MEDIAN TRAJECTORIES

Kevin Buchin
Maike Buchin
Marc van Kreveld
Maarten Löffler
Rodrigo Silveira
Carola Wenk
Lionov Wiratma

OVERVIEW

OVERVIEW

- I Introduction

OVERVIEW

- I Introduction
- Motivation
- Data representatives

OVERVIEW

- I Introduction
- Motivation
- Data representatives
- II Defining the median

OVERVIEW

- I Introduction
- Motivation
- Data representatives
- II Defining the median
- Simple median
- Homotopic median

OVERVIEW

- I Introduction
- Motivation
- Data representatives
- II Defining the median
- Simple median
- Homotopic median
- III Results

OVERVIEW

- I Introduction
- Motivation
- Data representatives
- II Defining the median
- Simple median
- Homotopic median
- III Results
- Algorithms
- Implementation

OVERVIEW

- I Introduction
- Motivation
- Data representatives
- II Defining the median
- Simple median
- Homotopic median
- III Results
- Algorithms
- Implementation
- Conclusion

MOTIVATION

MOTIVATION

- Problem

MOTIVATION

- Problem
- Planar domain

MOTIVATION

- Problem
- Planar domain
- Big collection of trajectories

MOTIVATION

- Problem
- Planar domain
- Big collection of trajectories
- Build catalogue of 'common' trajectories

MOTIVATION

- Problem
- Planar domain
- Big collection of trajectories
- Build catalogue of 'common' trajectories
- Solution

MOTIVATION

- Problem
- Planar domain
- Big collection of trajectories
- Build catalogue of 'common' trajectories
- Solution
- Cluster the trajectories

MOTIVATION

- Problem
- Planar domain
- Big collection of trajectories
- Build catalogue of 'common' trajectories
- Solution
- Cluster the trajectories
- Pick a good representative for each cluster

MOTIVATION

- Problem
- Planar domain
- Big collection of trajectories
- Build catalogue of 'common' trajectories
- Solution
- Cluster the trajectories
- Pick a good representative for each cluster

MOTIVATION

- Problem
- Planar domain
- Big collection of trajectories
- Build catalogue of 'common' trajectories
- Solution
- Cluster the trajectories
- Pick a good representative for each cluster
- ... how did we do that second step?

PROBLEM STATEMENT (IN MILDLY VAGUE TERMS)

PROBLEM STATEMENT (IN MILDLY VAGUE TERMS)

- Input: a set of 'similar' trajectories

PROBLEM STATEMENT

 (IN MILDLY VAGUE TERMS)- Input: a set of 'similar' trajectories
- Same start point s and end point t

PROBLEM STATEMENT (IN MILDLY VAGUE TERMS)

- Input: a set of 'similar' trajectories
- Same start point s and end point t
- Sort of the same shape

PROBLEM STATEMENT

 (IN MILDLY VAGUE TERMS)- Input: a set of 'similar' trajectories
- Same start point s and end point t
- Sort of the same shape
- Output: a representative trajectory

PROBLEM STATEMENT

 (IN MILDLY VAGUE TERMS)- Input: a set of 'similar' trajectories
- Same start point s and end point t
- Sort of the same shape
- Output: a representative trajectory
- Should also go from s to t

PROBLEM STATEMENT (IN MILDLY VAGUE TERMS)

- Input: a set of 'similar' trajectories
- Same start point s and end point t
- Sort of the same shape
- Output: a representative trajectory
- Should also go from s to t
- Shape should represent the whole set of input trajectories

PROBLEM STATEMENT (IN MILDLY VAGUE TERMS)

- Input: a set of 'similar' trajectories
- Same start point s and end point t
- Sort of the same shape
- Output: a representative trajectory
- Should also go from s to t
- Shape should represent the whole set of input trajectories

DATA REPRESENTATIVES

DATA REPRESENTATIVES

- Set of numbers: $\{1,1,2,5,6\}$

DATA REPRESENTATIVES

- Set of numbers: $\{1,1,2,5,6\}$
- Average/mean: 3
- Median: 2
- Modal: 1

DATA REPRESENTATIVES

- Set of numbers: $\{1,1,2,5,6\}$
- Average/mean: 3
- Median: 2
- Modal: 1
- Set of points in the plane

DATA REPRESENTATIVES

- Set of numbers: $\{1,1,2,5,6\}$
- Average/mean: 3
- Median: 2
- Modal: 1
- Set of points in the plane
- Average/mean of x - and y-coordinates

DATA REPRESENTATIVES

- Set of numbers: $\{1,1,2,5,6\}$
- Average/mean: 3
- Median: 2
- Modal: 1
- Set of points in the plane
- Average/mean of x - and y-coordinates
- Median of x - and y-coordinates

DATA REPRESENTATIVES

- Set of numbers: $\{1,1,2,5,6\}$
- Average/mean: 3
- Median: 2
- Modal: 1
- Set of points in the plane
- Average/mean of x - and y-coordinates
- Median of x - and y-coordinates
- Centre of smallest enclosing circle

DATA REPRESENTATIVES

- Set of numbers: $\{1,1,2,5,6\}$
- Average/mean: 3
- Median: 2
- Modal: 1
- Set of points in the plane
- Average/mean of x - and y-coordinates
- Median of x - and y-coordinates
- Centre of smallest enclosing circle
- Pick representative from input?

DATA REPRESENTATIVES

- Set of numbers: $\{1,1,2,5,6\}$
- Average/mean: 3
- Median: 2
- Modal: 1
- Set of points in the plane
- Average/mean of x - and y-coordinates
- Median of x - and y-coordinates
- Centre of smallest enclosing circle
- Pick representative from input?

TRAJECTORIES: PICK REPRESENTATIVE FROM INPUT?

TRAJECTORIES: PICK REPRESENTATIVE FROM INPUT?

TRAJECTORIES: PICK REPRESENTATIVE FROM INPUT?

- No?

TRAJECTORIES: PICK REPRESENTATIVE FROM INPUT?

- No?
- Parameterised mean trajectory

TRAJECTORIES: PICK REPRESENTATIVE FROM INPUT?

- No?
- Parameterised mean trajectory

TRAJECTORIES: PICK REPRESENTATIVE FROM INPUT?

- No?
- Parameterised mean trajectory
- May interfere with environment!

TRAJECTORIES: PICK REPRESENTATIVE FROM INPUT?

- No?
- Parameterised mean trajectory
- May interfere with environment!

TRAJECTORIES: PICK REPRESENTATIVE FROM INPUT?

- No?
- Parameterised mean trajectory
- May interfere with environment!
- Yes?

TRAJECTORIES: PICK REPRESENTATIVE FROM INPUT?

- No?
- Parameterised mean trajectory
- May interfere with environment!
- Yes?

TRAJECTORIES: PICK REPRESENTATIVE FROM INPUT?

- No?
- Parameterised mean trajectory
- May interfere with environment!
- Yes?
- Which trajectory do we pick?

TRAJECTORIES: PICK REPRESENTATIVE FROM INPUT?

- No?
- Parameterised mean trajectory
- May interfere with environment!
- Yes?
- Which trajectory do we pick?

TRAJECTORIES: PICK REPRESENTATIVE FROM INPUT?

- No?
- Parameterised mean trajectory
- May interfere with environment!
- Yes?
- Which trajectory do we pick?
- There may not be any good representative!

TRAJECTORIES: PICK REPRESENTATIVE FROM INPUT?

- No?
- Parameterised mean trajectory
- May interfere with environment!
- Yes?
- Which trajectory do we pick?
- There may not be any good representative!
- Use pieces of different trajectories

TRAJECTORIES: PICK REPRESENTATIVE FROM INPUT?

- No?
- Parameterised mean trajectory
- May interfere with environment!
- Yes?
- Which trajectory do we pick?
- There may not be any good representative!
- Use pieces of different trajectories

II DEFINING THE MEDIAN

SIMPLE MEDIAN

SIMPLE MEDIAN

- For x-monotone trajectories...

SIMPLE MEDIAN

- For x-monotone trajectories...
- Take the median at each x-coordinate

SIMPLE MEDIAN

- For x-monotone trajectories...
- Take the median at each x-coordinate

SIMPLE MEDIAN

- For x-monotone trajectories...
- Take the median at each x-coordinate
- Result: the $n / 2$-level

SIMPLE MEDIAN

- For x-monotone trajectories...
- Take the median at each x-coordinate
- Result: the $n / 2$-level
- Start in the middle, switch at each crossing

SIMPLE MEDIAN

- For x-monotone trajectories...
- Take the median at each x-coordinate
- Result: the $n / 2$-level
- Start in the middle, switch at each crossing
- For arbitrary trajectories...

SIMPLE MEDIAN

- For x-monotone trajectories...
- Take the median at each x-coordinate
- Result: the $n / 2$-level
- Start in the middle, switch at each crossing
- For arbitrary trajectories...
- Why not do the same thing?

SIMPLE MEDIAN

- For x-monotone trajectories...
- Take the median at each x-coordinate
- Result: the $n / 2$-level
- Start in the middle, switch at each crossing
- For arbitrary trajectories...
- Why not do the same thing?
- We call this the simple median of a set of curves

SHORTCUTS

SHORTCUTS

- Problem

SHORTCUTS

- Problem
- Simple median may miss large parts of the input trajectories

SHORTCUTS

- Problem
- Simple median may miss large parts of the input trajectories

SHORTCUTS

- Problem
- Simple median may miss large parts of the input trajectories

SHORTCUTS

- Problem
- Simple median may miss large parts of the input trajectories
- Solution

SHORTCUTS

- Problem
- Simple median may miss large parts of the input trajectories
- Solution
- Plant a tree

SHORTCUTS

- Problem
- Simple median may miss large parts of the input trajectories
- Solution
- Place a pole

SHORTCUTS

- Problem
- Simple median may miss large parts of the input trajectories
- Solution
- Place a pole

SHORTCUTS

- Problem
- Simple median may miss large parts of the input trajectories
- Solution
- Place a pole
- Require the median to go around it

SHORTCUTS

- Problem
- Simple median may miss large parts of the input trajectories
- Solution
- Place a pole
- Require the median to go around it

SHORTCUTS

- Problem
- Simple median may miss large parts of the input trajectories
- Solution
- Place a pole
- Require the median to go around it
- ... how do we steer the median correctly around these poles?

HOMOTOPY

HOMOTOPY

- Ingredients

HOMOTOPY

- Ingredients
- One punctured plane

HOMOTOPY

- Ingredients
- One punctured plane

HOMOTOPY

- Ingredients
- One punctured plane
- Two points s and t in the plane

HOMOTOPY

- Ingredients
- One punctured plane
- Two points s and t in the plane
- Two continuous curves from s to t

HOMOTOPY

- Ingredients
- One punctured plane
- Two points s and t in the plane
- Two continuous curves from s to t

HOMOTOPY

- Ingredients
- One punctured plane
- Two points s and t in the plane
- Two continuous curves from s to t
- The curves are homotopic if ...

HOMOTOPY

- Ingredients
- One punctured plane
- Two points s and t in the plane
- Two continuous curves from s to t
- The curves are homotopic if ...
- ... one can be smoothly transformed into the other

HOMOTOPY

- Ingredients
- One punctured plane
- Two points s and t in the plane
- Two continuous curves from s to t
- The curves are homotopic if ...
- ... one can be smoothly transformed into the other
- ... the concatenation is a closed curve that can be contracted to a point

HOMOTOPY

- Ingredients
- One punctured plane
- Two points s and t in the plane
- Two continuous curves from s to t
- The curves are homotopic if ...
- ... one can be smoothly transformed into the other
- ... the concatenation is a closed curve that

HOMOTOPY

- Ingredients
- One punctured plane
- Two points s and t in the plane
- Two continuous curves from s to t
- The curves are homotopic if ...
- ... one can be smoothly transformed into the other
- ... the concatenation is a closed curve that

HOMOTOPY

- Ingredients
- One punctured plane
- Two points s and t in the plane
- Two continuous curves from s to t
- The curves are homotopic if ...
- ... one can be smoothly transformed into the other
- ... the concatenation is a closed curve that

HOMOTOPY

- Ingredients
- One punctured plane
- Two points s and t in the plane
- Two continuous curves from s to t
- The curves are homotopic if ...
- ... one can be smoothly transformed into the other
- ... the concatenation is a closed curve that

HOMOTOPY

- Ingredients
- One punctured plane
- Two points s and t in the plane
- Two continuous curves from s to t
- The curves are homotopic if ...
- ... one can be smoothly transformed into the other
- ... the concatenation is a closed curve that

HOMOTOPY

- Ingredients
- One punctured plane
- Two points s and t in the plane
- Two continuous curves from s to t
- The curves are homotopic if ...
- ... one can be smoothly transformed into the other
- ... the concatenation is a closed curve that

HOMOTOPY

- Ingredients
- One punctured plane
- Two points s and t in the plane
- Two continuous curves from s to t
- The curves are homotopic if ...
- ... one can be smoothly transformed into the other
- ... the concatenation is a closed curve that can be contracted to a point

COVERING SPACE

COVERING SPACE

- Consider a point in a space E

COVERING SPACE

- Consider a point in a space E

COVERING SPACE

- Consider a point in a space E
- Make a copy of the point for each homotopically different way to reach it

COVERING SPACE

- Consider a point in a space E
- Make a copy of the point for each homotopically different way to reach it

COVERING SPACE

- Consider a point in a space E
- Make a copy of the point for each homotopically different way to reach it

COVERING SPACE

- Consider a point in a space E
- Make a copy of the point for each homotopically different way to reach it

COVERING SPACE

- Consider a point in a space E
- Make a copy of the point for each homotopically different way to reach it - The resulting space E^{\prime} is called the covering space of E

COVERING SPACE

- Consider a point in a space E
- Make a copy of the point for each homotopically different way to reach it - The resulting space E^{\prime} is called the covering space of E

COVERING SPACE

- Consider a point in a space E
- Make a copy of the point for each homotopically different way to reach it - The resulting space E^{\prime} is called the covering space of E

COVERING SPACE

- Consider a point in a space E
- Make a copy of the point for each homotopically different way to reach it - The resulting space E^{\prime} is called the covering space of E

COVERING SPACE

- Consider a point in a space E
- Make a copy of the point for each homotopically different way to reach it - The resulting space E^{\prime} is called the covering space of E

COVERING SPACE

- Consider a point in a space E
- Make a copy of the point for each homotopically different way to reach it - The resulting space E^{\prime} is called the covering space of E
- E^{\prime} is simply connected

HOMOTOPIC MEDIAN

HOMOTOPIC MEDIAN

- For homotopic trajectories...

HOMOTOPIC MEDIAN

- For homotopic trajectories...

HOMOTOPIC MEDIAN

- For homotopic trajectories...

HOMOTOPIC MEDIAN

- For homotopic trajectories...

HOMOTOPIC MEDIAN

- For homotopic trajectories...
- Lift the trajectories into the covering space

HOMOTOPIC MEDIAN

- For homotopic trajectories...
- Lift the trajectories into the covering space
- Ignore crossings that are no longer there

HOMOTOPIC MEDIAN

- For homotopic trajectories...
- Lift the trajectories into the covering space
- Ignore crossings that are no longer there

HOMOTOPIC MEDIAN

- For homotopic trajectories...
- Lift the trajectories into the covering space
- Ignore crossings that are no longer there

HOMOTOPIC MEDIAN

- For homotopic trajectories...
- Lift the trajectories into the covering space
- Ignore crossings that are no longer there
- The homotopic median is just the simple median in the covering space

HOMOTOPIC MEDIAN

- For homotopic trajectories...
- Lift the trajectories into the covering space
- Ignore crossings that are no longer there
- The homotopic median is just the simple median in the covering space

HOMOTOPIC MEDIAN

- For homotopic trajectories...
- Lift the trajectories into the covering space
- Ignore crossings that are no longer there
- The homotopic median is just the simple median in the covering space
- For non-homotopic trajectories...

HOMOTOPIC MEDIAN

- For homotopic trajectories...
- Lift the trajectories into the covering space
- Ignore crossings that are no longer there
- The homotopic median is just the simple median in the covering space
- For non-homotopic trajectories...

HOMOTOPIC MEDIAN

- For homotopic trajectories...
- Lift the trajectories into the covering space
- Ignore crossings that are no longer there
- The homotopic median is just the simple median in the covering space
- For non-homotopic trajectories...
- Endpoint t is not the same!

HOMOTOPIC MEDIAN

- For homotopic trajectories...
- Lift the trajectories into the covering space
- Ignore crossings that are no longer there
- The homotopic median is just the simple median in the covering space
- For non-homotopic trajectories...
- Endpoint t is not the same!
- It doesn't work

PLACING POLES

PLACING POLES

- Given a set of trajectories, can we compute a reasonable set of poles?

PLACING POLES

- Given a set of trajectories, can we compute a reasonable set of poles?

PLACING POLES

- Given a set of trajectories, can we compute a reasonable set of poles?
- Place poles in...

PLACING POLES

- Given a set of trajectories, can we compute a reasonable set of poles?
- Place poles in...
- Big faces?

PLACING POLES

- Given a set of trajectories, can we compute a reasonable set of poles?
- Place poles in...
- Big faces?

PLACING POLES

- Given a set of trajectories, can we compute a reasonable set of poles?
- Place poles in...
- Big faces?
- Faces where they preserve the homotopy?

PLACING POLES

- Given a set of trajectories, can we compute a reasonable set of poles?
- Place poles in...
- Big faces?
- Faces where they preserve the homotopy?

PLACING POLES

- Given a set of trajectories, can we compute a reasonable set of poles?
- Place poles in...
- Big faces?
- Faces where they preserve the homotopy?
- Both at the same time?

PLACING POLES

- Given a set of trajectories, can we compute a reasonable set of poles?
- Place poles in...
- Big faces?
- Faces where they preserve the homotopy?
- Both at the same time?

PLACING POLES

- Given a set of trajectories, can we compute a reasonable set of poles?
- Place poles in...
- Big faces?
- Faces where they preserve the homotopy?
- Both at the same time?
- Not uniquely defined!

PLACING POLES

- Given a set of trajectories, can we compute a reasonable set of poles?
- Place poles in...
- Big faces?
- Faces where they preserve the homotopy?
- Both at the same time?
- Not uniquely defined!

PLACING POLES

- Given a set of trajectories, can we compute a reasonable set of poles?
- Place poles in...
- Big faces?
- Faces where they preserve the homotopy?
- Both at the same time?
- Not uniquely defined!

PLACING POLES

- Given a set of trajectories, can we compute a reasonable set of poles?
- Place poles in...
- Big faces?
- Faces where they preserve the homotopy?
- Both at the same time?
- Not uniquely defined!

PLACING POLES

- Given a set of trajectories, can we compute a reasonable set of poles?
- Place poles in...
- Big faces?
- Faces where they preserve the homotopy?
- Both at the same time?
- Not uniquely defined!

III RESULTS

COMPUTING THE MEDIAN

COMPUTING THE MEDIAN

- n : Number of input vertices
- h : Number of input poles
- A: Complexity of arrangement of input
- k : Complexity of output trajectory

COMPUTING THE MEDIAN

- n : Number of input vertices
- h : Number of input poles
- A: Complexity of arrangement of input
- k : Complexity of output trajectory
- Simple median
- $O\left(n^{2} \log n\right)$ time
- $O((n+k) \alpha(n) \log n)$ time

COMPUTING THE MEDIAN

- n : Number of input vertices
- h : Number of input poles
- A: Complexity of arrangement of input
- k : Complexity of output trajectory
- Simple median
- $O\left(n^{2} \log n\right)$ time
- $O((n+k) \alpha(n) \log n)$ time
- Homotopic median
- $O\left(n^{2+\varepsilon}\right)$ time
- $O\left((n \sqrt{h}+k) \alpha(n) \log n+h^{1+\varepsilon}+A\right)$ time

EXPERIMENTAL SETUP

EXPERIMENTAL SETUP

- Trajectory generator

EXPERIMENTAL SETUP

- Trajectory generator
- Random walk towards a series of waypoints

EXPERIMENTAL SETUP

- Trajectory generator
- Random walk towards a series of waypoints

EXPERIMENTAL SETUP

- Trajectory generator
- Random walk towards a series of waypoints

EXPERIMENTAL SETUP

- Trajectory generator
- Random walk towards a series of waypoints

EXPERIMENTAL SETUP

- Trajectory generator
- Random walk towards a series of waypoints

EXPERIMENTAL SETUP

- Trajectory generator
- Random walk towards a series of waypoints

EXPERIMENTAL SETUP

- Trajectory generator
- Random walk towards a series of waypoints

EXPERIMENTAL SETUP

- Trajectory generator
- Random walk towards a series of waypoints

EXPERIMENTAL SETUP

- Trajectory generator
- Random walk towards a series of waypoints

EXPERIMENTAL SETUP

- Trajectory generator
- Random walk towards a series of waypoints

EXPERIMENTAL SETUP

- Trajectory generator
- Random walk towards a series of waypoints

EXPERIMENTAL SETUP

- Trajectory generator
- Random walk towards a series of waypoints

EXPERIMENTAL SETUP

- Trajectory generator
- Random walk towards a series of waypoints

EXPERIMENTAL SETUP

- Trajectory generator
- Random walk towards a series of waypoints
- Simple or self-intersecting trajectories

EXPERIMENTAL SETUP

- Trajectory generator
- Random walk towards a series of waypoints
- Simple or self-intersecting trajectories
- Pole generator

EXPERIMENTAL SETUP

- Trajectory generator
- Random walk towards a series of waypoints
- Simple or self-intersecting trajectories
- Pole generator
- Places poles in faces that are large enough

EXPERIMENTAL SETUP

- Trajectory generator
- Random walk towards a series of waypoints
- Simple or self-intersecting trajectories
- Pole generator
- Places poles in faces that are large enough

EXPERIMENTAL SETUP

- Trajectory generator
- Random walk towards a series of waypoints
- Simple or self-intersecting trajectories
- Pole generator
- Places poles in faces that are large enough
- Discards non-homotopic trajectories

EXPERIMENTAL SETUP

- Trajectory generator
- Random walk towards a series of waypoints
- Simple or self-intersecting trajectories
- Pole generator
- Places poles in faces that are large enough
- Discards non-homotopic trajectories

EXPERIMENTAL SETUP

- Trajectory generator
- Random walk towards a series of waypoints
- Simple or self-intersecting trajectories
- Pole generator
- Places poles in faces that are large enough
- Discards non-homotopic trajectories
- Measures of interest

EXPERIMENTAL SETUP

- Trajectory generator
- Random walk towards a series of waypoints
- Simple or self-intersecting trajectories
- Pole generator
- Places poles in faces that are large enough
- Discards non-homotopic trajectories
- Measures of interest

EXPERIMENTAL SETUP

- Trajectory generator
- Random walk towards a series of waypoints
- Simple or self-intersecting trajectories
- Pole generator
- Places poles in faces that are large enough
- Discards non-homotopic trajectories
- Measures of interest
- Angular change

EXPERIMENTAL SETUP

- Trajectory generator
- Random walk towards a series of waypoints
- Simple or self-intersecting trajectories
- Pole generator
- Places poles in faces that are large enough
- Discards non-homotopic trajectories
- Measures of interest
- Angular change
- Complexity

EXPERIMENTAL SETUP

- Trajectory generator
- Random walk towards a series of waypoints
- Simple or self-intersecting trajectories
- Pole generator
- Places poles in faces that are large enough
- Discards non-homotopic trajectories
- Measures of interest
- Angular change
- Complexity
- Length

EXPERIMENTAL RESULTS

EXPERIMENTAL RESULTS

- Complexity
- No self-intersections
- Self-intersections

S
H
345%
319%
207%

EXPERIMENTAL RESULTS

- Complexity
- No self-intersections
- Self-intersections
- Length
- No self-intersections
- Self-intersections

S
H
$345 \% \quad 319 \%$
207%
343%
$\begin{array}{ll}96 \% & 99 \% \\ 51 \%\end{array}$

EXPERIMENTAL RESULTS

- Complexity
- No self-intersections
- Self-intersections
- Length
- No self-intersections
- Self-intersections
- Angular change
- No self-intersections
- Self-intersections

S

96%	99%
51%	96%

$$
\begin{array}{ll}
539 \% & 468 \% \\
381 \% & 466 \%
\end{array}
$$

CONCLUSION

CONCLUSIONS

CONCLUSIONS

- This work

CONCLUSIONS

- This work
- Two definitions for median trajectory
- Efficient algorithms for computing them
- Quantitative evaluation on generated data

CONCLUSIONS

- This work
- Two definitions for median trajectory
- Efficient algorithms for computing them
- Quantitative evaluation on generated data
- Future work

CONCLUSIONS

- This work
- Two definitions for median trajectory
- Efficient algorithms for computing them
- Quantitative evaluation on generated data
- Future work
- More intelligent automatic pole placement?
- Evaluation on real-world data?
- Understand better what makes a us accept a certain curve as a good median

THANK YOU!

