Geometric Problems with Imprecise Input Points

Maarten Löffler Marc van Kreveld

Center for Geometry, Imaging and Virtual Environments

Utrecht University

Overview

- Introduction
- Geometric problems
- Imprecise input points
- Overview of problems and results
- Algorithms
- Largest diameter of squares
- Smallest diameter of squares
- Concluding remarks

Geometric Structures on Point Sets

Geometric Structures on Point Sets

- Given a set P of n points in the plane
- Geometric structures:
- Bounding box

Geometric Structures on Point Sets

- Given a set P of n points in the plane
- Geometric structures:
- Bounding box
- Diameter

Geometric Structures on Point Sets

- Given a set P of n points in the plane
- Geometric structures:
- Bounding box
- Diameter
- Convex hull

Geometric Structures on Point Sets

- Given a set P of n points in the plane
- Geometric structures:
- Bounding box
- Diameter
- Convex hull
- Minimum spanning tree

Geometric Structures on Point Sets

- Given a set P of n points in the plane
- Geometric structures:
- Bounding box
- Diameter
- Convex hull
- Minimum spanning tree
- Many others
- Optimal algorithms are known

Imprecision

- Traditional algorithms assume exact input
- In practice, input data is often not exact
- Measured from the real world
- Stored with limited precision
- Computed by inexact algorithms
- Output of traditional algorithms is unreliable
- Given exact description of input imprecision, we can exactly predict output imprecision

Imprecise Points

- Unknown location
- Known region of possible locations
- Regions are simple geometric objects
- Disc
- Square
- Rectangle
- Convex polygon

Imprecise Points

- Unknown location
- Known region of possible locations
- Regions are simple geometric objects
- Disc
- Square
- Rectangle
- Convex polygon

Imprecise Points

- Unknown location
- Known region of possible locations
- Regions are simple geometric objects
- Disc
- Square
- Rectangle
- Convex polygon

Imprecise Points

- Unknown location
- Known region of possible locations
- Regions are simple geometric objects
- Disc
- Square
- Rectangle
- Convex polygon

Imprecise Points

- Unknown location
- Known region of possible locations
- Regions are simple geometric objects
- Disc
- Square
- Rectangle
- Convex polygon

Imprecision in Geometric Structures

- Given a set \mathcal{L} of n imprecise points
- Consider the same geometric structures
- Multiple possibilities
- True structure is unknown
- We want to capture the imprecision in the output

Imprecision in Geometric Structures

- Given a set \mathcal{L} of n imprecise points
- Consider the same geometric structures
- Multiple possibilities
- True structure is unknown
- We want to capture the imprecision in the output

Imprecision in Geometric Structures

- Given a set \mathcal{L} of n imprecise points
- Consider the same geometric structures
- Multiple possibilities
- True structure is unknown
- We want to capture the imprecision in the output

Imprecision in Geometric Structures

- Given a set \mathcal{L} of n imprecise points
- Consider the same geometric structures
- Multiple possibilities
- True structure is unknown
- We want to capture the imprecision in the output

Bounds on Measures

- Measure function $\mu: \mathcal{F}\left(\mathbb{R}^{2}\right) \rightarrow \mathbb{R}$
- Largest and smallest possible values of μ
- Output imprecision

Bounds on Measures

- Measure function

$$
\mu: \mathcal{F}\left(\mathbb{R}^{2}\right) \rightarrow \mathbb{R}
$$

- Largest and smallest possible values of μ
- Output imprecision
- For example
- Bounding box area

Bounds on Measures

- Measure function $\mu: \mathcal{F}\left(\mathbb{R}^{2}\right) \rightarrow \mathbb{R}$
- Largest and smallest possible values of μ
- Output imprecision
- For example
- Bounding box area

Bounds on Measures

- Measure function

$$
\mu: \mathcal{F}\left(\mathbb{R}^{2}\right) \rightarrow \mathbb{R}
$$

- Largest and smallest possible values of μ
- Output imprecision
- For example
- Bounding box area

Bounds on Measures

- Measure function

$$
\mu: \mathcal{F}\left(\mathbb{R}^{2}\right) \rightarrow \mathbb{R}
$$

- Largest and smallest possible values of μ
- Output imprecision
- For example
- Bounding box area
- Diameter

Bounds on Measures

- Measure function

$$
\mu: \mathcal{F}\left(\mathbb{R}^{2}\right) \rightarrow \mathbb{R}
$$

- Largest and smallest possible values of μ
- Output imprecision
- For example
- Bounding box area
- Diameter

Bounds on Measures

- Measure function

$$
\mu: \mathcal{F}\left(\mathbb{R}^{2}\right) \rightarrow \mathbb{R}
$$

- Largest and smallest possible values of μ
- Output imprecision
- For example
- Bounding box area
- Diameter

Bounds on Measures

- Measure function

$$
\mu: \mathcal{F}\left(\mathbb{R}^{2}\right) \rightarrow \mathbb{R}
$$

- Largest and smallest possible values of μ
- Output imprecision
- For example
- Bounding box area
- Diameter
- Convex hull perimeter

Bounds on Measures

- Measure function $\mu: \mathcal{F}\left(\mathbb{R}^{2}\right) \rightarrow \mathbb{R}$
- Largest and smallest possible values of μ
- Output imprecision
- For example
- Bounding box area
- Diameter
- Convex hull perimeter

Bounds on Measures

- Measure function

$$
\mu: \mathcal{F}\left(\mathbb{R}^{2}\right) \rightarrow \mathbb{R}
$$

- Largest and smallest possible values of μ
- Output imprecision
- For example
- Bounding box area
- Diameter
- Convex hull perimeter

Bounds on Measures

- Measure function

$$
\mu: \mathcal{F}\left(\mathbb{R}^{2}\right) \rightarrow \mathbb{R}
$$

- Largest and smallest possible values of μ
- Output imprecision
- For example
- Bounding box area
- Diameter
- Convex hull perimeter
- MST weight

Bounds on Measures

- Measure function

$$
\mu: \mathcal{F}\left(\mathbb{R}^{2}\right) \rightarrow \mathbb{R}
$$

- Largest and smallest possible values of μ
- Output imprecision
- For example
- Bounding box area
- Diameter
- Convex hull perimeter
- MST weight

Bounds on Measures

- Measure function

$$
\mu: \mathcal{F}\left(\mathbb{R}^{2}\right) \rightarrow \mathbb{R}
$$

- Largest and smallest possible values of μ
- Output imprecision
- For example
- Bounding box area
- Diameter
- Convex hull perimeter
- MST weight

Results

- Bounding box
- Largest area or perimeter, squares or discs
- Smallest area or perimeter, squares
- Smallest area or perimeter, discs
- Smallest enclosing circle
- Largest or smallest radius, squares or discs
- Convex hull
- Largest area, disjoint squares
- Smallest area, squares
- Largest perimeter, disjoint squares
- Smallest perimeter, squares

Results

- Diameter
- Largest diameter, squares or discs
- Smallest diameter, squares
- Smallest diameter, discs
- Width
- Smallest width, squares or discs
- Largest width, line segments
- Largest width, squares or discs
- Closest pair
- Smallest distance, squares or discs
- Largest distance, squares or discs
$O(n \log n)$
$O(n \log n)$
$O\left(n^{c \varepsilon^{-1}}\right)$
$O(n \log n)$ NP-hard
$O(n \log n)$ NP-hard

Results

- Minimum spanning tree
- Smallest weight, squares or discs

NP-hard

- Largest weight, squares or discs
- Tours
- Shortest tour, sequence of squares
- Longest tour, sequence of squares
- Existence of simple tour, any sequence

Diameter

- Diameter of imprecise points, square model
- Largest diameter
- Place two points as far away as possible
- Relatively easy
- Optimal $O(n \log n)$ algorithm
- Smallest diameter
- Place all points as close together as possible
- Much harder
- $O\left(n^{2}\right)$ algorithm
- Optimal $O(n \log n)$ algorithm

Largest Diameter

- Compute the diameter of all corners
- If the computed points belong to different regions, we are happy
- Otherwise, they are diagonally opposite corners of one big square S

Largest Diameter

- Compute the diameter of all corners
- If the computed points belong to different regions, we are happy
- Otherwise, they are diagonally opposite corners of one big square S

Largest Diameter

- Compute the diameter of all corners
- If the computed points belong to different regions, we are happy
- Otherwise, they are diagonally opposite corners of one big square S

Largest Diameter

- Compute the diameter of all corners
- If the computed points belong to different regions, we are happy
- Otherwise, they are diagonally opposite corners of one big square S

Largest Diameter

- Compute the diameter of all corners
- If the computed points belong to different regions, we are happy
- Otherwise, they are diagonally opposite corners of one big square S

Largest Diameter

- Compute the diameter of all corners
- If the computed points belong to different regions, we are happy
- Otherwise, they are diagonally opposite corners of one big square S

Largest Diameter

- Compute the diameter of all corners
- If the computed points belong to different regions, we are happy
- Otherwise, they are diagonally opposite corners of one big square S

Largest Diameter

- Compute the diameter of all corners
- If the computed points belong to different regions, we are happy
Otherwise, they are diagonally opposite corners of one big square S

Largest Diameter

- Compute the diameter of all corners
- If the computed points belong to different regions, we are happy
- Otherwise, they are diagonally opposite corners of one big square S

Largest Diameter

- Compute the diameter of all corners
- If the computed points belong to different regions, we are happy
- Otherwise, they are diagonally opposite corners of one big square S

Largest Diameter

- Diameter determined by two corners of S
- Two possible cases
- Either S contributes
- Try all corner pairs
- Only a linear number
- Or it does not
- Compute diameter of remaining corners
- Points cannot belong to one square again

Smallest Diameter

- Diameter could be determined by more pairs simultaneously
- The pairs form a star
- Bends only occur at axis-extreme squares
- Reflection angles must be less than 90°
- Consequence: at most two bends

$O\left(n^{2}\right)$ Algorithm

- The optimal star has at most two bends
- Compute the star for every subset of:
- Two axis-extreme squares
- And two other squares
- There are $O\left(n^{2}\right)$ stars to be computed
- The largest among these is the optimal star
- We now know the optimal diameter d and the star that defines it
- We still need to place points in all regions

$O\left(n^{2}\right)$ Algorithm

- We know d
- Let R be axis-extreme
- Valid placements in R are at most d away from any other square
- Place axis-extreme points validly and at most d away from each other
- This is sufficient

$O\left(n^{2}\right)$ Algorithm

- We know d
- Let R be axis-extreme
- Valid placements in R are at most d away from any other square
- Place axis-extreme points validly and at most d away from each other
- This is sufficient

$O\left(n^{2}\right)$ Algorithm

- We know d
- Let R be axis-extreme
- Valid placements in R are at most d away from any other square
- Place axis-extreme points validly and at most d away from each other
- This is sufficient

$O\left(n^{2}\right)$ Algorithm

- We know d
- Let R be axis-extreme
- Valid placements in R are at most d away from any other square
- Place axis-extreme points validly and at most d away from each other
- This is sufficient

$O\left(n^{2}\right)$ Algorithm

- We know d
- Let R be axis-extreme
- Valid placements in R are at most d away from any other square
- Place axis-extreme points validly and at most d away from each other
- This is sufficient

$O\left(n^{2}\right)$ Algorithm

- We know d
- Let R be axis-extreme
- Valid placements in R are at most d away from any other square
- Place axis-extreme points validly and at most d away from each other
- This is sufficient

$O\left(n^{2}\right)$ Algorithm

- We know d
- Let R be axis-extreme
- Valid placements in R are at most d away from any other square
- Place axis-extreme points validly and at most d away from each other
- This is sufficient

$O\left(n^{2}\right)$ Algorithm

- We know d
- Let R be axis-extreme
- Valid placements in R are at most d away from any other square
- Place axis-extreme points validly and at most d away from each other
- This is sufficient

$O\left(n^{2}\right)$ Algorithm

- We know d
- Let R be axis-extreme
- Valid placements in R are at most d away from any other square
- Place axis-extreme points validly and at most d away from each other
- This is sufficient

$O\left(n^{2}\right)$ Algorithm

- We know d
- Let R be axis-extreme
- Valid placements in R are at most d away from any other square
- Place axis-extreme points validly and at most d away from each other
- This is sufficient

$O\left(n^{2}\right)$ Algorithm

- We know the axis-extreme points
- Move rest of points towards the middle
- Optimal for given axis-extreme points
- Solution of d exists
- Therefore, the resulting point set must have diameter d

$O\left(n^{2}\right)$ Algorithm

- We know the axis-extreme points
- Move rest of points towards the middle
- Optimal for given axis-extreme points
- Solution of d exists
- Therefore, the resulting point set must have diameter d

$O\left(n^{2}\right)$ Algorithm

- We know the axis-extreme points
- Move rest of points towards the middle
- Optimal for given axis-extreme points
- Solution of d exists
- Therefore, the resulting point set must have diameter d

$O\left(n^{2}\right)$ Algorithm

- We know the axis-extreme points
- Move rest of points towards the middle
- Optimal for given axis-extreme points
- Solution of d exists
- Therefore, the resulting point set must have diameter d

Concluding Remarks

- Simple geometric problems become really interesting when input points are imprecise
- Largest and smallest diameter for squares can be computed efficiently
- Open problems
- Largest width problem
- Several variants of the convex hull
- Third dimension?

Questions?

