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- from the interior.
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Polyhedra are not
necessarily bounded.
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(" there is a A that makes
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C Let d be the maximum
(" dimension of any
C bounded face of F.
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(" dimension of any
~ bounded face of P°.

C Theorem
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Theorem
(" Pp has complexity at

¢ most O(nd2).




rLetd be the maximum

(" dimension of any
~ bounded face of P°.

C Theorem

Pp has at most
e (Z) - (lj) + 1 vertices.

Theorem
C Pgp has complexity at

“ most O(n").

" Theorem
~ Pp can be computed

in O(ndL + n2d+3)
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o
Lemma

© Given P and \,

¢ there are two faces

e Ft F~ CP,
one of each side of A,

¢ such that

~aff(FT U F~) = aff(P)
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-~ aff(FT U ) = aff(P)

e Proof
Use induction on
¢ dim(P).
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¢ there exist d facets
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such that
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* Proof
¢ Apply charging lemma
e to all vertices.
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(" There are n facets, so
e (”) sets of d facets.

d
C
C
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* Proof
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e (Z) sets of d facets.

 Therefore, there are at
-~ most (7)) vertices.

s

-ﬂn SAVID EPPSTEIN AND MAARTEN LOFFLER ~ BOUNDS ON THE CO




C P has t most
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* Proof
¢ Apply charging lemma
e to all vertices.
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s

(Global minimum was
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Tnhe nuerer of vertices
() - (g)+1
¢ shoud really be
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