
Eliminating Popular Faces

Joint work with

Phoebe de Nooijer
Alexandra Weinberger

Soeren Terziadis
Zuzana Masárová

Tamara Mchedlidze
Günter Rote

Maarten Löffler
Utrecht University / Tulane University

(in curve arrangements)



Part 1
NONOGRAMS

Part 3
FPT

Part 2
POPULAR FACES



Part 1
NONOGRAMS



15

1

111

4

1
16
4

6
2

1
5

11
1
4

3
5

17

322

3
4

4 02
66

0

10

1 1
2 2
5

2 21 1
25
13
26
11 5
8

2 4

4
1
1

1
2

3
6 7

3
6
4
4
1
3 2

3
1 3
2

0

15

1

111

4

1
16
4

6
2

1
5

11
1
4

3
5

17

322

3
4

4 02
66

0

10

Let’s talk about Nonograms
(a.k.a. Griddlers, Japanese
puzzles, Hanjie, Picross, …)
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Let’s talk about Nonograms
(a.k.a. Griddlers, Japanese
puzzles, Hanjie, Picross, …)

Input: a grid with some
numbers next to and above it.
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Let’s talk about Nonograms
(a.k.a. Griddlers, Japanese
puzzles, Hanjie, Picross, …)

Input: a grid with some
numbers next to and above it.

Output: a black/white coloring
of the grid cells.
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Let’s talk about Nonograms
(a.k.a. Griddlers, Japanese
puzzles, Hanjie, Picross, …)

Input: a grid with some
numbers next to and above it.

Output: a black/white coloring
of the grid cells.

Rule: in each row and column,
the numbers correspond to
the sizes of the consecutive
blocks of black cells.
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Let’s talk about Nonograms
(a.k.a. Griddlers, Japanese
puzzles, Hanjie, Picross, …)

Very popular with consumers
…
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Let’s talk about Nonograms
(a.k.a. Griddlers, Japanese
puzzles, Hanjie, Picross, …)

Very popular with consumers
…

… and scientists.
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A nonogram is simple if it can
be solved by only ever looking
at one row or column at a time.

Nonograms are puzzles where you must colour cells in a grid,
revealing a picture.

Popular puzzle type, also known as Japanese puzzles, Hanjie,
Picross, Griddlers, …

Clues tell you how many consecutive cells in each row and col-
umn must be coloured.

You don’t know how many empty cells separate groups of
coloured cells.

A nonogram is simple if it can be solved by only ever looking at
one row or column.

More fine-grained measures of difficulty have also been studied.
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One can generate nonograms
from desired output pictures.

[van de Kerkhof, de Jong, Parment, L, Vaxman
& van Kreveld, EuroGraphics 2019]

Generated puzzles are often
advanced.

User studies suggest a higher
demand for basic puzzles.

Can we turn advanced puzzles
into basic ones?
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Consider one popular face.

Popular faces present in the in-
put restrict the possible route
of the new curve.

The new curve must separate
each pair.

We can enumerate all possible
resolutions.

At most O(n2) options!

Popular faces present in the in-
put restrict the possible route
of the new curve.

Observation: No curve can
visit the face more than twice.
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Just for fun: what if we allowed
to insert 2 extra curves...?

If the curves cooperate, each
face can be visited many
times!
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Task: We must choose one
resolving piece from each
popular face, and then
connect them.

We can only go through each
cell of the arrangement at
most once.

Look at the dual graph!

Resolution pieces are also
edges in the dual.

Actual popular faces can be
removed.
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Issue: This doesn’t work for
adjacent popular faces.

Instead, we build a somewhat
more involved structure for
each popular face.

Added benefit: onlyO(n) reso-
lution edges per popular face!



Our results:

Deciding whether it is
possible to insert one more
curve to an existing
arrangement such that there
are no more popular faces, is
NP-hard.

The problem is randomized
FPT in the number of popular
faces in the input
arrangement.



Part 3
FPT
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Let’s look at a simplified /
slightly different problem.
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a to b that passes through s.

Let W (v, `,yes/no) be the set
of all spurless walks from a to
v of length ` that do/don’t
pass through s.

W (·, ·, ·) can easily be defined
recursively.

Issue: W (·, ·, ·) has
exponential size.
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Compact ”signature” of all
walks from a to b of length
l: sum of products of edge
weights.

Idea: Maintain a signature of
W (·, ·, ·).

But what kind of signature?

3. It should contain
information about whether W
contains a simple walk.

1. It should have small size.

2. It should still allow a
recursive definition.

a b

|W | =
(
4
2

)
= 6
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Compact ”signature” of all
walks from a to b of length
l: sum of products of edge
weights.

Idea: Maintain a signature of
W (·, ·, ·).

Observation: all non-simple
walks in W come in pairs.

a b

Assign a variable to each edge.

For a walk w, let σ(w) be the
product of its edges.

σ(w1) = x5x4x2x1x3x6

σ(w2) = x5x3x1x2x4x6

x1 x2

x3 x4
x5 x6

x7 x8

Now, let σ(W ) =
∑

w∈W σ(w)

Does σ(W ) have an odd term?
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Trick: Replace each xi be an
element of the finite field F2s

You can think of these
elements as bit vectors.

Addition is bitwise XOR.

Multiplication is, well, you
consider the bits to be the
coefficients of a polynomial, and
then you multiply the polynomials, then
divide the resulting polynomial by a certain
irreducible polynomial of degree s, and then the
new element is essentially the remainder of that division.

a b

σ(w1) + σ(w2) = 0

x1 x2

x3 x4
x5 x6

x7 x8

σ({w1, w2}) = 0
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If W contains no simple walk,
then σ(W ) = 0.

If W does contain a simple
walk, then can σ(W ) be 0?

a b
Yes! A sum of three different
elements might be 0.

Claim: If we pick random
weights, the probability that
this happens is small.
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Problem. Given a graph, find
the shortest simple path from
a to b that passes through s.

Maintain σ(W (v, `,yes/no)),
the signature of W .
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We can compute the values of
σ(W (·, ·, ·)) using dynamic
programming!
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s

σ(W (b, 7,yes)) 6= 0

Problem. Given a graph, find
the shortest simple path from
a to b that passes through s.

This algorithm is not
constructive, but can be used
as a subroutine in a
constructive algorithm.

Theorem. This problem can
be solved in polynomial time
with high probability.
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What’s different for us?

We want to visit edges, not
vertices.

In fact, we want to visit multi-
ple edges.

Actually, we want to visit ex-
actly one edge out of multiple
sets of edges.

a b

s1

s2

We don’t have a specified start
and end point...
...and we completely ignored
the bounding box.
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