
David Eppstein
Michael Goodrich
Maarten Löffler
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ONLINE ALGORITHM

• Fixed set of regions in the plane
• Input

• Algorithm needs to react to each event
before knowing what the next event will be

• Performance measure
• Competitive ratio: cost of online algorithm

divided by cost of optimal offline algorithm

• Sequence of locations for the UMO

• Output
• Sequence of region assignments
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ONLINE ALGORITHM TYPES

• Algorithm knows all past events
• Adversary knows everything except the

random choices made by the algorithm

• Randomised algorithms

• Algorithm knows all past events
• Adversary knows everything

• Deterministic algorithms

• Algorithm knows only about current event
• Adversary knows everything

• Stateless algorithms
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FIRST OBSERVATION. . .

• Let all disks have a common interior
• Competitive ratio can be pretty bad

• Zoom in on the center

• Adversary strategy
• When algorithm chooses disk i, go to

region in every disk except i
• Repeat n− 1 times

• Optimal strategy
• Just take the one remaining disk
• Competitive ratio is n− 1
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• Ply of the set of regions

• Given a set of regions
• δ(p) = |{R : p ∈ R}|

• Ply of a point

• Maximum ply of all points
• ∆ = maxp δ(p)

δ = 1

δ = 3

∆ = 4

• Lower bound requires many
overlapping disks

• In practice, ∆� n
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RESULTS
• Bounds on competitive ratio
• Stateless unbounded

• Deterministic

Θ(∆− c)
Θ(log(∆− c))

• Randomised

• Running time
• Assume input is given as event sequence
• Constant amortised time per event

Θ(log(∆− c))
(d > 1)

(d = 1)• Deterministic

Θ(∆− c)
Θ(log(∆− c))

(d > 1)

(d = 1)
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pi+1

pi
Di

• pi: point where a new station is necessary
• Definitions

• Di: set of regions that contain pi
• pi+1: point where the object leaves the

last disk of Di

• Optimal solution
• Set p0 to be the start point
• Optimal cost up to pk is k
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• Analysis
• At most |Di| ≤ ∆ handovers
• Competitive ratio is ∆
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• Algorithm

• Just choose D ∈ Di randomly

Di

pi+1

pi

• Analysis
• Sort Di = D1, . . . , Dk by time object

leaves them
• Take random increasing sequence of indices
• Expected lenght log k ≤ log ∆
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• Optimal strategy
• Use only one interval
• Competitive ratio log ∆
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