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the numbers correspond to
the sizes of the consecutive
blocks of black cells.
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... In this paper we propose a reasoning framework for solving Nonograms. We consider ...
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A nonogram is if it can

be solved by only ever looking
at one row or column at a time.

Solving nonograms is NP-hard,
but solving simple nonograms
IS not.

—» It might be of interest to
simple nonograms.

More fine-grained measures of

difficulty have also been stud-
ied.

[Batenburg & Kosters, ICGA Journal, 2012]
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One can generate nonograms
from desired output pictures.

Generated puzzles are often

User studies suggest a higher
demand for puzzles.

Can we turn advanced puzzles
into basic ones?

[van de Kerkhof, de Jong, Parment, L, Vaxman
& van Kreveld, EuroGraphics 2019]
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Popular faces present in the in-
put restrict the possible route
of the new curve.

Consider one popular face.

Observation: No curve can
visit the face more than twice.

The new curve must separate
each pair.

We can enumerate all possible
resolutions.

At most O(n*) options!
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If the curves cooperate, each
face can be visited many
times!
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Task: We must choose one
resolving piece from each
popular face, and then
connect them.

We can only go through each
cell of the arrangement at
most once.

Look at the dual graph!

Resolution pieces are also
edges in the dual.

Actual popular faces can be
removed.
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Issue: This doesn't work for
adjacent popular faces.

Instead, we build a somewhat
more involved structure for
each popular face.

Added benefit: only O(n) reso-
lution edges per popular face!




Our results:

Deciding whether it is
possible to insert one more
curve to an existing

arrangement such that there

are no more popular faces, is
NP-hard.

The problem is randomized
FPT in the number of popular
faces in the input

arrangement.
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Let's look at a simplified /
slightly different problem.

[Bjorklund, Husfeld & Taslaman, SODA 2012]
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Idea: Maintain a of
Wi, ).

But what kind of signature?

1. It should have small size.

2. It should still allow a
recursive definition.

3. It should contain
information about whether W
contains a simple walk.
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Idea: Maintain a
Wi(,-,-).

of

Observation: all non-simple
walks in W come in pairs.

Assign a variable to each edge.

For a walk w, let o(w) be the
product of its edges.

ZwEW O'(fLU)

Now, let o(W) =




(W) = T5T4T2T1T3T6

o(Ws) = T5L3T1T2T4T6

Idea: Maintain a of
Wi, ).

Observation: all non-simple
walks in W come in pairs.

Assign a variable to each edge.

For a walk w, let o(w) be the
product of its edges.

Now, let o(W) = > . - o(w)

Does (W) have an odd term?
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{ 01001010
11010110
00011011
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If W contains simple walk,
then o(WW) = 0.

It W contain a simple
walk, then can (W) be 0?

Yes! A sum of three different
elements might be 0.

Claim: If we pick
weights, the probability that
this happens is small.
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walk.
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Problem. Given a graph, find
the shortest simple path from
a to b that passes through s.

Maintain o(W (v, ¢, yes/no)),
the of W.

Then we want to find the
smallest ¢/ for which

o(W(b,£,yes)) # 0.

We can compute the values of
ag(W(-,-,+)) using dynamic
programming!
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Problem. Given a graph, find
the shortest simple path from
a to b that passes through s.

This algorithm is not
constructive, but can be used
as a subroutine in a
constructive algorithm.

Theorem. This problem can
be solved in polynomial time
with high probability.
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What's different for us?

We want to visit
vertices.

In fact, we want to visit
edges.

Actually, we want to visit ex-

actly one edge out of multiple
of edges.

We don't have a specified start
and end point...

...and we completely ignored
the bounding box.




Thank You!
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