MEMBERSHIP DIMENSION

CATEGORY-BASED ROUTING IN SOCIAL NETWORKS

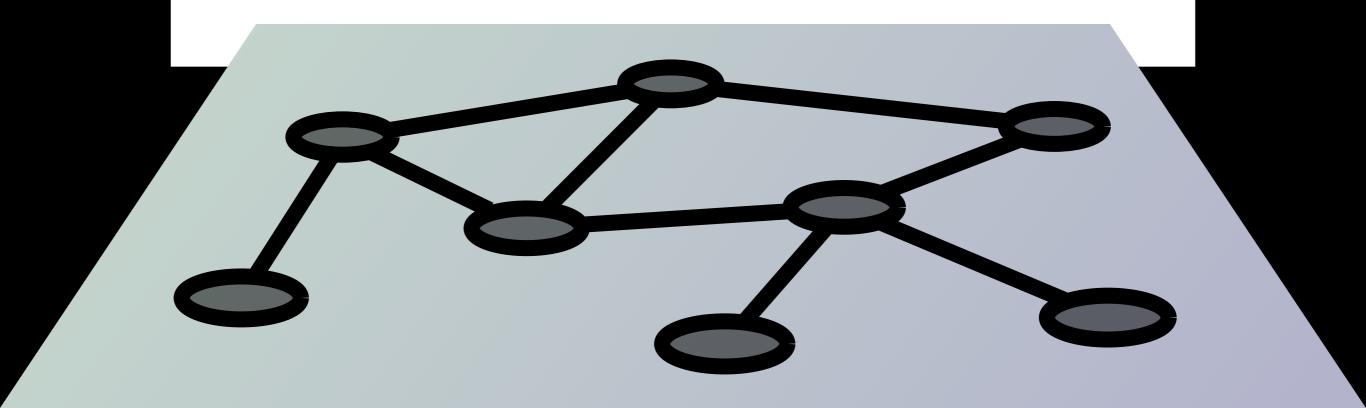
AND THE

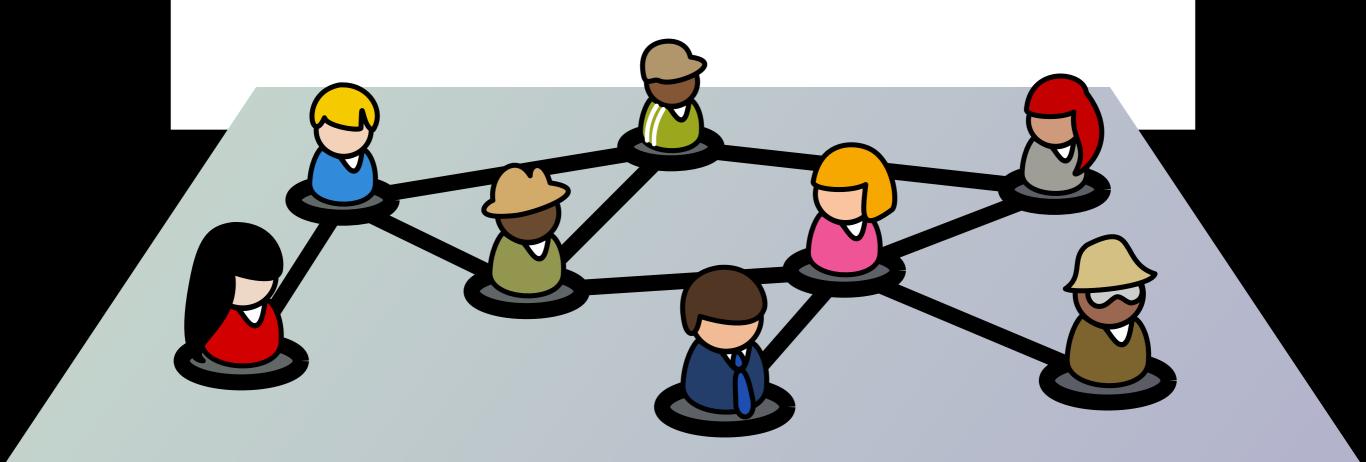
SMALL-WORLD PHENOMENON

David Eppstein • Michael Goodrich • Maarten Löffler

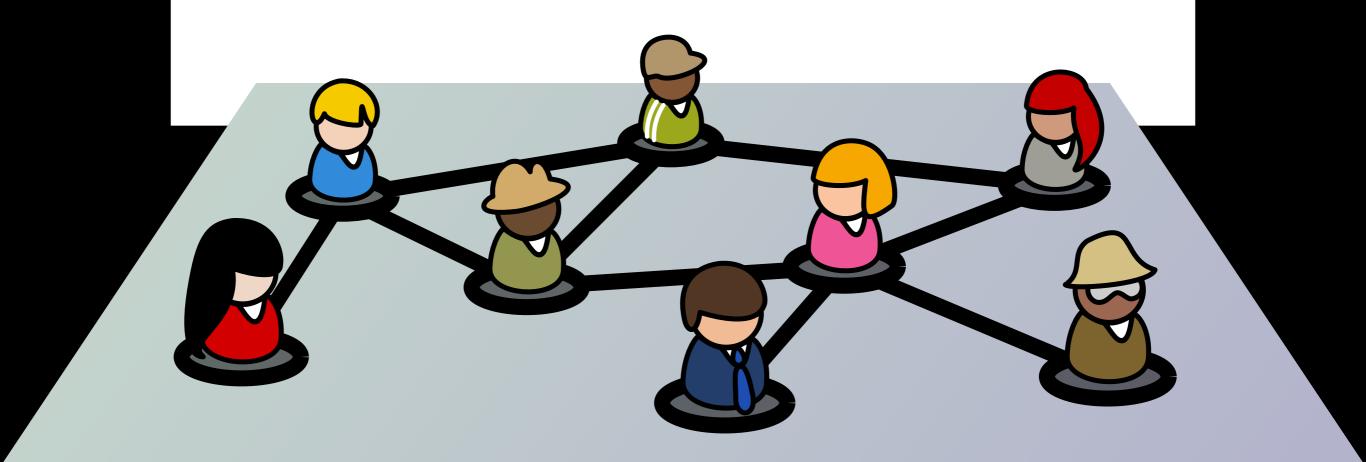
Darren Strash • Lowell Trott

PART I INTRODUCTION



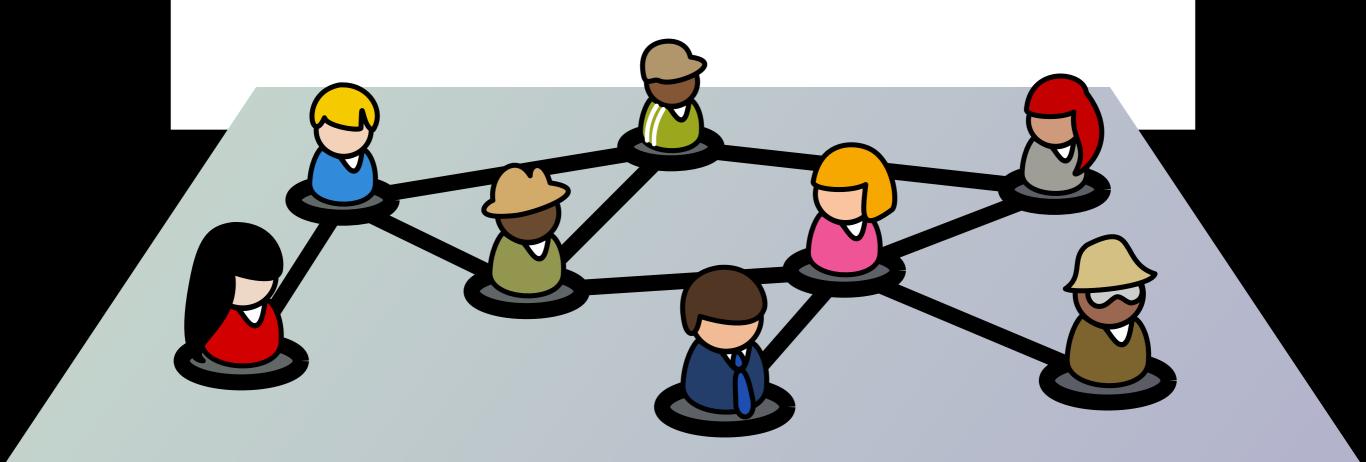


- Consider a social network
- Milgram experiment



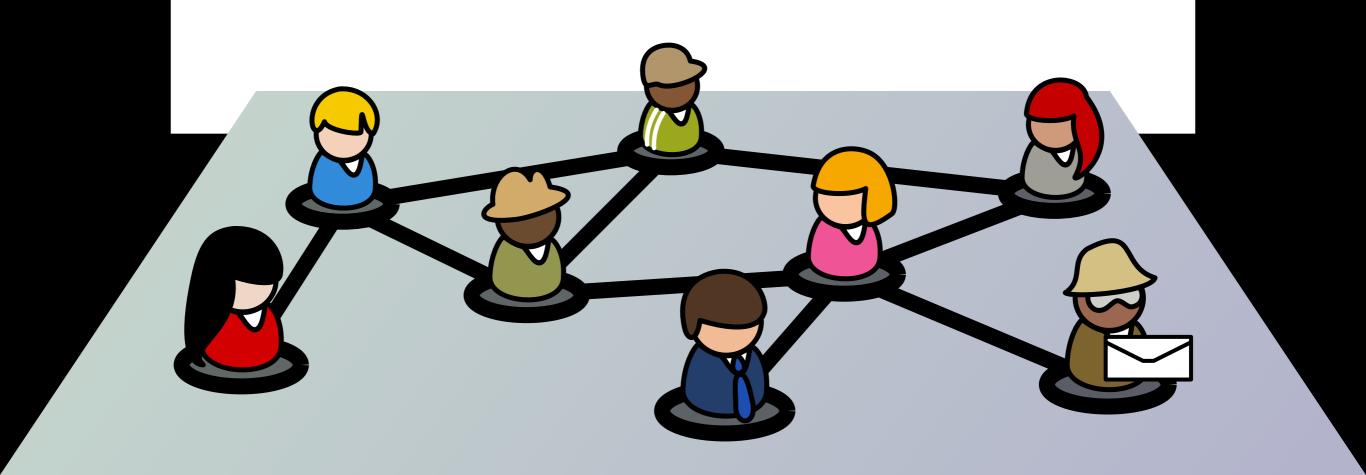
- Consider a social network
- Milgram experiment

[Milgram, 1967] • Give letter to random person



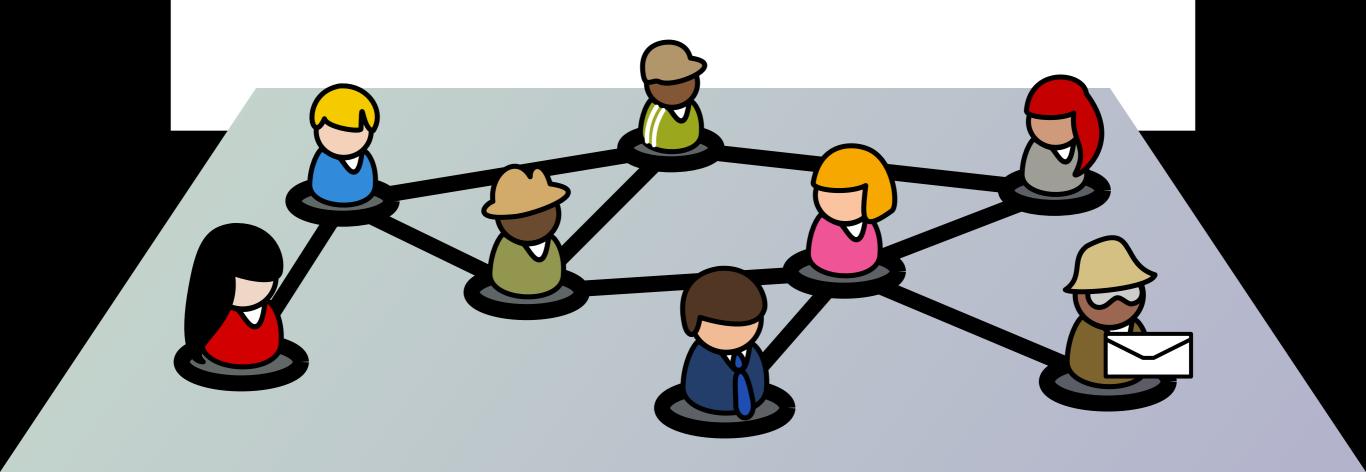
- Consider a social network
- Milgram experiment

• Give letter to random person



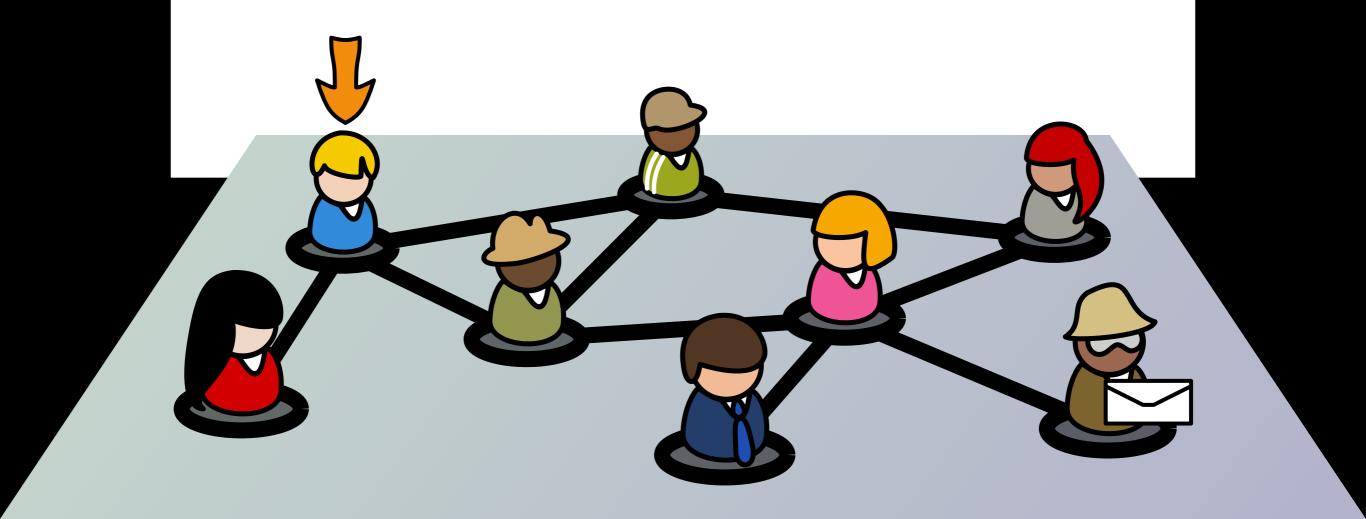
- Consider a social network
- Milgram experiment

- Give letter to random person
- Select a random target



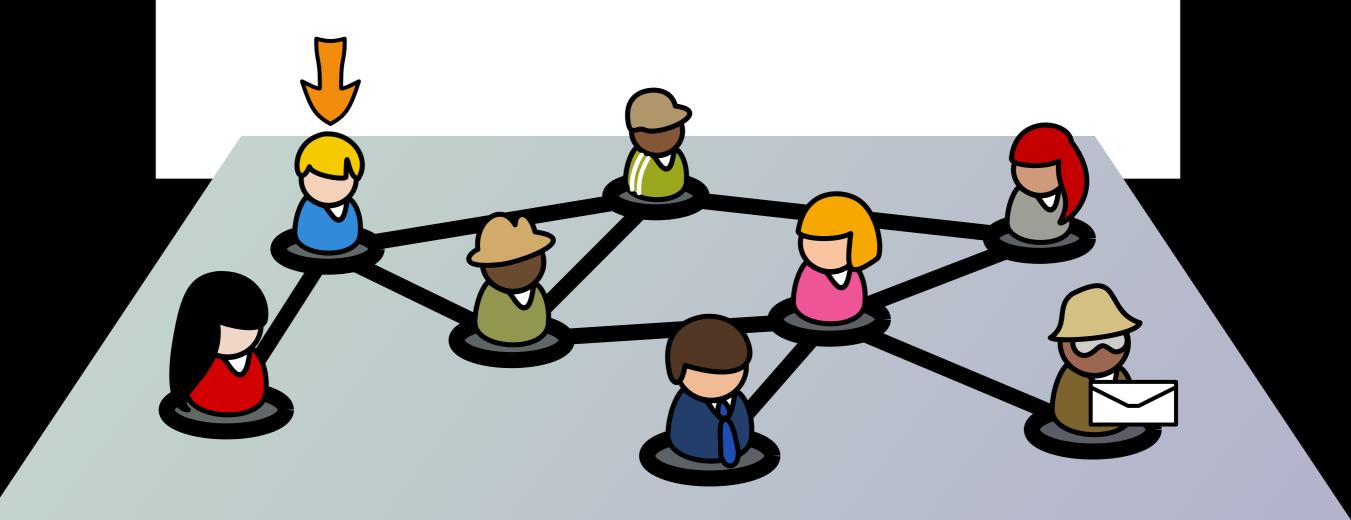
- Consider a social network
- Milgram experiment

- Give letter to random person
- Select a random target



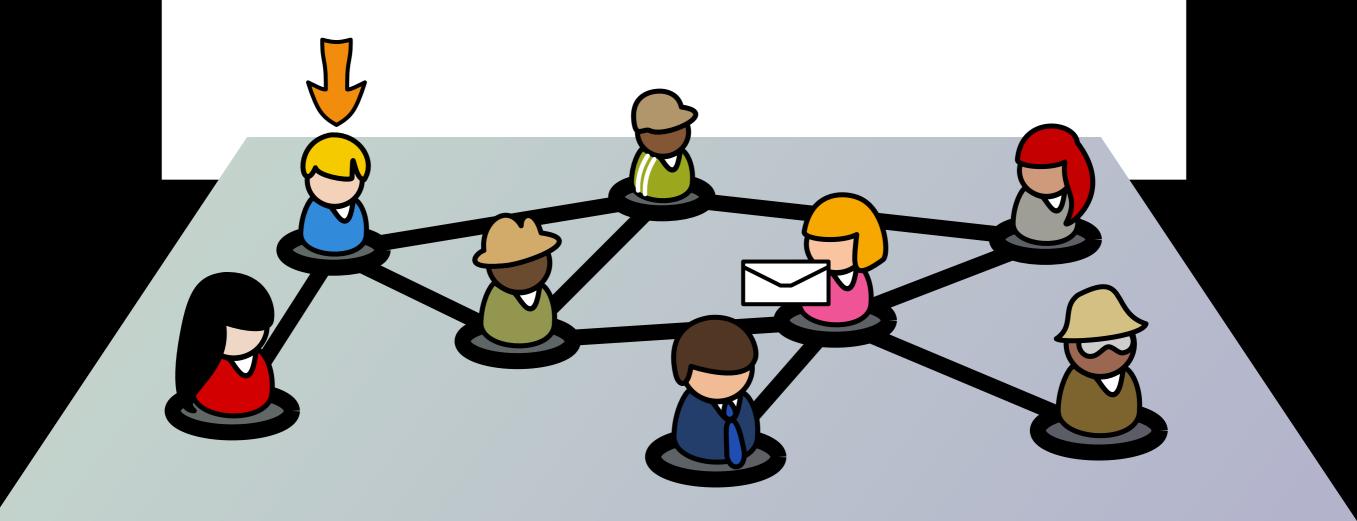
- Consider a social network
- Milgram experiment

- Give letter to random person
- Select a random target
- Person should give letter to acquaintence



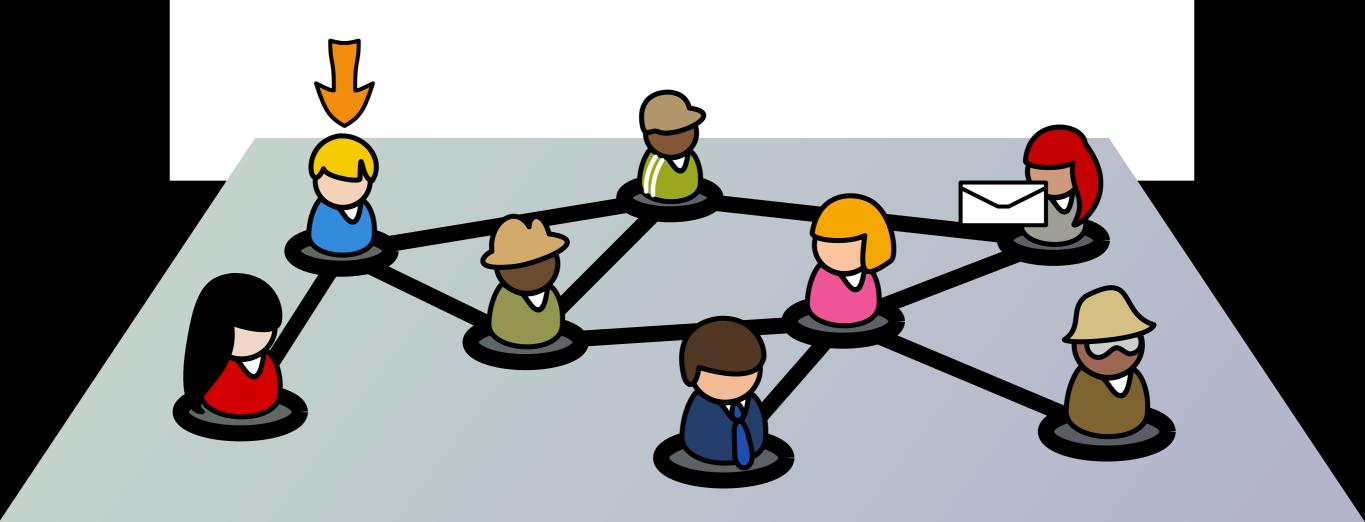
- Consider a social network
- Milgram experiment

- Give letter to random person
- Select a random target
- Person should give letter to acquaintence



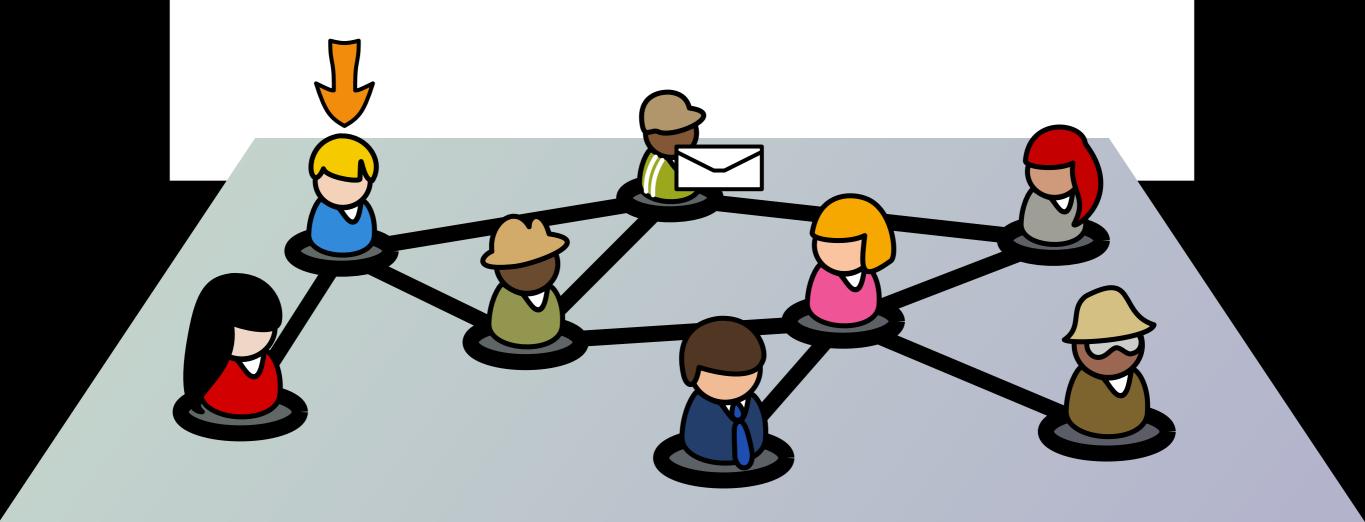
- Consider a social network
- Milgram experiment

- Give letter to random person
- Select a random target
- Person should give letter to acquaintence



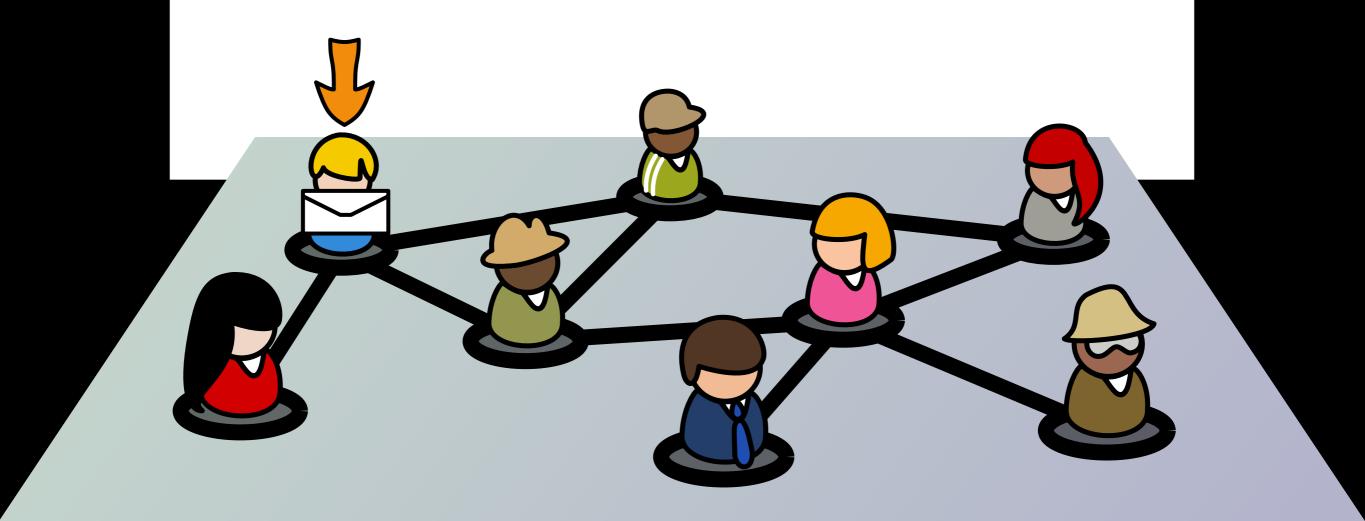
- Consider a social network
- Milgram experiment

- Give letter to random person
- Select a random target
- Person should give letter to acquaintence



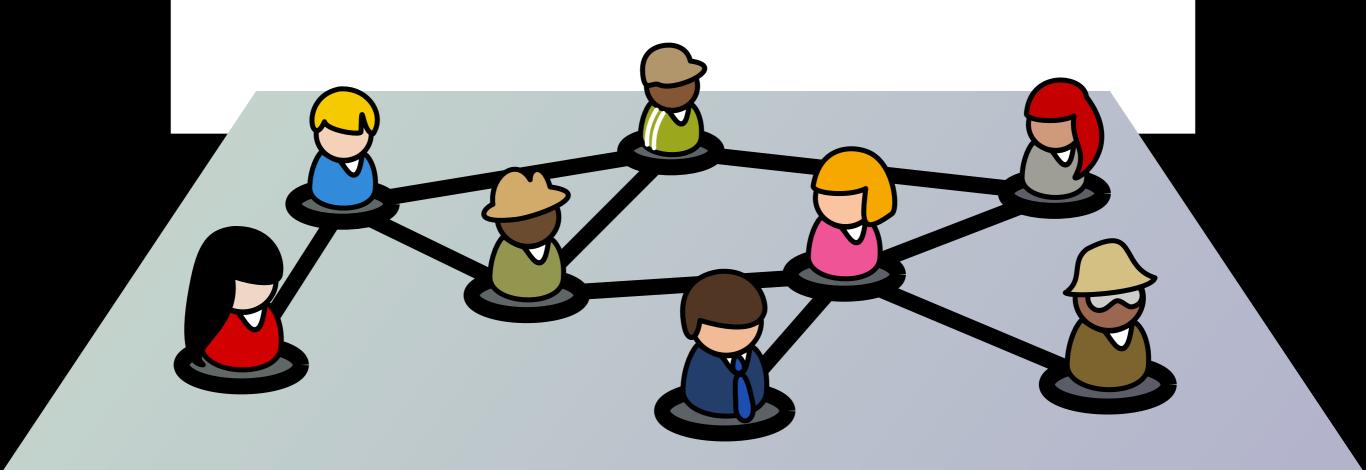
- Consider a social network
- Milgram experiment

- Give letter to random person
- Select a random target
- Person should give letter to acquaintence



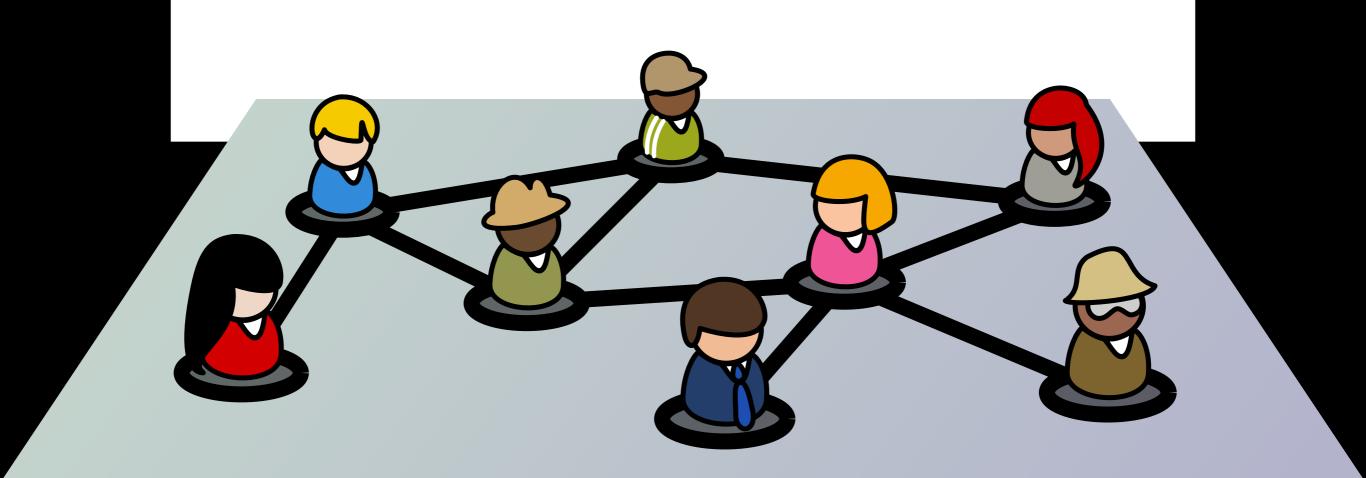
- Consider a social network
- Milgram experiment

- Give letter to random person
- Select a random target
- Person should give letter to acquaintence



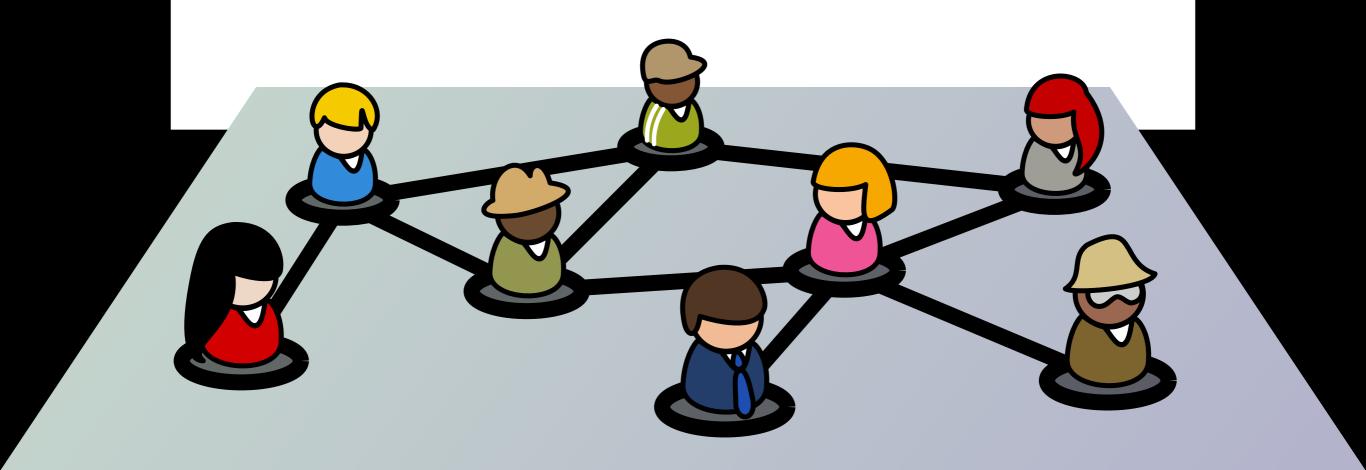
- Consider a social network
- Milgram experiment

- Give letter to random person
- Select a random target
- Person should give letter to acquaintence
- Conclusions



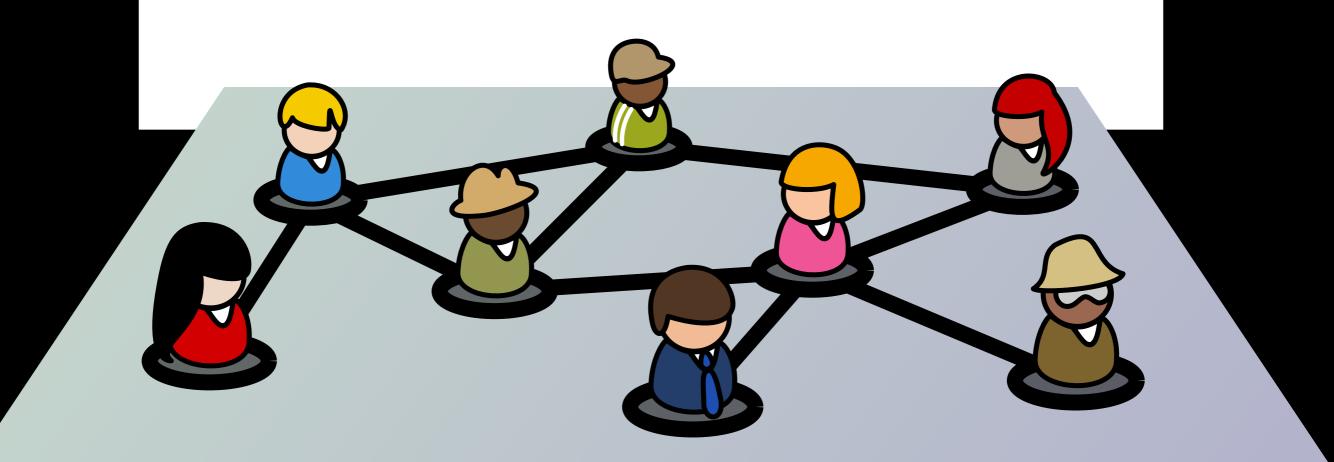
- Consider a social network
- Milgram experiment

- Give letter to random person
- Select a random target
- Person should give letter to acquaintence
- Conclusions
 - Short paths exist between all people



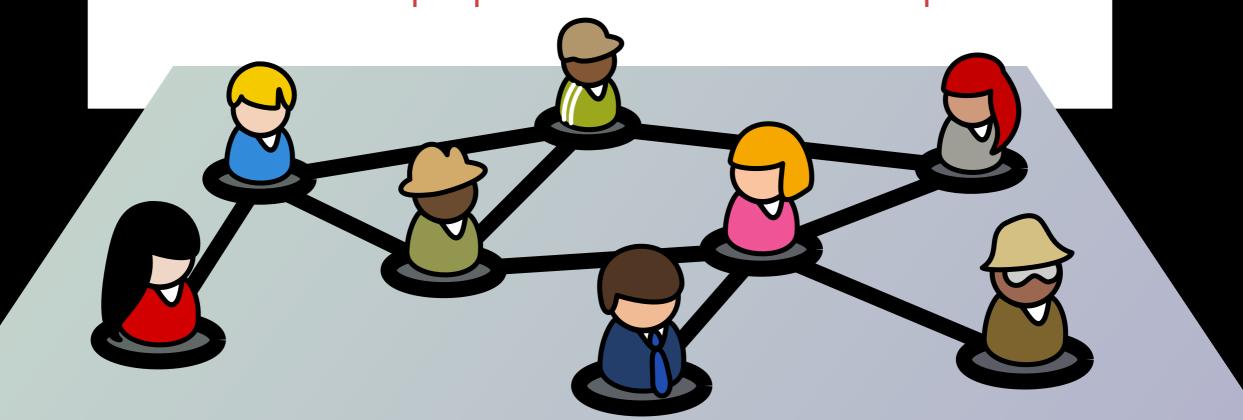
- Consider a social network
- Milgram experiment

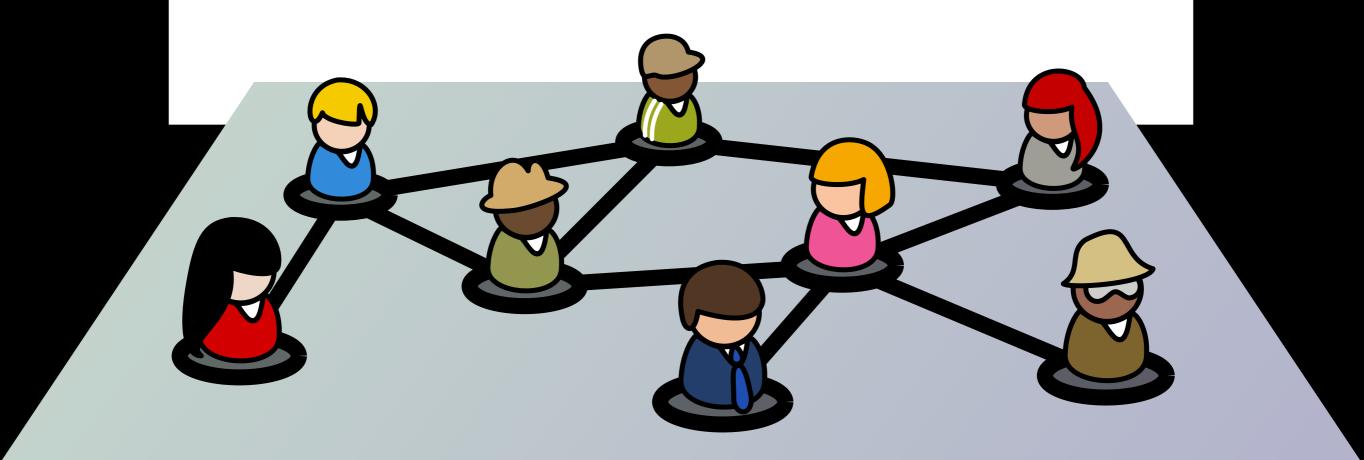
- Give letter to random person
- Select a random target
- Person should give letter to acquaintence
- Conclusions
 - Short paths exist between all people
 - "six degrees of separation"



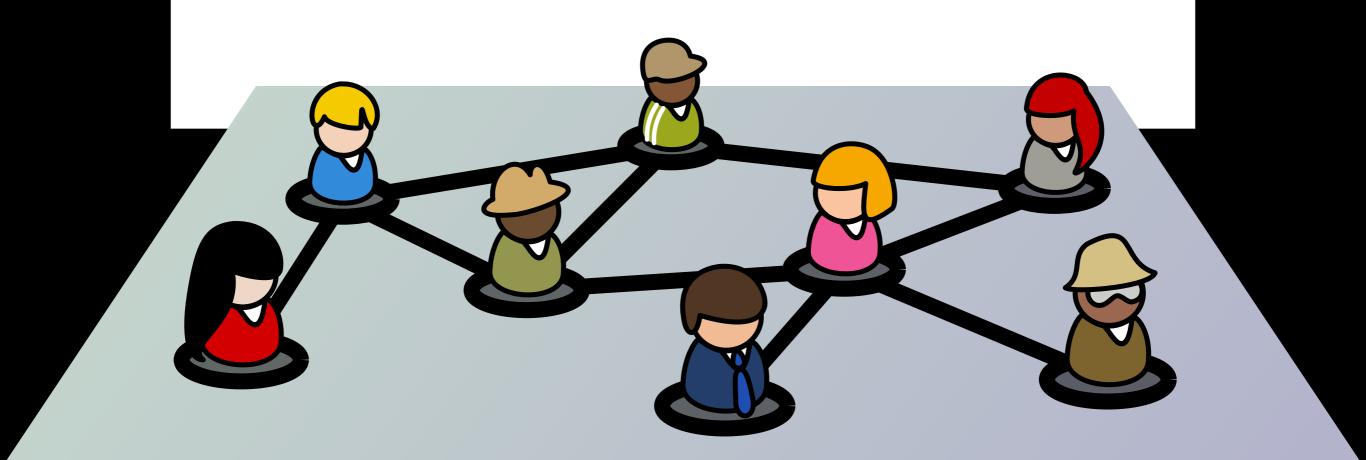
- Consider a social network
- Milgram experiment

- Give letter to random person
- Select a random target
- Person should give letter to acquaintence
- Conclusions
 - Short paths exist between all people
 - "six degrees of separation"
 - ... and people are able to *find* these paths

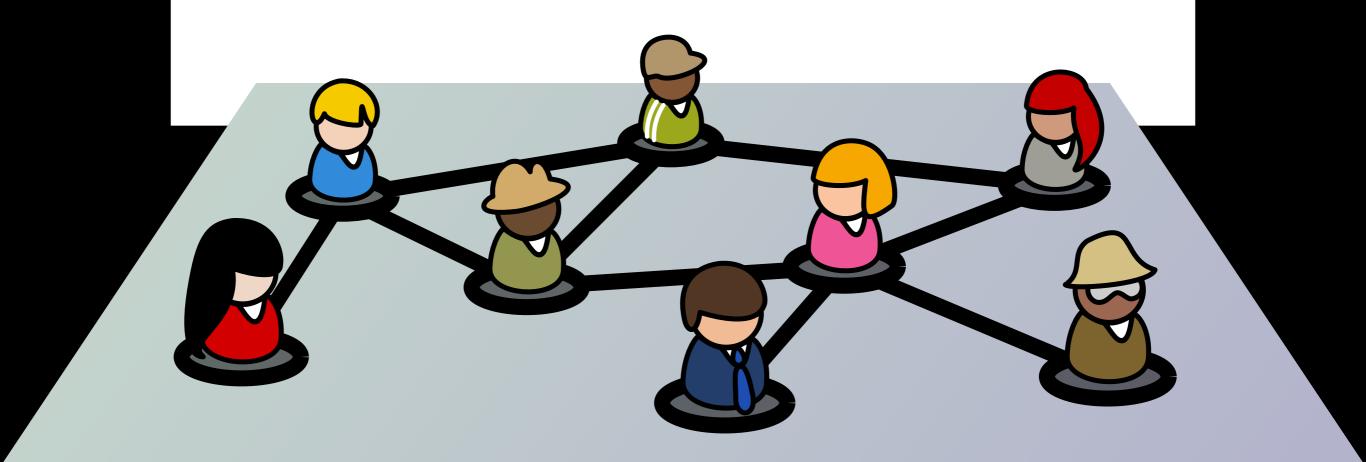




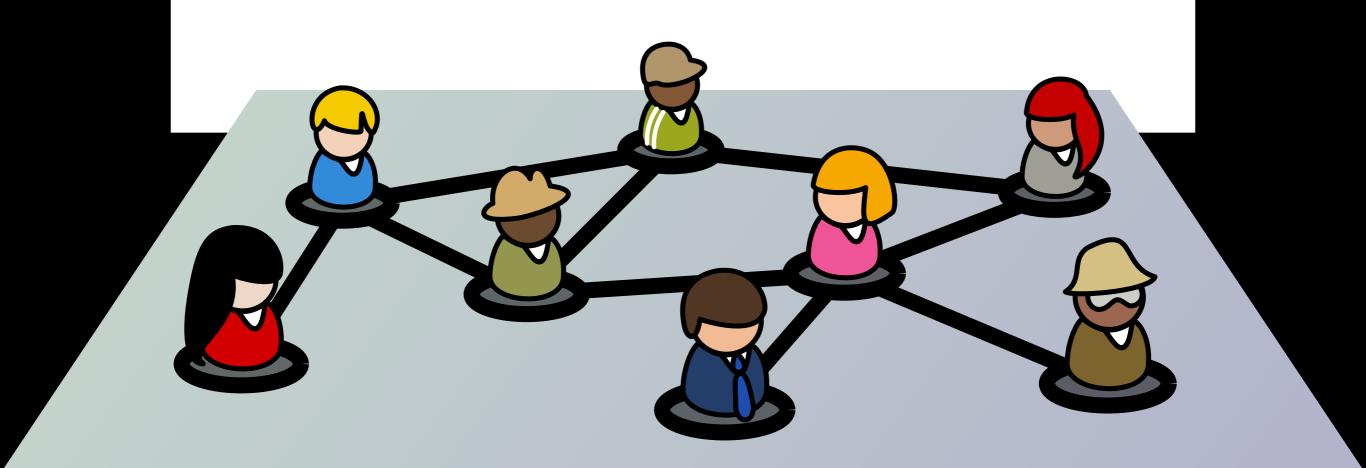
Follow-up experiments



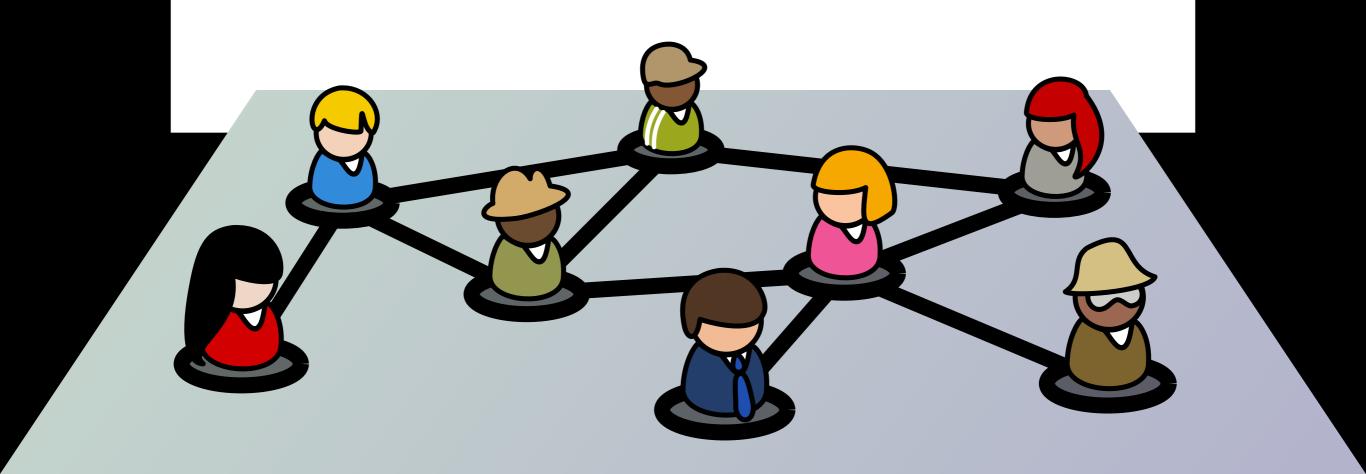
- Follow-up experiments
 - Routes between people with the same occupation are shorter [Hunter & Shotland, 1974]



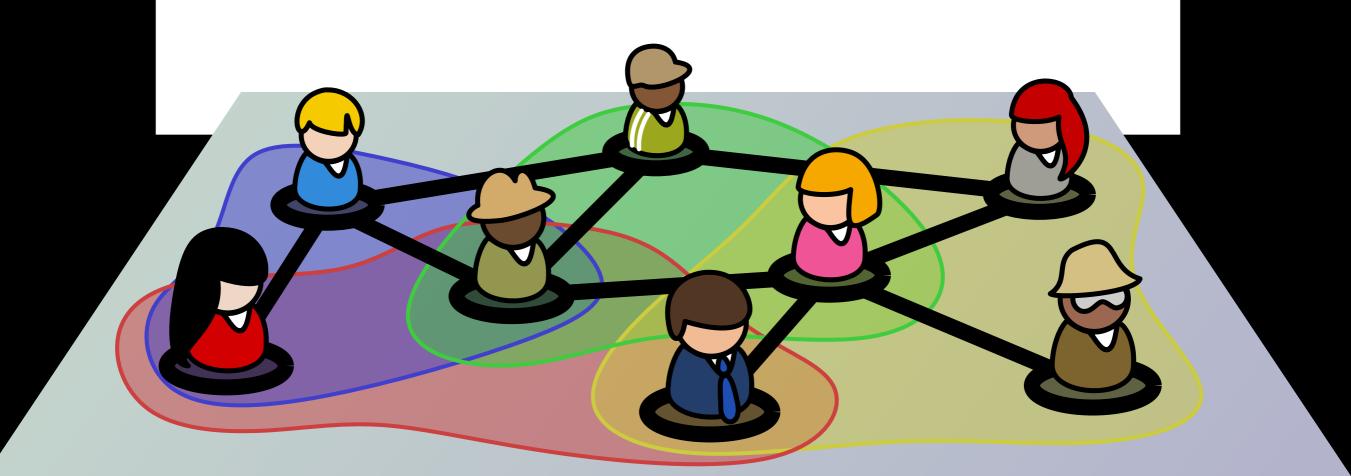
- Follow-up experiments
 - Routes between people with the same occupation are shorter [Hunter & Shotland, 1974]
 - Decisions who to route to are mostly "categorical" in nature [Killworth & Bernard, 1978]



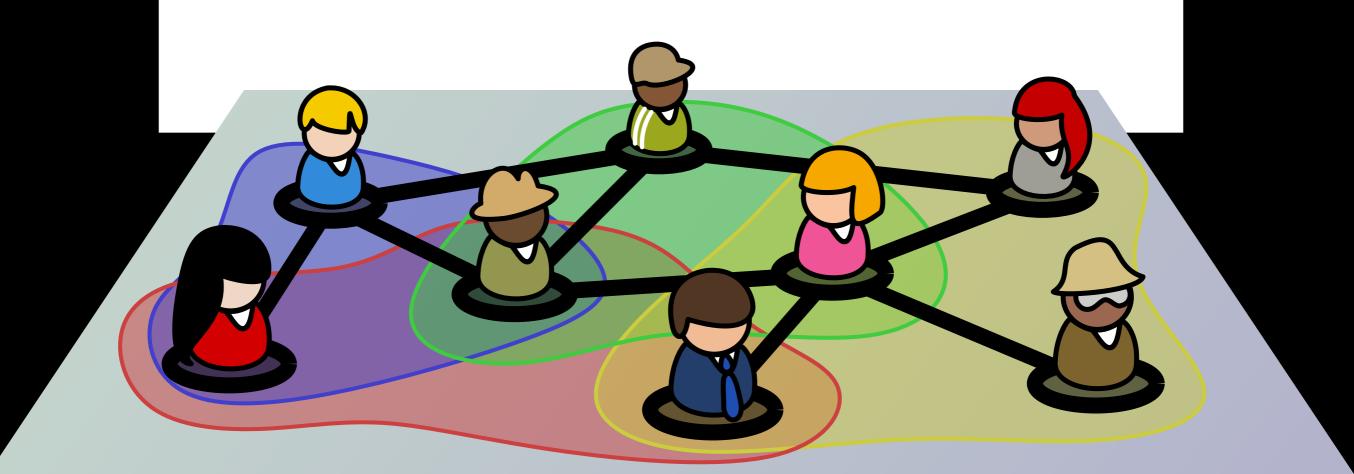
- Follow-up experiments
 - Routes between people with the same
 occupation are shorter [Hunter & Shotland, 1974]
 - Decisions who to route to are mostly "categorical" in nature [Killworth & Bernard, 1978]
- Consider a set of categories



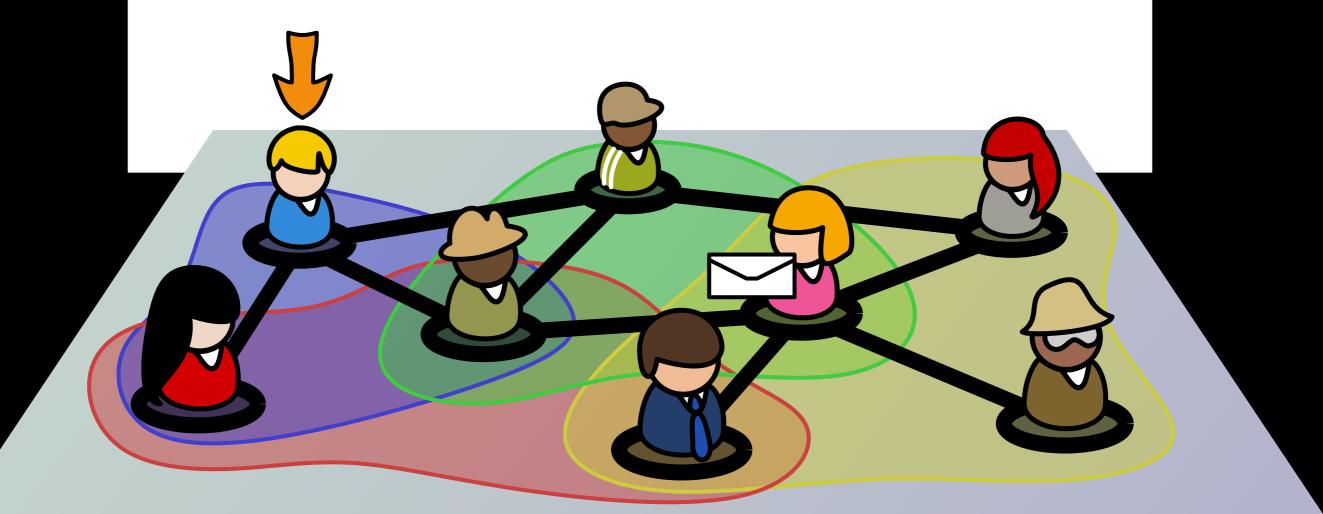
- Follow-up experiments
 - Routes between people with the same occupation are shorter [Hunter & Shotland, 1974]
 - Decisions who to route to are mostly "categorical" in nature [Killworth & Bernard, 1978]
- Consider a set of categories



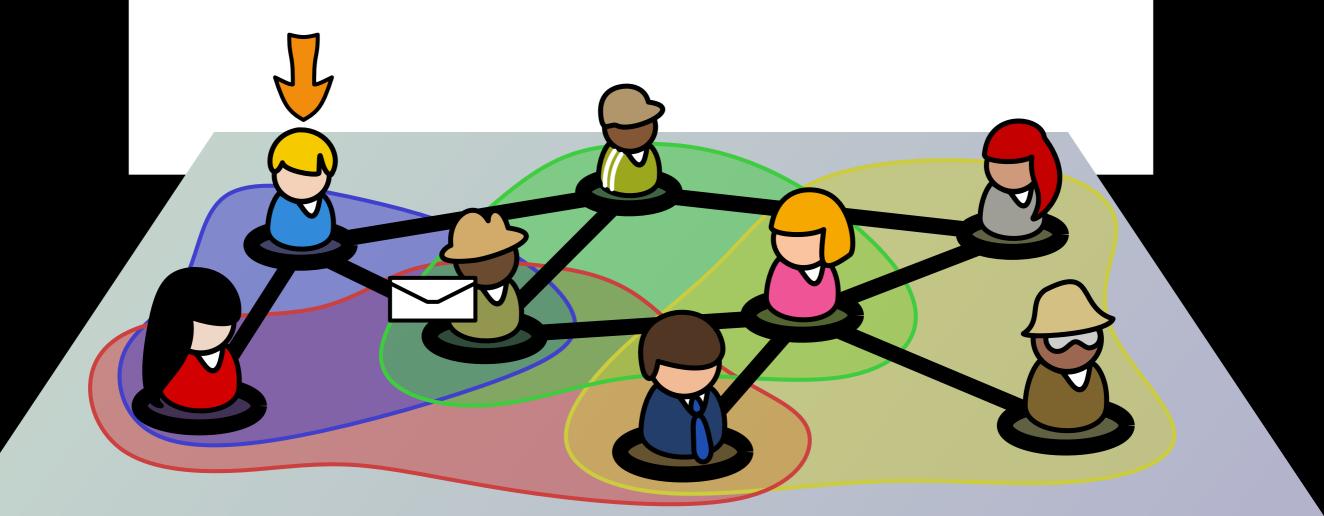
- Follow-up experiments
 - Routes between people with the same occupation are shorter [Hunter & Shotland, 1974]
 - Decisions who to route to are mostly "categorical" in nature [Killworth & Bernard, 1978]
- Consider a set of categories
- Make decisions based on them



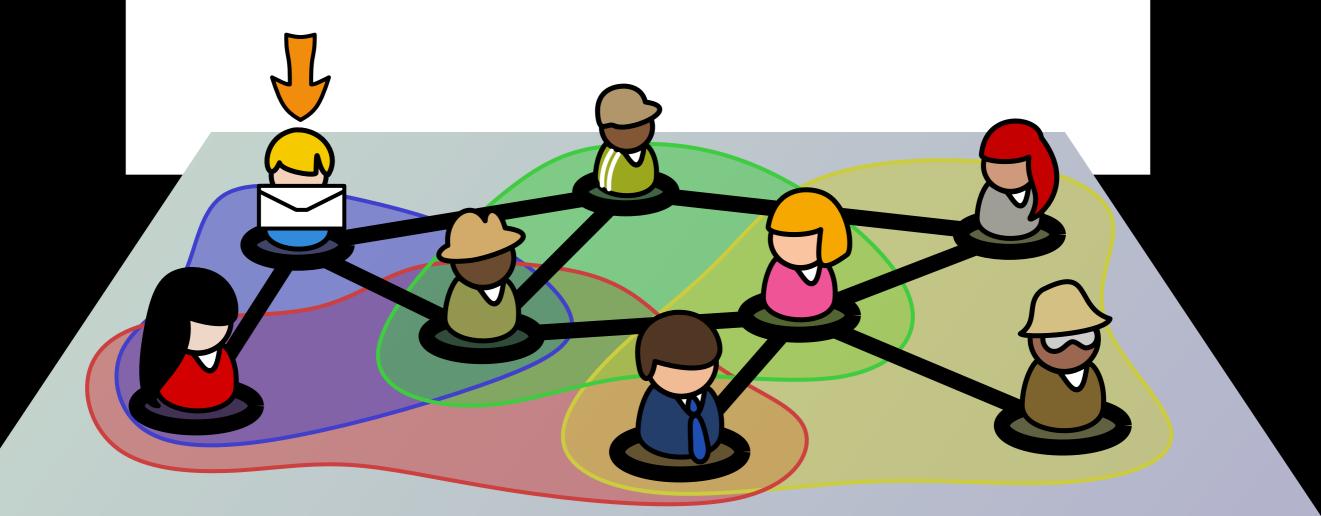
- Follow-up experiments
 - Routes between people with the same occupation are shorter [Hunter & Shotland, 1974]
 - Decisions who to route to are mostly "categorical" in nature [Killworth & Bernard, 1978]
- Consider a set of categories
- Make decisions based on them



- Follow-up experiments
 - Routes between people with the same occupation are shorter [Hunter & Shotland, 1974]
 - Decisions who to route to are mostly "categorical" in nature [Killworth & Bernard, 1978]
- Consider a set of categories
- Make decisions based on them



- Follow-up experiments
 - Routes between people with the same occupation are shorter [Hunter & Shotland, 1974]
 - Decisions who to route to are mostly "categorical" in nature [Killworth & Bernard, 1978]
- Consider a set of categories
- Make decisions based on them



• Is this feasible?

- Is this feasible?
 - Assume people use a simple category-based routing algorithm

- Is this feasible?
 - Assume people use a simple category-based routing algorithm
 - Under what conditions of a network and set of categories does simple routing work?

MAIN QUESTIONS

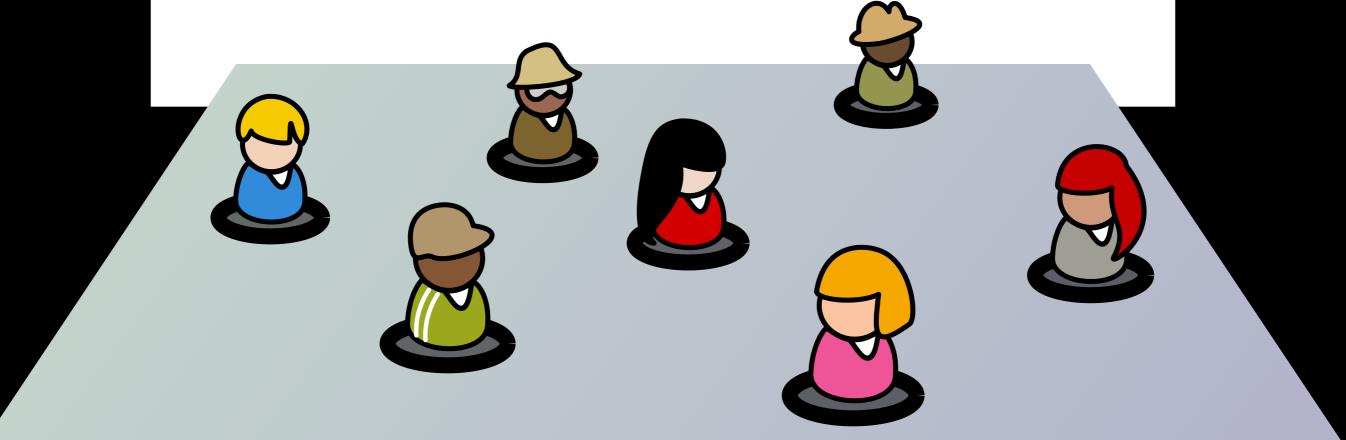
- Is this feasible?
 - Assume people use a simple category-based routing algorithm
 - Under what conditions of a network and set of categories does simple routing work?
 - How much does an individual need to know for this to work?

PART II DEFINITIONS & RESULTS

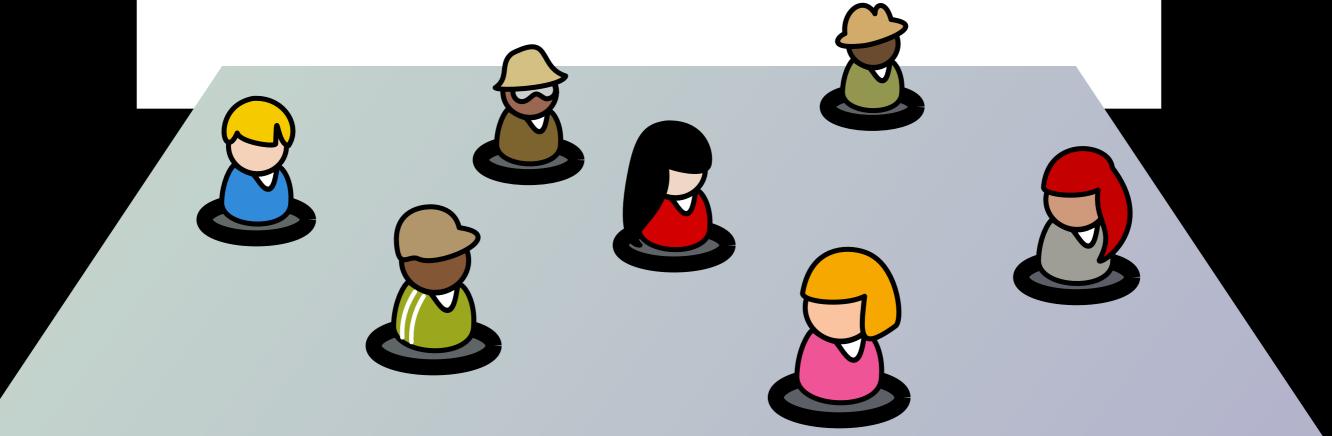
Ingredients

- Ingredients
 A set *U* of *n* objects

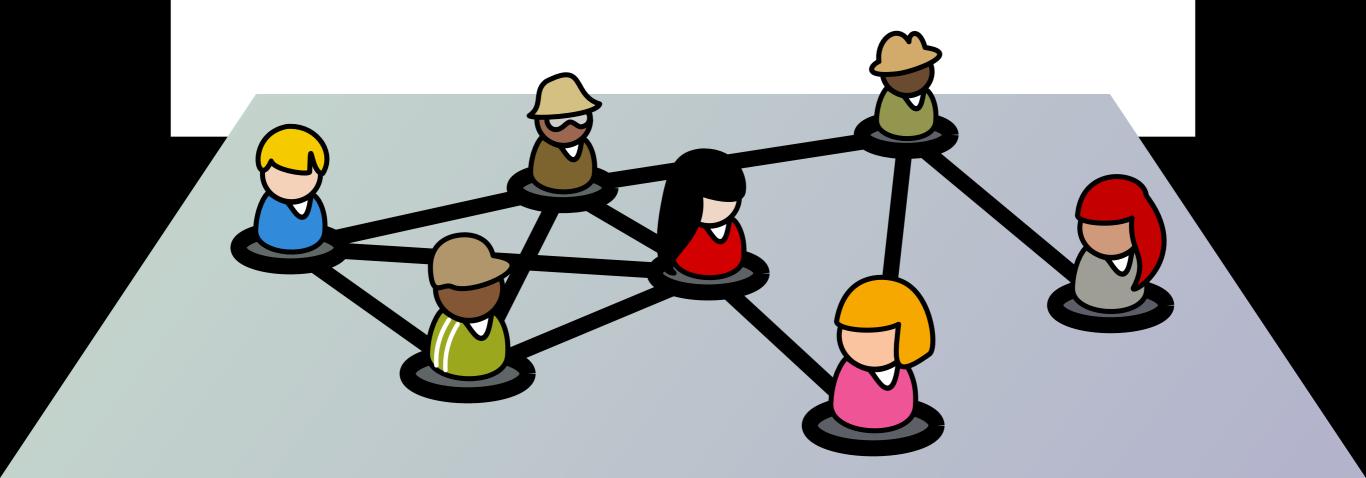
- IngredientsA set *U* of *n* objects



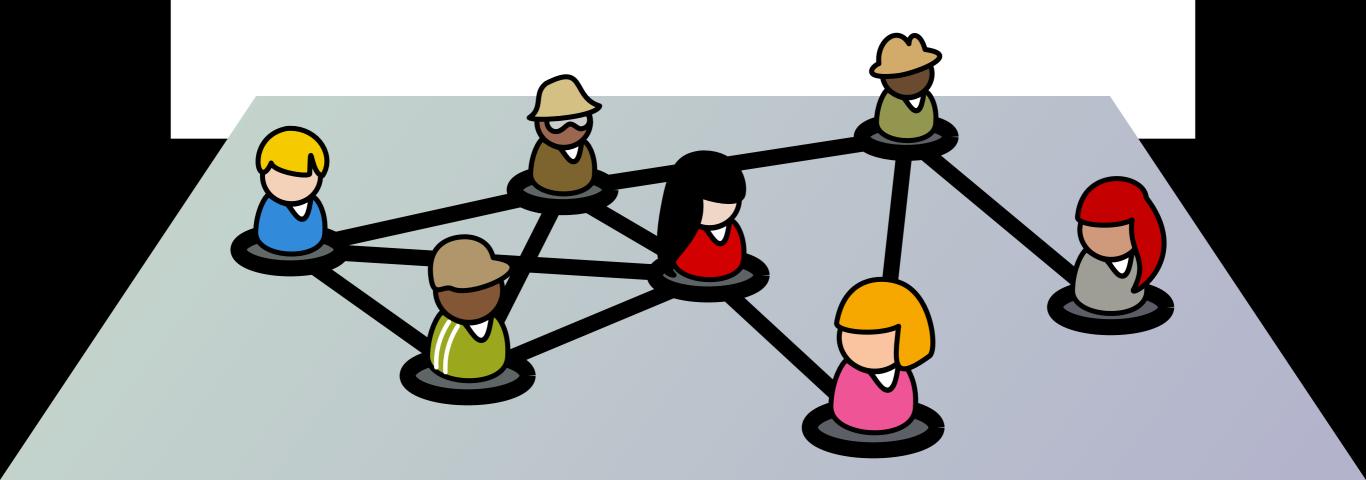
- Ingredients
 - $\check{\mathsf{A}}$ set U of n objects
 - A set E of relations, resulting in a graph G=(U,E)



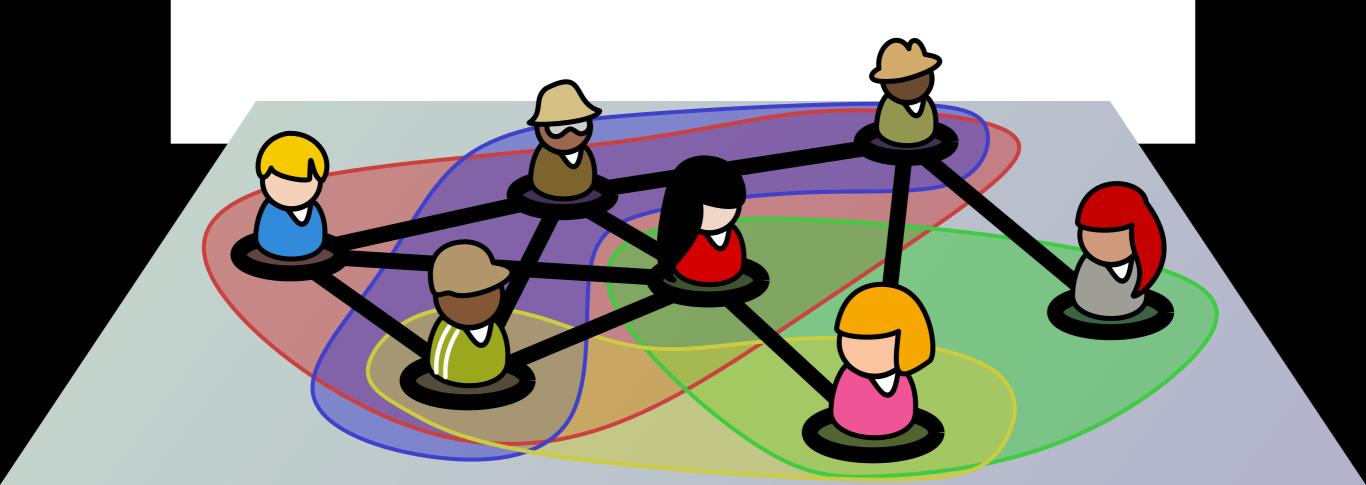
- Ingredients
 - A set U of n objects
 - A set E of relations, resulting in a graph G=(U,E)



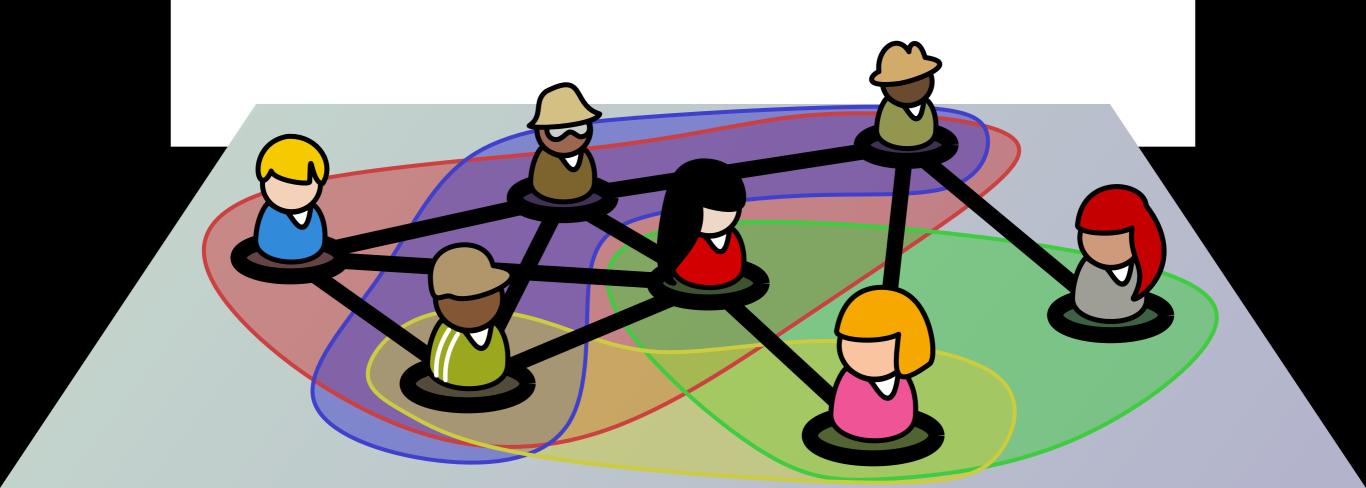
- Ingredients
 - A set U of n objects
 - A set E of relations, resulting in a graph G=(U,E)
 - ullet A set $\mathcal{S}\subseteq 2^U$ of categories



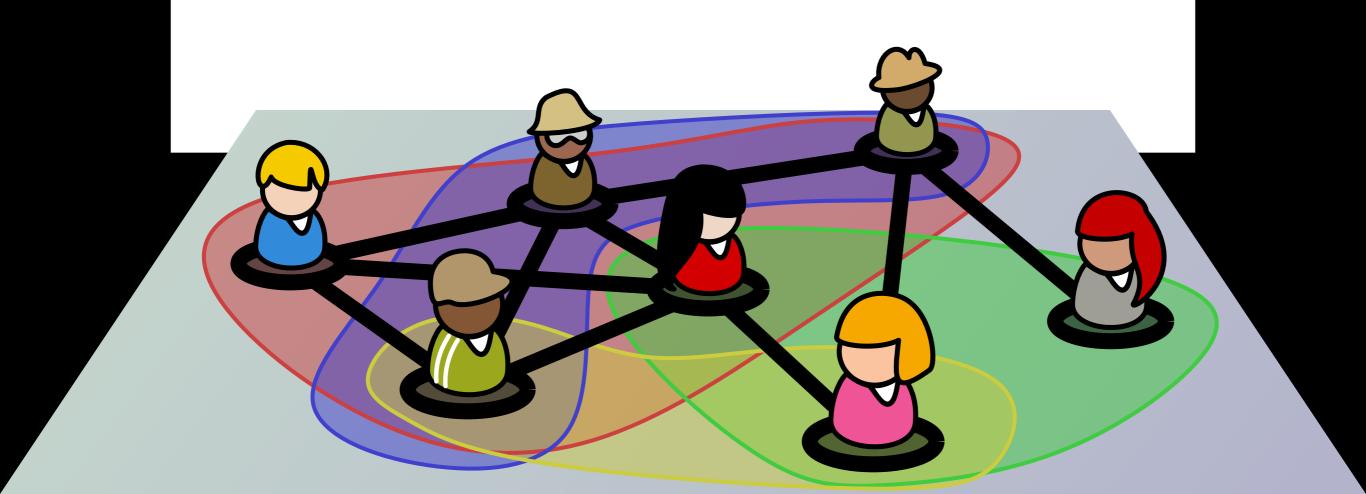
- Ingredients
 - A set U of n objects
 - A set E of relations, resulting in a graph G=(U,E)
 - ullet A set $\mathcal{S}\subseteq 2^U$ of categories



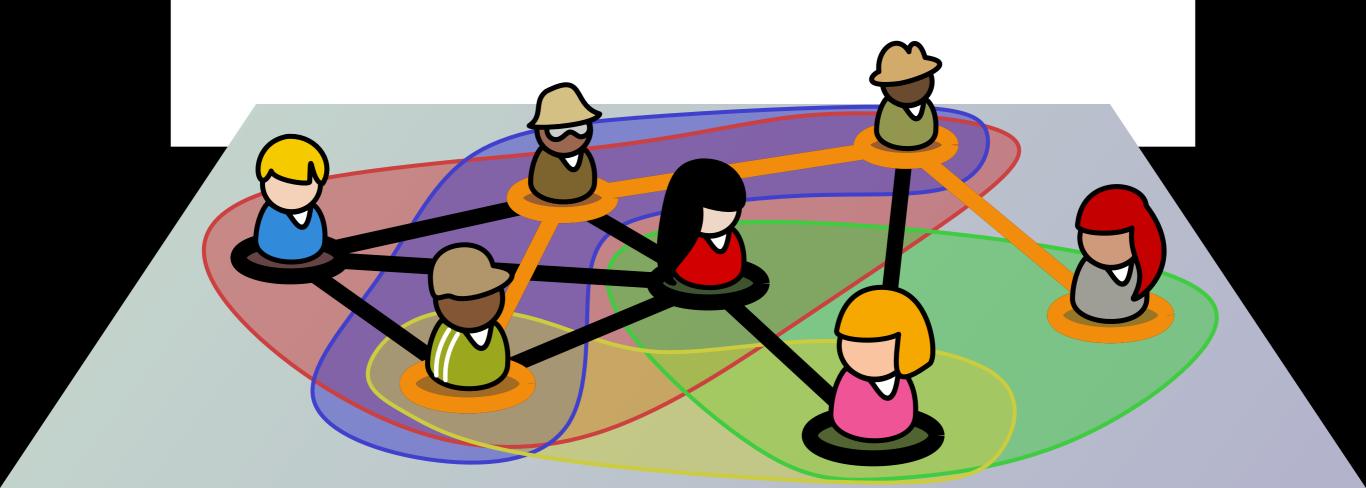
- Ingredients
 - ullet A set U of n objects
 - A set E of relations, resulting in a graph G=(U,E)
 - ullet A set $\mathcal{S}\subseteq 2^U$ of categories
- Basic concepts



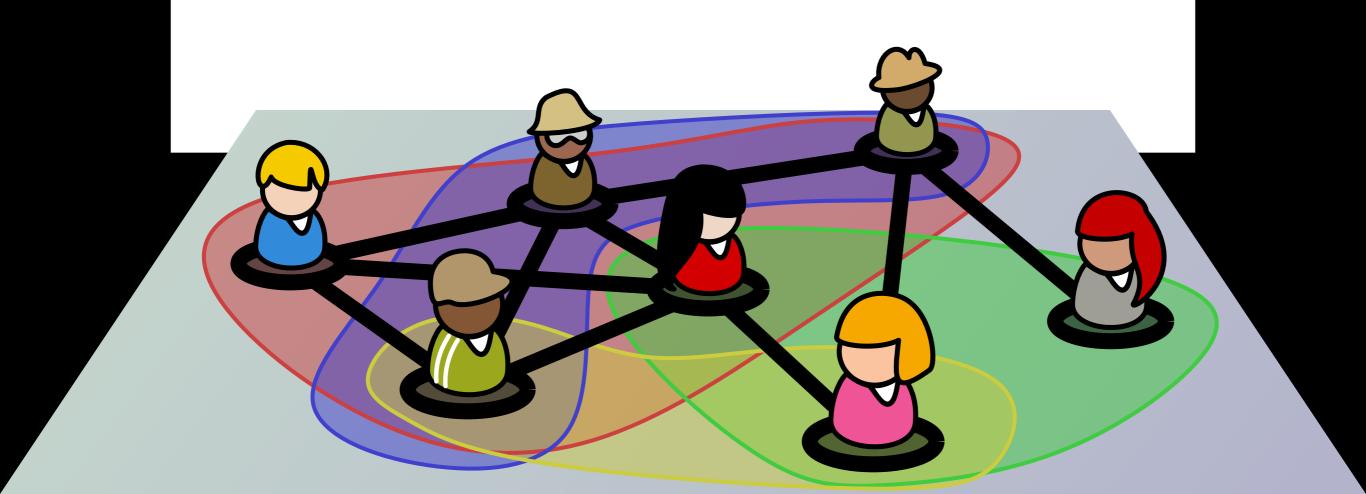
- Ingredients
 - ullet A set U of n objects
 - A set E of relations, resulting in a graph G=(U,E)
 - ullet A set $\mathcal{S}\subseteq 2^U$ of categories
- Basic concepts
 - diam(G): longest shortest path in G



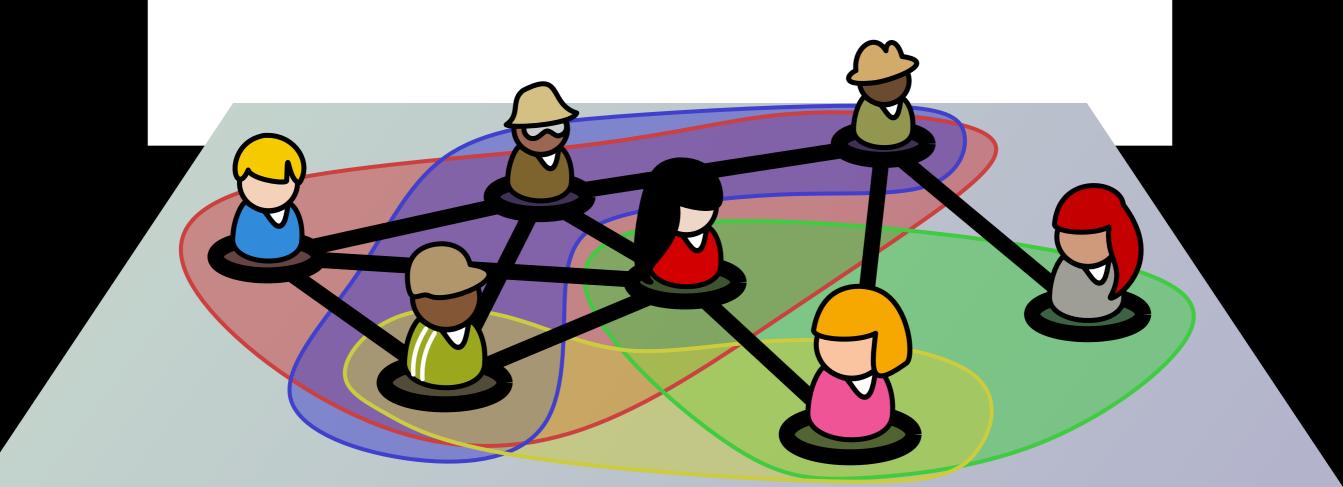
- Ingredients
 - ullet A set U of n objects
 - A set E of relations, resulting in a graph G=(U,E)
 - ullet A set $\mathcal{S}\subseteq 2^U$ of categories
- Basic concepts
 - $\operatorname{diam}(G)$: longest shortest path in G



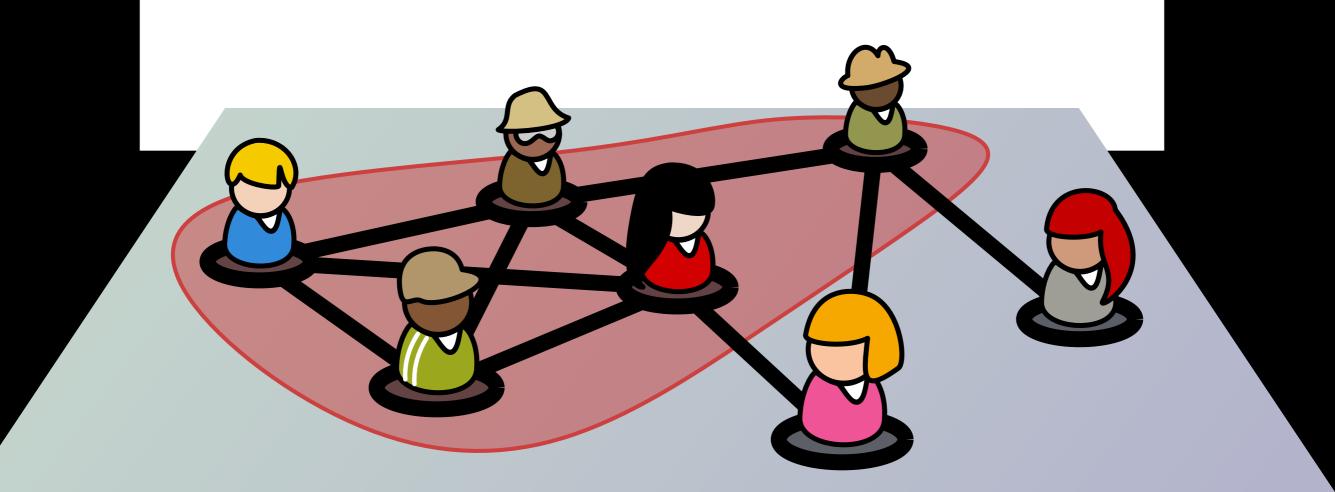
- Ingredients
 - ullet A set U of n objects
 - A set E of relations, resulting in a graph G=(U,E)
 - ullet A set $\mathcal{S}\subseteq 2^U$ of categories
- Basic concepts
 - diam(G): longest shortest path in G



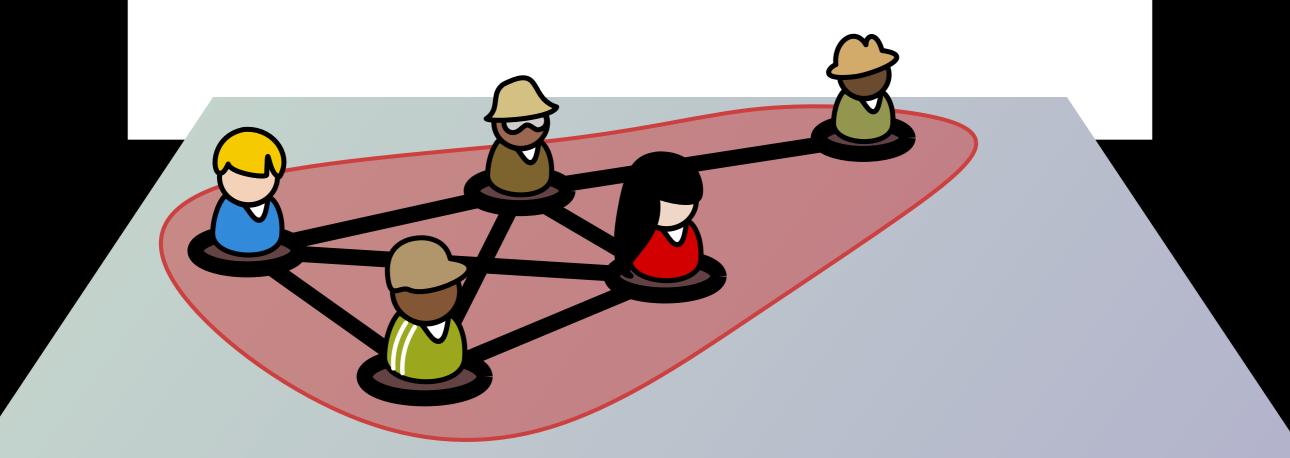
- Ingredients
 - $\bar{\mathsf{A}}$ set U of n objects
 - A set E of relations, resulting in a graph G=(U,E)
 - A set $\mathcal{S} \subseteq 2^U$ of categories
- Basic concepts
 - $\operatorname{diam}(G)$: longest shortest path in G
 - ullet G[C]: subgraph induced by C



- Ingredients
 - $\bar{\mathsf{A}}$ set U of n objects
 - A set E of relations, resulting in a graph G=(U,E)
 - ullet A set $\mathcal{S} \subseteq 2^U$ of categories
- Basic concepts
 - $\operatorname{diam}(G)$: longest shortest path in G
 - ullet G[C]: subgraph induced by C



- Ingredients
 - A set U of n objects
 - A set E of relations, resulting in a graph G=(U,E)
 - ullet A set $\mathcal{S}\subseteq 2^U$ of categories
- Basic concepts
 - $\operatorname{diam}(G)$: longest shortest path in G
 - ullet G[C]: subgraph induced by C

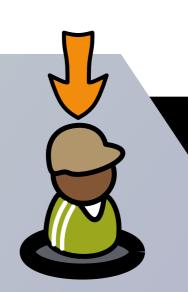


Algorithm

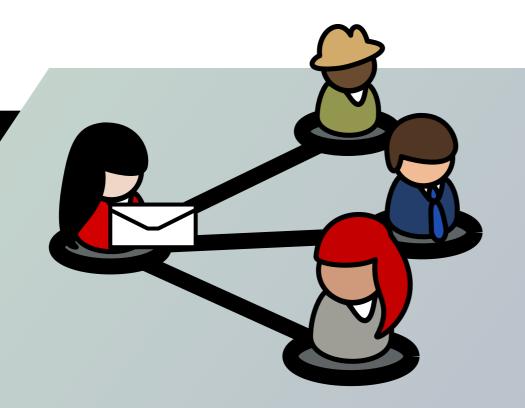
- Algorithm
 - Give message to neighbour who shares most categories with the target

- Algorithm
 - Give message to neighbour who shares most categories with the target
 - $\max_{u:(s,u)\in E} |\{C: s \notin C \land u, t \in C\}|$

- Algorithm
 - Give message to neighbour who shares most categories with the target
 - $\max_{u:(s,u)\in E} |\{C: s \notin C \land u, t \in C\}|$



- Algorithm
 - Give message to neighbour who shares most categories with the target
 - $\max_{u:(s,u)\in E} |\{C: s \notin C \land u, t \in C\}|$

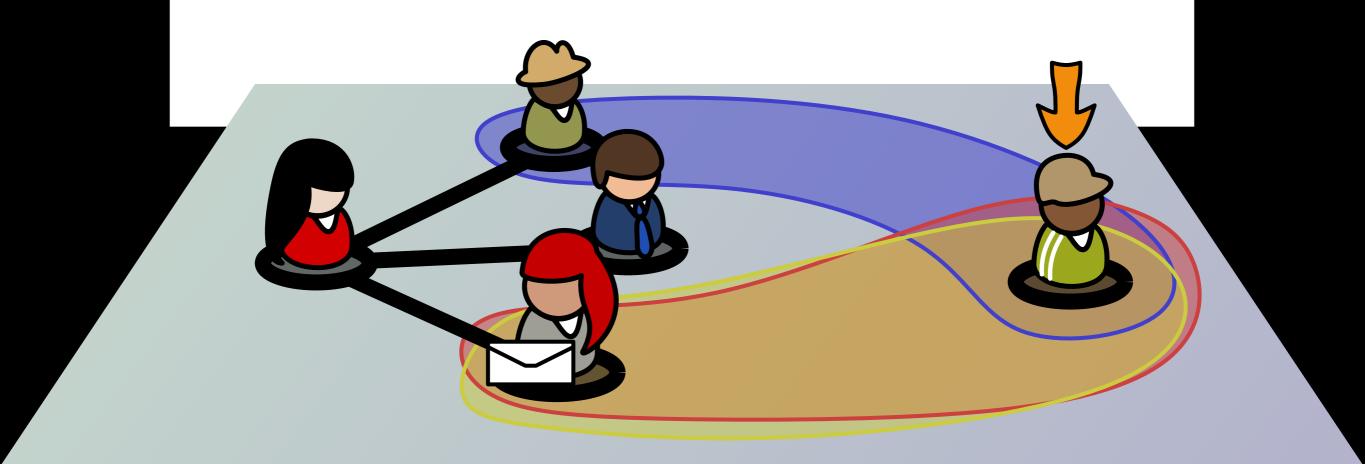


- Algorithm
 - Give message to neighbour who shares most categories with the target
 - $\max_{u:(s,u)\in E} |\{C: s \notin C \land u, t \in C\}|$

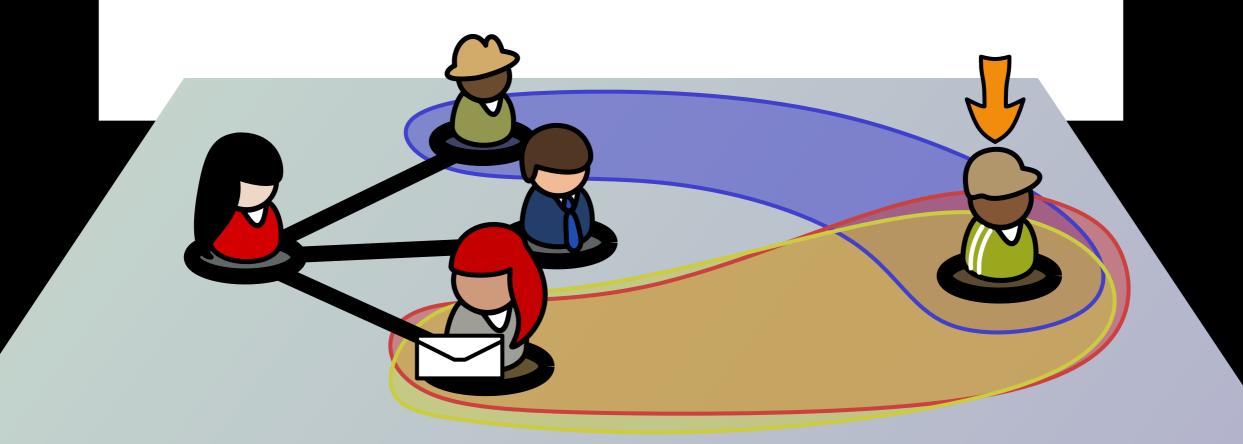
- Algorithm
 - Give message to neighbour who shares most categories with the target
 - $\max_{u:(s,u)\in E} |\{C: s \notin C \land u, t \in C\}|$

- Algorithm
 - Give message to neighbour who shares most categories with the target
 - $\max_{u:(s,u)\in E} |\{C: s \notin C \land u, t \in C\}|$
- Rationale

- Algorithm
 - Give message to neighbour who shares most categories with the target
 - $\max_{u:(s,u)\in E} |\{C: s \notin C \land u, t \in C\}|$
- Rationale
 - Simplest interpretation of "category-based" routing



- Algorithm
 - Give message to neighbour who shares most categories with the target
 - $\max_{u:(s,u)\in E} |\{C: s\notin C \land u, t\in C\}|$
- Rationale
 - Simplest interpretation of "category-based" routing
 - Requires only local knowledge about neighbours and target

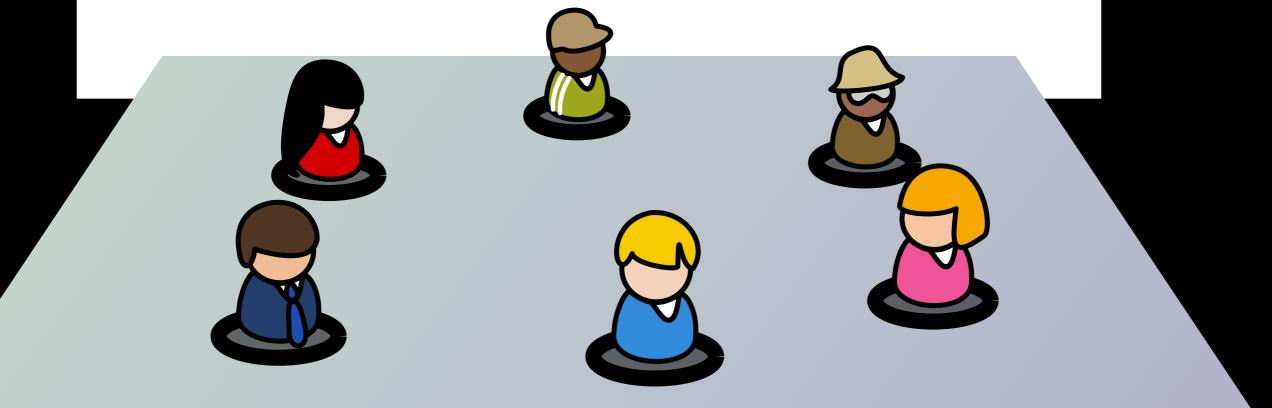


Definition

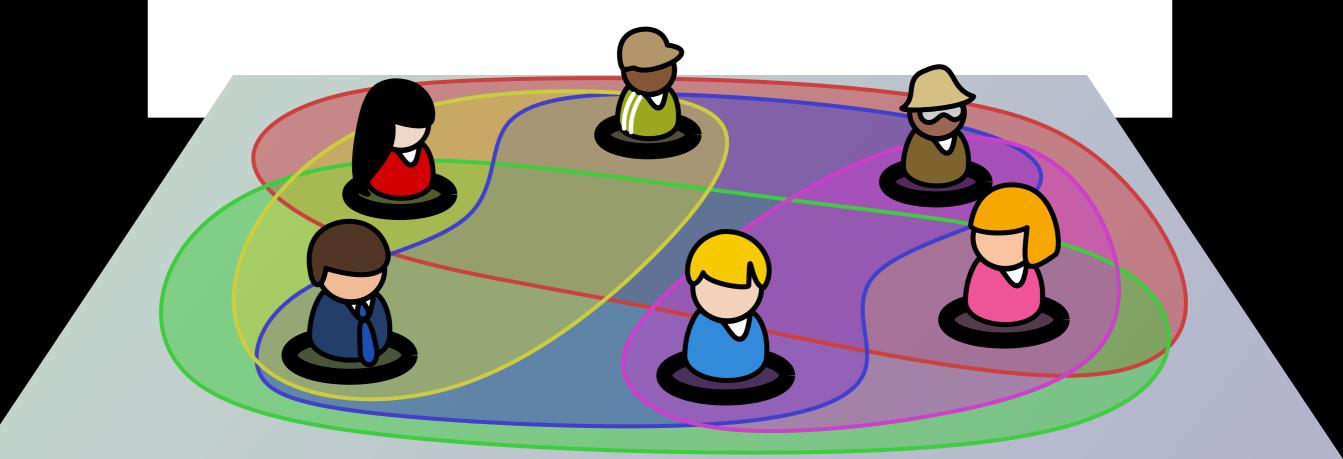
- Definition
 - The network is connected inside every category

- Definition
 - The network is connected inside every category
 - $\operatorname{inco}(G, \mathcal{S})$: $\forall C \in \mathcal{S} : G[C]$ is connected

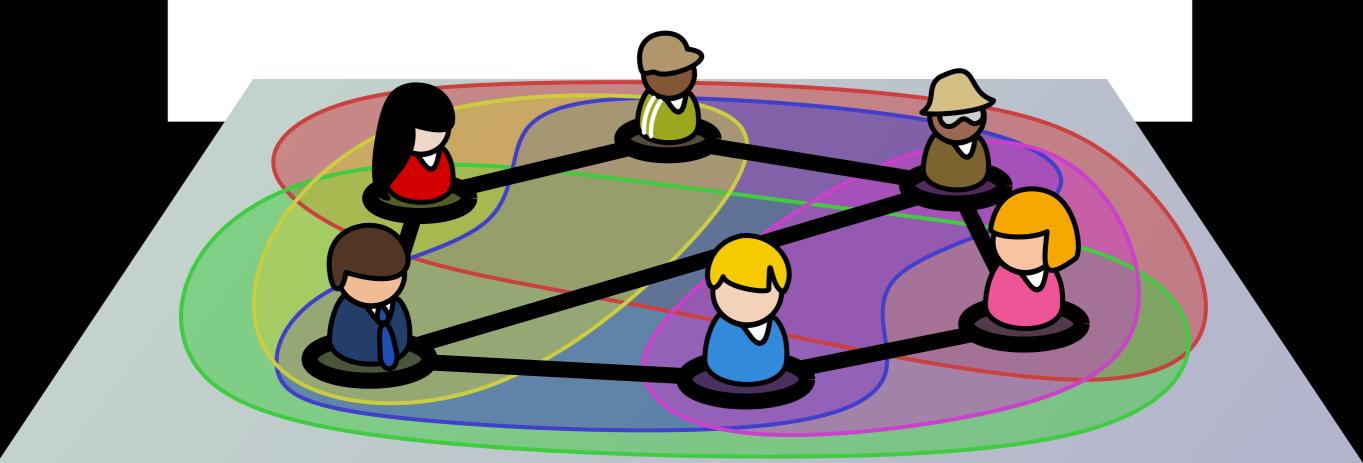
- Definition
 - The network is connected inside every category
 - $\operatorname{inco}(G, \mathcal{S})$: $\forall C \in \mathcal{S} : G[C]$ is connected



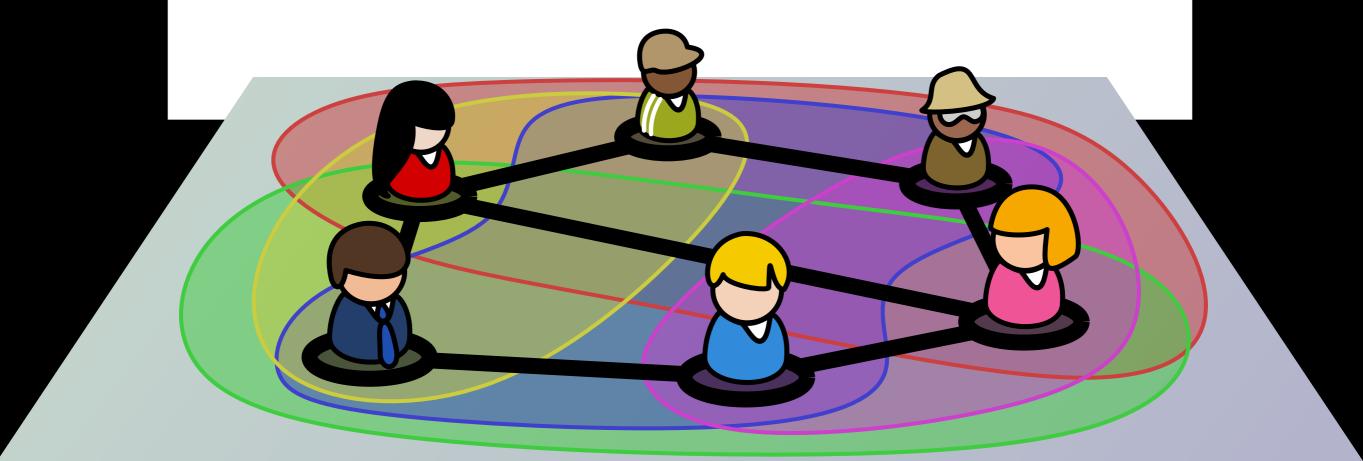
- Definition
 - The network is connected inside every category
 - $\operatorname{inco}(G, \mathcal{S})$: $\forall C \in \mathcal{S} : G[C]$ is connected



- Definition
 - The network is connected inside every category
 - $\operatorname{inco}(G, \mathcal{S})$: $\forall C \in \mathcal{S} : G[C]$ is connected

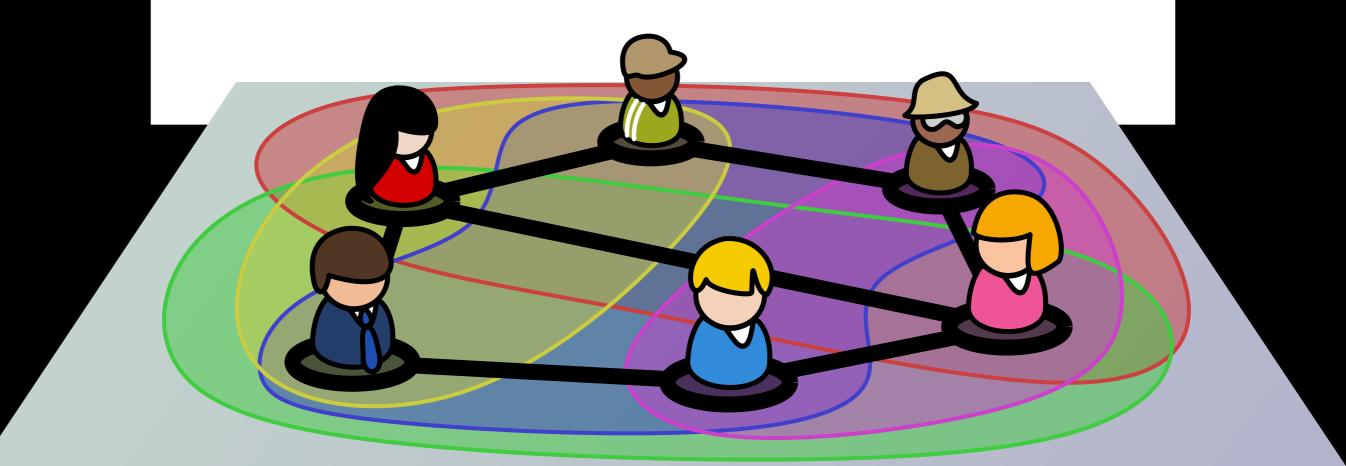


- Definition
 - The network is connected inside every category
 - $\operatorname{inco}(G, \mathcal{S})$: $\forall C \in \mathcal{S} : G[C]$ is connected



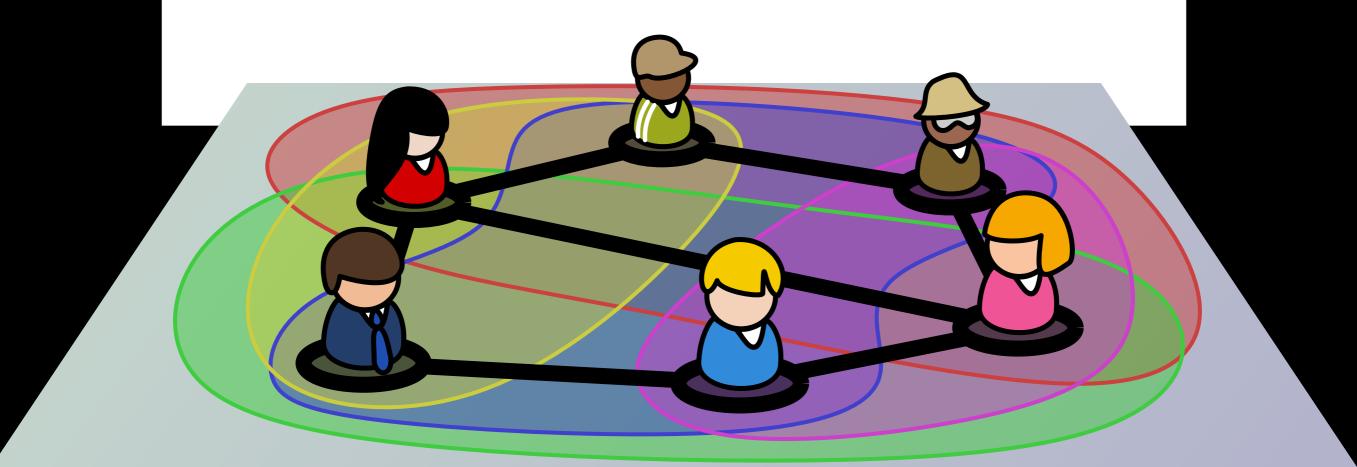
INTERNALLY CONNECTED

- Definition
 - The network is connected inside every category
 - $\operatorname{inco}(G, \mathcal{S})$: $\forall C \in \mathcal{S} : G[C]$ is connected
- Rationale



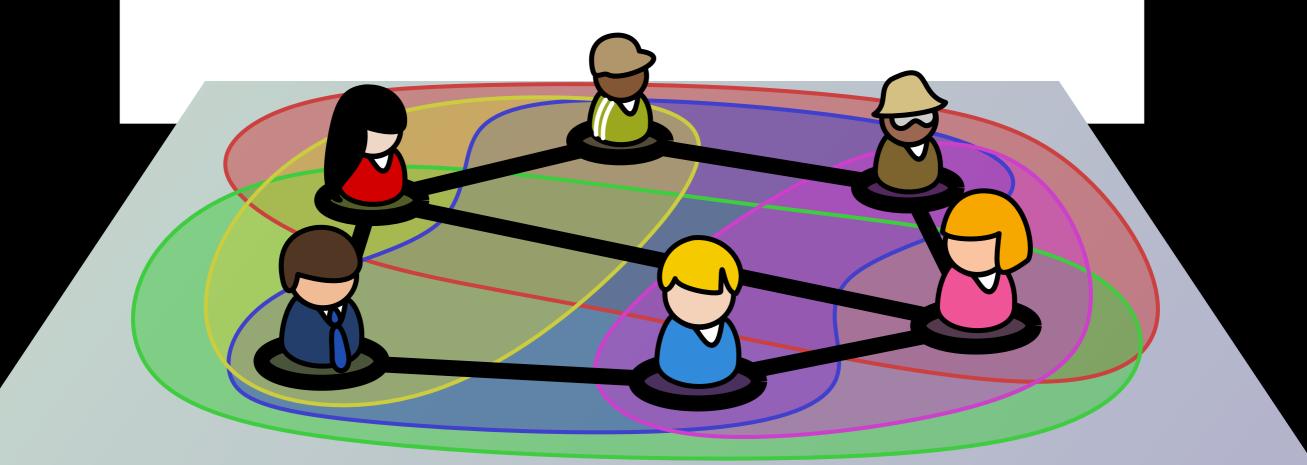
INTERNALLY CONNECTED

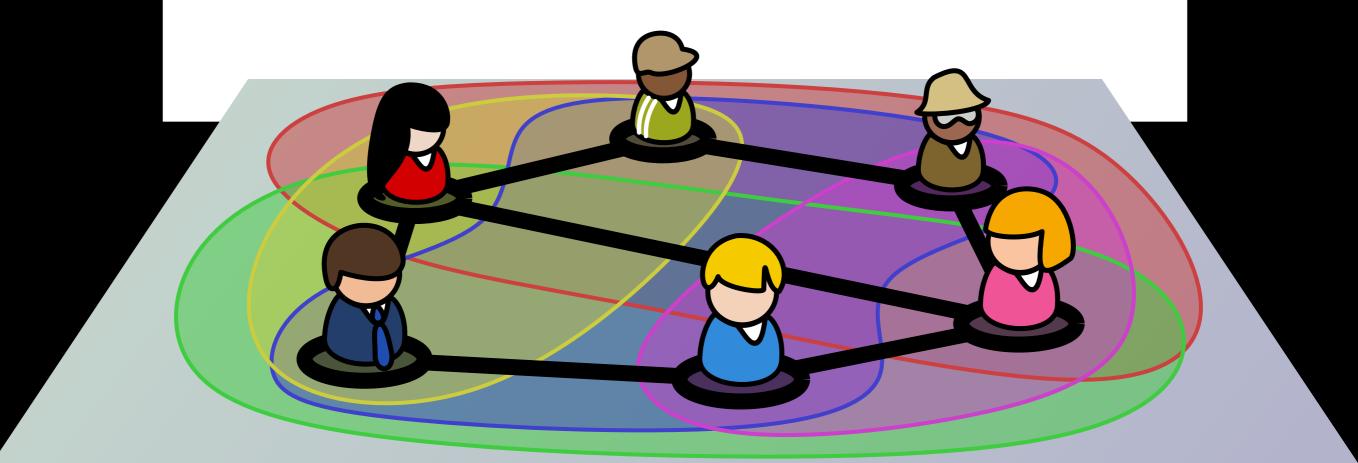
- Definition
 - The network is connected inside every category
 - $\mathrm{inco}(G,\mathcal{S})$: $\forall C \in \mathcal{S} : G[C]$ is connected
- Rationale
 - Seems like a natural assumption



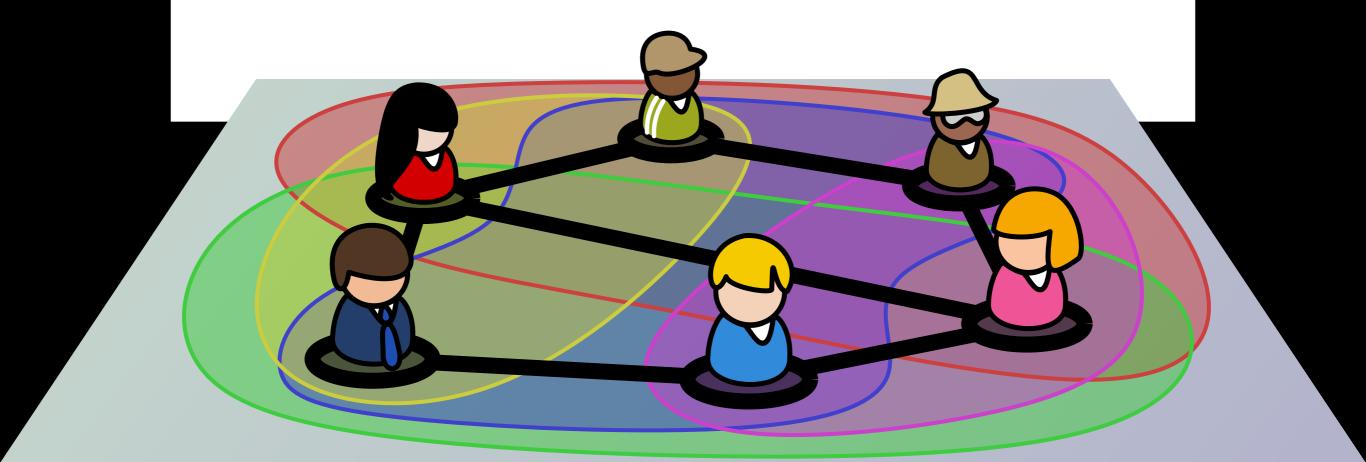
INTERNALLY CONNECTED

- Definition
 - The network is connected inside every category
 - inco(G, S) : $\forall C \in S : G[C]$ is connected
- Rationale
 - Seems like a natural assumption
 - Makes it a lot easier to reason about simple routing

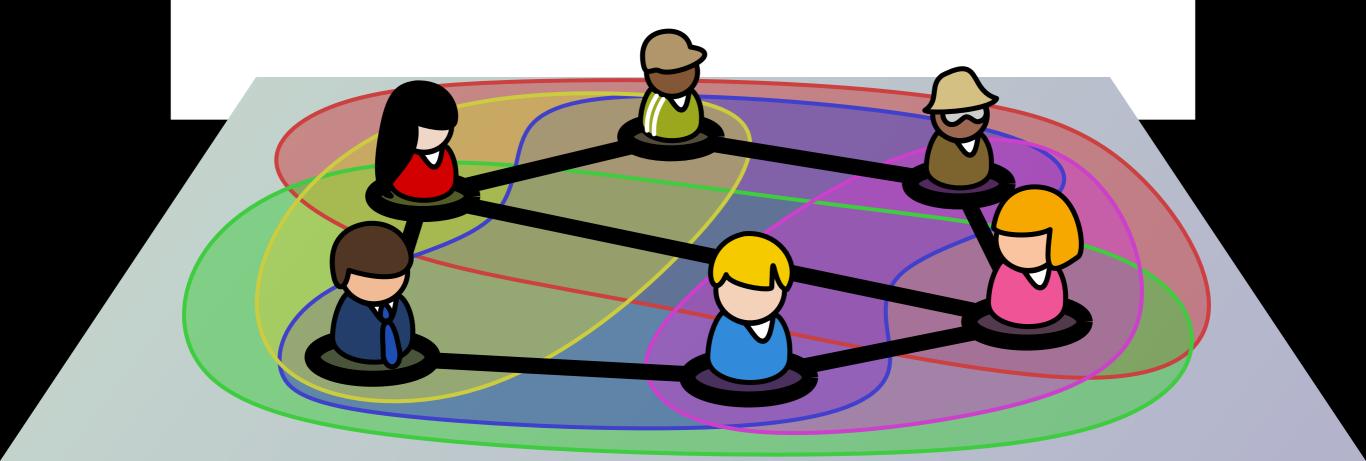




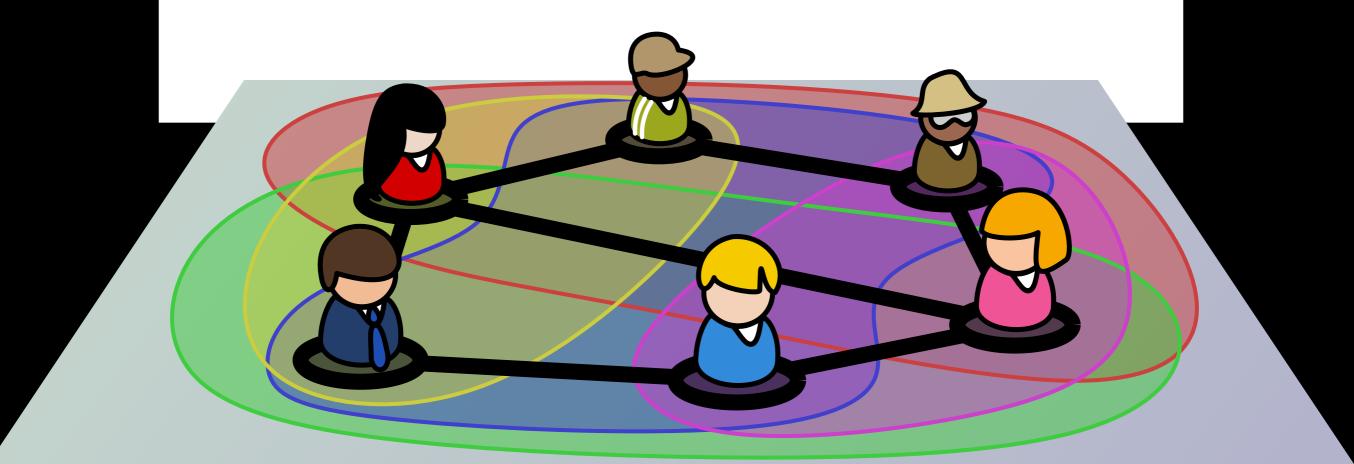
Definition



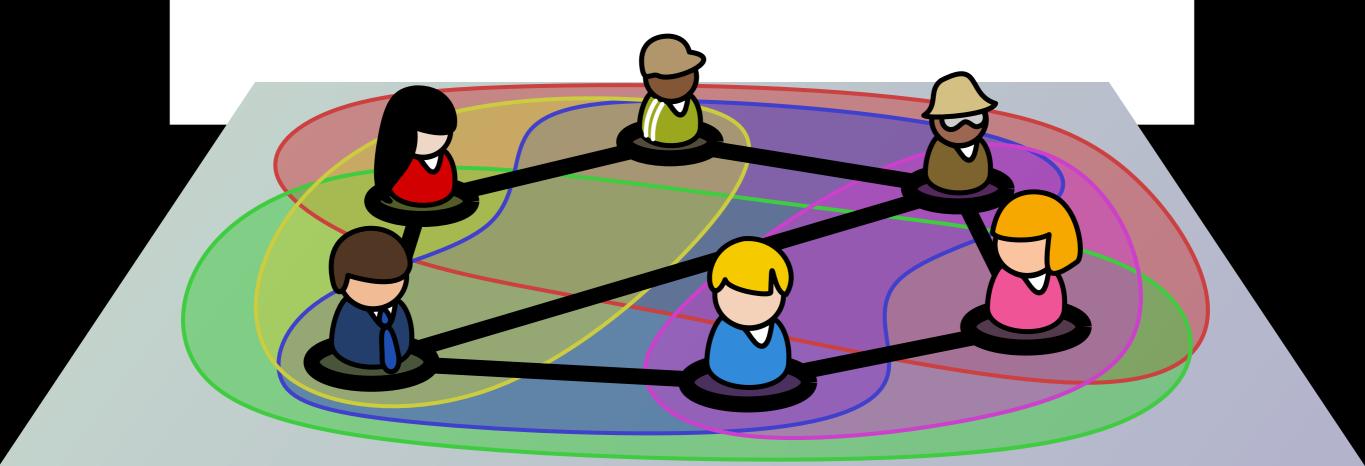
- Definition
 - Everyone has a neighbour who shares a new category with everyone else



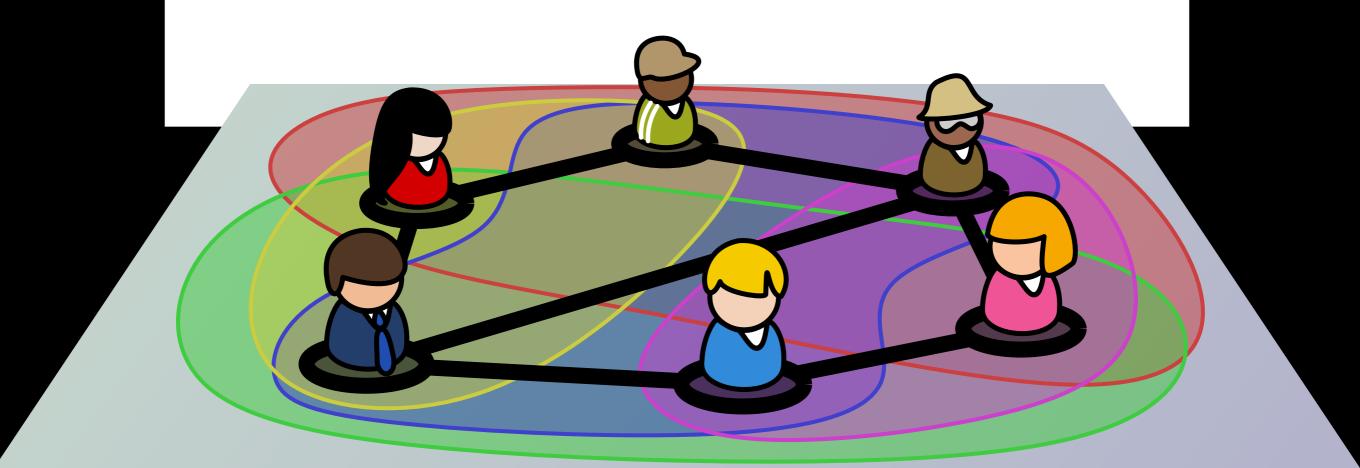
- Definition
 - Everyone has a neighbour who shares a new category with everyone else
 - $\operatorname{shat}(G, \mathcal{S})$: $\forall s, t \exists u, C : (s, u) \in E \land s \notin C \land u, t \in C$



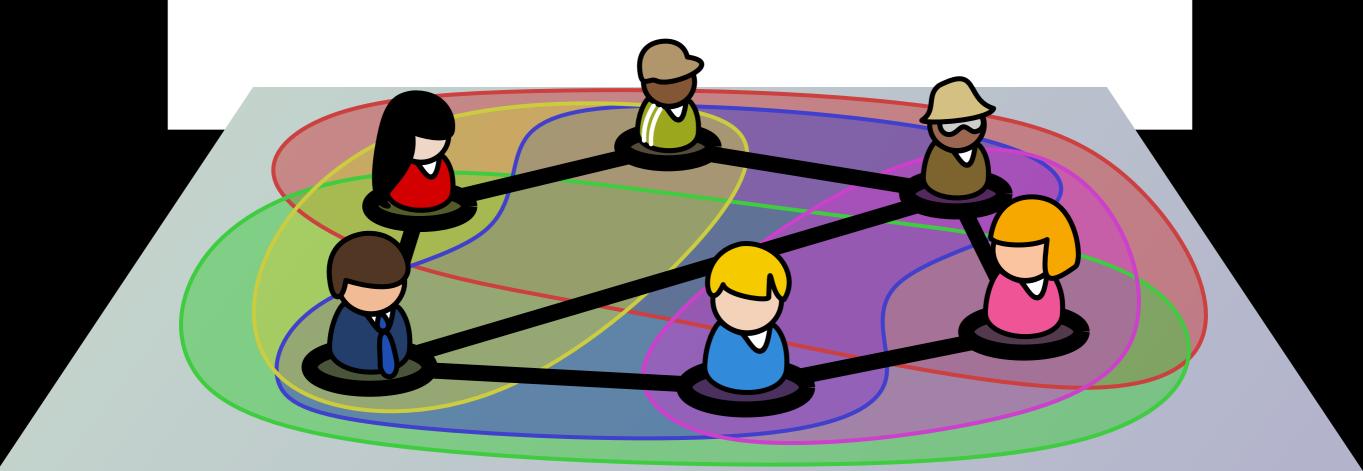
- Definition
 - Everyone has a neighbour who shares a new category with everyone else
 - $\operatorname{shat}(G, \mathcal{S})$: $\forall s, t \exists u, C : (s, u) \in E \land s \notin C \land u, t \in C$



- Definition
 - Everyone has a neighbour who shares a new category with everyone else
 - $\operatorname{shat}(G, \mathcal{S})$: $\forall s, t \exists u, C : (s, u) \in E \land s \notin C \land u, t \in C$
- Rationale



- Definition
 - Everyone has a neighbour who shares a new category with everyone else
 - $\operatorname{shat}(G, \mathcal{S})$: $\forall s, t \exists u, C : (s, u) \in E \land s \notin C \land u, t \in C$
- Rationale
 - Neccesary condition for routing to work

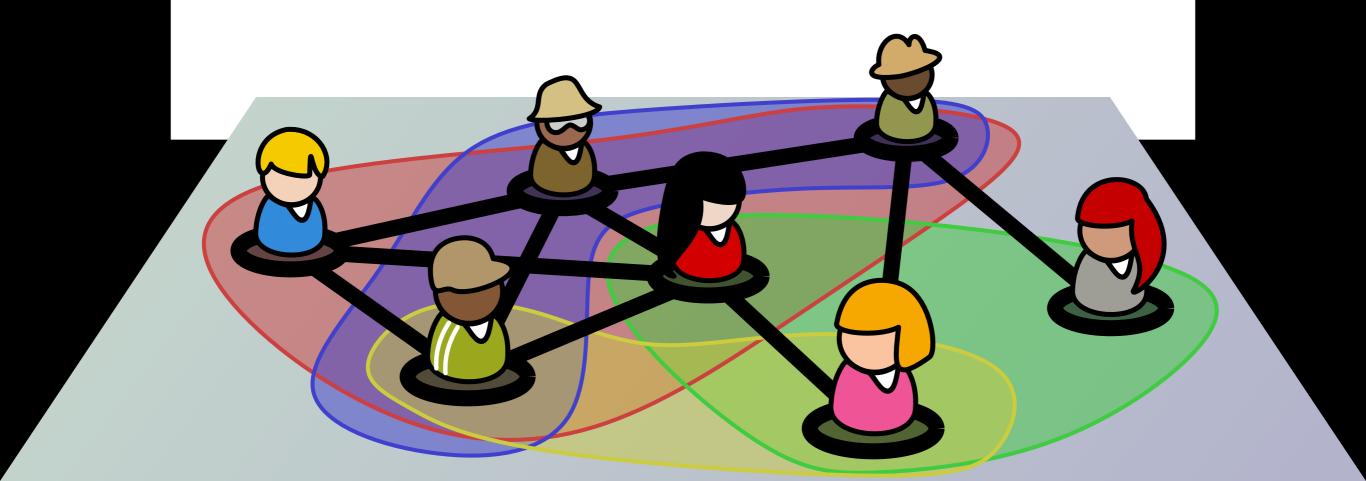


Definition

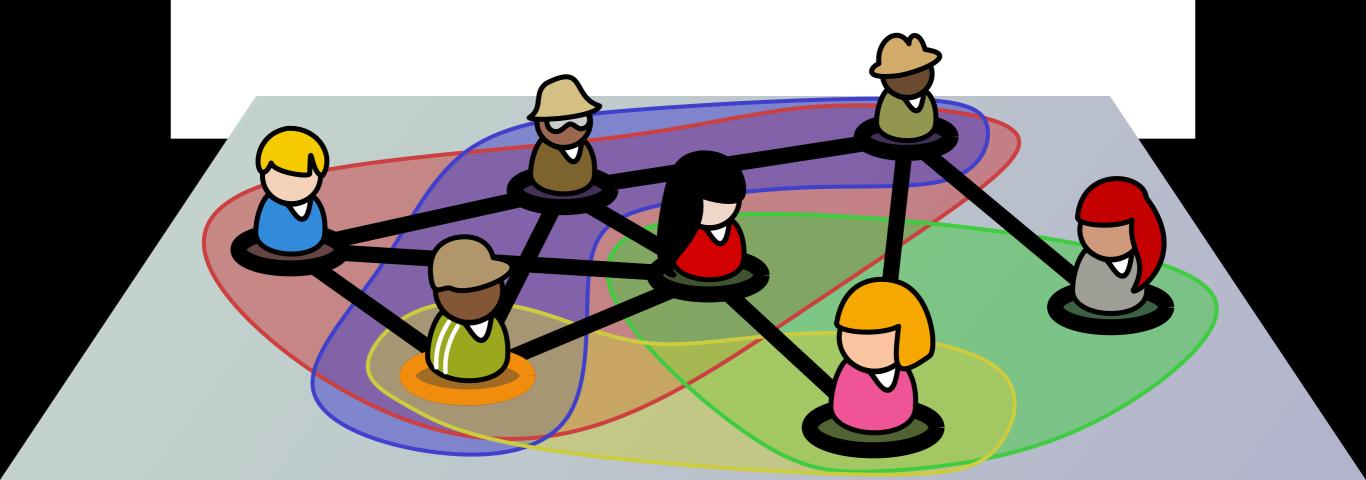
- Definition
 - Largest number of categories anyone is in

- Definition
 - Largest number of categories anyone is in
 - $\operatorname{mem}(\mathcal{S}) = \operatorname{max}_{u \in U} |\{C \in \mathcal{S} \mid u \in C\}|$

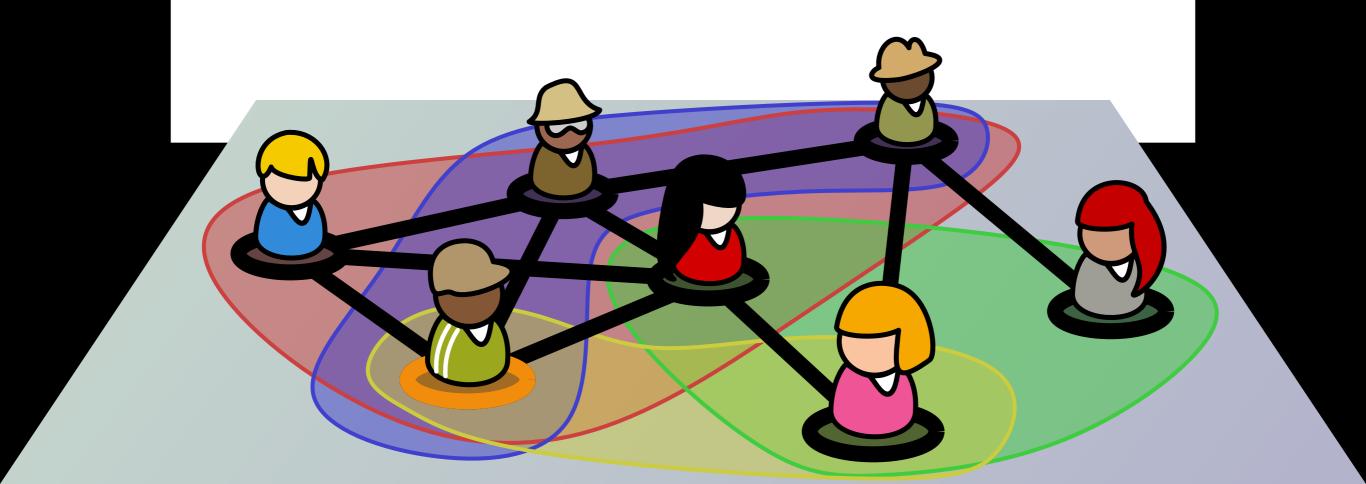
- Definition
 - Largest number of categories anyone is in
 - $\operatorname{mem}(\mathcal{S}) = \operatorname{max}_{u \in U} |\{C \in \mathcal{S} \mid u \in C\}|$



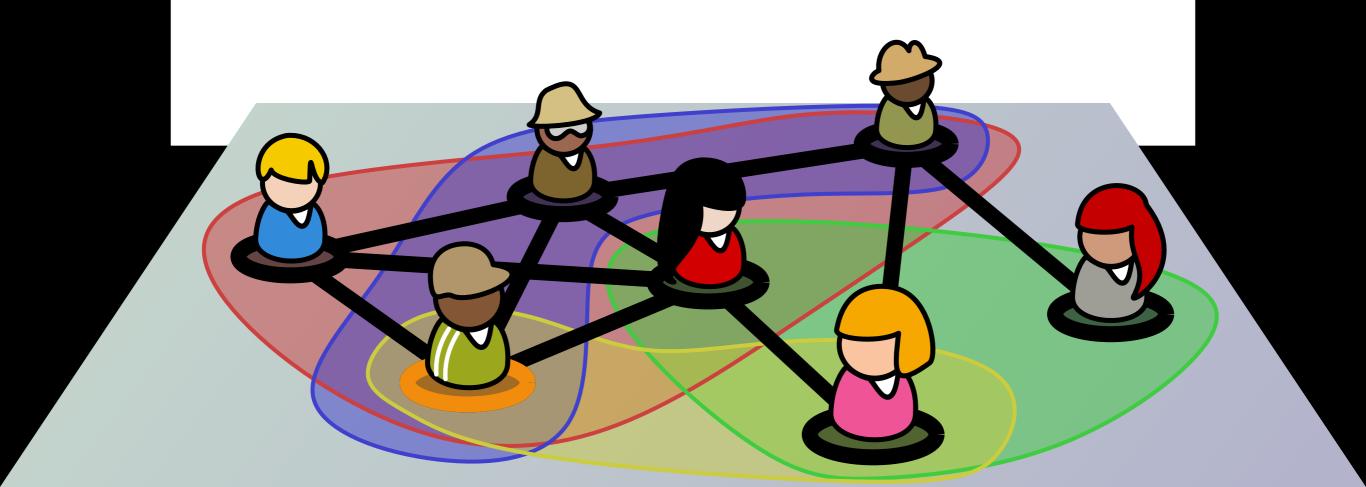
- Definition
 - Largest number of categories anyone is in
 - $\operatorname{mem}(\mathcal{S}) = \operatorname{max}_{u \in U} |\{C \in \mathcal{S} \mid u \in C\}|$



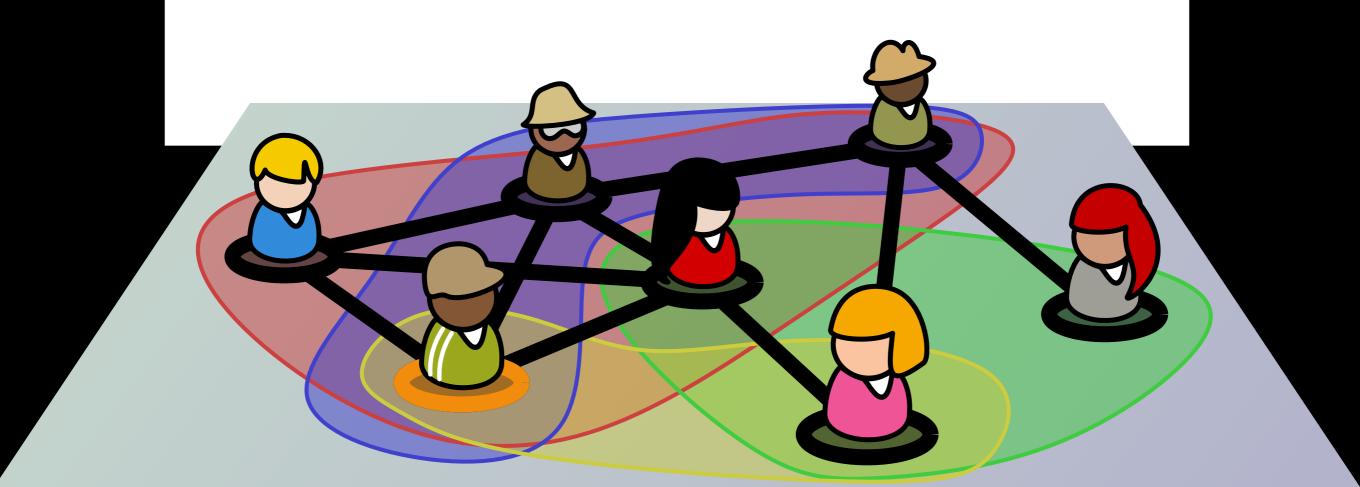
- Definition
 - Largest number of categories anyone is in
 - $\operatorname{mem}(\mathcal{S}) = \operatorname{max}_{u \in U} |\{C \in \mathcal{S} \mid u \in C\}|$
- Rationale



- Definition
 - Largest number of categories anyone is in
 - $\operatorname{mem}(\mathcal{S}) = \operatorname{max}_{u \in U} |\{C \in \mathcal{S} \mid u \in C\}|$
- Rationale
 - Captures the "cognitive load" of people



- Definition
 - Largest number of categories anyone is in
 - $\operatorname{mem}(\mathcal{S}) = \operatorname{max}_{u \in U} |\{C \in \mathcal{S} \mid u \in C\}|$
- Rationale
 - Captures the "cognitive load" of people
 - We expect the membership dimension to be small



• Simple routing works?

- Simple routing works?
 - yes \rightarrow shat (G, \mathcal{S})

- Simple routing works?
 - yes \rightarrow shat (G, \mathcal{S})
 - $\operatorname{shat}(G,\mathcal{S}) \land \exists T : \operatorname{inco}(T,\mathcal{S}) \to \operatorname{yes}$

- Simple routing works?
 - yes \rightarrow shat (G, \mathcal{S})
 - $\operatorname{shat}(G,\mathcal{S}) \land \exists T : \operatorname{inco}(T,\mathcal{S}) \to \operatorname{yes}$
- Bounds on membership dimension

- Simple routing works?
 - yes \rightarrow shat (G, \mathcal{S})
 - $\operatorname{shat}(G,\mathcal{S}) \land \exists T : \operatorname{inco}(T,\mathcal{S}) \to \operatorname{yes}$
- Bounds on membership dimension
 - $\exists G \exists S : \text{yes} \land \text{mem}(S) = 1$

- Simple routing works?
 - yes \rightarrow shat (G, \mathcal{S})
 - $\operatorname{shat}(G,\mathcal{S}) \wedge \exists T : \operatorname{inco}(T,\mathcal{S}) \to \operatorname{yes}$
- Bounds on membership dimension
 - $\exists G \exists S : \text{yes} \land \text{mem}(S) = 1$
 - $\forall G \forall S : \text{yes} \to \text{mem}(S) \geq \text{diam}(G)$

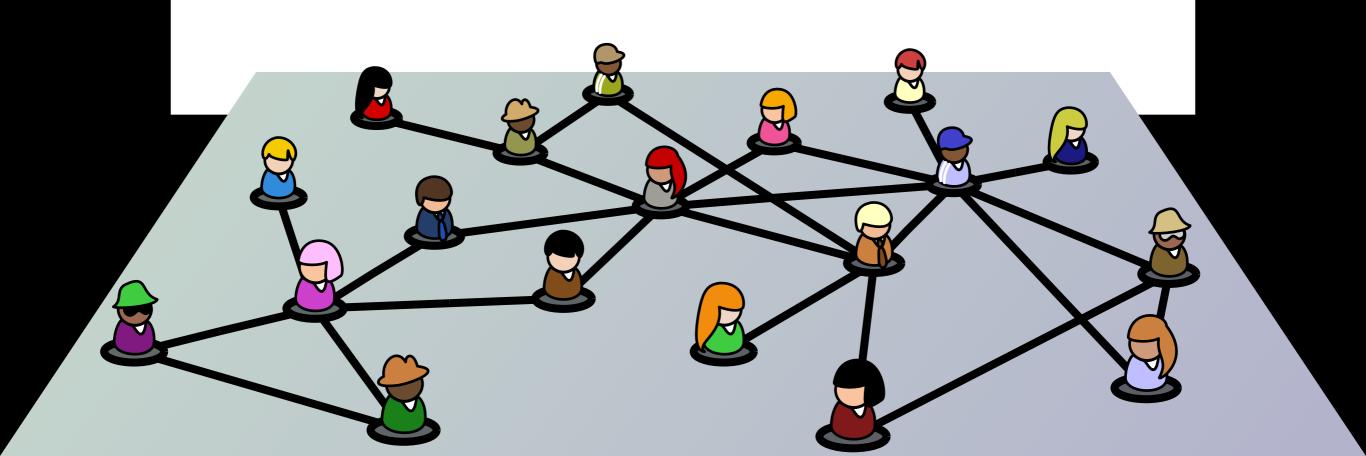
- Simple routing works?
 - yes \rightarrow shat (G, \mathcal{S})
 - $\operatorname{shat}(G,\mathcal{S}) \wedge \exists T : \operatorname{inco}(T,\mathcal{S}) \to \operatorname{yes}$
- Bounds on membership dimension
 - $\exists G \exists S : \text{yes} \land \text{mem}(S) = 1$
 - $\forall G \forall S : \text{yes} \to \text{mem}(S) \geq \text{diam}(G)$
 - $\forall G \exists S : \text{yes} \land \text{mem}(S) \leq (\text{diam}(G) + \log n)^2$

- Simple routing works?
 - yes \rightarrow shat (G, \mathcal{S})
 - $\operatorname{shat}(G,\mathcal{S}) \wedge \exists T : \operatorname{inco}(T,\mathcal{S}) \to \operatorname{yes}$
- Bounds on membership dimension
 - $\exists G \exists S : \text{yes} \land \text{mem}(S) = 1$
 - $\forall G \forall S : \text{yes} \to \text{mem}(S) \geq \text{diam}(G)$
 - $\forall G \exists S : \text{yes} \land \text{mem}(S) \leq (\text{diam}(G) + \log n)^2$
 - $\forall S \exists G : \text{no}$

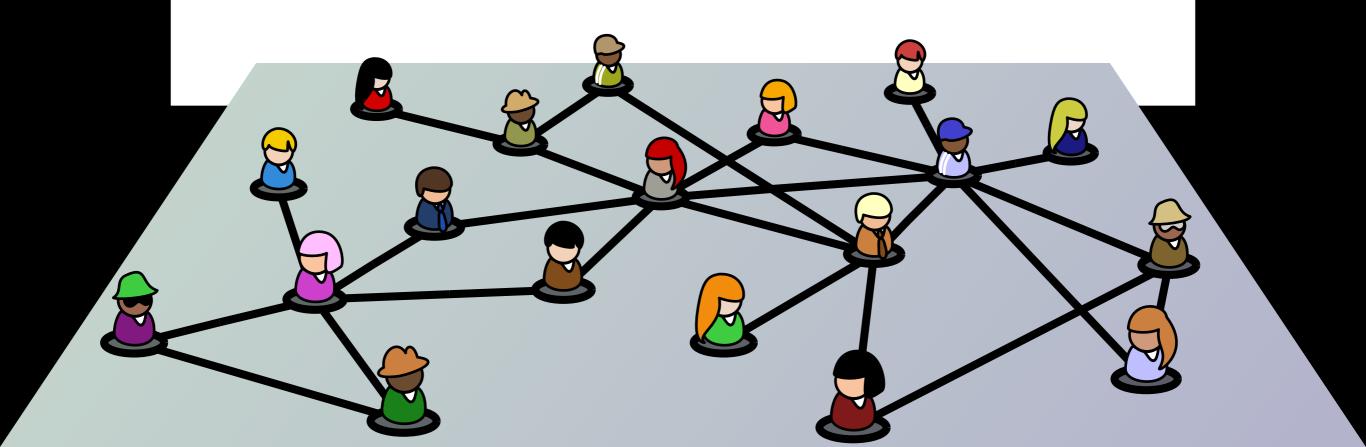
PART III TECHNICAL DETAILS

ullet Start with arbitrary graph G

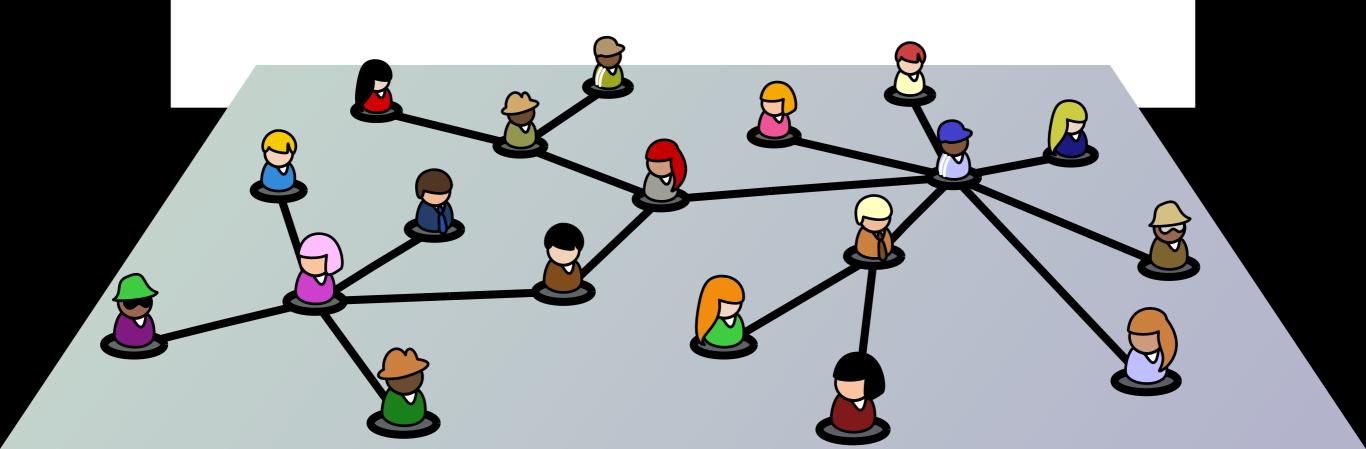
ullet Start with arbitrary graph G



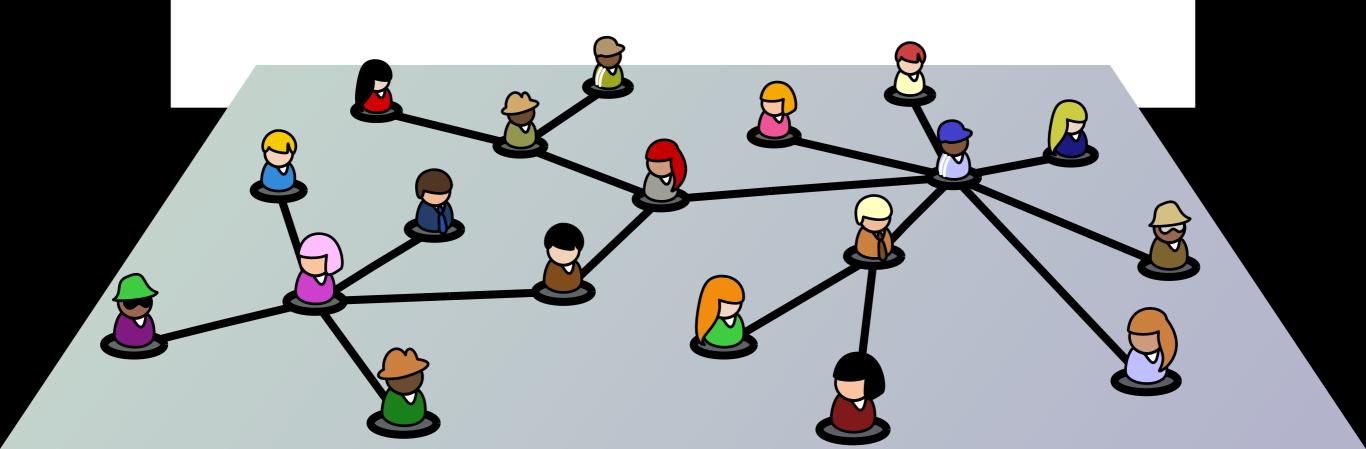
- Start with arbitrary graph G
- ullet Compute spanning tree T of G



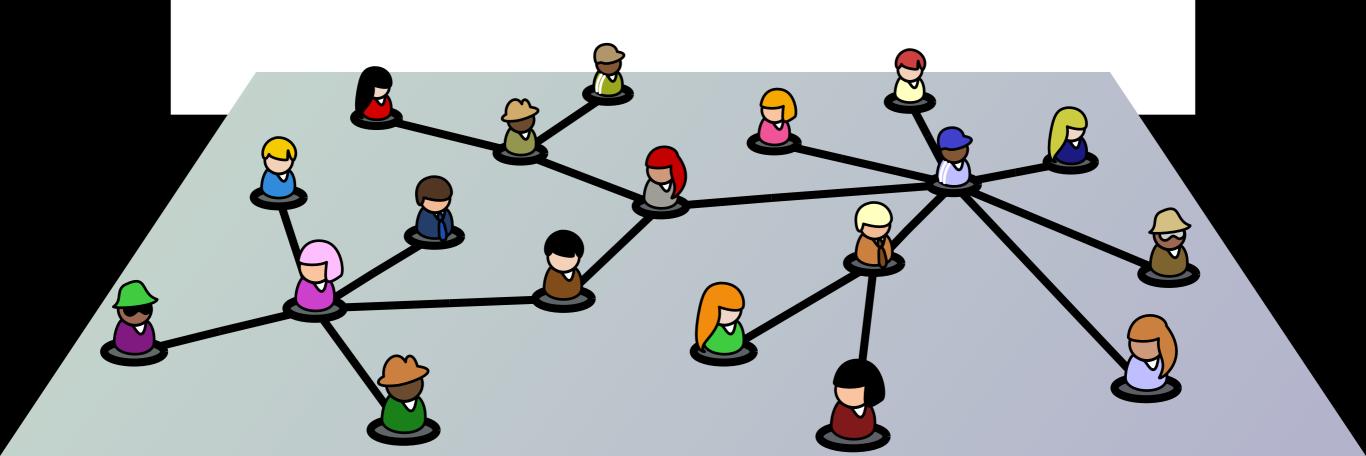
- ullet Start with arbitrary graph G
- ullet Compute spanning tree T of G



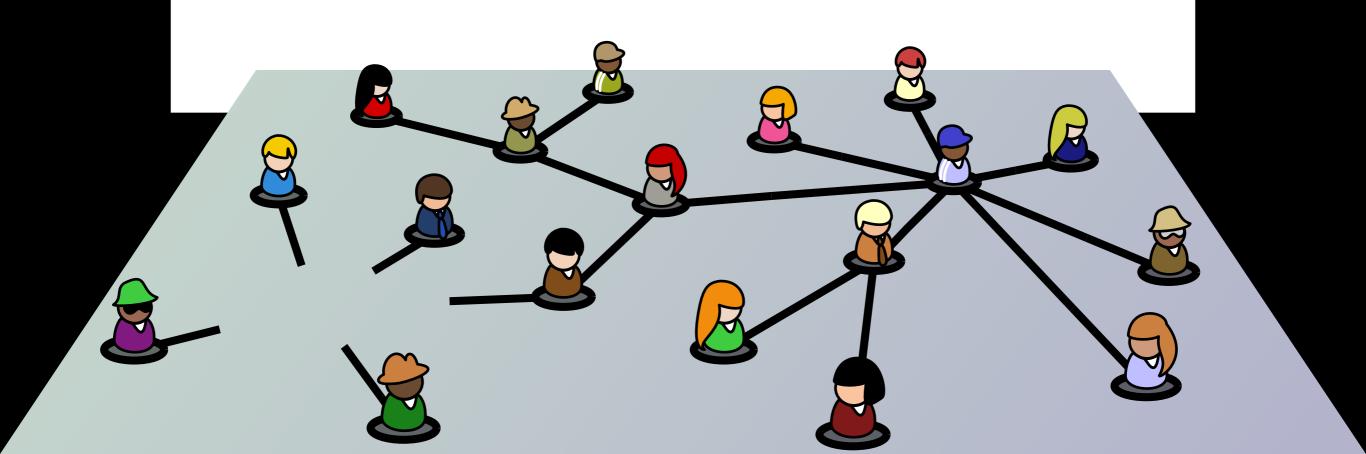
- Start with arbitrary graph *G*
- Compute spanning tree T of G
 - $\operatorname{diam}(T) \leq 2\operatorname{diam}(G)$



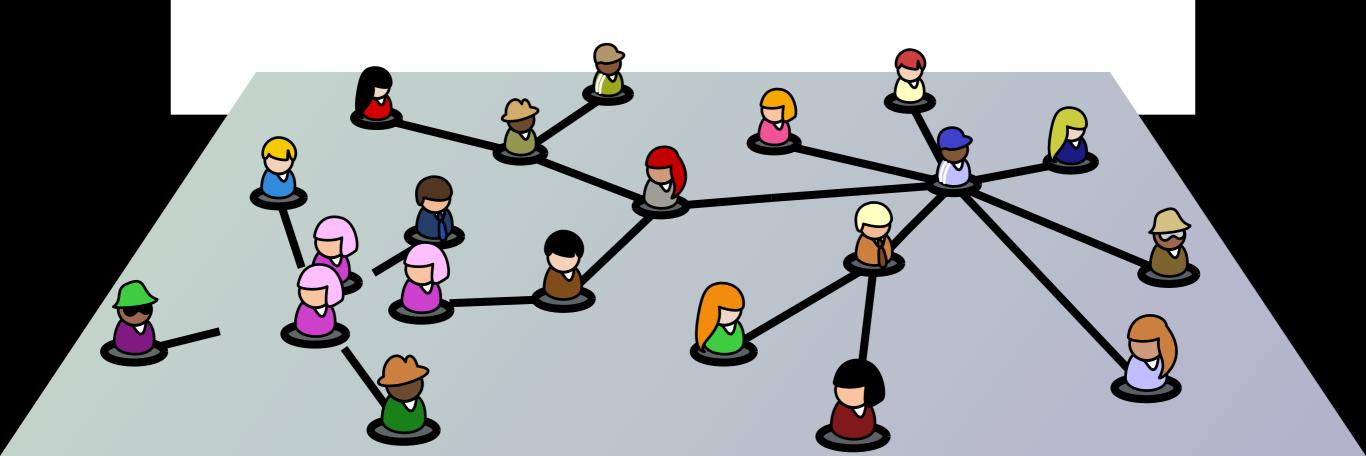
- Start with arbitrary graph *G*
- Compute spanning tree T of G
 - $\operatorname{diam}(T) \leq 2\operatorname{diam}(G)$
- ullet Embed T in binary tree B



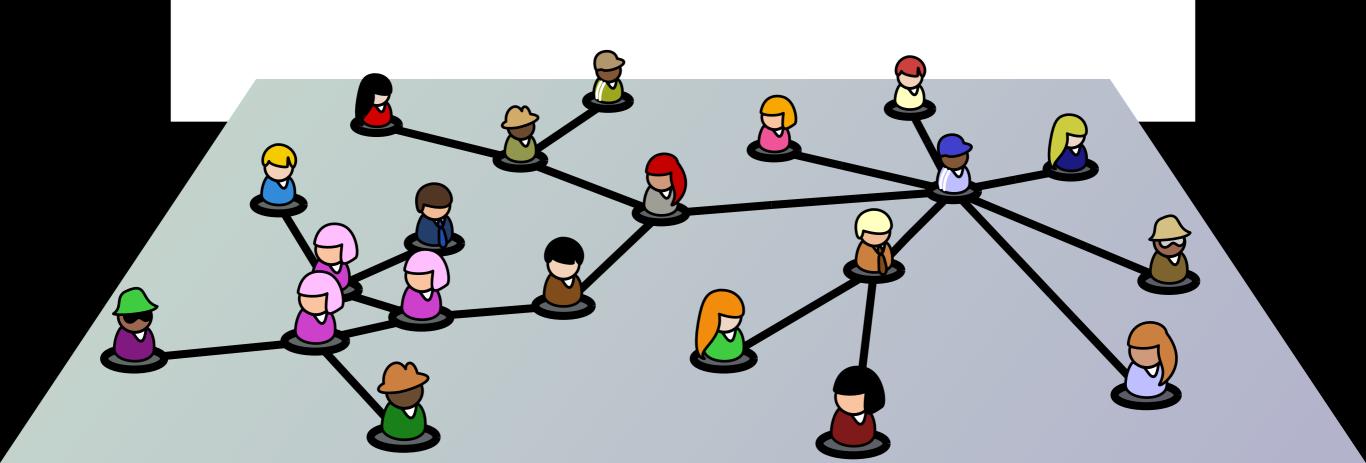
- Start with arbitrary graph *G*
- Compute spanning tree T of G
 - $\operatorname{diam}(T) \leq 2\operatorname{diam}(G)$
- ullet Embed T in binary tree B



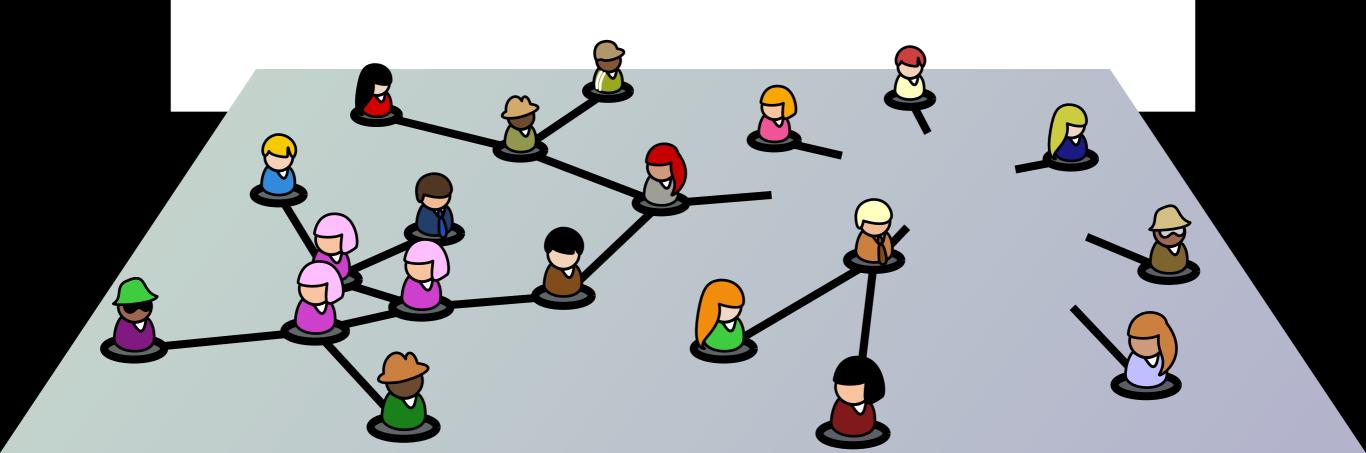
- Start with arbitrary graph *G*
- Compute spanning tree T of G
 - $\operatorname{diam}(T) \leq 2\operatorname{diam}(G)$
- ullet Embed T in binary tree B



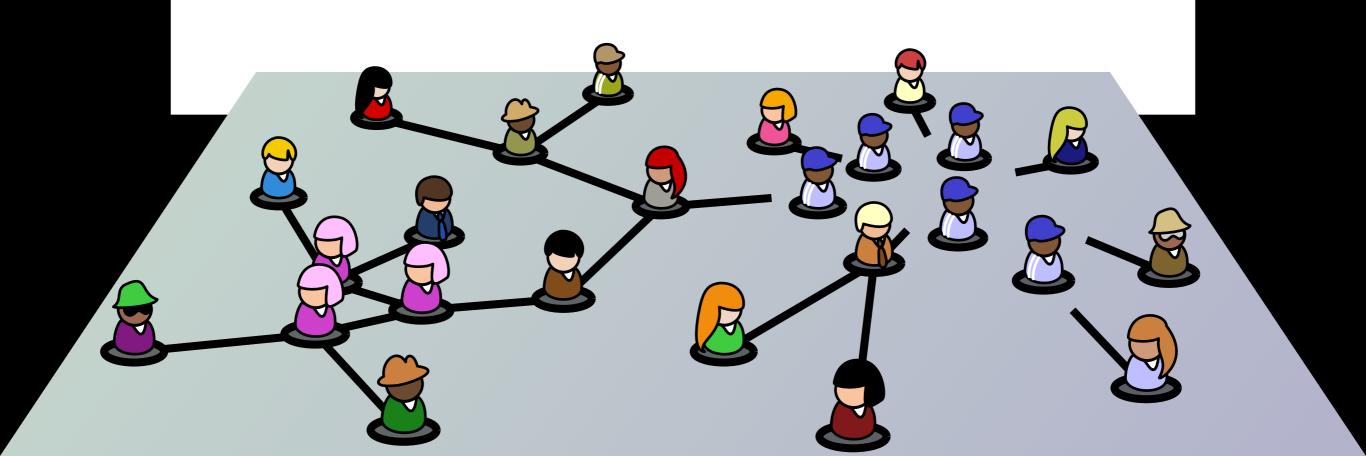
- Start with arbitrary graph *G*
- Compute spanning tree T of G
 - $\operatorname{diam}(T) \leq 2\operatorname{diam}(G)$
- ullet Embed T in binary tree B



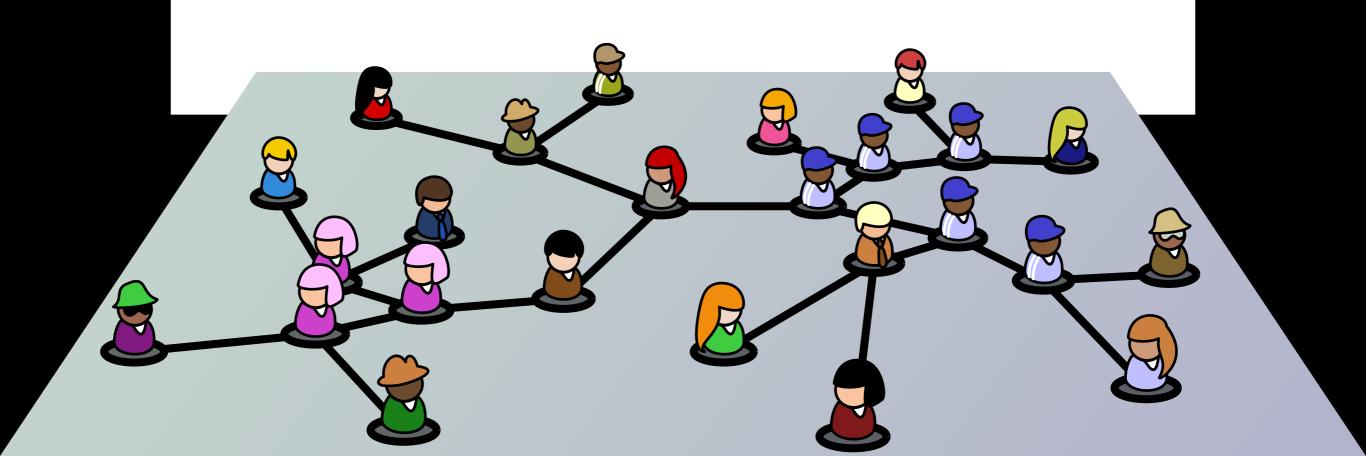
- Start with arbitrary graph *G*
- Compute spanning tree T of G
 - $\operatorname{diam}(T) \leq 2\operatorname{diam}(G)$
- ullet Embed T in binary tree B



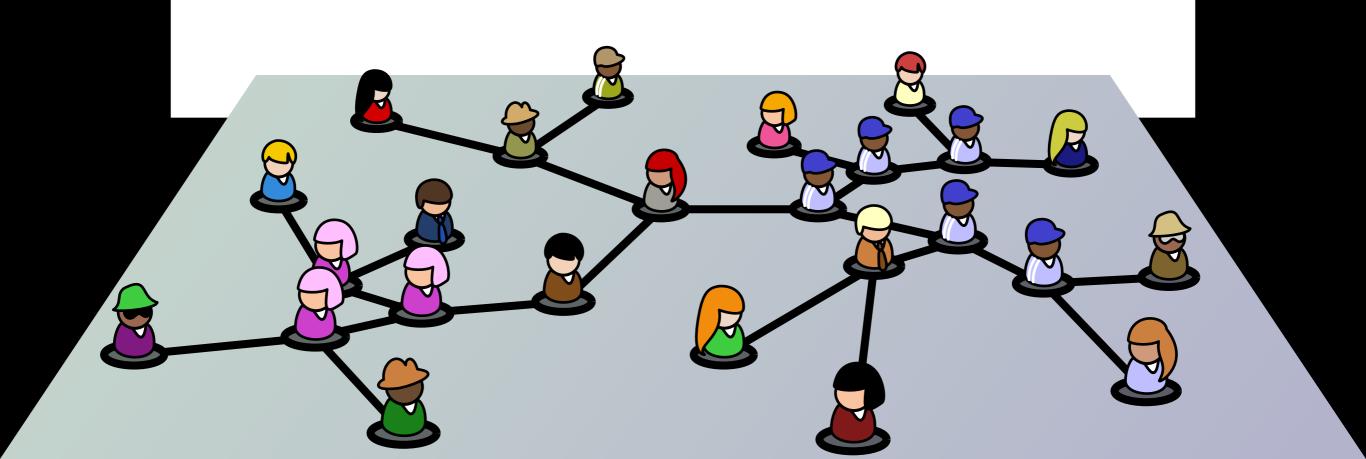
- Start with arbitrary graph *G*
- Compute spanning tree T of G
 - $\operatorname{diam}(T) \leq 2\operatorname{diam}(G)$
- ullet Embed T in binary tree B

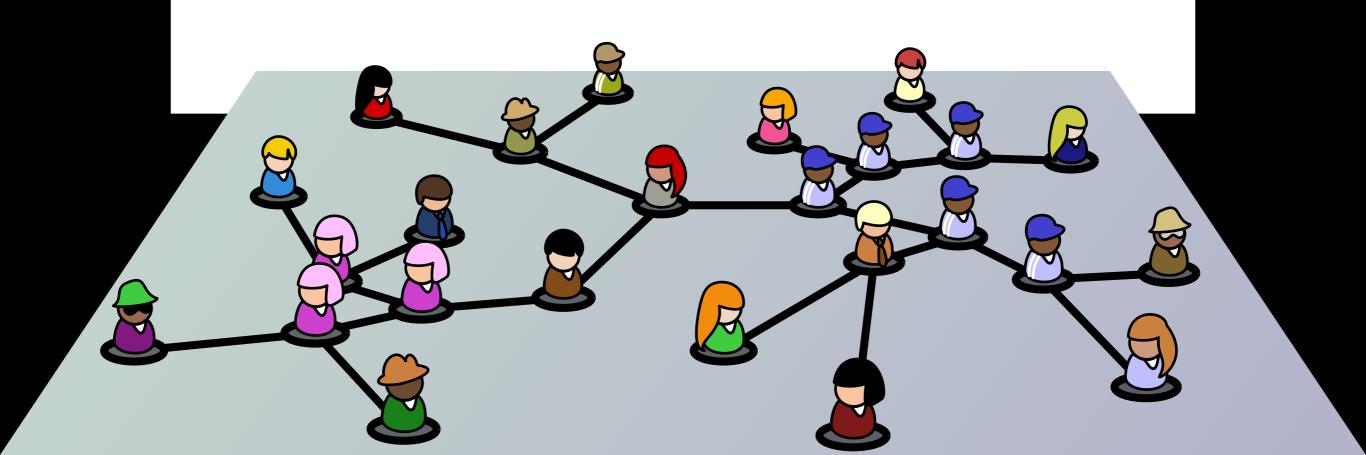


- Start with arbitrary graph *G*
- Compute spanning tree T of G
 - $\operatorname{diam}(T) \leq 2\operatorname{diam}(G)$
- ullet Embed T in binary tree B

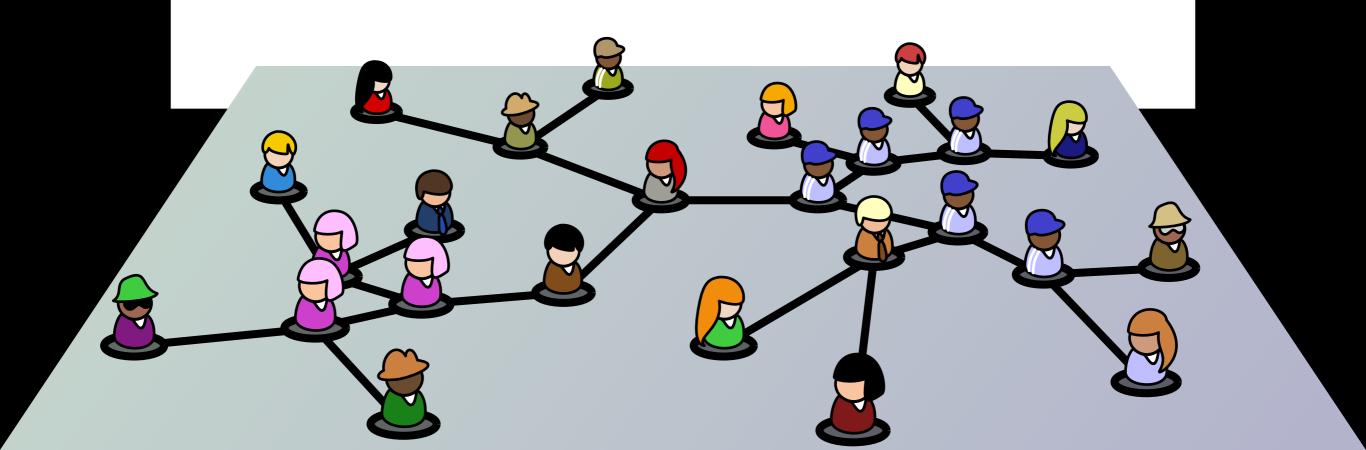


- Start with arbitrary graph *G*
- Compute spanning tree T of G
 - $\operatorname{diam}(T) \leq 2\operatorname{diam}(G)$
- ullet Embed T in binary tree B
 - $\operatorname{diam}(B) \leq \operatorname{diam}(T) + \log n$

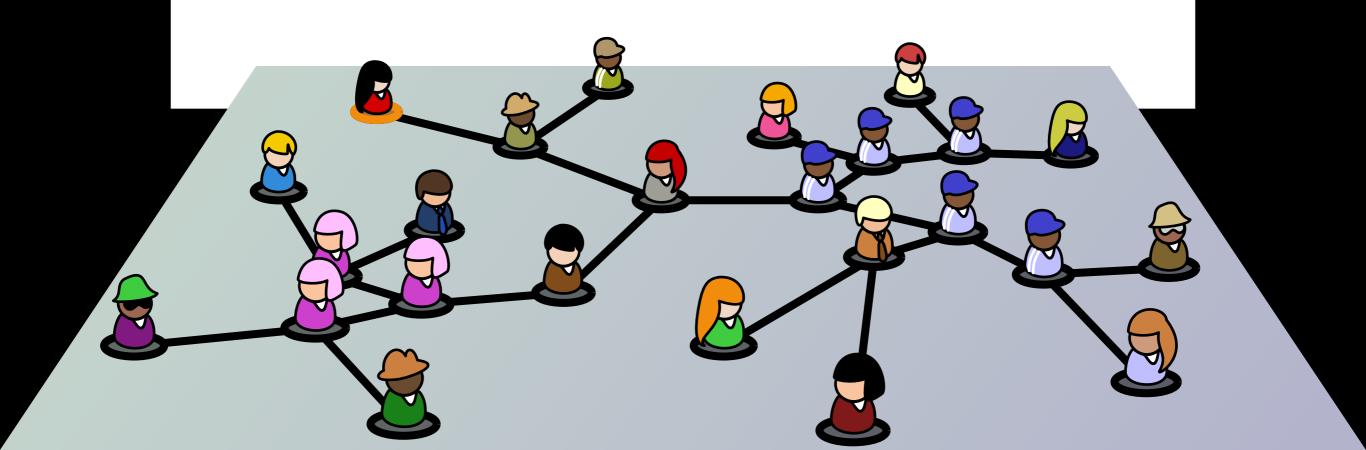




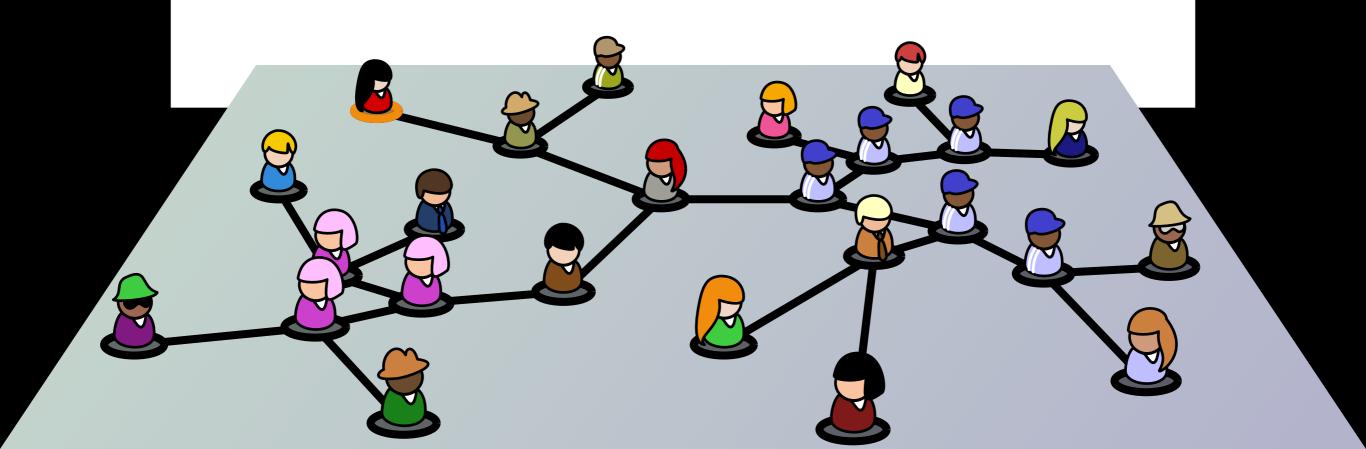
 $\bullet \ \ {\it Choose an arbitrary root for} \ {\it B}$



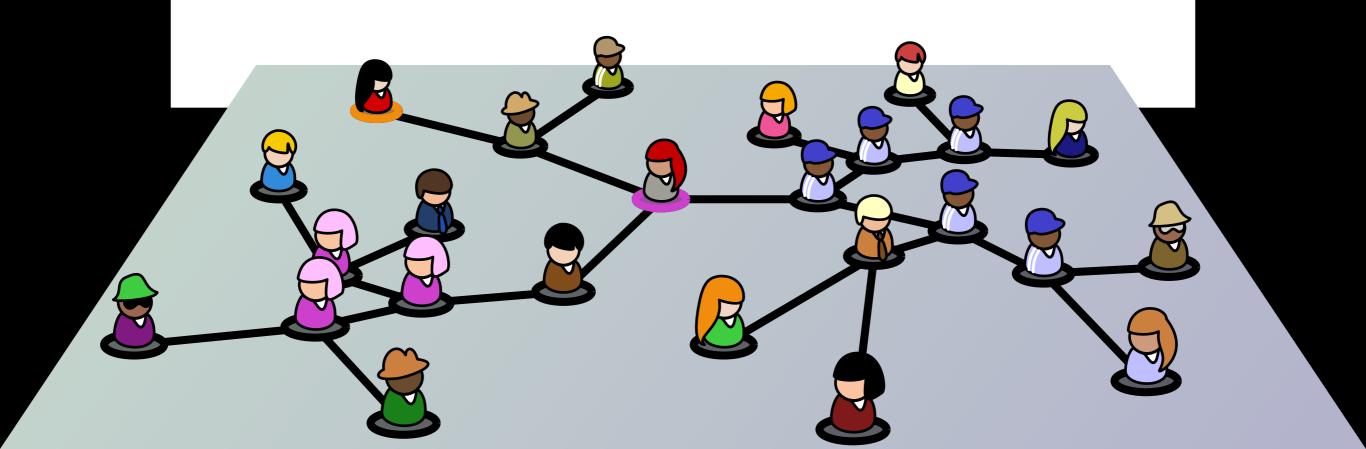
 $\bullet \ \ {\it Choose an arbitrary root for} \ {\it B}$



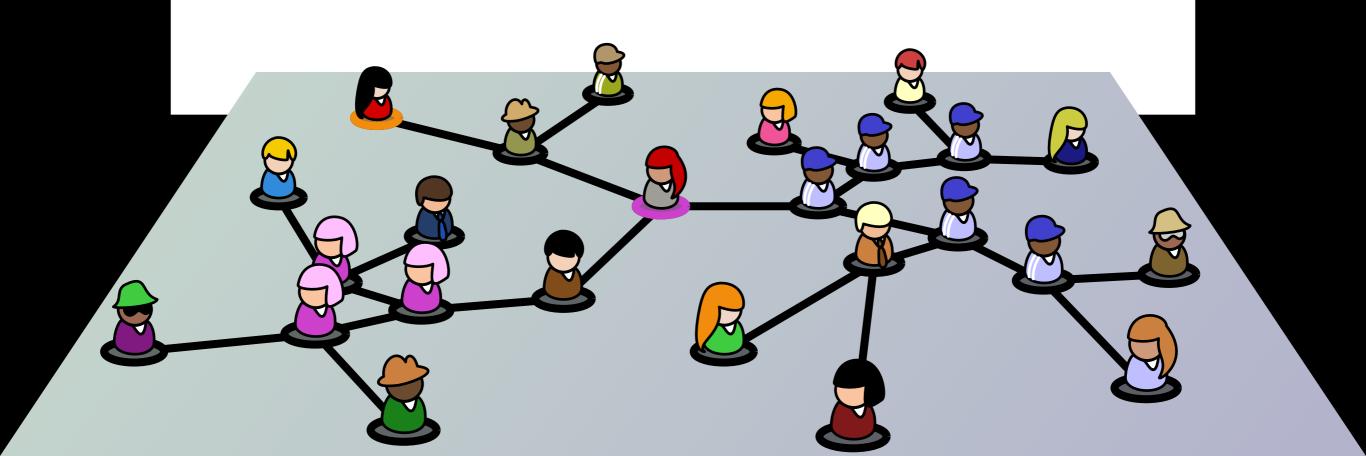
- ullet Choose an arbitrary root for B
- For every node v in B and integer $d \leq \operatorname{diam}(B)$ create two categories



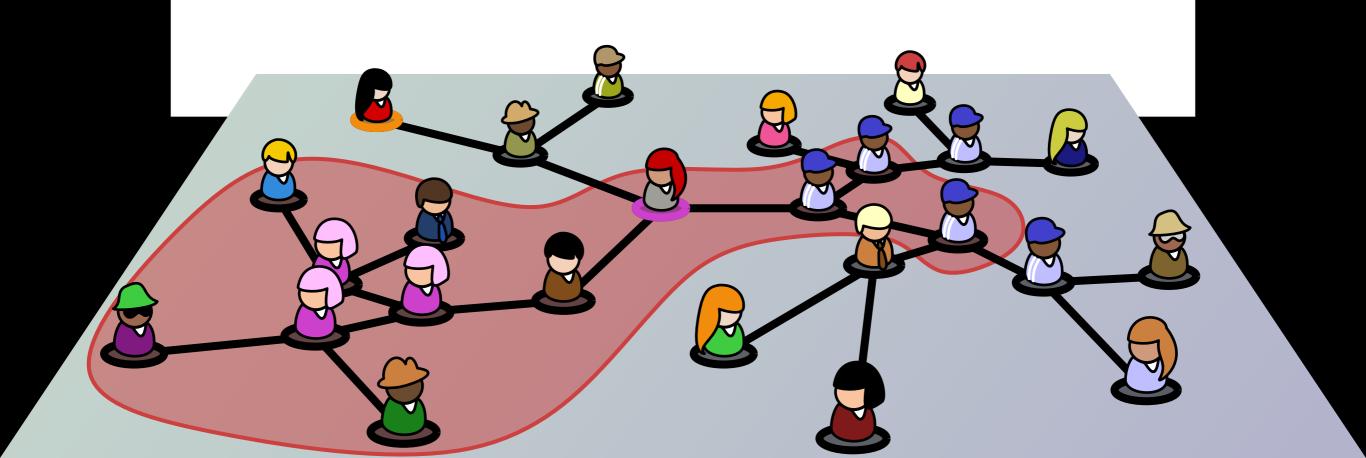
- ullet Choose an arbitrary root for B
- For every node v in B and integer $d \leq \operatorname{diam}(B)$ create two categories



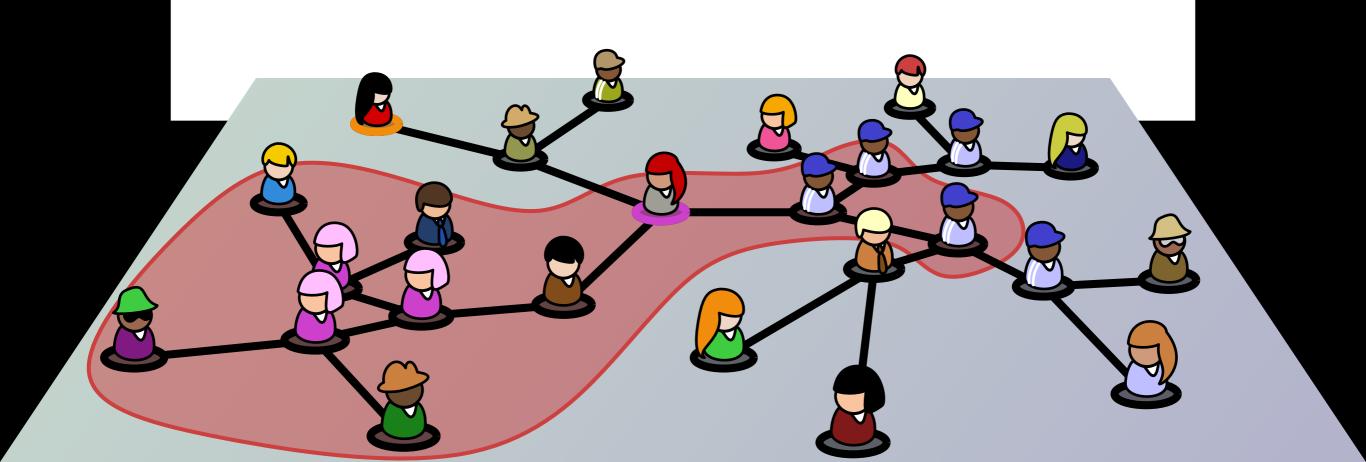
- ullet Choose an arbitrary root for B
- For every node v in B and integer $d \leq \operatorname{diam}(B)$ create two categories
 - One contains all nodes in the left subtree of B at v and the first d levels of the right subtree of B at v



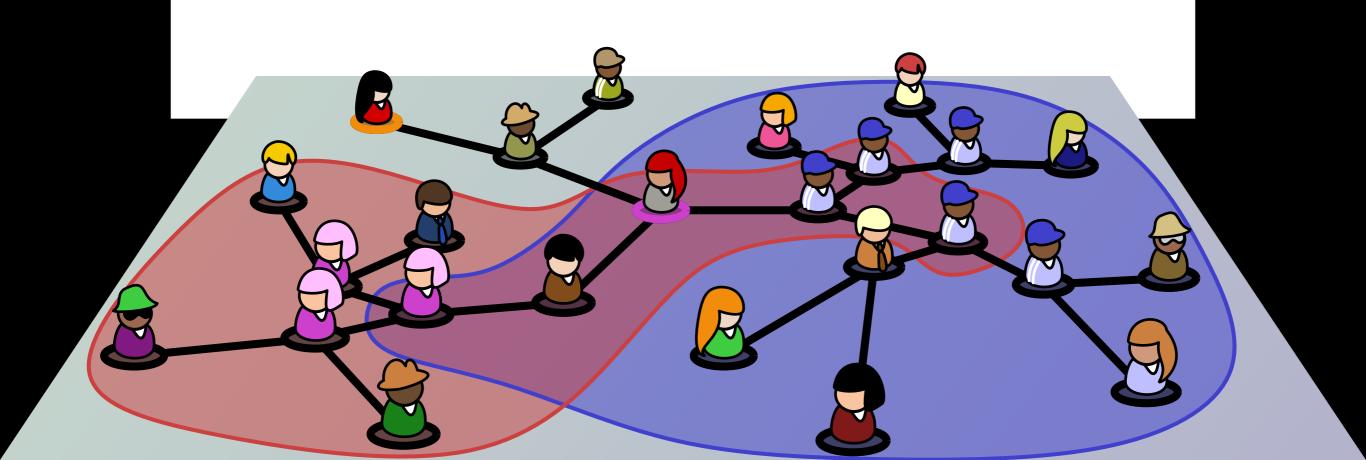
- ullet Choose an arbitrary root for B
- For every node v in B and integer $d \leq \operatorname{diam}(B)$ create two categories
 - One contains all nodes in the left subtree of B at v and the first d levels of the right subtree of B at v



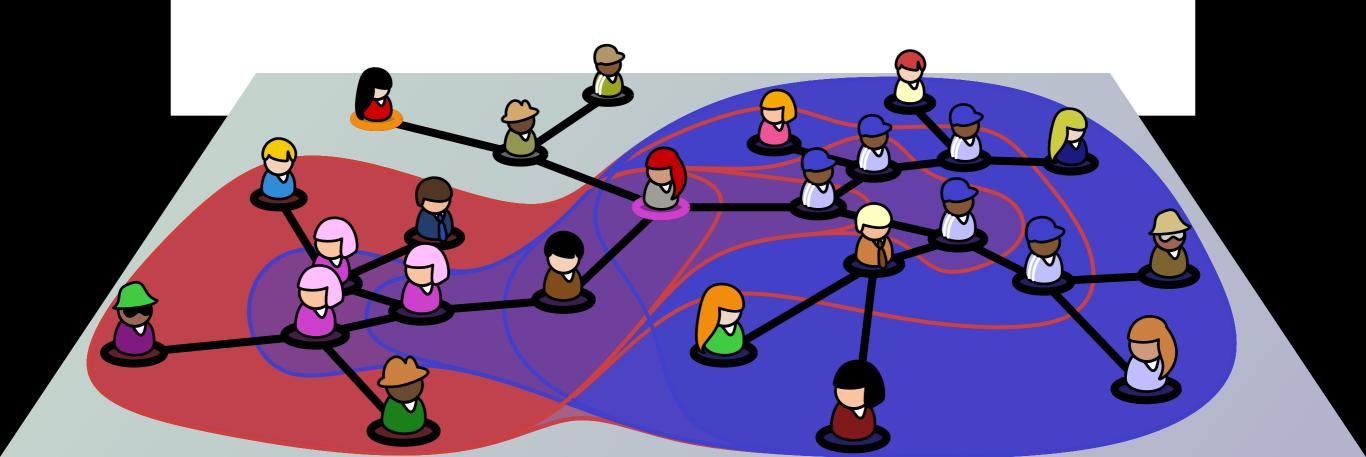
- ullet Choose an arbitrary root for B
- For every node v in B and integer $d \leq \operatorname{diam}(B)$ create two categories
 - One contains all nodes in the left subtree of B at v and the first d levels of the right subtree of B at v
 - The other one is symmetric



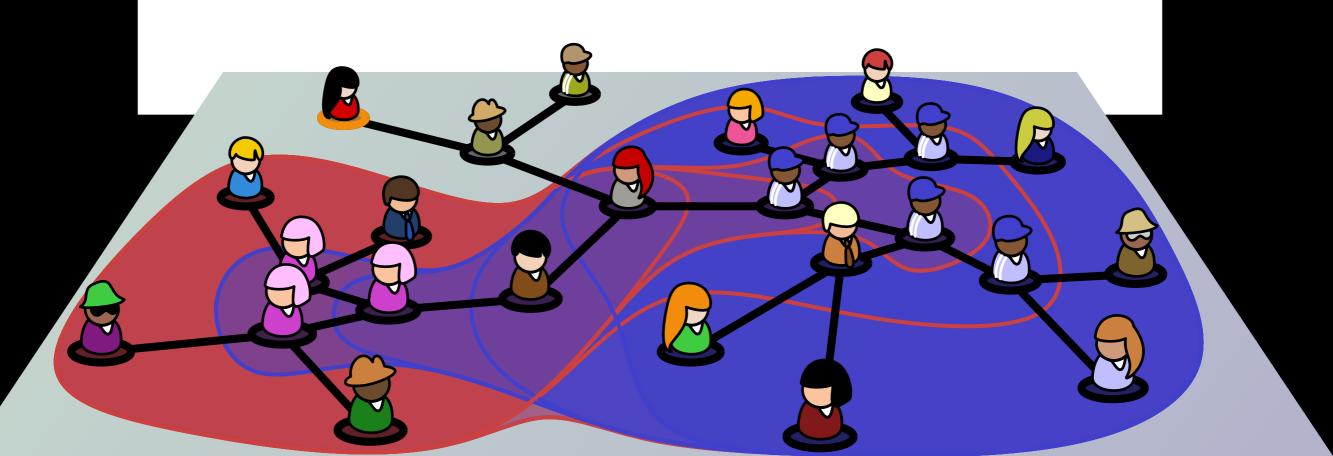
- ullet Choose an arbitrary root for B
- For every node v in B and integer $d \leq \operatorname{diam}(B)$ create two categories
 - One contains all nodes in the left subtree of B at v and the first d levels of the right subtree of B at v
 - The other one is symmetric



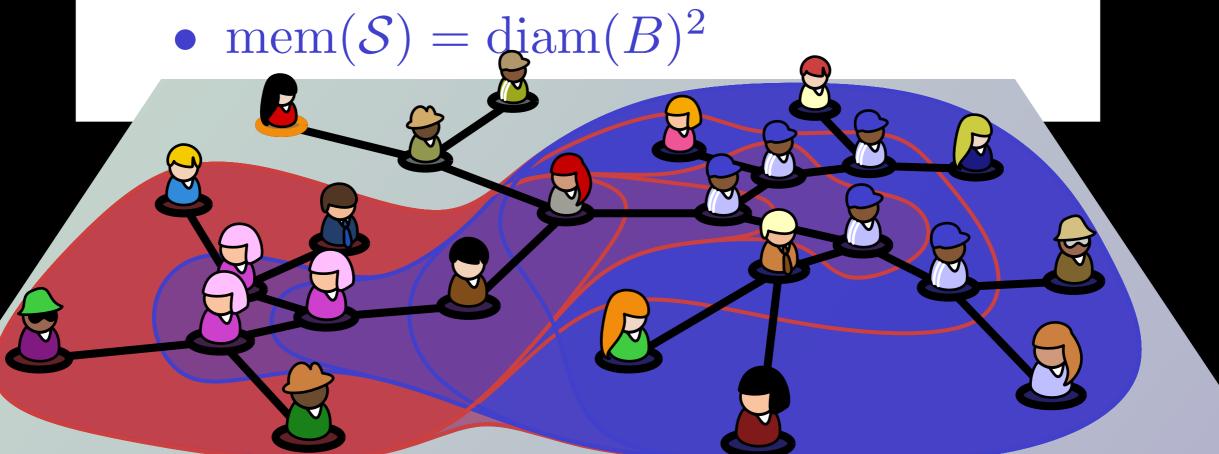
- ullet Choose an arbitrary root for B
- For every node v in B and integer $d \leq \operatorname{diam}(B)$ create two categories
 - One contains all nodes in the left subtree of B at v and the first d levels of the right subtree of B at v
 - The other one is symmetric



- ullet Choose an arbitrary root for B
- For every node v in B and integer $d \leq \operatorname{diam}(B)$ create two categories
 - One contains all nodes in the left subtree of B at v and the first d levels of the right subtree of B at v
 - The other one is symmetric
- Routing works!



- ullet Choose an arbitrary root for B
- For every node v in B and integer $d \leq \operatorname{diam}(B)$ create two categories
 - One contains all nodes in the left subtree of B at v and the first d levels of the right subtree of B at v
 - The other one is symmetric
- Routing works!



PART IV DISCUSSION

Main result

- Main result
 - For any given graph, there exists a set of categories of low membership dimension that makes simple routing work

- Main result
 - For any given graph, there exists a set of categories of low membership dimension that makes simple routing work
 - Theoretical evidence that category-based routing is a feasible explanation of Milgram's experiment

Close the gap

- Close the gap
 - Membership dimension is between diam(G) and $(diam(G) + log n)^2$

- Close the gap
 - Membership dimension is between diam(G) and $(diam(G) + log n)^2$
- Real world data

- Close the gap
 - Membership dimension is between diam(G) and $(diam(G) + \log n)^2$
- Real world data
 - To what extent are real data sets shattered and internally connected?

- Close the gap
 - Membership dimension is between diam(G) and $(diam(G) + \log n)^2$
- Real world data
 - To what extent are real data sets shattered and internally connected?
- Slightly less simple routing

- Close the gap
 - Membership dimension is between diam(G) and $(diam(G) + log n)^2$
- Real world data
 - To what extent are real data sets shattered and internally connected?
- Slightly less simple routing
 - Can the routing strategy be made stronger in a fair way?

THANK YOU!

