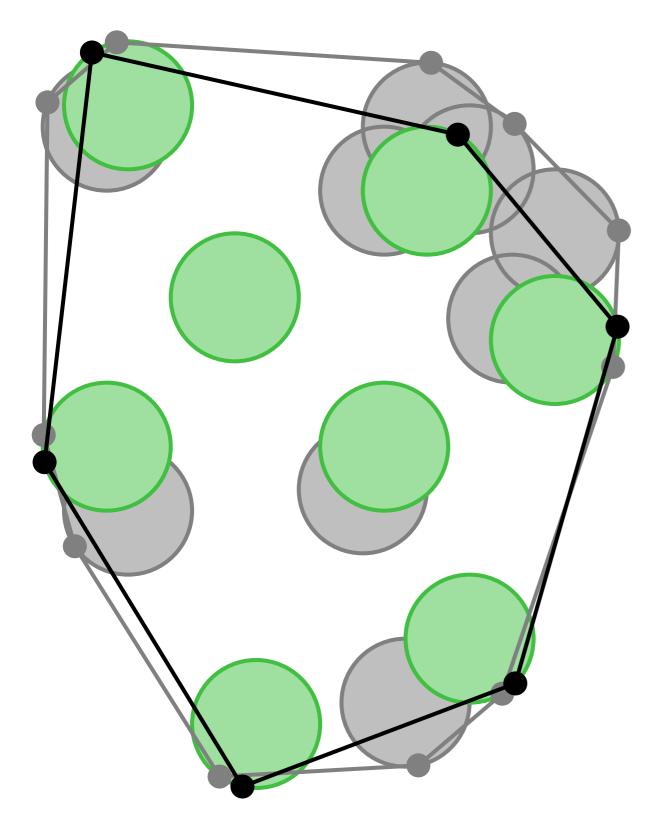
Imprecise Core-Sets



- Let ${\mathcal L}$ be a set of n regions in ${\mathbb R}^2$
- Suppose we want to compute $\mu(\mathcal{L})$
- $\mathcal{L}' \subset \mathcal{L}$ is a *core-set* w.r.t. μ if:
 - $\mu(\mathcal{L}') \ge (1-\varepsilon)\mu(\mathcal{L})$
 - $|\mathcal{L}'|$ is constant
 - $|\mathcal{L}'|$ does depend on arepsilon

- Compute first \mathcal{L}' and then $\mu(\mathcal{L}')$

Imprecise Core-Sets

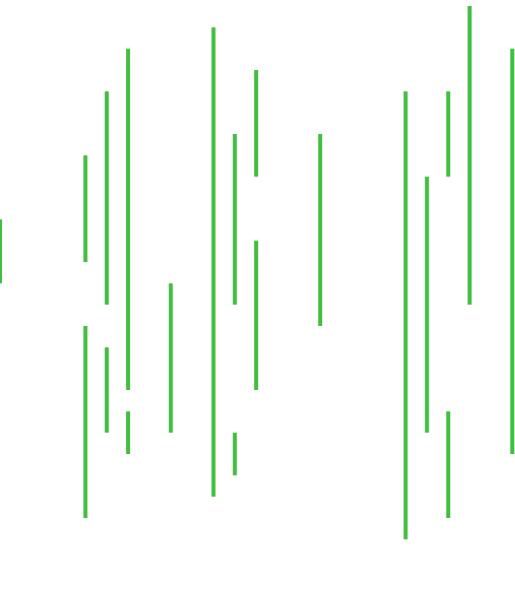


- Let ${\mathcal L}$ be a set of n regions in ${\mathbb R}^2$
- Suppose we want to compute $\mu(\mathcal{L})$
- $\mathcal{L}' \subset \mathcal{L}$ is a *core-set* w.r.t. μ if:
 - $\mu(\mathcal{L}') \ge (1-\varepsilon)\mu(\mathcal{L})$
 - $|\mathcal{L}'|$ is constant
 - $|\mathcal{L}'|$ does depend on arepsilon
- Compute first \mathcal{L}' and then $\mu(\mathcal{L}')$

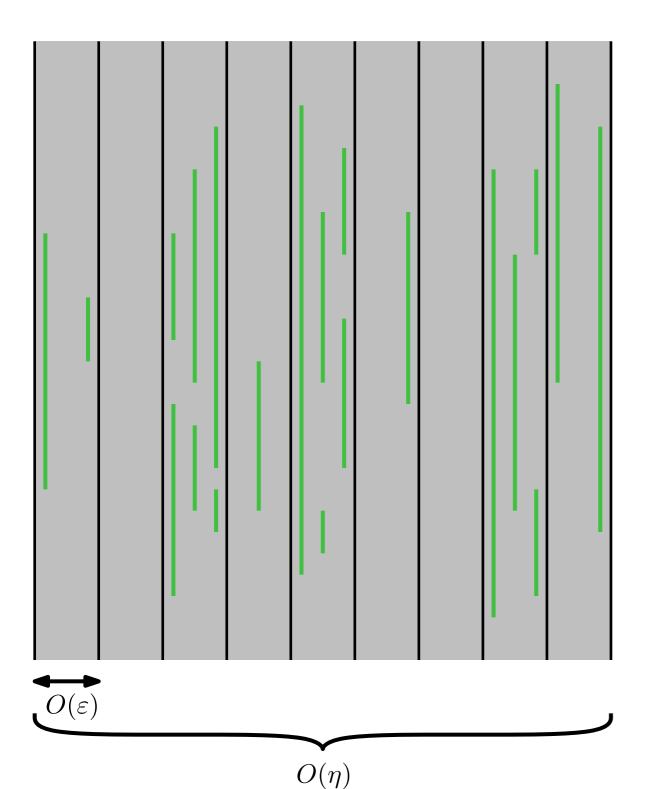
Results

- Line segments, parallel
- Line segments
- Squares, disjoint
- Squares, same size
- Squares
- Regular k-gons, disjoint
- Regular k-gons
- Circles, disjoint
- Circles

 $O(n+\eta^3)$ $O(n) + 2^{O(\eta^2)}$ $O(n + \eta^{14})$ $O(n + \eta^{12})$ $O(n) + 2^{O(\eta^2)}$ $O(n) + 2^{O(k \log \eta)}$ $O(n) + 2^{O(\eta^2 \log k)}$ $O(n) + 2^{O(\sqrt{\eta}\log\eta)}$ $O(n) + 2^{O(\eta^2 \log \eta)}$

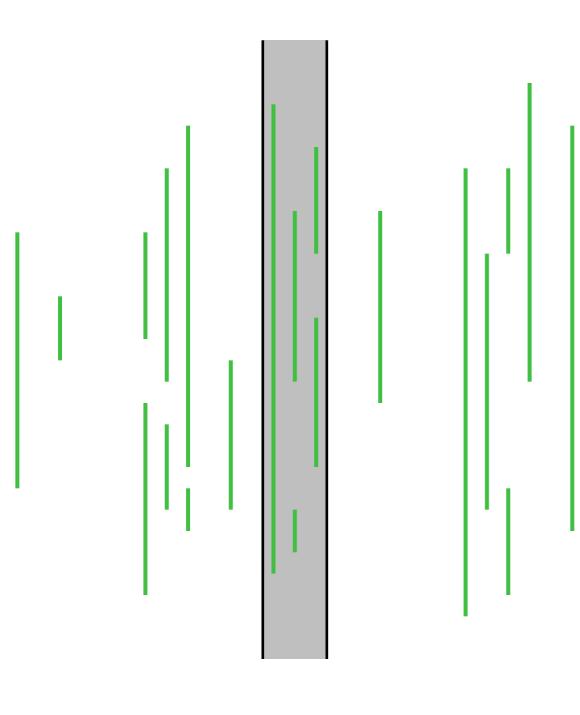


- Given a set \mathcal{L} of line segments
- Divide them into strips of width $O(\varepsilon)$
- Take the two topmost and bottommost segments in each strip
- The result is a core-set \mathcal{L}'
- This takes O(n) time

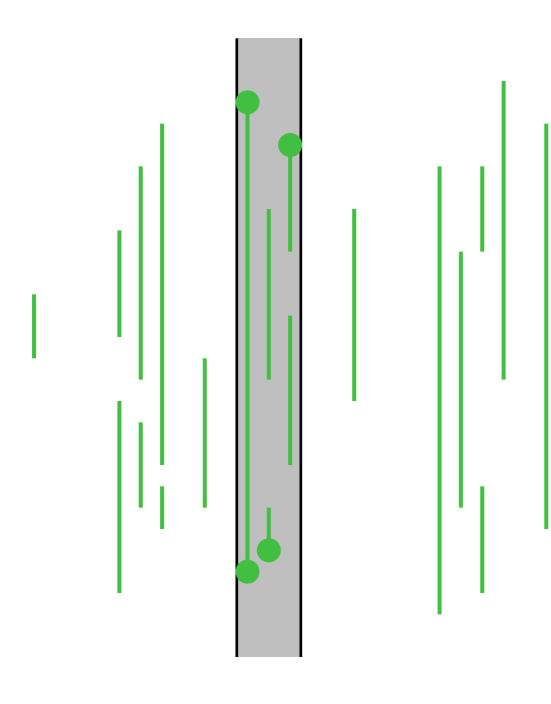


- Given a set \mathcal{L} of line segments
- Divide them into strips of width $O(\varepsilon)$
- Take the two topmost and bottommost segments in each strip
- The result is a core-set \mathcal{L}^\prime

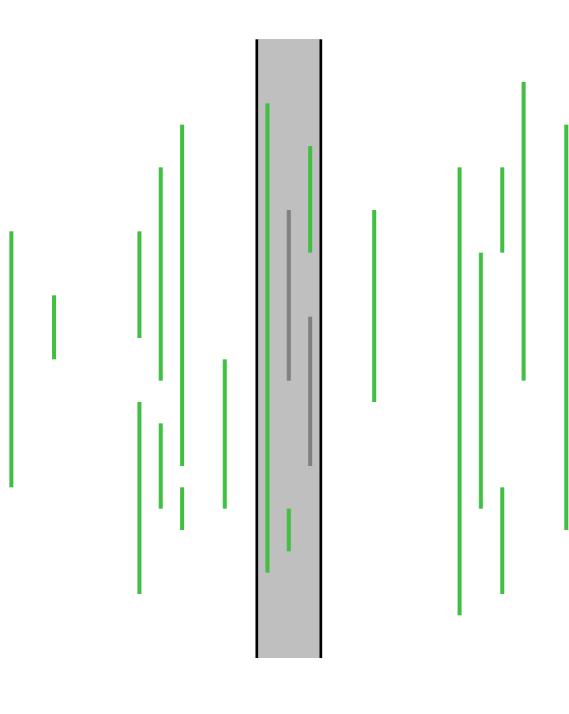
• This takes O(n) time



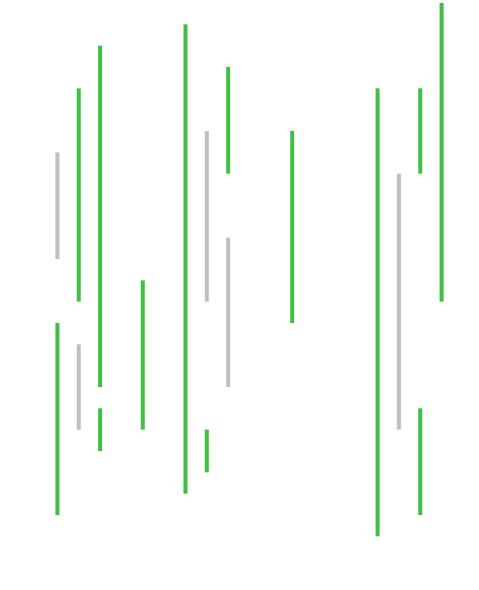
- Given a set \mathcal{L} of line segments
- Divide them into strips of width $O(\varepsilon)$
- Take the two topmost and bottommost segments in each strip
- The result is a core-set \mathcal{L}'
- This takes O(n) time



- Given a set \mathcal{L} of line segments
- Divide them into strips of width $O(\varepsilon)$
- Take the two topmost and bottommost segments in each strip
- The result is a core-set \mathcal{L}'
- This takes O(n) time

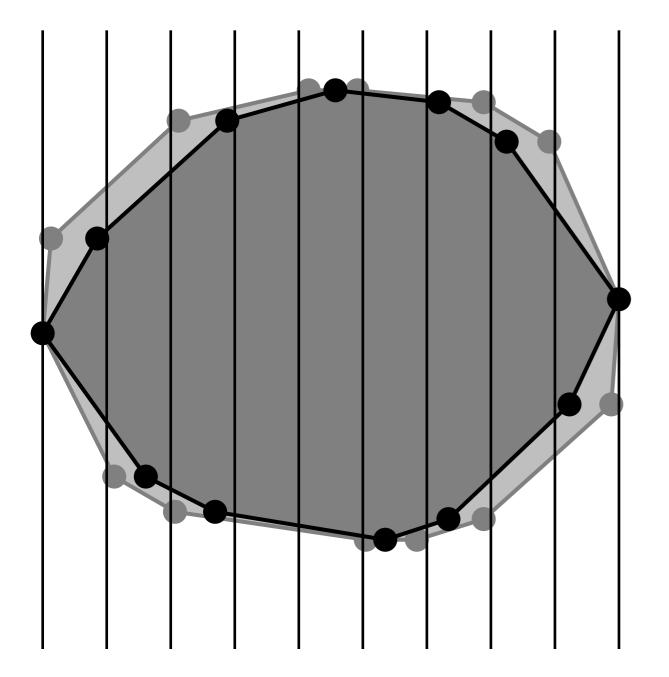


- Given a set \mathcal{L} of line segments
- Divide them into strips of width $O(\varepsilon)$
- Take the two topmost and bottommost segments in each strip
- The result is a core-set \mathcal{L}'
- This takes O(n) time

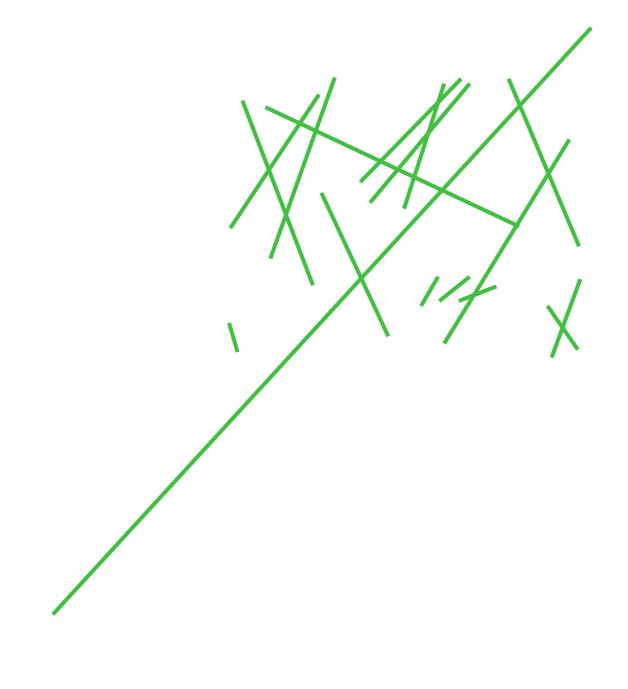


- Given a set \mathcal{L} of line segments
- Divide them into strips of width $O(\varepsilon)$
- Take the two topmost and bottommost segments in each strip
- The result is a core-set \mathcal{L}'
- This takes O(n) time

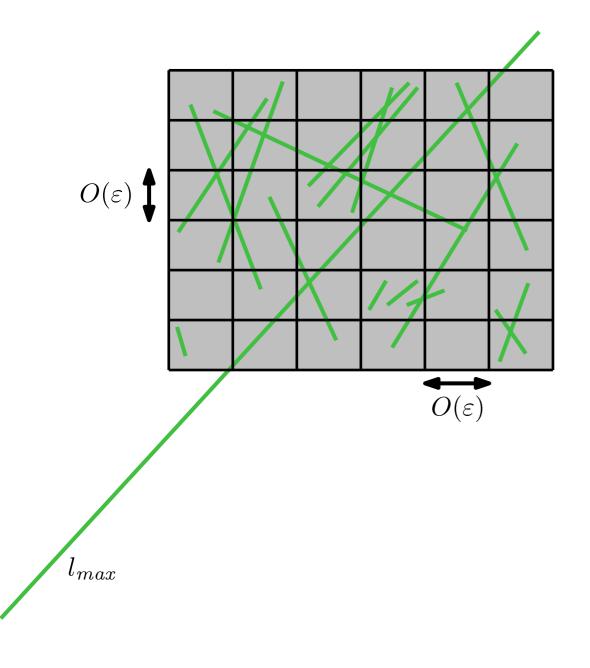
Why Is This A Core-Set?



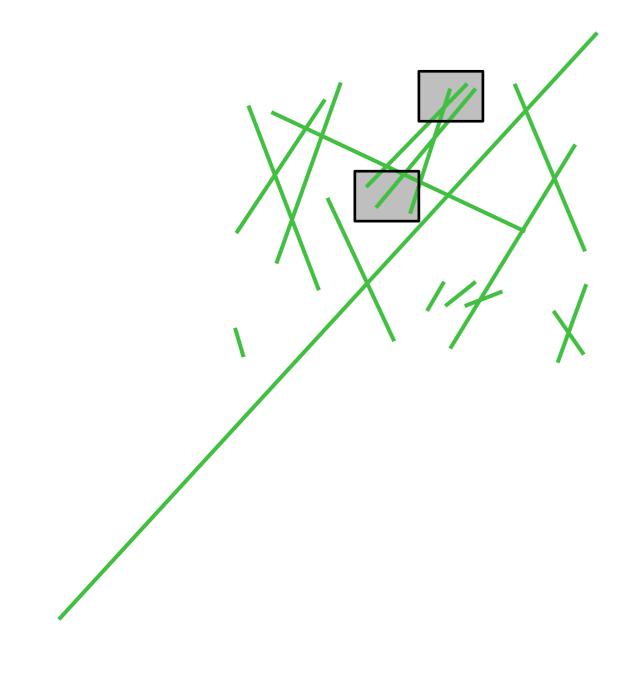
- It has constant size:
 - $O(\eta)$ strips
 - At most four segments per strip
- It approximates the optimal solution:
 - Vertical difference per strip at most 0
 - Horizontal difference per strip at most ${\cal O}(\varepsilon)$
 - At most $O(\varepsilon h)$



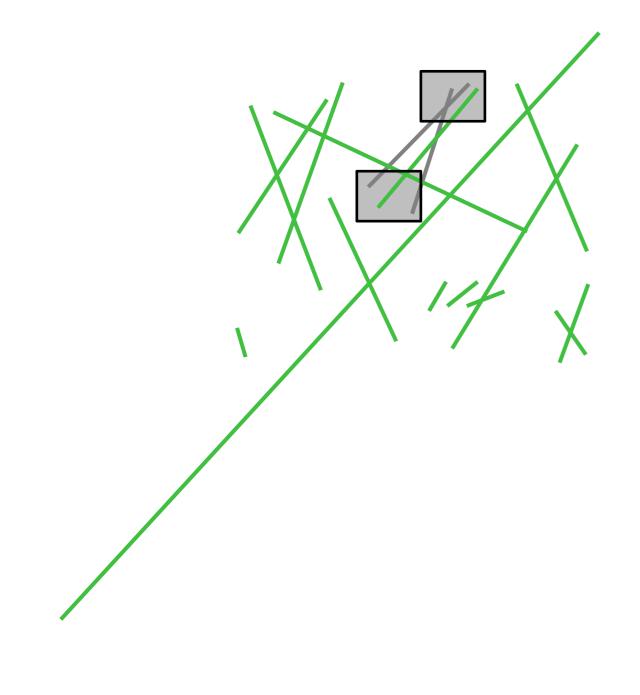
- Given a set \mathcal{L} of line segments
- Put the longest segment l_{max} into \mathcal{L}'
- Divide the remaining segments into cells of size $O(\varepsilon)$ by $O(\varepsilon)$
- For any pair of cells, put at most one segment into \mathcal{L}^\prime



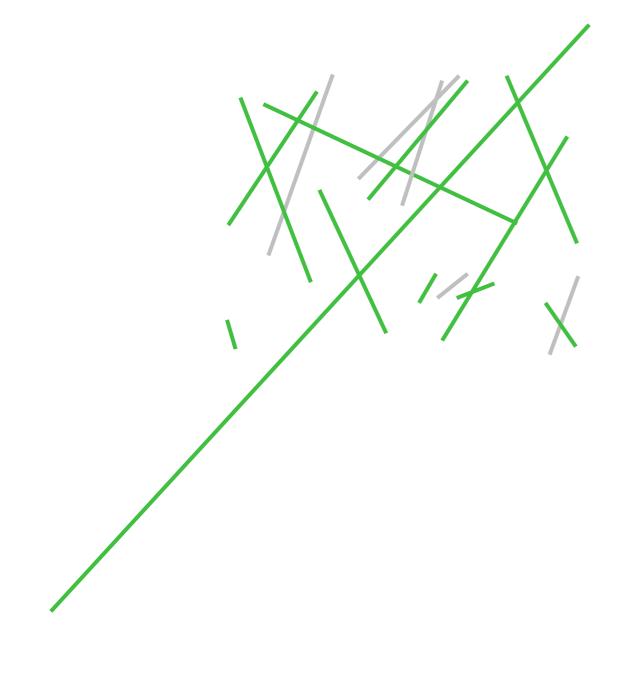
- Given a set ${\mathcal L}$ of line segments
- Put the longest segment l_{max} into \mathcal{L}'
- Divide the remaining segments into cells of size $O(\varepsilon)$ by $O(\varepsilon)$
- For any pair of cells, put at most one segment into \mathcal{L}^{\prime}



- Given a set *L* of line segments
- Put the longest segment l_{max} into \mathcal{L}'
- Divide the remaining segments into cells of size $O(\varepsilon)$ by $O(\varepsilon)$
- For any pair of cells, put at most one segment into \mathcal{L}^{\prime}

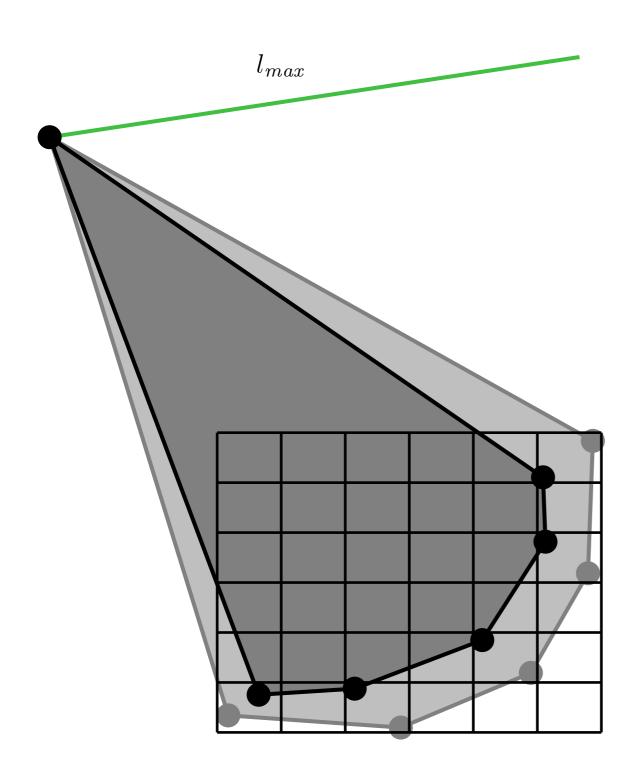


- Given a set \mathcal{L} of line segments
- Put the longest segment l_{max} into \mathcal{L}'
- Divide the remaining segments into cells of size $O(\varepsilon)$ by $O(\varepsilon)$
- For any pair of cells, put at most one segment into \mathcal{L}^{\prime}



- Given a set ${\mathcal L}$ of line segments
- Put the longest segment l_{max} into \mathcal{L}'
- Divide the remaining segments into cells of size $O(\varepsilon)$ by $O(\varepsilon)$
- For any pair of cells, put at most one segment into \mathcal{L}^{\prime}

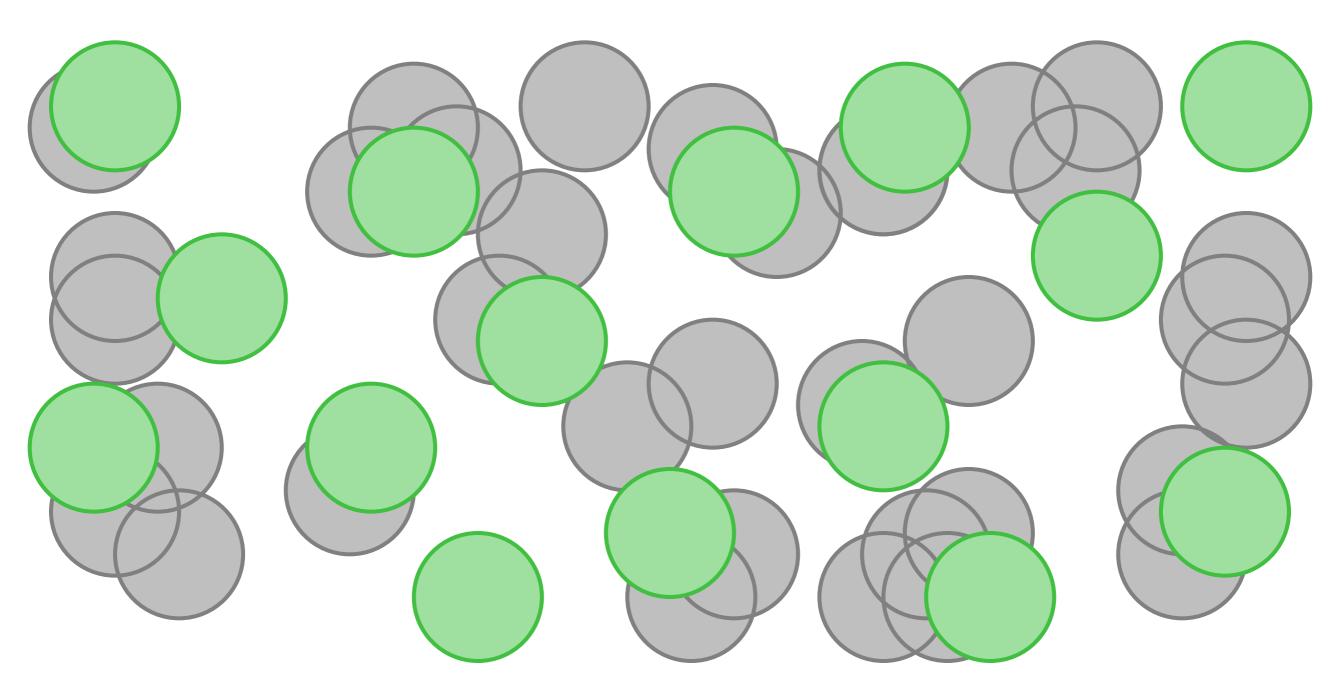
Why Is This A Core-Set?



- It has constant size:
 - $O(\eta^2)$ cells
 - At most one segments for any two cells
- It approximates the optimal solution:
 - Vertical difference per strip at most ${\cal O}(\varepsilon)$
 - Horizontal difference per strip at most ${\cal O}(\varepsilon)$

Concluding Remarks

- Data imprecision is a problem in computational geometry
- The largest possible area convex hull cannot be computed exactly efficiently
- Imprecise core-sets yield strongly linear time approximation schemes



Questions?