COMPACTION GAMES

Hugo Akitaya Maarten Löffler Anika Rounds Giovanni Viglietta

University of Massachusetts Utrecht University Amazon JAIST

Trash Cubes designed by Mary Bogdan, 2008. Brooklyn Art Project.

GRID COMPACTION

We assume the coconuts are aligned to a grid.

We assume the coconuts are aligned to a grid.

We assume the coconuts are aligned to a grid.

Let P be a set of n coconuts in a swimming pool. We assume the coconuts are aligned to a grid.

We assume the coconuts are aligned to a grid.

We assume the coconuts are aligned to a grid.

We assume the coconuts are aligned to a grid.

We assume the coopnuts are aligned to a grid.

We assume the cocol uts are aligned to a grid.

We assume the coconu s are aligned to a grid.

We assume the coopnuts are aligned to a grid.

We assume the coconuts are aligned to a grid.

We assume the coconuts are aligned to a grid.

We assume the coconuts are aligned to a grid.

Let P be a set of n coconuts in a swimming pool. We assume the coconuts are aligned to a grid.

We assume the coconuts are aligned to a grid.

We assume the coconuts are aligned to a grid.

We assume the coconuts are aligned to a grid.

we assume the coconuts are aligned to a grid.

Let P be a set of n coce uts in a swimming pool. We assume the coconut: are aligned to a grid.

We assume the coconut:

Assume further that we which can be used to pu

are aligned to a grid.

ave a giant coconut pusher, h coconuts.

We assume the coconut:

Assume further that we which can be used to pu

are aligned to a grid.

ave a giant coconut pusher, h coconuts.

Let P be a set of n coccouts in a swimming pool. We assume the coconuts are aligned to a grid.

We assume the coconuts are aligned to a grid.

We assume the coconuts are aligned to a grid.

We assume the coconuts are aligned to a grid.

We assume the coconuts are aligned to a grid.

We assume the coconuts are aligned to a grid.

We assume the coconuts are aligned to a gl d.

We assume the coconuts are aligned to a grid.

We assume the coconuts are aligned to a grid.

We assume the coconuts are aligned to a grid.

We assume the coconuts are aligned to a grid.

We assume the coconuts are aligned to a grid.

We assume the coconuts are aligned to a grid.

We assume the coconuts are aligned to a grid.

We assume the coconuts are aligned to a gl d.

We assume the coconuts are aligned to a grid.

We assume the coconuts are aligned to a grid.

We assume the coconuts are aligned to a grid.

We assume the coconuts are aligned to a grid.

We assume the coconuts are aligned to a grid.

Assume further that we have a giant *coconut pusher*, which can be used to push coconuts.

Any sequence of such coconut pushes leads to a *reconfiguration* of the coconuts.

We assume the coconuts are aligned to a grid.

Assume further that we have a giant *coconut pusher*, which can be used to push coconuts.

Any sequence of such coconut pushes leads to a *reconfiguration* of the coconuts.

KNOUN RESULTS

Question *Can we always push our coconuts into tidy rectangles?* **Question** *Can we always push our coconuts into tidy rectangles?*

Question *Can we always push our coconuts into tidy rectangles?*

Question Can we always push ou coconuts into tidy rectangles?

Question *Can we always push our cocon its into tidy rectangles?*

Question *Can we always push our*

pconuts into tidy rectangles?

Question *Can we always push our coconuts into tidy rectangles?*

Question Can we always push our coconuts into tidy rectangles? Obviously, n coconuts can only be pushed into a $a \times b$ rectangle if ab = n!

Question Can we always push our coconuts into tidy rectangles? Obviously, n coconuts can only be pushed into a $a \times b$ rectangle if ab = n!

But is it always possible?

Question Can we always push our coconuts into tidy rectangles? Obviously, n coconuts can only be pushed into a $a \times b$ rectangle if ab = n!But is it always possible?

Question Can we always push our coconuts into tidy rectangles? Obviously, n coconuts can only be pushed into a $a \times b$ rectangle if ab = n!But is it always possible?

No!

Question Can we always push our coconuts into tidy rectangles? Obviously, n coconuts can only be pushed into a $a \times b$ rectangle if ab = n! But is it always possible? No! Question Can we always push our coconuts into tidy rectangles? Obviously, n coconuts can only be pushed into a $a \times b$ rectangle if ab = n!But is it always possible? No!

...and *some* aspect ratios are not even possible if we start with at most one coconut per row and column.

Deciding whether n coconuts can be pushed into an $a \times b$ rectangle is NP-complete.

Deciding whether n coconuts can be pushed into an $a \times b$ rectangle is NP-complete.

Deciding whether n coconuts which occupy at most k rows can be pushed into a $2 \times n/2$ rectangle is polynomial.

Deciding whether n coconuts can be pushed into an $a \times b$ rectangle is NP-complete.

Deciding whether n coconuts which occupy at most k rows can be pushed into a $2 \times n/2$ rectangle is polynomial.

Everything inbetween is still open!

Deciding whether n coconuts can be pushed into an $a \times b$ rectangle is NP-complete.

Deciding whether n coconuts which occupy at most k rows can be pushed into a $2 \times n/2$ rectangle is polynomial.

Everything inbetween is still open!

[Akitaya, Aloupis, Löffler, Rounds, 2016]

In compaction games, players take turns pushing.

In compaction games players take turns pushing.

We will consider 2-pl yer games, red against blue.

In compaction games, layers take turns pushing.

We will consider 2-play r games, red against blue.

GAME 1 Last Move Uins

WINS!
In this game, only move box are allowed.

that decrease the bounding

In this game, only move box are allowed.

that decrease the bounding

We define the *potential* of a configuration as the minimum number of empty cells in any row plus the minimum number of empty cells in any column.

We define the *potential* of a configuration as the minimum number of empty cells in any row plus the minimum number of empty cells in any column.

We define the *potential* of a configuration as the minimum number of empty cells in any row plus the minimum number of empty cells in any column.

We define the *potential* of a configuration as the minimum number of empty cells in any row plus the minimum number of empty cells in any column.

Observation *Every move decreases the potential by at least 1.*

We define the *potential* of a configuration as the minimum number of empty cells in any row plus the minimum number of empty cells in any column.

Observation Every move decreases the potential by at least 1.

We define the *potential* of a configuration as the minimum number of empty cells in any row plus the minimum number of empty cells in any column.

Observation *Every move decreases the potential by at least 1.*

This compaction game i tion, the set of legal moves player's turn it is.

We define the *potential* imum number of empty imum number of empty *impartial*: in any configuras does not depend on which

Fa configuration as the minells in any row plus the minells in any column.

Observation Every move decreases the potential by at least 1.

This compaction game i tion, the set of legal moves player's turn it is.

We define the *potential* imum number of empty imum number of empty *impartial*: in any configuras does not depend on which

Fa configuration as the minells in any row plus the minells in any column.

Observation Every move decreases the potential by at least 1.

We define the *potential* of a configuration as the minimum number of empty cells in any row plus the minimum number of empty cells in any column.

Observation *Every move decreases the potential by at least 1.*

We define the *potential* of a configuration as the minimum number of empty cells in any row plus the minimum number of empty cells in any column.

Observation *Every move decreases the potential by at least 1.*

But it can decrease arbitrarily!

Controlling the potential is non-trivial.

The winning condition is reaching a configuration with potential 0. Maybe it is a good idea to make the potential *even* when possible?

The winning condition is reaching a configuration with potential 0. Maybe it is a good idea to make the potential *even* when possible?

The winning condition is reaching a configuration with potential 0. Maybe it is a good idea to make the potential *even* when possible?

The winning condition is reaching a configuration with potential 0. Maybe it is a good idea to make the potential *even* when possible?

The winning condition is reaching a configuration with potential 0. Maybe it is a good idea to make the potential *even* when possible?

The winning condition is reaching a configuration with potential 0. Maybe it is a good idea to make the potential *even* when possible?

The winning condition is reaching a configuration with potential 0. Maybe it is a good idea to make the potential *even* when possible?

The winning condition is reaching a configuration with potential 0. Maybe it is a good idea to make the potential *even* when possible?

The winning condition is reaching a configuration with potential 0. Maybe it is a good idea to make the potential *even* when possible?

The winning condition is reaching a configuration with potential 0. Maybe it is a good idea to make the potential *even* when possible?

The winning condition is reaching a configuration with potential 0. Maybe it is a good idea to make the potential *even* when possible?

The winning condition is reaching a configuration with potential 0. Maybe it is a good idea to make the potential *even* when possible?

The winning condition is reaching a configuration with potential 0. Maybe it is a good idea to make the potential *even* when possible?

The winning condition is reaching a configuration with potential 0. Maybe it is a good idea to make the potential *even* when possible?

The winning condition is reaching a configuration with potential 0. Maybe it is a good idea to make the potential *even* when possible?

The winning condition is reaching a configuration with potential 0. Maybe it is a good idea to make the potential *even* when possible?

The winning condition is reaching a configuration with potential 0. Maybe it is a good idea to make the potential *even* when possible?

The winning condition is reaching a configuration with potential 0. Maybe it is a good idea to make the potential *even* when possible?

Idea

The winning condition is reaching a configuration with potential 0. Maybe it is a good idea to make the potential *even* when possible?

We did some experiments on random inputs.

Generate 100 coconuts, standard deviation 5.

Idea

The winning condition is reaching a configuration with potential 0. Maybe it is a good idea to make the potential *even* when possible?

We did some experiments on random inputs.

Generate 100 coconuts, standard deviation 5.

Idea

The winning condition is reaching a configuration with potential 0. Maybe it is a good idea to make the potential *even* when possible?

We did some experiments on random inputs.

Generate 100 coconuts, standard deviation 5.

Player 1 Make potential even when possible. Otherwise random.

Player 1 wins \approx 70% of the games!

Open Question *Is there a better measure of the state of the game than the potential?* **Open Question** Is there a better measure of the state of the game than the potential?

Open Question *Is* LAST MOVE WINS *hard*?

GAME 2 K IN A ROU

In this game, the coconuts are also red or blue.

D WINS!

No!

No!

(*

No!

8

No!

No!

Open Question *Is it possible to get into a cycle of more than 2 states?*

No!

Open Question *Is it possible to get into a cycle of more than 2 states?*

Open Question *Is* 2-IN-A-ROW *hard*?

OUESTIONS?