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What is the problem?
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We want to find linear dependencies
between spatial data.
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Source: Actueel Hoogtebestand Nederland Source: TNO-NITG

For example, elevation above sea level in
the Netherlands is probably related to
groundwater level.
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Source: Algemene Directie Statistiek België Source: Wikipedia

As another example, consider the
population density and spoken language in
Belgium.
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Let’s make this more formal.
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Consider some domain.
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Suppose we measure some function f in
several points on this domain.
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And suppose we also measure another
function g on the same domain.
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We want to know whether there exists a
linear relationship between f and g.
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We estimate the functions on the whole
domain by interpolation.
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This results in two Triangulated Irregular
Terrains (TINs) in 3D.
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This results in two Triangulated Irregular
Terrains (TINs) in 3D.
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We want to find the translation and
scaling of f to align it with g as good as
possible.
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scaling of f to align it with g as good as
possible.
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How do we measure the similarity
between two TINs?
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We want to find the two parameters s and
t such that sf + t is similar to g.

×s + t
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We parameterise the domain by x and y.
For each s, t and x, y we can measure the
vertical distance between f and g.

x

y

f(x, y)

g(x, y)

sf(x, y) + tz

δ(s, t, x, y)
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For a given s and t, we can measure either
the worst or the average vertical distance
between f and g over all x and y.
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The worst vertical distance is the point on
the domain where the two TINs are
furtherst away from each other.

µm(s, t) = max
x,y

|sf(x, y) + t− g(x, y)|
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Optimising the average vertical distance is
the same as optimising the integral, or the
volume between the two TINs.

µa(s, t) =
∫

x,y

|sf(x, y) + t− g(x, y)|dxdy
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We want to minimise µm or µa over all s
and t.

min
s,t

µa(s, t) =?

min
s,t

µm(s, t) =?



6-1

What results did we get?
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We can minimise µm over all s and t in
O(n) time if the terrains are aligned, and
in O(n4/3polylog n) otherwise.
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We cannot minimise µa. But for
1.5-dimensional terrains, we can compute
a (1 + ε)-approximation in O(n/

√
ε) time.
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How do we minimise µm(s, t) when the
terrains are aligned?
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For fixed s and t, the worst vertical
distance always occurs at a vertex of the
overlay of the TINs.
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When the terrains are aligned, there are n
such vertices.
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Consider the parameter (s, t)-space. At
each point, µm(s, t) is defined as the
maximum over all vertices (x, y).

s

t
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A blue and red vertex with the same
projection have vertical distance 0 when
they coincide.

s

t
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s
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This defines a line in (s, t)-space.
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s
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This defines a line in (s, t)-space.
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s

t

The n vertices of f and g together form
an arrangement of n lines.
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In the (s, t, µ)-space, these lines lie at the
intersection of a pair of half-planes.
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The optimal values of s and t are
determined by the lowest point above all
half-planes.
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Now, we can solve the problem by linear
programming.
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How do we minimising µm(s, t) when
the terrains are not aligned?
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Now, the maximum distance can occur at
a vertex of f or g, or at a crossing of their
edges.
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Same algorithm works, but now complexity
is O(n2) because of worst-case overlay.
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This can be improved to O∗(n4/3) by
using some tricks.

Bla bla bla bla bla, bla bla bla random sampling bla bla bla, bla bla bla

bla bla bla violated constraints bla bla bla bla bla. Bla two-level
heriditary segment trees bla bla bla bla bla bla, bla bla bla bla bla

bla, bla bla bla bla bla bla Plücker points bla bla bla? Bla bla bla bla bla bla

bla bla 5-dimensional projective space bla bla bla bla bla bla:

bla bla trade-off bla bla bla. Bla bla, bla bla bla bla bla bla bla bipartite
clique decomposition bla bla bla bla bla bla bla bla bla bla bla bla bla

bla, bla bla bla bla bla bla bla bla halfspace reporting queries bla!
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Let’s conclude.
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Let’s conclude.

We want to find linear relationships
between functions on the same domain.

We model this as minimising the vertical
distance between two TINs in R3.

We can efficiently minimise the maximum
distance. The average distance requires
more work.
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Thank you!
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