MEDIAN TRAJECTORIES

Kevin Buchin Maike Buchin Marc van Kreveld Maarten Löffler Rodrigo Silveira Carola Wenk Lionov Wiratma

• I Introduction

- I Introduction
 - Motivation
 - Data representatives

- I Introduction
 - Motivation
 - Data representatives
- II Defining the median

- I Introduction
 - Motivation
 - Data representatives
- II Defining the median
 - Simple median
 - Homotopic median

- I Introduction
 - Motivation
 - Data representatives
- II Defining the median
 - Simple median
 - Homotopic median
- III Results

- I Introduction
 - Motivation
 - Data representatives
- II Defining the median
 - Simple median
 - Homotopic median
- III Results
 - Algorithms
 - Implementation

- I Introduction
 - Motivation
 - Data representatives
- II Defining the median
 - Simple median
 - Homotopic median
- III Results
 - Algorithms
 - Implementation
- Conclusion

I INTRODUCTION

MOTIVATIONProblem

- Problem
 - Planar domain

- Problem
 - Planar domain
 - Big collection of trajectories

- Problem
 - Planar domain
 - Big collection of trajectories
 - Build catalogue of 'common' trajectories

- Problem
 - Planar domain
 - Big collection of trajectories
 - Build catalogue of 'common' trajectories
- Solution

- Problem
 - Planar domain
 - Big collection of trajectories
 - Build catalogue of 'common' trajectories
- Solution
 - Cluster the trajectories

- Problem
 - Planar domain
 - Big collection of trajectories
 - Build catalogue of 'common' trajectories
- Solution
 - Cluster the trajectories
 - Pick a good representative for each cluster

- Problem
 - Planar domain
 - Big collection of trajectories
 - Build catalogue of 'common' trajectories
- Solution
 - Cluster the trajectories
 - Pick a good representative for each cluster

- Problem
 - Planar domain
 - Big collection of trajectories
 - Build catalogue of 'common' trajectories
- Solution
 - Cluster the trajectories
 - Pick a good representative for each cluster
- ... how did we do that second step?

• Input: a set of 'similar' trajectories

- Input: a set of 'similar' trajectories
 - Same start point s and end point t

- Input: a set of 'similar' trajectories
 - Same start point \boldsymbol{s} and end point \boldsymbol{t}
 - Sort of the same shape

- Input: a set of 'similar' trajectories
 - Same start point \boldsymbol{s} and end point \boldsymbol{t}
 - Sort of the same shape
- Output: a representative trajectory

- Input: a set of 'similar' trajectories
 - Same start point \boldsymbol{s} and end point \boldsymbol{t}
 - Sort of the same shape
- Output: a representative trajectory
 - Should also go from s to t

- Input: a set of 'similar' trajectories
 - Same start point \boldsymbol{s} and end point \boldsymbol{t}
 - Sort of the same shape
- Output: a representative trajectory
 - Should also go from \boldsymbol{s} to \boldsymbol{t}
 - Shape should represent the whole set of input trajectories

- Input: a set of 'similar' trajectories
 - Same start point \boldsymbol{s} and end point \boldsymbol{t}
 - Sort of the same shape
- Output: a representative trajectory
 - Should also go from \boldsymbol{s} to \boldsymbol{t}
 - Shape should represent the whole set of input trajectories

• Set of numbers: $\{1, 1, 2, 5, 6\}$

- Set of numbers: $\{1, 1, 2, 5, 6\}$
 - Average/mean: 3
 - Median: 2
 - Modal: 1

- Set of numbers: $\{1, 1, 2, 5, 6\}$
 - Average/mean: 3
 - Median: 2
 - Modal: 1
- Set of points in the plane

- Set of numbers: $\{1, 1, 2, 5, 6\}$
 - Average/mean: 3
 - Median: 2
 - Modal: 1
- Set of points in the plane
 - Average/mean of x- and y-coordinates

- Set of numbers: $\{1, 1, 2, 5, 6\}$
 - Average/mean: 3
 - Median: 2
 - Modal: 1
- Set of points in the plane
 - Average/mean of *x* and *y*-coordinates
 - Median of *x* and *y*-coordinates

- Set of numbers: $\{1, 1, 2, 5, 6\}$
 - Average/mean: 3
 - Median: 2
 - Modal: 1
- Set of points in the plane
 - Average/mean of *x* and *y*-coordinates
 - Median of *x* and *y*-coordinates
 - Centre of smallest enclosing circle

- Set of numbers: $\{1, 1, 2, 5, 6\}$
 - Average/mean: 3
 - Median: 2
 - Modal: 1
- Set of points in the plane

- Average/mean of *x* and *y*-coordinates
- Median of *x* and *y*-coordinates
- Centre of smallest enclosing circle
- Pick representative from input?
DATA REPRESENTATIVES

- Set of numbers: $\{1, 1, 2, 5, 6\}$
 - Average/mean: 3
 - Median: 2
 - Modal: 1
- Set of points in the plane

- Average/mean of *x* and *y*-coordinates
- Median of *x* and *y*-coordinates
- Centre of smallest enclosing circle
- Pick representative from input?

- No?
 - Parameterised mean trajectory

- No?
 - Parameterised mean trajectory

- No?
 - Parameterised mean trajectory
 - May interfere with environment!

- No?
 - Parameterised mean trajectory
 - May interfere with environment!

- No?
 - Parameterised mean trajectory
 - May interfere with environment!
- Yes?

- No?
 - Parameterised mean trajectory
 - May interfere with environment!
- Yes?

- No?
 - Parameterised mean trajectory
 - May interfere with environment!
- Yes?
 - Which trajectory do we pick?

- No?
 - Parameterised mean trajectory
 - May interfere with environment!
- Yes?
 - Which trajectory do we pick?

- No?
 - Parameterised mean trajectory
 - May interfere with environment!
- Yes?
 - Which trajectory do we pick?
 - There may not be any good representative!

- No?
 - Parameterised mean trajectory
 - May interfere with environment!
- Yes?
 - Which trajectory do we pick?
 - There may not be any good representative!
- Use pieces of different trajectories

- No?
 - Parameterised mean trajectory
 - May interfere with environment!
- Yes?
 - Which trajectory do we pick?
 - There may not be any good representative!
- Use pieces of different trajectories

II DEFINING THE MEDIAN

• For *x*-monotone trajectories...

- For *x*-monotone trajectories...
 - Take the median at each *x*-coordinate

- For *x*-monotone trajectories...
 - Take the median at each x-coordinate

- For *x*-monotone trajectories...
 - Take the median at each x-coordinate
 - Result: the n/2-level

- For *x*-monotone trajectories...
 - Take the median at each *x*-coordinate

 - Result: the n/2-level
 Start in the middle, switch at each crossing

- For *x*-monotone trajectories...
 - Take the median at each *x*-coordinate

 - Result: the n/2-level
 Start in the middle, switch at each crossing
- For arbitrary trajectories...

- For *x*-monotone trajectories...
 - Take the median at each *x*-coordinate

 - Result: the n/2-level
 Start in the middle, switch at each crossing
- For arbitrary trajectories...
 - Why not do the same thing?

- For *x*-monotone trajectories...
 - Take the median at each *x*-coordinate

 - Result: the n/2-level
 Start in the middle, switch at each crossing
- For arbitrary trajectories...
 - Why not do the same thing?
- We call this the *simple median* of a set of curves

• Problem

- Problem
 - Simple median may miss large parts of the input trajectories

- Problem
 - Simple median may miss large parts of the input trajectories

- Problem
 - Simple median may miss large parts of the input trajectories

- Problem
 - Simple median may miss large parts of the input trajectories
- Solution

- Problem
 - Simple median may miss large parts of the input trajectories
- Solution
 - Plant a tree

- Problem
 - Simple median may miss large parts of the input trajectories
- Solution
 - Place a *pole*

- Problem
 - Simple median may miss large parts of the input trajectories
- Solution
 - Place a *pole*

- Problem
 - Simple median may miss large parts of the input trajectories
- Solution
 - Place a *pole*
 - Require the median to go around it

- Problem
 - Simple median may miss large parts of the input trajectories
- Solution
 - Place a *pole*
 - Require the median to go around it

SHORTCUTS

- Problem
 - Simple median may miss large parts of the input trajectories
- Solution
 - Place a *pole*
 - Require the median to go around it
- ... how do we steer the median correctly around these poles?

HOMOTOPYIngredients

- Ingredients
 - One punctured plane

- Ingredients
 - One punctured plane

- Ingredients
 - One punctured plane
 - Two points s and t in the plane

- Ingredients
 - One punctured plane
 - Two points s and t in the plane
 - Two continuous curves from \boldsymbol{s} to \boldsymbol{t}

- Ingredients
 - One punctured plane
 - Two points s and t in the plane
 - Two continuous curves from s to t

- Ingredients
 - One punctured plane
 - Two points s and t in the plane
 - Two continuous curves from s to t
- The curves are *homotopic* if ...

- Ingredients
 - One punctured plane
 - Two points s and t in the plane
 - Two continuous curves from s to t
- The curves are *homotopic* if ...
 - ... one can be smoothly transformed into the other

- Ingredients
 - One punctured plane
 - Two points s and t in the plane
 - Two continuous curves from \boldsymbol{s} to \boldsymbol{t}
- The curves are *homotopic* if ...
 - ... one can be smoothly transformed into the other
 - ... the concatenation is a closed curve that can be contracted to a point

- Ingredients
 - One punctured plane
 - Two points s and t in the plane
 - Two continuous curves from \boldsymbol{s} to \boldsymbol{t}
- The curves are *homotopic* if ...
 - ... one can be smoothly transformed into the other
 - ... the concatenation is a closed curve that can be contracted to a point

- Ingredients
 - One punctured plane
 - Two points s and t in the plane
 - Two continuous curves from \boldsymbol{s} to \boldsymbol{t}
- The curves are *homotopic* if ...
 - ... one can be smoothly transformed into the other
 - ... the concatenation is a closed curve that can be contracted to a point

- Ingredients
 - One punctured plane
 - Two points s and t in the plane
 - Two continuous curves from \boldsymbol{s} to \boldsymbol{t}
- The curves are *homotopic* if ...
 - ... one can be smoothly transformed into the other
 - ... the concatenation is a closed curve that can be contracted to a point

- Ingredients
 - One punctured plane
 - Two points s and t in the plane
 - Two continuous curves from \boldsymbol{s} to \boldsymbol{t}
- The curves are *homotopic* if ...
 - ... one can be smoothly transformed into the other
 - ... the concatenation is a closed curve that can be contracted to a point

- Ingredients
 - One punctured plane
 - Two points s and t in the plane
 - Two continuous curves from \boldsymbol{s} to \boldsymbol{t}
- The curves are *homotopic* if ...
 - ... one can be smoothly transformed into the other
 - ... the concatenation is a closed curve that can be contracted to a point

- Ingredients
 - One punctured plane
 - Two points s and t in the plane
 - Two continuous curves from \boldsymbol{s} to \boldsymbol{t}
- The curves are *homotopic* if ...
 - ... one can be smoothly transformed into the other
 - ... the concatenation is a closed curve that can be contracted to a point

- Ingredients
 - One punctured plane
 - Two points s and t in the plane
 - Two continuous curves from \boldsymbol{s} to \boldsymbol{t}
- The curves are *homotopic* if ...
 - ... one can be smoothly transformed into the other
 - ... the concatenation is a closed curve that can be contracted to a point

- Consider a point in a space ${\cal E}$

• Consider a point in a space ${\cal E}$

- Consider a point in a space E
 - Make a copy of the point for each homotopically different way to reach it

- Consider a point in a space E
 - Make a copy of the point for each homotopically different way to reach it

- Consider a point in a space E
 - Make a copy of the point for each homotopically different way to reach it

- Consider a point in a space E
 - Make a copy of the point for each homotopically different way to reach it

- Consider a point in a space E
 - Make a copy of the point for each homotopically different way to reach it
 - The resulting space E' is called the *covering space* of E

- Consider a point in a space E
 - Make a copy of the point for each homotopically different way to reach it
 - The resulting space E' is called the covering space of E

- Consider a point in a space E
 - Make a copy of the point for each homotopically different way to reach it
 - The resulting space E' is called the *covering space* of E

- Consider a point in a space E
 - Make a copy of the point for each homotopically different way to reach it
 - The resulting space E' is called the covering space of E

- Consider a point in a space E
 - Make a copy of the point for each homotopically different way to reach it
 - The resulting space E' is called the covering space of E

- Consider a point in a space E
 - Make a copy of the point for each homotopically different way to reach it
 - The resulting space E' is called the covering space of E
 - E' is simply connected

- For homotopic trajectories...
 - Lift the trajectories into the covering space

- For homotopic trajectories...
 - Lift the trajectories into the covering space
 - Ignore crossings that are no longer there

- For homotopic trajectories...
 - Lift the trajectories into the covering space
 - Ignore crossings that are no longer there

- For homotopic trajectories...
 - Lift the trajectories into the covering space
 - Ignore crossings that are no longer there

- For homotopic trajectories...
 - Lift the trajectories into the covering space
 - Ignore crossings that are no longer there
 - The *homotopic median* is just the simple median in the covering space

- For homotopic trajectories...
 - Lift the trajectories into the covering space
 - Ignore crossings that are no longer there
 - The *homotopic median* is just the simple median in the covering space

- For homotopic trajectories...
 - Lift the trajectories into the covering space
 - Ignore crossings that are no longer there
 - The homotopic median is just the simple median in the covering space
- For non-homotopic trajectories...

- For homotopic trajectories...
 - Lift the trajectories into the covering space
 - Ignore crossings that are no longer there
 - The *homotopic median* is just the simple median in the covering space
- For non-homotopic trajectories...

- For homotopic trajectories...
 - Lift the trajectories into the covering space
 - Ignore crossings that are no longer there
 - The *homotopic median* is just the simple median in the covering space
- For non-homotopic trajectories...
 - Endpoint t is not the same!

- For homotopic trajectories...
 - Lift the trajectories into the covering space
 - Ignore crossings that are no longer there
 - The *homotopic median* is just the simple median in the covering space
- For non-homotopic trajectories...
 - Endpoint t is not the same!
 - It doesn't work

• Given a set of trajectories, can we compute a reasonable set of poles?

• Given a set of trajectories, can we compute a reasonable set of poles?

- Given a set of trajectories, can we compute a reasonable set of poles?
- Place poles in...

- Given a set of trajectories, can we compute a reasonable set of poles?
- Place poles in...
 - Big faces?

- Given a set of trajectories, can we compute a reasonable set of poles?
- Place poles in...
 - Big faces?

- Given a set of trajectories, can we compute a reasonable set of poles?
- Place poles in...
 - Big faces?
 - Faces where they preserve the homotopy?

- Given a set of trajectories, can we compute a reasonable set of poles?
- Place poles in...
 - Big faces?
 - Faces where they preserve the homotopy?

- Given a set of trajectories, can we compute a reasonable set of poles?
- Place poles in...
 - Big faces?
 - Faces where they preserve the homotopy?
 - Both at the same time?

- Given a set of trajectories, can we compute a reasonable set of poles?
- Place poles in...
 - Big faces?
 - Faces where they preserve the homotopy?
 - Both at the same time?

- Given a set of trajectories, can we compute a reasonable set of poles?
- Place poles in...
 - Big faces?
 - Faces where they preserve the homotopy?
 - Both at the same time?
- Not uniquely defined!

- Given a set of trajectories, can we compute a reasonable set of poles?
- Place poles in...
 - Big faces?
 - Faces where they preserve the homotopy?
 - Both at the same time?
- Not uniquely defined!

- Given a set of trajectories, can we compute a reasonable set of poles?
- Place poles in...
 - Big faces?
 - Faces where they preserve the homotopy?
 - Both at the same time?
- Not uniquely defined!

- Given a set of trajectories, can we compute a reasonable set of poles?
- Place poles in...
 - Big faces?
 - Faces where they preserve the homotopy?
 - Both at the same time?
- Not uniquely defined!

- Given a set of trajectories, can we compute a reasonable set of poles?
- Place poles in...
 - Big faces?
 - Faces where they preserve the homotopy?
 - Both at the same time?
- Not uniquely defined!

III RESULTS

- *n*: Number of input vertices
- *h*: Number of input poles
- A: Complexity of arrangement of input
- k: Complexity of output trajectory

- *n*: Number of input vertices
- *h*: Number of input poles
- A: Complexity of arrangement of input
- k: Complexity of output trajectory
- Simple median
 - $O(n^2 \log n)$ time
 - $O((n+k)\alpha(n)\log n)$ time

- *n*: Number of input vertices
- *h*: Number of input poles
- A: Complexity of arrangement of input
- k: Complexity of output trajectory
- Simple median
 - $O(n^2 \log n)$ time
 - $O((n+k)\dot{\alpha}(n)\log n)$ time
- Homotopic median
 - $O(n^{2+\varepsilon})$ time
 - $O((n\sqrt{h}+k)\alpha(n)\log n + h^{1+\varepsilon} + A)$ time

• Trajectory generator

- Trajectory generator
 - Random walk towards a series of waypoints

- Trajectory generator
 - Random walk towards a series of waypoints

- Trajectory generator
 - Random walk towards a series of waypoints

- Trajectory generator
 - Random walk towards a series of waypoints

- Trajectory generator
 - Random walk towards a series of waypoints

- Trajectory generator
 - Random walk towards a series of waypoints

- Trajectory generator
 - Random walk towards a series of waypoints

- Trajectory generator
 - Random walk towards a series of waypoints

- Trajectory generator
 - Random walk towards a series of waypoints

- Trajectory generator
 - Random walk towards a series of waypoints

- Trajectory generator
 - Random walk towards a series of waypoints

- Trajectory generator
 - Random walk towards a series of waypoints

- Trajectory generator
 - Random walk towards a series of waypoints

- Trajectory generator
 - Random walk towards a series of waypoints
 - Simple or self-intersecting trajectories

- Trajectory generator
 - Random walk towards a series of waypoints
 - Simple or self-intersecting trajectories
- Pole generator

- Trajectory generator
 - Random walk towards a series of waypoints
 - Simple or self-intersecting trajectories
- Pole generator
 - Places poles in faces that are large enough

- Trajectory generator
 - Random walk towards a series of waypoints
 - Simple or self-intersecting trajectories
- Pole generator
 - Places poles in faces that are large enough

- Trajectory generator
 - Random walk towards a series of waypoints
 - Simple or self-intersecting trajectories
- Pole generator
 - Places poles in faces that are large enough
 - Discards non-homotopic trajectories

- Trajectory generator
 - Random walk towards a series of waypoints
 - Simple or self-intersecting trajectories
- Pole generator
 - Places poles in faces that are large enough
 - Discards non-homotopic trajectories

- Trajectory generator
 - Random walk towards a series of waypoints
 - Simple or self-intersecting trajectories
- Pole generator
 - Places poles in faces that are large enough
 - Discards non-homotopic trajectories
- Measures of interest

- Trajectory generator
 - Random walk towards a series of waypoints
 - Simple or self-intersecting trajectories
- Pole generator
 - Places poles in faces that are large enough
 - Discards non-homotopic trajectories
- Measures of interest

- Trajectory generator
 - Random walk towards a series of waypoints
 - Simple or self-intersecting trajectories
- Pole generator
 - Places poles in faces that are large enough
 - Discards non-homotopic trajectories
- Measures of interest
 - Angular change

- Trajectory generator
 - Random walk towards a series of waypoints
 - Simple or self-intersecting trajectories
- Pole generator
 - Places poles in faces that are large enough
 - Discards non-homotopic trajectories
- Measures of interest
 - Angular change
 - Complexity

- Trajectory generator
 - Random walk towards a series of waypoints
 - Simple or self-intersecting trajectories
- Pole generator
 - Places poles in faces that are large enough
 - Discards non-homotopic trajectories
- Measures of interest
 - Angular change
 - Complexity
 - Length

- Complexity
 - No self-intersections
 - Self-intersections

S 345%319% 207%343%

Н

 Complexity No self-intersections Self-intersections 	S 345% 207%	H 319% 343%
Length		
 No self-intersections 	96%	99%
 Self-intersections 	51%	96%

 Complex No self-in Self-inter 	ity ntersections rsections	S 345% 207%	H 319% 343%
 Length No self-in Self-inter 	ntersections rsections	96% 51%	$99\% \\ 96\%$
 Angular No self-in Self-inter 	change ntersections rsections	$539\%\ 381\%$	$468\% \\ 466\%$

• This work

- This work
 - Two definitions for median trajectory
 - Efficient algorithms for computing them
 - Quantitative evaluation on generated data

- This work
 - Two definitions for median trajectory
 - Efficient algorithms for computing them
 - Quantitative evaluation on generated data
- Future work

- This work
 - Two definitions for median trajectory
 - Efficient algorithms for computing them
 - Quantitative evaluation on generated data
- Future work
 - More intelligent automatic pole placement?
 - Evaluation on real-world data?
 - Understand better what makes a us accept a certain curve as a good median

