HOW MANY POTATOES ARE IN A MESH?

Marc van Kreveld Maarten Löffler János Pach

HOW MANY POTATOES ARE IN A MESH?

Marc van Kreveld Maarten Löffler János Pach

A LITTLE HISTORY

• Subset P of \mathbb{R}^2

• Subset P of \mathbb{R}^2

- Subset P of \mathbb{R}^2
- $\forall p, q \in P : \overline{pq} \subset P$

- Subset P of \mathbb{R}^2
- $\forall p, q \in P : \overline{pq} \subset P$

- Subset P of \mathbb{R}^2
- $\forall p, q \in P : \overline{pq} \subset P$
- (Also known as "convex set")

- Subset P of \mathbb{R}^2
- $\forall p, q \in P : \overline{pq} \subset P$
- (Also known as "convex set")

"POTATO PEELING PROBLEM"

- Subset P of \mathbb{R}^2
- $\forall p, q \in P : \overline{pq} \subset P$

(Also known as "convex set")

"POTATO PEELING PROBLEM" Find the largest potato contained in a given polygon.

- Subset P of \mathbb{R}^2
- $\forall p, q \in P : \overline{pq} \subset P$

(Also known as "convex set")

"POTATO PEELING PROBLEM" Find the largest potato contained in a given polygon.

(Goodman, 1981)

• Collection of triangles

• Collection of triangles

DEFINITION "MESH"

- Collection of triangles
- Any two triangles:
 - are disjoint,
 - share a single vertex,
 - or share an edge

DEFINITION "MESH"

- Collection of triangles
- Any two triangles:
 - are disjoint,
 - share a single vertex,
 - or share an edge

DEFINITION "MESH"

- Collection of triangles
- Any two triangles:
 - are disjoint,
 - share a single vertex,
 - or share an edge

• It's a potato ...

• It's a potato ...

- It's a potato ...
- ... and it's also a mesh

- It's a potato ...
- ... and it's also a mesh

- It's a potato ...
- ... and it's also a mesh
- (Also known as "triangulation")

- It's a potato ...
- ... and it's also a mesh
- (Also known as "triangulation")

"MESHED POTATO PEELING PROBLEM"

- It's a potato ...
- ... and it's also a mesh
- (Also known as "triangulation")

"MESHED POTATO PEELING PROBLEM"

Find the largest meshed potato contained in a given mesh.

- It's a potato ...
- ... and it's also a mesh
- (Also known as "triangulation")

"MESHED POTATO PEELING PROBLEM"

Find the largest meshed potato contained in a given mesh.

(Aronov et al., 2007)

NEW STUFF

<u>DEFINITION</u> "POTATO NUMBER" $\mathcal{P}(M)$

<u>DEFINITION</u> "POTATO NUMBER" $\mathcal{P}(M)$

 Total number of distinct meshed potatoes in a given mesh M

$$\mathcal{P}(\mathsf{M}) = 9$$

• There exists a mesh with potato number $\Omega(1.5028^{\rm n}).$

- There exists a mesh with potato number $\Omega(1.5028^{n}).$
- For every mesh, the potato number is $O(1.6181^{n})$.

WARNING: TECHNICAL DETAILS

 Place n points in convex position

 Place n points in convex position

- Place n points in convex position
- Triangulate iteratively

- Place n points in convex position
- Triangulate iteratively

- Place n points in convex position
- Triangulate iteratively

- Place n points in convex position
- Triangulate iteratively

- Place n points in convex position
- Triangulate iteratively

- Place n points in convex position
- Triangulate iteratively
- Count potatoes

- Place n points in convex position
- Triangulate iteratively
- Count potatoes

- Place n points in convex position
- Triangulate iteratively
- Count potatoes

- Place n points in convex position
- Triangulate iteratively
- Count potatoes

- Place n points in convex position
- Triangulate iteratively
- Count potatoes

- Place n points in convex position
- Triangulate iteratively
- Count potatoes

- Place n points in convex position
- Triangulate iteratively
- Count potatoes

- Place n points in convex position
- Triangulate iteratively
- Count potatoes

- Place n points in convex position
- Triangulate iteratively
- Count potatoes

- Place n points in convex position
- Triangulate iteratively
- Count potatoes

- Place n points in convex position
- Triangulate iteratively
- Count potatoes

- Place n points in convex position
- Triangulate iteratively
- Count potatoes

- Place n points in convex position
- Triangulate iteratively
- Count potatoes

- Place n points in convex position
- Triangulate iteratively
- Count potatoes

- Place n points in convex position
- Triangulate iteratively
- Count potatoes

- Place n points in convex position
- Triangulate iteratively
- Count potatoes

- Place n points in convex position
- Triangulate iteratively
- Count potatoes

- Place n points in convex position
- Triangulate iteratively
- Count potatoes

- Place n points in convex position
- Triangulate iteratively
- Count potatoes
 LEMMA

- Place n points in convex position
- Triangulate iteratively
- Count potatoes

LEMMA

The number of potatoes in M grows exponentially with base > 1.5028

- Place n points in convex position
- Triangulate iteratively
- Count potatoes

LEMMA

The number of potatoes in M grows exponentially with base > 1.5028 THEOREM

- Place n points in convex position
- Triangulate iteratively
- Count potatoes

LEMMA

The number of potatoes in M grows exponentially with base > 1.5028 THEOREM

There is a mesh M with $\mathcal{P}(M)$ in $\Omega(1.5028^{n})$.

 Only count all potatoes containing p

 Only count all potatoes
 containing p

- Only count all potatoes containing p
- Project all vertices from p and remove hit edges

- Only count all potatoes
 containing p
- Project all vertices from p and remove hit edges

- Only count all potatoes containing p
- Project all vertices from p and remove hit edges

- Only count all potatoes containing p
- Project all vertices from p and remove hit edges

- Only count all potatoes containing p
- Project all vertices from p and remove hit edges

- Only count all potatoes
 containing p
- Project all vertices from p and remove hit edges

- Only count all potatoes containing p
- Project all vertices from p and remove hit edges

- Only count all potatoes
 containing p
- Project all vertices from p and remove hit edges

• Orient edges around p

- Only count all potatoes
 containing p
- Project all vertices from p and remove hit edges

• Orient edges around p

- Only count all potatoes
 containing p
- Project all vertices from p and remove hit edges

- Orient edges around p
- Call resulting graph G

- Only count all potatoes
 containing p
- Project all vertices from p and remove hit edges

- Orient edges around p
- Call resulting graph G

<u>LEMMA</u>

The number of potatoes in M containing p is bounded by the number of cycles in G

<u>LEMMA</u>

The number of potatoes in M containing p is bounded by the number of cycles in G

<u>LEMMA</u>

The number of potatoes in M containing p is bounded by the number of cycles in G

<u>LEMMA</u>

Every edge on the outer face of G either comes from a vertex with outdegree 1, or goes to a vertex with indegree 1.

Let F be a subset of fixed edges of G

Let F be a subset of fixed edges of G

- Let F be a subset of fixed edges of G
- The potential k(G, F) is the #vertices #fixed edges

- Let F be a subset of fixed edges of G
- The potential k(G, F) is the #vertices #fixed edges

- Let F be a subset of fixed edges of G
- The potential k(G, F) is the #vertices #fixed edges

 Let Q(k) be the max ^{K(F)} number of potatoes in a graph with potential k

- Consider an edge e on the outer face of G
- Then either fix e, or remove its vertices.

- Consider an edge e on the outer face of G
- Then either fix e, or remove its vertices.

e

 \mathbf{O}

- Consider an edge e on the outer face of G
- Then either fix e, or remove its vertices.

- Consider an edge e on the outer face of G
- Then either fix e, or remove its vertices.

- Consider an edge e on the outer face of G
- Then either fix e, or remove its vertices.

THEOREM

For every mesh M, $\mathcal{P}(M)$ is in $O(1.6181^{n})$.

MORE NEW STUFF

• Triangle where all angles are $> \delta$

• Triangle where all angles are $> \delta$

DEFINITION "FAT POTATO"

• Triangle where all angles are $>\delta$

DEFINITION "FAT POTATO"

• Triangle where all angles are $> \delta$

DEFINITION "FAT POTATO"

 Potato that contains a large fat triangle

- Triangle where all angles are $>\delta$

DEFINITION "FAT POTATO"

 Potato that contains a large fat triangle

DEFINITION "FAT MESH"

• Mesh where all triangles are fat

DEFINITION "FAT MESH"

• Mesh where all triangles are fat

DEFINITION "FAT MESHED POTATO"

• Mesh where all triangles are fat

DEFINITION "FAT MESHED POTATO"

DEFINITION "FAT MESH"

Mesh where all triangles are fat

DEFINITION "FAT MESHED POTATO"

• Fat potato that is also a fat mesh

DEFINITION "FAT MESH"

Mesh where all triangles are fat

DEFINITION "FAT MESHED POTATO"

 Fat potato that is also a fat mesh

Potato without internal vertices

• Potato without internal vertices

DEFINITION "CARROT"

- Potato without internal vertices
- (Also known as "outerplanar meshed potato")

DEFINITION "CARROT"

- Potato without internal vertices
- (Also known as "outerplanar meshed potato")

<u>DEFINITION</u> "CARROT NUMBER" C(M)

DEFINITION "CARROT"

- Potato without internal vertices
- (Also known as "outerplanar meshed potato")

- <u>DEFINITION</u> "CARROT NUMBER" C(M)
- Total number of distinct carrots in a given mesh M
• There exists a fat mesh with fat potato number $\Omega(n^{\frac{1}{2}\lfloor \frac{2\pi}{\delta} \rfloor})$.

• There exists a fat mesh with fat potato number $\Omega(n^{\frac{1}{2}\lfloor \frac{2\pi}{\delta} \rfloor})$.

- There exists a fat mesh with fat potato number $\Omega(n^{\frac{1}{2}\lfloor \frac{2\pi}{\delta} \rfloor})$.
- For every fat mesh, the potato number is $O(n^{\lceil \frac{\pi}{\delta} \rceil})$.

- There exists a fat mesh with fat potato number $\Omega(n^{\frac{1}{2}\lfloor \frac{2\pi}{\delta} \rfloor})$.
- For every fat mesh, the potato number is $O(n^{\lceil \frac{\pi}{\delta} \rceil})$.

• There exists a fat mesh with fat carrot number $\Omega(n^{\lfloor \frac{2\pi}{3\delta} \rfloor})$.

- There exists a fat mesh with fat potato number $\Omega(n^{\frac{1}{2}\lfloor \frac{2\pi}{\delta} \rfloor})$.
- For every fat mesh, the potato number is $O(n^{\lceil \frac{\pi}{\delta} \rceil})$.

• There exists a fat mesh with fat carrot number $\Omega(n^{\lfloor \frac{2\pi}{3\delta} \rfloor})$.

- There exists a fat mesh with fat potato number $\Omega(n^{\frac{1}{2}\lfloor \frac{2\pi}{\delta} \rfloor})$.
- For every fat mesh, the potato number is $O(n^{\lceil \frac{\pi}{\delta} \rceil})$.

- There exists a fat mesh with fat carrot number $\Omega(n^{\lfloor \frac{2\pi}{3\delta} \rfloor})$.
- For every fat mesh, the carrot number is $O(n^{\lfloor \frac{2\pi}{3\delta} \rfloor})$.

THANK YOU!

