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SOCG 2011 DAVID EPPSTEIN AND MAARTEN LÖFFLER BOUNDS ON THE COMPLEXITY OF HALFSPACE INTERSECTIONS WHEN THE BOUNDED FACES HAVE SMALL DIMENSION

2

POLYHEDRA AND FACES
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SOCG 2011 DAVID EPPSTEIN AND MAARTEN LÖFFLER BOUNDS ON THE COMPLEXITY OF HALFSPACE INTERSECTIONS WHEN THE BOUNDED FACES HAVE SMALL DIMENSION

3

UNBOUNDED POLYHEDRA
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SOCG 2011 DAVID EPPSTEIN AND MAARTEN LÖFFLER BOUNDS ON THE COMPLEXITY OF HALFSPACE INTERSECTIONS WHEN THE BOUNDED FACES HAVE SMALL DIMENSION

3

Definition bounded
subcomplex
PB is the subset of the
bounded faces of P .
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SOCG 2011 DAVID EPPSTEIN AND MAARTEN LÖFFLER BOUNDS ON THE COMPLEXITY OF HALFSPACE INTERSECTIONS WHEN THE BOUNDED FACES HAVE SMALL DIMENSION

4

MAIN RESULTS
Let d be the maximum
dimension of any
bounded face of P .

P

PB

Theorem
PB has at most(
n
d

)
−
(
D
d

)
+ 1 vertices.
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).

P
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PB has at most(
n
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−
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or O(nd
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6 SOCG 2011 DAVID EPPSTEIN AND MAARTEN LÖFFLER BOUNDS ON THE COMPLEXITY OF HALFSPACE INTERSECTIONS WHEN THE BOUNDED FACES HAVE SMALL DIMENSION

Lemma
Given P and λ,
there are two faces
F+, F− ⊂ P ,
one of each side of λ,
such that
aff(F+ ∪ F−) = aff(P ).

SPLITTING LEMMA

Proof
Use induction on
dim(P ).

P



SOCG 2011 DAVID EPPSTEIN AND MAARTEN LÖFFLER BOUNDS ON THE COMPLEXITY OF HALFSPACE INTERSECTIONS WHEN THE BOUNDED FACES HAVE SMALL DIMENSION
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SOCG 2011 DAVID EPPSTEIN AND MAARTEN LÖFFLER BOUNDS ON THE COMPLEXITY OF HALFSPACE INTERSECTIONS WHEN THE BOUNDED FACES HAVE SMALL DIMENSION
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6 SOCG 2011 DAVID EPPSTEIN AND MAARTEN LÖFFLER BOUNDS ON THE COMPLEXITY OF HALFSPACE INTERSECTIONS WHEN THE BOUNDED FACES HAVE SMALL DIMENSION

Lemma
Given P and λ,
there are two faces
F+, F− ⊂ P ,
one of each side of λ,
such that
aff(F+ ∪ F−) = aff(P ).

SPLITTING LEMMA

Proof
Use induction on
dim(P ).

P

Let µ slice v from P .

Move λ up until it hits
the first vertex v. v

µ

Find F+
∗ and F−∗ .
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CHARGING LEMMA
Lemma
Given P and v,
there exist d facets
F 1, . . . , F d ⊂ P
such that
v = min∩F i.
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CHARGING LEMMA
Lemma
Given P and v,
there exist d facets
F 1, . . . , F d ⊂ P
such that
v = min∩F i.

v
F 1 F 2
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Lemma
Given P and v,
there exist d facets
F 1, . . . , F d ⊂ P
such that
v = min∩F i.

CHARGING LEMMA

Proof
Apply splitting lemma
and count dimensions.
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SOCG 2011 DAVID EPPSTEIN AND MAARTEN LÖFFLER BOUNDS ON THE COMPLEXITY OF HALFSPACE INTERSECTIONS WHEN THE BOUNDED FACES HAVE SMALL DIMENSION
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Given P and v,
there exist d facets
F 1, . . . , F d ⊂ P
such that
v = min∩F i.

CHARGING LEMMA

Proof
Apply splitting lemma
and count dimensions.

P

PB

v

Find faces F+ above v
and F− below v.
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and F− below v.
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Lemma
Given P and v,
there exist d facets
F 1, . . . , F d ⊂ P
such that
v = min∩F i.

CHARGING LEMMA

Proof
Apply splitting lemma
and count dimensions.

P

PB

v

Find faces F+ above v
and F− below v.

dim(F+)+dim(F−) =
D + 1

F+

F−
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Given P and v,
there exist d facets
F 1, . . . , F d ⊂ P
such that
v = min∩F i.

CHARGING LEMMA

Proof
Apply splitting lemma
and count dimensions.

P

PB

v

Find faces F+ above v
and F− below v.

dim(F+)+dim(F−) =
D + 1

F+

F−
dim(F−) ≤ d
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Lemma
Given P and v,
there exist d facets
F 1, . . . , F d ⊂ P
such that
v = min∩F i.

CHARGING LEMMA

Proof
Apply splitting lemma
and count dimensions.

P

PB

v

Find faces F+ above v
and F− below v.

dim(F+)+dim(F−) =
D + 1

F+

F−
dim(F−) ≤ d
dim(F+) ≥ D − d+ 1
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Lemma
Given P and v,
there exist d facets
F 1, . . . , F d ⊂ P
such that
v = min∩F i.

CHARGING LEMMA

Proof
Apply splitting lemma
and count dimensions.

P

PB

v

Find faces F+ above v
and F− below v.

dim(F+)+dim(F−) =
D + 1

F+

F−
dim(F−) ≤ d
dim(F+) ≥ D − d+ 1

So, F+ is intersection
of d facets.
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Theorem
P has at most(
n
d

)
−
(
D
d

)
+ 1 vertices.

MAIN RESULTS
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Proof
Apply charging lemma
to all vertices.
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Theorem
P has at most(
n
d

)
−
(
D
d

)
+ 1 vertices.

MAIN RESULTS

Proof
Apply charging lemma
to all vertices.

Every vertex is min∩
of d facets.
There are n facets, so(
n
d

)
sets of d facets.
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Theorem
P has at most(
n
d

)
−
(
D
d

)
+ 1 vertices.

MAIN RESULTS

Proof
Apply charging lemma
to all vertices.

Every vertex is min∩
of d facets.
There are n facets, so(
n
d

)
sets of d facets.

Therefore, there are at
most

(
n
d

)
vertices.

(Global minimum was

counted
(
D
d

)
times.)
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SOCG 2011 DAVID EPPSTEIN AND MAARTEN LÖFFLER BOUNDS ON THE COMPLEXITY OF HALFSPACE INTERSECTIONS WHEN THE BOUNDED FACES HAVE SMALL DIMENSION

10

OPEN PROBLEMS
Conjecture
The number of vertices(
n
d

)
−
(
D
d

)
+ 1

shoud really be(
n−D+1

d

)
.
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OPEN PROBLEMS
Conjecture
The number of vertices(
n
d

)
−
(
D
d

)
+ 1

shoud really be(
n−D+1

d

)
.

Conjecture
The number of faces
O(nd

2

)
should really be
O(nd).


