HOW MANY POTATOES ARE IN A MESH?

Marc van Kreveld
Marten Löffler János Pach

HOW MANY POTATOES ARE IN A MESH?

Marc van Kreveld
Marten Löffler János Pach

A LITTLE HISTORY

DEFINITION "POTATO"

DEFINITION "POTATO"

DEFINITION "POTATO"

- Subset P of \mathbb{R}^{2}

DEFINITION "POTATO"

- Subset P of \mathbb{R}^{2}

DEFINITION "POTATO"

- Subset P of \mathbb{R}^{2}
- $\forall p, q \in P: \overline{p q} \subset P$

DEFINITION "POTATO"

- Subset P of \mathbb{R}^{2}
- $\forall p, q \in P: \overline{p q} \subset P$

DEFINITION "POTATO"

- Subset P of \mathbb{R}^{2}
- $\forall p, q \in P: \overline{p q} \subset P$
- (Also known as "convex set")

DEFINITION "POTATO"

- Subset P of \mathbb{R}^{2}
- $\forall p, q \in P: \overline{p q} \subset P$
- (Also known as "convex set")

DEFINITION "POTATO"

- Subset P of \mathbb{R}^{2}
- $\forall p, q \in P: \overline{p q} \subset P$
- (Also known as "convex set")

"POTATO PEELING PROBLEM"

Find the largest potato contained in a given polygon.

DEFINITION "POTATO"

- Subset P of \mathbb{R}^{2}
- $\forall p, q \in P: \overline{p q} \subset P$
- (Also known as "convex set")

"POTATO PEELING PROBLEM"
 Find the largest potato contained in a given polygon.

(Goodman, 1981)

DEFINITION "MESH"

DEFINITION "MESH"

DEFINITION "MESH"

- Collection of triangles

DEFINITION "MESH"

- Collection of triangles

DEFINITION "MESH"

- Collection of triangles
- Any two triangles:
- are disjoint,
- share a single vertex,
- or share an edge

DEFINITION "MESH"

- Collection of triangles
- Any two triangles:
- are disjoint,
- share a single vertex,
- or share an edge

DEFINITION "MESH"

- Collection of triangles
- Any two triangles:
- are disjoint,
- share a single vertex,
- or share an edge

DEFINITION "MESHED POTATO"

DEFINITION "MESHED POTATO"

DEFINITION "MESHED POTATO"

- It's a potato ...

DEFINITION "MESHED POTATO"

- It's a potato ...

DEFINITION "MESHED POTATO"

- It's a potato ...
- ... and it's also a mesh

DEFINITION "MESHED POTATO"

- It's a potato ...
- ... and it's also a mesh

DEFINITION "MESHED POTATO"

- It's a potato ...
- ... and it's also a mesh
- (Also known as "triangulation")

DEFINITION "MESHED POTATO"

- It's a potato ...
- ... and it's also a mesh
- (Also known as "triangulation")
"MESHED POTATO PEELING PROBLEM"

DEFINITION "MESHED POTATO"

- It's a potato ...
- ... and it's also a mesh
- (Also known as "triangulation")
"MESHED POTATO PEELING PROBLEM"

Find the largest meshed potato contained in a given mesh.

DEFINITION "MESHED POTATO"

- It's a potato ...
- ... and it's also a mesh
- (Also known as "triangulation")
"MESHED POTATO PEELING PROBLEM"

Find the largest meshed potato contained in a given mesh.
(Aronov et al., 2007)

NEW STUFF

QUESTION

QUESTION

How many potatoes can there actually be?

QUESTION

How many potatoes can there actually be?

QUESTION

How many potatoes can there actually be?

DEFINITION "POTATO NUMBER" $\mathcal{P}(\mathrm{M})$

QUESTION

How many potatoes can there actually be?

DEFINITION "POTATO NUMBER" $\mathcal{P}(\mathrm{M})$

- Total number of distinct meshed potatoes in a given mesh M

EXAMPLE

EXAMPLE

EXAMPLE
$<$

EXAMPLE

EXAMPLE
$\checkmark \Delta \forall$

EXAMPLE

EXAMPLE

EXAMPLE

EXAMPLE
-

EXAMPLE

EXAMPLE

EXAMPLE
$\checkmark \Delta \vee$

$$
\mathcal{P}(\mathrm{M})=9
$$

RESULTS

RESULTS

- There exists a mesh with potato number $\Omega\left(1.5028^{n}\right)$.

RESULTS

- There exists a mesh with potato number $\Omega\left(1.5028^{n}\right)$.
- For every mesh, the potato number is $\mathrm{O}\left(1.6181^{\mathrm{n}}\right)$.

WARNING: TECHNICAL DETAILS

LOWER BOUND

LOWER BOUND

- Place n points in convex position

LOWER BOUND

- Place n points in

LOWER BOUND

- Place n points in convex position
- Triangulate iteratively

LOWER BOUND

- Place n points in convex position
- Triangulate iteratively

LOWER BOUND

- Place n points in convex position
- Triangulate iteratively

LOWER BOUND

- Place n points in convex position
- Triangulate iteratively

LOWER BOUND

- Place n points in convex position
- Triangulate iteratively

LOWER BOUND

- Place n points in convex position
- Triangulate iteratively
- Count potatoes

LOWER BOUND

- Place n points in convex position
- Triangulate iteratively
- Count potatoes

LOWER BOUND

- Place n points in convex position
- Triangulate iteratively
- Count potatoes

LOWER BOUND

- Place n points in convex position
- Triangulate iteratively
- Count potatoes

LOWER BOUND

- Place n points in convex position
- Triangulate iteratively
- Count potatoes

LOWER BOUND

- Place n points in convex position
- Triangulate iteratively
- Count potatoes

LOWER BOUND

- Place n points in convex position
- Triangulate iteratively
- Count potatoes

LOWER BOUND

- Place n points in convex position
- Triangulate iteratively
- Count potatoes

LOWER BOUND

- Place n points in convex position
- Triangulate iteratively
- Count potatoes

LOWER BOUND

- Place n points in convex position
- Triangulate iteratively
- Count potatoes

LOWER BOUND

- Place n points in convex position
- Triangulate iteratively
- Count potatoes

LOWER BOUND

- Place n points in convex position
- Triangulate iteratively
- Count potatoes

LOWER BOUND

- Place n points in convex position
- Triangulate iteratively
- Count potatoes

LOWER BOUND

- Place n points in convex position
- Triangulate iteratively
- Count potatoes

LOWER BOUND

- Place n points in convex position
- Triangulate iteratively
- Count potatoes

LOWER BOUND

- Place n points in convex position
- Triangulate iteratively
- Count potatoes

LOWER BOUND

- Place n points in convex position
- Triangulate iteratively
- Count potatoes

LOWER BOUND

- Place n points in convex position
- Triangulate iteratively
- Count potatoes

LOWER BOUND

- Place n points in convex position
- Triangulate iteratively
- Count potatoes

LEMMA

LOWER BOUND

- Place n points in convex position
- Triangulate iteratively
- Count potatoes

LEMMA
The number of potatoes in M
grows exponentially with base > 1.5028

LOWER BOUND

- Place n points in convex position
- Triangulate iteratively
- Count potatoes

LEMMA
The number of potatoes in M
grows exponentially with base > 1.5028
THEOREM

LOWER BOUND

- Place n points in convex position
- Triangulate iteratively
- Count potatoes

LEMMA
The number of potatoes in M
grows exponentially with base > 1.5028
THEOREM
There is a mesh M with $\mathcal{P}(\mathrm{M})$ in $\Omega\left(1.5028^{n}\right)$.

UPPER BOUND

UPPER BOUND

UPPER BOUND

- Only count all potatoes containing p

UPPER BOUND

- Only count all potatoes containing p

UPPER BOUND

- Only count all potatoes containing p
- Project all vertices from p and remove hit edges

UPPER BOUND

- Only count all potatoes containing p
- Project all vertices from p and remove hit edges

UPPER BOUND

- Only count all potatoes containing p
- Project all vertices from p and remove hit edges

UPPER BOUND

- Only count all potatoes containing p
- Project all vertices from p and remove hit edges

UPPER BOUND

- Only count all potatoes containing p
- Project all vertices from p and remove hit edges

UPPER BOUND

- Only count all potatoes containing p
- Project all vertices from p and remove hit edges

UPPER BOUND

- Only count all potatoes containing p
- Project all vertices from p and remove hit edges

UPPER BOUND

- Only count all potatoes containing p
- Project all vertices from p and remove hit edges

- Orient edges around p

UPPER BOUND

- Only count all potatoes containing p
- Project all vertices from p and remove hit edges

- Orient edges around p

UPPER BOUND

- Only count all potatoes containing p
- Project all vertices from p and remove hit edges

- Orient edges around p
- Call resulting graph G

UPPER BOUND

- Only count all potatoes containing p
- Project all vertices from p and remove hit edges

- Orient edges around p
- Call resulting graph G

LEMMA

LEMMA
The number of potatoes in M containing p is bounded by the number of cycles in G

LEMMA

The number of potatoes in M containing p is bounded by the number of cycles in G

LEMMA

LEMMA

The number of potatoes in M containing p is bounded by the number of cycles in G

LEMMA

Every edge on the outer face of
G either comes from a vertex with outdegree 1, or goes to a vertex with indegree 1.

POTENTIAL FUNCTION

POTENTIAL FUNCTION

- Let F be a subset of fixed edges of G

POTENTIAL FUNCTION

- Let F be a subset of fixed edges of G

POTENTIAL FUNCTION

- Let F be a subset of fixed edges of G
- The potential $k(G, F)$ is the \#vertices \#fixed edges

POTENTIAL FUNCTION

- Let F be a subset of fixed edges of G
- The potential $k(G, F)$ is the \#vertices \#fixed edges

POTENTIAL FUNCTION

- Let F be a subset of fixed edges of G
- The potential $k(G, F)$ is the \#vertices \#fixed edges

- Let $\mathrm{Q}(\mathrm{k})$ be the max number of potatoes in a graph with potential k

LEMMA

LEMMA
$Q(k) \leq Q(k-1)+Q(k-2)$

LEMMA
$\mathrm{Q}(\mathrm{k}) \leq \mathrm{Q}(\mathrm{k}-1)+\mathrm{Q}(\mathrm{k}-2)$

- Consider an edge e on the outer face of G

LEMMA
$\mathrm{Q}(\mathrm{k}) \leq \mathrm{Q}(\mathrm{k}-1)+\mathrm{Q}(\mathrm{k}-2)$

- Consider an edge e on the outer face of G

LEMMA
$Q(k) \leq Q(k-1)+Q(k-2)$

- Consider an edge e on the outer face of G

LEMMA
$Q(k) \leq Q(k-1)+Q(k-2)$

- Consider an edge e on the outer face of G

LEMMA
$\mathrm{Q}(\mathrm{k}) \leq \mathrm{Q}(\mathrm{k}-1)+\mathrm{Q}(\mathrm{k}-2)$

- Consider an edge e on the outer face of G

LEMMA
$Q(k) \leq Q(k-1)+Q(k-2)$

- Consider an edge e on the outer face of G

LEMMA
$\mathrm{Q}(\mathrm{k}) \leq \mathrm{Q}(\mathrm{k}-1)+\mathrm{Q}(\mathrm{k}-2)$

- Consider an edge e on the outer face of G

$$
Q(k) \leq Q(k-1)+Q(k-2)
$$

- Consider an edge e on the outer face of G

LEMMA
$Q(k) \leq Q(k-1)+Q(k-2)$

- Consider an edge e on the outer face of G

LEMMA
$\mathrm{Q}(\mathrm{k}) \leq \mathrm{Q}(\mathrm{k}-1)+\mathrm{Q}(\mathrm{k}-2)$

- Consider an edge e on the outer face of G

$Q(k) \leq Q(k-1)+Q(k-2)$
- Consider an edge e on the outer face of G

- Then either fix e, or remove its vertices.

$Q(k) \leq Q(k-1)+Q(k-2)$
- Consider an edge e on the outer face of G

- Then either fix e, or remove its vertices.

$Q(k) \leq Q(k-1)+Q(k-2)$
- Consider an edge e on the outer face of G
- Then either fix e, or remove its vertices.

- Consider an edge e on the outer face of G

- Then either fix e, or remove its vertices.

THEOREM
$\mathrm{Q}(\mathrm{k}) \leq \mathrm{Q}(\mathrm{k}-1)+\mathrm{Q}(\mathrm{k}-2)$

- Consider an edge e on the outer face of G

- Then either fix e, or remove its vertices.

THEOREM
For every mesh $\mathrm{M}, \boldsymbol{P}(\mathrm{M})$ is in $\mathrm{O}\left(1.6181^{n}\right)$.

MORE NEW STUFF

DEFINITION "FAT TRIANGLE"

DEFINITION "FAT TRIANGLE"

- Triangle where all angles are $>\delta$

DEFINITION "FAT TRIANGLE"

- Triangle where all angles are $>\delta$

DEFINITION "FAT POTATO"

DEFINITION "FAT TRIANGLE"

- Triangle where all angles are $>\delta$

DEFINITION "FAT POTATO"

DEFINITION "FAT TRIANGLE"

- Triangle where all angles are $>\delta$

DEFINITION "FAT POTATO"

- Potato that contains a large fat triangle

DEFINITION "FAT TRIANGLE"

- Triangle where all angles are $>\delta$

DEFINITION "FAT POTATO"

- Potato that contains a large fat triangle

DEFINITION "FAT MESH"

DEFINITION "FAT MESH"

- Mesh where all triangles are fat

DEFINITION "FAT MESH"

- Mesh where all triangles are fat

DEFINITION "FAT MESHED POTATO"

DEFINITION "FAT MESH"

- Mesh where all triangles are fat

DEFINITION "FAT MESHED POTATO"

DEFINITION "FAT MESH"

- Mesh where all triangles are fat

DEFINITION "FAT MESHED POTATO"

- Fat potato that is also a fat mesh

DEFINITION "FAT MESH"

- Mesh where all triangles are fat

DEFINITION "FAT MESHED POTATO"

- Fat potato that is also a fat mesh

DEFINITION "CARROT"

DEFINITION "CARROT"

DEFINITION "CARROT"

- Potato without internal vertices

DEFINITION "CARROT"

- Potato without internal vertices

DEFINITION "CARROT"

- Potato without internal vertices
- (Also known as "outerplanar meshed potato")

DEFINITION "CARROT"

- Potato without internal vertices
- (Also known as "outerplanar meshed potato")

DEFINITION "CARROT NUMBER" $\mathcal{C}(\mathrm{M})$

DEFINITION "CARROT"

- Potato without internal vertices
- (Also known as "outerplanar meshed potato")

DEFINITION "CARROT NUMBER" $\mathcal{C}(\mathrm{M})$

- Total number of distinct carrots in a given mesh M

MORE RESULTS

MORE RESULTS

- There exists a fat mesh with fat potato number $\Omega\left(n^{\frac{1}{2}\left\lfloor\frac{2 \pi}{\delta}\right\rfloor}\right)$.

MORE RESULTS

- There exists a fat mesh with fat potato number $\Omega\left(n^{\frac{1}{2}\left\lfloor\frac{2 \pi}{\delta}\right\rfloor}\right)$.

MORE RESULTS

- There exists a fat mesh with fat potato number $\Omega\left(n^{\frac{1}{2}\left\lfloor\frac{2 \pi}{\sigma}\right\rfloor}\right)$.
- For every fat mesh, the potato number is $\mathrm{O}\left(\mathrm{n}^{\left\lceil\frac{\pi}{\delta}\right\rceil}\right)$.

MORE RESULTS

- There exists a fat mesh with fat potato number $\Omega\left(n^{\frac{1}{2}\left\lfloor\frac{2 \pi}{\delta}\right\rfloor}\right)$.
- For every fat mesh, the potato number is $\mathrm{O}\left(\mathrm{n}^{\left\lceil\frac{\pi}{8}\right\rceil}\right)$.

- There exists a fat mesh with fat carrot number $\Omega\left(\mathrm{n}^{\left\lfloor\frac{2 \pi}{35}\right\rfloor}\right)$.

MORE RESULTS

- There exists a fat mesh with fat potato number $\Omega\left(n^{\frac{1}{2}\left\lfloor\frac{2 \pi}{\delta}\right\rfloor}\right)$.
- For every fat mesh, the potato number is $\mathrm{O}\left(\mathrm{n}^{\left\lceil\frac{\pi}{8}\right\rceil}\right)$.

- There exists a fat mesh with fat carrot number $\Omega\left(\mathrm{n}^{\left\lfloor\frac{2 \pi}{36}\right\rfloor}\right)$.

MORE RESULTS

- There exists a fat mesh with fat potato number $\Omega\left(n^{\frac{1}{2}\left\lfloor\frac{2 \pi}{\delta}\right\rfloor}\right)$.
- For every fat mesh, the potato number is $\mathrm{O}\left(\mathrm{n}^{\left\lceil\frac{\pi}{8}\right\rceil}\right)$.

- There exists a fat mesh with fat carrot number $\Omega\left(n^{\left\lfloor\frac{2 \pi}{36}\right\rfloor}\right)$.
- For every fat mesh, the carrot number is $\left.\left.\mathrm{O}\left(\mathrm{n}^{2 \pi}\right\rfloor \mathrm{L}\right\rfloor\right)$.

THANK YOU!

