

Hugo Akitaya
Maarten Löffler Utrecht University
Anika Rounds Amazon
Giovanni Viglietta JAIST

Trash Cubes designed by Mary Bogdan, 2008. Brooklyn Art Project

Let P be a set of n coconuts in a swimming pool.

Let P be a set of n coconuts in a swimming pool.

Let P be a set of n coconuts in a swimming pool.
We assume the coconuts are aligned to a grid.

Let P be a set of n coconuts in a swimming pool. We assume the coconuts are aligned to a grid.

Assume further that we have a giant coconut pusher, which can be used to push coconuts.

Let P be a set of n coconuts in a swimming pool. We assume the coconuts are aligned to a grid.
Assume further that we have a giant coconut pusher, which can be used to push coconuts.

Let P be a set of n coconuts in a swimming pool.
We assume the coconuts are aligned to a grid.
Ass me further that we have a giant coconut pusher, whi h can be used to push coconuts.

Let P 昨 a set of n coconuts in a swimming pool.
We ass me the coconuts are aligned to a grid.
Assume further that we have a giant coconut pusher, which n n be used to push coconuts.

Let P be a set of n coconuts in a swimming pool. We assume the coconuts are aligned to a grid.

Assume fur her that we have a giant coconut pusher, which can e used to push coconuts.

Let P be a set pf n coconuts in a swimming pool.
We assume the coconuts are aligned to a grid.
Assume further that we have a giant coconut pusher, which can be u ed to push coconuts.

Let P be a set of r coconuts in a swimming pool.
We assume the coopnuts are aligned to a grid.
Assume further the we have a giant coconut pusher, which can be used o push coconuts.

Let P be a set of n pconuts in a swimming pool. We assume the coco uts are aligned to a grid.

Assume further that ve have a giant coconut pusher, which can be used to push coconuts.

Let P be a set of n co onuts in a swimming pool. We assume the cocony s are aligned to a grid.
Assume further that w have a giant coconut pusher, which can be used to H ssh coconuts.

Let P be a set of r coconuts in a swimming pool. We assume the coopnuts are aligned to a grid.
Assume further the we have a giant coconut pusher, which can be used o push coconuts.

Let P be a set pf n coconuts in a swimming pool.
We assume the coconuts are aligned to a grid.
Assume further that we have a giant coconut pusher, which can be u ed to push coconuts.

Let P be a set of n coconuts in a swimming pool. We assume the coconuts are aligned to a grid.

Assume fur her that we have a giant coconut pusher, which can e used to push coconuts.

Let P 昨 a set of n coconuts in a swimming pool.
We ass me the coconuts are aligned to a grid.
Assume further that we have a giant coconut pusher, which n n be used to push coconuts.

Let P be a set of n coconuts in a swimming pool.
We assume the coconuts are aligned to a grid.
Ass me further that we have a giant coconut pusher, whi h can be used to push coconuts.

Let P be a set of n coconuts in a swimming pool. We assume the coconuts are aligned to a grid.
Assume further that we have a giant coconut pusher, which can be used to push coconuts.

Let P be a set of n coconuts in a swimming pool. We assume the coconuts are aligned to a grid.

Assume further that we have a giant coconut pusher, which can be used to push coconuts.

Let P de a set of n coconuts in a swimming pool.
We assume the coconuts are aligned to a grid.
Assume further that we have a giant coconut pusher, which can be used to push coconuts.

Let P be a set of n coc puts in a swimming pool.
vve assume the coconuts are anginea to a gita.
Assume further that we have a giant coconut pusher, which can be used to push coconuts.

Let P be a set of n coc huts in a swimming pool.
We assume the coconut are aligned to a grid.

Assume mitner tnat we nave a glant coconul pusner, which can be used to push coconuts.

Let P be a set of n coc puts in a swimming pool.
We assume the coconut are aligned to a grid.
Assume further that we ave a giant coconut pusher, which on ho wend to nu h enennute

Let P be a set of n coc huts in a swimming pool. We assume the coconut are aligned to a grid.

Assume further that we ave a giant coconut pusher, which can be used to pu h coconuts.

Let P be a set of n coc huts in a swimming pool. We assume the coconut: are aligned to a grid.
Assume further that we ave a giant coconut pusher, which can be used to pu p coconuts.

Let P be a set of n coc huts in a swimming pool. We assume the coconut are aligned to a grid.
Assume further that we ave a giant coconut pusher, which can be used to pu p coconuts.

Let P be a set of n coc huts in a swimming pool. We assume the coconut, are aligned to a grid.

Assume further that we ave a giant coconut pusher, which can be used to pu \quad coconuts.

Let P be a set of n coc puts in a swimming pool. We assume the coconut are aligned to a grid.

Assume further that we ave a giant coconut pusher, which can be used to pu p coconuts.

Let P be a set of n coc huts in a swimming pool. We assume the coconut are aligned to a grid.
Assume further that we ave a giant coconut pusher, which can be used to pu \quad coconuts.

Let P be a set of n coc huts in a swimming pool. We assume the coconut are aligned to a grid.
Assume further that we ave a giant coconut pusher, which can be used to pu \quad coconuts.

Let P be a set of n coc huts in a swimming pool. We assume the coconut are aligned to a grid.

Assume further that we ave a giant coconut pusher, which can be used to pu h coconuts.

Let P be a set of n coc huts in a swimming pool. We assume the coconut are aligned to a grid.

[^0]Let P de a set of n coconuts in a swimming pool.
We assume the coconuts are aligned to a grid.
Assume further that we have a giant coconut pusher, which can be used to push coconuts.

Let P be a set of n coconuts in a swimming pool. We assume the coconuts are aligned to a grid.

Assume further that we have a giant coconut pusher, which can be used to push coconuts.

Let P be a set of n coconuts in a swimming pool.
We assume the coconuts are aligned to a grid.
Assume further that we have a giant coconut pusher, which can be used to push coconuts.

Let P be a set of n coconuts in a swimming pool. We assume the coconuts are aligned to a grid.

Assume further that we have a giant coconut push which can be used to push coconuts.

Let P be a set of n coconuts in a swimming po bl. We assume the coconuts are aligned to a grid.

Assume further that we have a giant coconut p sher, which can be used to push coconuts.

Let P be a set of n coconuts in a swimmin pool. We assume the coconuts are aligned to a g d.
Assume further that we have a giant cocon t pusher, which can be used to push coconuts.

Let P be a set of n coconuts in a swim hing pool. We assume the coconuts are aligned to grid. Assume further that we have a giant co on ut pusher, which can be used to push coconuts.

Let P be a set of n coconuts in a s rimming pool.
We assume the coconuts are alignes to a grid.
Assume further that we have a gian coconut pusher, which can be used to push coconuts

Let P be a set of n coconuts in a swimming pool. We assume the coconuts are ali ned to a grid.
Assume further that we have a jiant coconut pusher, which can be used to push coco uts.

Let P be a set of n coconut in a swimming pool.
We assume the coconuts are aligned to a grid.
Assume further that we hav a giant coconut pusher, which can be used to push pconuts.

Let P be a set of n coconuts in a swimming pool. We assume the coconuts are ali ned to a grid.
Assume further that we have a jiant coconut pusher, which can be used to push coco uts.

Let P be a set of n coconuts in a s rimming pool.
We assume the coconuts are aligned to a grid.
Assume further that we have a gian coconut pusher, which can be used to push coconuts

Let P be a set of n coconuts in a swim hing pool. We assume the coconuts are aligned to grid. Assume further that we have a giant co on ut pusher, which can be used to push coconuts.

Let P be a set of n coconuts in a swimmin pool. We assume the coconuts are aligned to a g d.
Assume further that we have a giant cocon t pusher, which can be used to push coconuts.

Let P be a set of n coconuts in a swimming po pl. We assume the coconuts are aligned to a grid.

Assume further that we have a giant coconut p sher, which can be used to push coconuts.

Let P be a set of n coconuts in a swimming pool. We assume the coconuts are aligned to a grid.

Assume further that we have a giant coconut push which can be used to push coconuts.

Let P be a set of n coconuts in a swimming pool.
We assume the coconuts are aligned to a grid.
Assume further that we have a giant coconut pusher, which can be used to push coconuts.

Let P be a set of n coconuts in a swimming pool. We assume the coconuts are aligned to a grid.

Assume further that we have a giant coconut pusher, which can be used to push coconuts.

Let P be a set of n coconuts in a swimming pool. We assume the coconuts are aligned to a grid.

Assume further that we have a giant coconut pusher, which can be used to push coconuts.

Any sequence of such coconut pushes leads to a reconfiguration of the coconuts.

Let P be a set of n coconuts in a swimming pool. We assume the coconuts are aligned to a grid.

Assume further that we have a giant coconut pusher, which can be used to push coconuts.

Any sequence of such coconut pushes leads to a reconfiguration of the coconuts.

KNOWN RESULTS

Question

Can we always push our coconuts into tidy rectangles?

Question

Can we always push our coconuts into tidy rectangles?

Question
Can we always push our coconuts into tidy rectangles?

Question
Can we always push ou coconuts into tidy rectangles?

Question

Can we always push our cocon tts into tidy rectangles?

Question
Can we always push our pconuts into tidy rectangles?

Question

Can we always push our coconuts into tidy rectangles?

Question

Can we always push our coconuts into tidy rectangles?
Obviously, n coconuts can only be pushed into a $a \times b$ rectangle if $a b=n$!

Question

Can we always push our coconuts into tidy rectangles?
Obviously, n coconuts can only be pushed into a $a \times b$ rectangle if $a b=n$!
But is it always possible?

Question

Can we always push our coconuts into tidy rectangles?
Obviously, n coconuts can only be pushed into a $a \times b$ rectangle if $a b=n$!
But is it always possible?

Question

Can we always push our coconuts into tidy rectangles?
Obviously, n coconuts can only be pushed into a $a \times b$ rectangle if $a b=n$!
But is it always possible?
No!

Question

Can we always push our coconuts into tidy rectangles?
Obviously, n coconuts can only be pushed into a $a \times b$ rectangle if $a b=n$!
But is it always possible?
No!

Question

Can we always push our coconuts into tidy rectangles?
Obviously, n coconuts can only be pushed into a $a \times b$ rectangle if $a b=n$!
But is it always possible?
No!
... and some aspect ratios are not even possible if we start with at most one coconut per row and column.

Results

Results

Deciding whether n coconuts can be pushed into an $a \times b$ rectangle is NP-complete.

Results

Deciding whether n coconuts can be pushed into an $a \times b$ rectangle is NP-complete.

Deciding whether n coconuts which occupy at most k rows can be pushed into a $2 \times n / 2$ rectangle is polynomial.

Results

Deciding whether n coconuts can be pushed into an $a \times b$ rectangle is NP-complete.

Deciding whether n coconuts which occupy at most k rows can be pushed into a $2 \times n / 2$ rectangle is polynomial.

Everything inbetween is still open!

Results

Deciding whether n coconuts can be pushed into an $a \times b$ rectangle is NP-complete.

Deciding whether n coconuts which occupy at most k rows can be pushed into a $2 \times n / 2$ rectangle is polynomial.

Everything inbetween is still open!
[Akitaya, Aloupis, Löffler, Rounds, 2016]

In compaction games, players take turns pushing.

In compaction games, players take turns pushing.
We will consider 2-player games, red against blue.

In compaction games, players take turns pushing.
We will consider 2-player games, red against blue.

In compaction games players take turns pushing.
We will consider 2-pllyer games, red against blue.

In compaction games, layers take turns pushing.
We will consider 2-play r games, red against blue.

In compaction games, players take turns pushing.
We will consider 2-player games, red against blue.

In compaction games, players take turns pushing.
We will consider 2-player games, red against blue.

In compaction games, players take turns pushing.
We will consider 2-player games, red against blue.

In compaction games, players take turns pushing.
We will consider 2-player games, red against blue.

In this game, only moves that decrease the bounding box are allowed.

In this game, only moves that decrease the bounding box are allowed.

In this game, only moves that decrease the bounding box are allowed.

In this game, only mpves that decrease the bounding box are allowed.

In this game, only moyes that decrease the bounding box are allowed.

In this game, only moves that decrease the bounding box are allowed.

In this game, only moves that decrease the bounding box are allowed.

In this game, only moves that decrease the bounding box are allowed.

In this game, only moves that decrease the bounding box are allowed.

800 0000

In this game, only moves that decrease the bounding box are allowed.

RED WINS!

80^{00}

In this game, only mpves that decrease the bounding box are allowed.

In this game, only moyes that decrease the bounding box are allowed.

In this game, only moves that decrease the bounding box are allowed.

In this game, only moves that decrease the bounding box are allowed.

In this game, only move that decrease the bounding box are allowed.

In this game, only move that decrease the bounding box are allowed.

In this game, only moves that decrease the bounding box are allowed.

In this game, only moves that decrease the bounding box are allowed.

In this game, only moves that decrease the bounding box are allowed.

BLUE WINS!

908

This compaction game is impartial: in any configuration, the set of legal moves does not depend on which player's turn it is.

This compaction game is impartial: in any configuration, the set of legal moves does not depend on which player's turn it is.

We define the potential of a configuration as the minimum number of empty cells in any row plus the minimum number of empty cells in any column.

This compaction game is impartial: in any configuration, the set of legal moves does not depend on which player's turn it is.

We define the potential of a configuration as the minimum number of empty cells in any row plus the minimum number of empty cells in any column.

This compaction game is impartial: in any configuration, the set of legal moves does not depend on which player's turn it is.

We define the potential of a configuration as the minimum number of empty cells in any row plus the minimum number of empty cells in any column.

This compaction game is impartial: in any configuration, the set of legal moves does not depend on which player's turn it is.

We define the potential of a configuration as the minimum number of empty cells in any row plus the minimum number of empty cells in any column.

Observation

Every move decreases the potential by at least 1.

This compaction game is impartial: in any configuration, the set of legal moves does not depend on which player's turn it is.

We define the potential of a configuration as the minimum number of empty cells in any row plus the minimum number of empty cells in any column.

Observation

Every move decreases the potential by at least 1.
But it can decrease arbitrarily!

This compaction game is impartial: in any configuration, the set of legal moves does not depend on which player's turn it is.

We define the potential of a configuration as the minimum number of empty cells in any row plus the minimum number of empty cells in any column.

Observation

Every move decreases the potential by at least 1.
But it can decrease arbitrarily!

This compaction game tion, the set of legal mo player's turn it is.

We define the potential imum number of empty imum number of empty
impartial: in any configuras does not depend on which a configuration as the minells in any row plus the minells in any column.

Observation

Every move decreases the potential by at least 1.
But it can decrease arbitrarily!

This compaction game tion, the set of legal mo player's turn it is.

We define the potential imum number of empty imum number of empty
impartial: in any configuras does not depend on which a configuration as the minells in any row plus the minells in any column.

Observation

Every move decreases the potential by at least 1.
But it can decrease arbitrarily!

This compaction game is impartial: in any configuration, the set of legal moves does not depend on which player's turn it is.

We define the potential of a configuration as the minimum number of empty cells in any row plus the minimum number of empty cells in any column.

Observation

Every move decreases the potential by at least 1.
But it can decrease arbitrarily!

This compaction game is impartial: in any configuration, the set of legal moves does not depend on which player's turn it is.

We define the potential of a configuration as the minimum number of empty cells in any row plus the minimum number of empty cells in any column.

Observation

Every move decreases the potential by at least 1.
But it can decrease arbitrarily!

Controlling the potential is non-trivial.

Idea

The winning condition is reaching a configuration with potential 0. Maybe it is a good idea to make the potential even when possible?

Idea

The winning condition is reaching a configuration with potential 0. Maybe it is a good idea to make the potential even when possible?

We did some experiments on random inputs.

Idea

The winning condition is reaching a configuration with potential 0. Maybe it is a good idea to make the potential even when possible?

We did some experiments on random inputs.

Idea

The winning condition is reaching a configuration with potential 0. Maybe it is a good idea to make the potential even when possible?

We did some experiments on random inputs.

Idea

The winning condition is reaching a configuration with potential 0. Maybe it is a good idea to make the potential even when possible?

We did some experiments on random inputs.

Idea

The winning condition is reaching a configuration with potential 0. Maybe it is a good idea to make the potential even when possible?

We did some experiments on random inputs.

Idea

The winning condition is reaching a configuration with potential 0. Maybe it is a good idea to make the potential even when possible?

We did some experiments on random inputs.

Idea

The winning condition is reaching a configuration with potential 0. Maybe it is a good idea to make the potential even when possible?

We did some experiments on random inputs.

Idea

The winning condition is reaching a configuration with potential 0. Maybe it is a good idea to make the potential even when possible?

We did some experiments on random inputs.

Idea

The winning condition is reaching a configuration with potential 0. Maybe it is a good idea to make the potential even when possible?

We did some experiments on random inputs.

Idea

The winning condition is reaching a configuration with potential 0. Maybe it is a good idea to make the potential even when possible?

We did some experiments on random inputs.

Idea

The winning condition is reaching a configuration with potential 0. Maybe it is a good idea to make the potential even when possible?

We did some experiments on random inputs.

Idea

The winning condition is reaching a configuration with potential 0. Maybe it is a good idea to make the potential even when possible?

We did some experiments on random inputs.

Idea

The winning condition is reaching a configuration with potential 0. Maybe it is a good idea to make the potential even when possible?

We did some experiments on random inputs.

Idea

The winning condition is reaching a configuration with potential 0. Maybe it is a good idea to make the potential even when possible?

We did some experiments on random inputs.

Idea

The winning condition is reaching a configuration with potential 0. Maybe it is a good idea to make the potential even when possible?

We did some experiments on random inputs.

Idea

The winning condition is reaching a configuration with potential 0. Maybe it is a good idea to make the potential even when possible?

We did some experiments on random inputs.

Idea

The winning condition is reaching a configuration with potential 0. Maybe it is a good idea to make the potential even when possible?

We did some experiments on random inputs.

Idea

The winning condition is reaching a configuration with potential 0. Maybe it is a good idea to make the potential even when possible?

We did some experiments on random inputs.

Generate 100 coconuts, standard deviation 5.

Idea

The winning condition is reaching a configuration with potential 0 . Maybe it is a good idea to make the potential even when possible?

We did some experiments on random inputs.

Generate 100 coconuts, standard deviation 5.

Player 1
Make potential even when possible.
Otherwise random.

Idea

The winning condition is reaching a configuration with potential 0. Maybe it is a good idea to make the potential even when possible?

We did some experiments on random inputs.

Generate 100 coconuts, standard deviation 5.

Player 1
Make potential even when possible.
Otherwise random.

Player 2 Just play randomly.

Player 1 wins $\approx 70 \%$ of the games!

Open Question

Is there a better measure of the state of the game than the potential?

Open Question

Is there a better measure of the state of the game than the potential?

Open Question Is LAST MOVE WINS hard?

$$
\begin{aligned}
& \text { GRME } 2 \\
& \text { K IN A ROW }
\end{aligned}
$$

For example, 2 in a row.

For example, 2 in a row.
In this game, the coconuts are also red or blue.

For example, 2 in a row.
In this game, the coconuts are also red or blue.

For example, 2 in a row.
In this game, the coopnuts are also red or blue.

For example, 2 in a rove
In this game, the cocol uts are also red or blue.

For example, 2 in a row.
In this game, the coconuts are also red or blue.

For example, 2 in a row.
In this game, the coconuts are also red or blue.

For example, 2 in a row.
In this game, the coconuts are also red or blue.

For example, 2 in a row.
In this game, the coconuts are also red or blue.

For example, 2 in a row.
In this game, the coconuts are also red or blue.

RED WINS!

For example, 2 in a row.
In this game, the coconuts are also red or blue.

For example, 2 in a row.
In this game, the coopnuts are also red or blue.

For example, 2 in a rove
In this game, the cocol uts are also red or blue.

For example, 2 in a row.
In this game, the coconuts are so red or blue.

For example, 2 in a row.
In this game, the coconuts are also red or blue.

For example, 2 in a row.
In this game, the coconuts are also red or blue.

For example, 2 in a row.
In this game, the coconuts a e also red or blue.

For example, 2 in a row.
In this game, the coconuts also red or blue.

Question

Does this game always terminate?

Question

Does this game always terminate?
No!

Question
Does this game always terminate?
No!

Question

Does this game always terminate?
No!

Question
Does this game always tarminate?
No!

Question
Does this game always termin te?
No!

Question
Does this game always term nate?
No!

Question
Does this game always terminate?
No!

Open Question

Is it possible to get into a cycle of more than 2 states?

Question

Does this game always terminate?
No!

Open Question

Is it possible to get into a cycle of more than 2 states?

Open Question
Is 2-IN-A-ROW hard?

QUESTIONS?

[^0]: Assume mitner tnat we nave a glant coconul pusner, which can be used to push coconuts.

