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DEFINITION “POTATO”

• Subset P of R2

• ∀p, q ∈ P : pq ⊂ P

• (Also known as “convex set”)

Find the largest potato
contained in a given
polygon.

[Goodman, 1981]

“POTATO PEELING PROBLEM”
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DEFINITION “MESHED POTATO”

• It’s a potato . . .

• . . . and it’s also a mesh

“MESHED POTATO PEELING PROBLEM”

Find the largest meshed
potato contained in a
given mesh.

[Aronov et al., 2007]

• (Also known as “triangulation”)
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QUESTION

How many potatoes can
there actually be?

DEFINITION “POTATO NUMBER” P(M)

• Total number of distinct
meshed potatoes in a given
mesh M
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EXAMPLE

P(M) = 9

M
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RESULTS

• There exists a mesh with
potato number Ω(1.5028n).

• For every mesh, the hack
potato number is O(1.6181n).



10

WARNING: TECHNICAL DETAILS
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LOWER BOUND
26• Place n points in

convex position

• Triangulate
iteratively

• Count potatoes

LEMMA

The number of potatoes in M
grows exponentially with base > 1.5028

THEOREM

There is a mesh M with P(M) in Ω(1.5028n).
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UPPER BOUND

G
• Only count all

potatoes
containing p

M

• Project all
vertices from p
and remove
hit edges

p

• Orient edges around p

• Call resulting graph G
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LEMMA

G

M

p

LEMMA

The number of
potatoes in M
containing p
is bounded by
the number of
cycles in G

Every edge on the outer face of
G either comes from a vertex with
outdegree 1, or goes to a vertex
with indegree 1.
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POTENTIAL FUNCTION

• Let F be a
subset of fixed
edges of G

• The potential
k(G,F) is the
#vertices −
#fixed edges

• Let Q(k) be the max
number of potatoes in a
graph with potential k

G

F

k(F,G) = 19− 4 = 15
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LEMMA

THEOREM

• Consider an edge e
on the outer face of G

Q(k) ≤ Q(k− 1) + Q(k− 2)

• Then either fix e, or
remove its vertices.

e

e

e
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LEMMA

THEOREM

• Consider an edge e
on the outer face of G

For every mesh M, P(M) is in O(1.6181n).

Q(k) ≤ Q(k− 1) + Q(k− 2)

• Then either fix e, or
remove its vertices.

e

e

e
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DEFINITION “FAT POTATO”

• Potato that contains a large
fat triangle

δ

DEFINITION “FAT TRIANGLE”

• Triangle where all angles are > δ
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DEFINITION “CARROT”

• Potato without internal vertices

DEFINITION “CARROT NUMBER” C(M)

• Total number of distinct
carrots in a given mesh M

• (Also known as “outerplanar
meshed potato”)
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MORE RESULTS

• There exists a fat mesh with
fat potato number Ω(n

1
2 b

2π
δ c).

• For every fat mesh, the
potato number is O(ndπ

δ e).

• There exists a fat mesh with
fat carrot number Ω(nb 2π

3δ c).

• For every fat mesh, the
carrot number is O(nb 2π

3δ c).
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THANK YOU!
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