MEMBERSHIP DIMENSION

CATEGORY-BASED ROUTING IN SOCIAL NETWORKS AND THE SMALL-WORLD PHENOMENON

David Eppstein • Michael Goodrich • Maarten Löffler Darren Strash Lowell Trott

PART I INTRODUCTION

SMALL-WORLD PHENOMENON

SMALL-WORLD PHENOMENON

- Consider a social network

SMALL-WORLD PHENOMENON

- Consider a social network

SMALL-WORLD PHENOMENON

 - Consider a social network
SMALL-WORLD PHENOMENON

 - Consider a social network

SMALL-WORLD PHENOMENON

- Consider a social network
- Milgram experiment

[Milgram, 1967]

SMALL-WORLD PHENOMENON

- Consider a social network
- Milgram experiment
- Give letter to random person

SMALL-WORLD PHENOMENON

- Consider a social network
- Milgram experiment
- Give letter to random person

SMALL-WORLD PHENOMENON

- Consider a social network
- Milgram experiment
- Give letter to random person
- Select a random target

SMALL-WORLD PHENOMENON

- Consider a social network
- Milgram experiment
- Give letter to random person
- Select a random target

SMALL-WORLD PHENOMENON

- Consider a social network
- Milgram experiment
[Milgram, 1967]
- Give letter to random person
- Select a random target
- Person should give letter to acquaintence

SMALL-WORLD PHENOMENON

- Consider a social network
- Milgram experiment
[Milgram, 1967]
- Give letter to random person
- Select a random target
- Person should give letter to acquaintence

SMALL-WORLD PHENOMENON

- Consider a social network
- Milgram experiment
[Milgram, 1967]
- Give letter to random person
- Select a random target
- Person should give letter to acquaintence

SMALL-WORLD PHENOMENON

- Consider a social network
- Milgram experiment
[Milgram, 1967]
- Give letter to random person
- Select a random target
- Person should give letter to acquaintence

SMALL-WORLD PHENOMENON

- Consider a social network
- Milgram experiment
[Milgram, 1967]
- Give letter to random person
- Select a random target
- Person should give letter to acquaintence

SMALL-WORLD PHENOMENON

- Consider a social network
- Milgram experiment
[Milgram, 1967]
- Give letter to random person
- Select a random target
- Person should give letter to acquaintence

SMALL-WORLD PHENOMENON

- Consider a social network
- Milgram experiment
[Milgram, 1967]
- Give letter to random person
- Select a random target
- Person should give letter to acquaintence
- Conclusions

SMALL-WORLD PHENOMENON

- Consider a social network
- Milgram experiment
[Milgram, 1967]
- Give letter to random person
- Select a random target
- Person should give letter to acquaintence
- Conclusions
- Short paths exist between all people

SMALL-WORLD PHENOMENON

- Consider a social network
- Milgram experiment
[Milgram, 1967]
- Give letter to random person
- Select a random target
- Person should give letter to acquaintence
- Conclusions
- Short paths exist between all people
- "six degrees of separation"

SMALL-WORLD PHENOMENON

- Consider a social network
- Milgram experiment
[Milgram, 1967]
- Give letter to random person
- Select a random target
- Person should give letter to acquaintence
- Conclusions
- Short paths exist between all people
- "six degrees of separation"
- ... and people are able to find these paths

ROUTING IN A SMALL WORLD

ROUTING IN A SMALL WORLD

 - Follow-up experiments

ROUTING IN A SMALL WORLD

- Follow-up experiments
- Routes between people with the same occupation are shorter [Hunter \& Shotland, 1974]

ROUTING IN A SMALL WORLD

- Follow-up experiments
- Routes between people with the same occupation are shorter [Hunter \& Shotland, 1974]
- Decisions who to route to are mostly "categorical" in nature [Killworth \& Bernard, 1978]

ROUTING IN A SMALL WORLD

- Follow-up experiments
- Routes between people with the same occupation are shorter [Hunter \& Shotland, 1974]
- Decisions who to route to are mostly "categorical" in nature [Killworth \& Bernard, 1978]
- Consider a set of categories

ROUTING IN A SMALL WORLD

- Follow-up experiments
- Routes between people with the same occupation are shorter [Hunter \& Shotland, 1974]
- Decisions who to route to are mostly "categorical" in nature [Killworth \& Bernard, 1978]
- Consider a set of categories

ROUTING IN A SMALL WORLD

- Follow-up experiments
- Routes between people with the same occupation are shorter [Hunter \& Shotland, 1974]
- Decisions who to route to are mostly "categorical" in nature [Killworth \& Bernard, 1978]
- Consider a set of categories
- Make decisions based on them

ROUTING IN A SMALL WORLD

- Follow-up experiments
- Routes between people with the same occupation are shorter [Hunter \& Shotland, 1974]
- Decisions who to route to are mostly "categorical" in nature [Killworth \& Bernard, 1978]
- Consider a set of categories
- Make decisions based on them

ROUTING IN A SMALL WORLD

- Follow-up experiments
- Routes between people with the same occupation are shorter [Hunter \& Shotland, 1974]
- Decisions who to route to are mostly "categorical" in nature [Killworth \& Bernard, 1978]
- Consider a set of categories
- Make decisions based on them

ROUTING IN A SMALL WORLD

- Follow-up experiments
- Routes between people with the same occupation are shorter [Hunter \& Shotland, 1974]
- Decisions who to route to are mostly "categorical" in nature [Killworth \& Bernard, 1978]
- Consider a set of categories
- Make decisions based on them

MAIN QUESTIONS

MAIN QUESTIONS

- Is this feasible?

MAIN QUESTIONS

- Is this feasible?
- Assume people use a simple category-based routing algorithm

MAIN QUESTIONS

- Is this feasible?
- Assume people use a simple category-based routing algorithm
- Under what conditions of a network and set of categories does simple routing work?

MAIN QUESTIONS

- Is this feasible?
- Assume people use a simple category-based routing algorithm
- Under what conditions of a network and set of categories does simple routing work?
- How much does an individual need to know for this to work?

PART II
DEFINITIONS \& RESULTS

SOME NOTATION

SOME NOTATION

- Ingredients

SOME NOTATION

- Ingredients
- A set U of n objects

$$
8_{8}^{8} e_{8}^{8}
$$

SOME NOTATION

- Ingredients
- A set U of n objects
- A set E of relations, resulting in a graph $G=(U, E)$

SOME NOTATION

- Ingredients
- A set U of n objects
- A set E of relations, resulting in a graph $G=(U, E)$

SOME NOTATION

- Ingredients
- A set U of n objects
- A set E of relations, resulting in a graph $G=(U, E)$
- A set $\mathcal{S} \subseteq 2^{U}$ of categories

SOME NOTATION

- Ingredients
- A set U of n objects
- A set E of relations, resulting in a graph $G=(U, E)$
- A set $\mathcal{S} \subseteq 2^{U}$ of categories

SOME NOTATION

- Ingredients
- A set U of n objects
- A set E of relations, resulting in a graph $G=(U, E)$
- A set $\mathcal{S} \subseteq 2^{U}$ of categories
- Basic concepts

SOME NOTATION

- Ingredients
- A set U of n objects
- A set E of relations, resulting in a graph $G=(U, E)$
- A set $\mathcal{S} \subseteq 2^{U}$ of categories
- Basic concepts
- $\operatorname{diam}(G)$: longest shortest path in G

SOME NOTATION

- Ingredients
- A set U of n objects
- A set E of relations, resulting in a graph $G=(U, E)$
- A set $\mathcal{S} \subseteq 2^{U}$ of categories
- Basic concepts
- $\operatorname{diam}(G)$: longest shortest path in G

SOME NOTATION

- Ingredients
- A set U of n objects
- A set E of relations, resulting in a graph $G=(U, E)$
- A set $\mathcal{S} \subseteq 2^{U}$ of categories
- Basic concepts
- $\operatorname{diam}(G)$: longest shortest path in G

SOME NOTATION

- Ingredients
- A set U of n objects
- A set E of relations, resulting in a graph $G=(U, E)$
- A set $\mathcal{S} \subseteq 2^{U}$ of categories
- Basic concepts
- $\operatorname{diam}(G)$: longest shortest path in G
- $G[C]$: subgraph induced by C

SOME NOTATION

- Ingredients
- A set U of n objects
- A set E of relations, resulting in a graph $G=(U, E)$
- A set $\mathcal{S} \subseteq 2^{U}$ of categories
- Basic concepts
- $\operatorname{diam}(G)$: longest shortest path in G
- $G[C]$: subgraph induced by C

SOME NOTATION

- Ingredients
- A set U of n objects
- A set E of relations, resulting in a graph $G=(U, E)$
- A set $\mathcal{S} \subseteq 2^{U}$ of categories
- Basic concepts
- $\operatorname{diam}(G)$: longest shortest path in G
- $G[C]$: subgraph induced by C

SIMPLE ROUTING

SIMPLE ROUTING

- Algorithm

SIMPLE ROUTING

- Algorithm
- Give message to neighbour who shares most categories with the target

SIMPLE ROUTING

- Algorithm
- Give message to neighbour who shares most categories with the target
- $\max _{u:(s, u) \in E}|\{C: s \notin C \wedge u, t \in C\}|$

SIMPLE ROUTING

- Algorithm
- Give message to neighbour who shares most categories with the target
- $\max _{u:(s, u) \in E}|\{C: s \notin C \wedge u, t \in C\}|$

SIMPLE ROUTING

- Algorithm
- Give message to neighbour who shares most categories with the target
- $\max _{u:(s, u) \in E}|\{C: s \notin C \wedge u, t \in C\}|$

SIMPLE ROUTING

- Algorithm
- Give message to neighbour who shares most categories with the target
- $\max _{u:(s, u) \in E}|\{C: s \notin C \wedge u, t \in C\}|$

SIMPLE ROUTING

- Algorithm
- Give message to neighbour who shares most categories with the target
- $\max _{u:(s, u) \in E}|\{C: s \notin C \wedge u, t \in C\}|$

SIMPLE ROUTING

- Algorithm
- Give message to neighbour who shares most categories with the target
- $\max _{u:(s, u) \in E}|\{C: s \notin C \wedge u, t \in C\}|$
- Rationale

SIMPLE ROUTING

- Algorithm
- Give message to neighbour who shares most categories with the target
- $\max _{u:(s, u) \in E}|\{C: s \notin C \wedge u, t \in C\}|$
- Rationale
- Simplest interpretation of "category-based" routing

SIMPLE ROUTING

- Algorithm
- Give message to neighbour who shares most categories with the target
- $\max _{u:(s, u) \in E}|\{C: s \notin C \wedge u, t \in C\}|$
- Rationale
- Simplest interpretation of "category-based" routing
- Requires only local knowledge about neighbours and target

INTERNALLY CONNECTED

INTERNALLY CONNECTED
 - Definition

INTERNALLY CONNECTED

- Definition
- The network is connected inside every category

INTERNALLY CONNECTED

- Definition
- The network is connected inside every category
- inco $(G, \mathcal{S}): \forall C \in \mathcal{S}: G[C]$ is connected

INTERNALLY CONNECTED

- Definition
- The network is connected inside every category
- inco $(G, \mathcal{S}): \forall C \in \mathcal{S}: G[C]$ is connected

INTERNALLY CONNECTED

- Definition
- The network is connected inside every category
- inco $(G, \mathcal{S}): \forall C \in \mathcal{S}: G[C]$ is connected

INTERNALLY CONNECTED

- Definition
- The network is connected inside every category
- $\operatorname{inco}(G, \mathcal{S}): \forall C \in \mathcal{S}: G[C]$ is connected

INTERNALLY CONNECTED

- Definition
- The network is connected inside every category
- $\operatorname{inco}(G, \mathcal{S}): \forall C \in \mathcal{S}: G[C]$ is connected

INTERNALLY CONNECTED

- Definition
- The network is connected inside every category
- inco $(G, \mathcal{S}): \forall C \in \mathcal{S}: G[C]$ is connected
- Rationale

INTERNALLY CONNECTED

- Definition
- The network is connected inside every category
- inco $(G, \mathcal{S}): \forall C \in \mathcal{S}: G[C]$ is connected
- Rationale
- Seems like a natural assumption

INTERNALLY CONNECTED

- Definition
- The network is connected inside every category
- inco $(G, \mathcal{S}): \forall C \in \mathcal{S}: G[C]$ is connected
- Rationale
- Seems like a natural assumption
- Makes it a lot easier to reason about simple routing

SHATTERED

SHATTERED
 - Definition

SHATTERED

- Definition
- Everyone has a neighbour who shares a new category with everyone else

SHATTERED

- Definition
- Everyone has a neighbour who shares a new category with everyone else
- $\operatorname{shat}(G, \mathcal{S})$:
$\forall s, t \exists u, C:(s, u) \in E \wedge s \notin C \wedge u, t \in C$

SHATTERED

- Definition
- Everyone has a neighbour who shares a new category with everyone else
- $\operatorname{shat}(G, \mathcal{S})$:
$\forall s, t \exists u, C:(s, u) \in E \wedge s \notin C \wedge u, t \in C$

SHATTERED

- Definition
- Everyone has a neighbour who shares a new category with everyone else
- $\operatorname{shat}(G, \mathcal{S})$
$\forall s, t \exists u, C:(s, u) \in E \wedge s \notin C \wedge u, t \in C$
- Rationale

SHATTERED

- Definition
- Everyone has a neighbour who shares a new category with everyone else
- $\operatorname{shat}(G, \mathcal{S})$
$\forall s, t \exists u, C:(s, u) \in E \wedge s \notin C \wedge u, t \in C$
- Rationale
- Neccesary condition for routing to work

MEMBERSHIP DIMENSION

MEMBERSHIP DIMENSION
 - Definition

MEMBERSHIP DIMENSION

- Definition
- Largest number of categories anyone is in

MEMBERSHIP DIMENSION

- Definition
- Largest number of categories anyone is in
- $\operatorname{mem}(\mathcal{S})=\max _{u \in U}|\{C \in \mathcal{S} \mid u \in C\}|$

MEMBERSHIP DIMENSION

- Definition
- Largest number of categories anyone is in
- $\operatorname{mem}(\mathcal{S})=\max _{u \in U}|\{C \in \mathcal{S} \mid u \in C\}|$

MEMBERSHIP DIMENSION

- Definition
- Largest number of categories anyone is in
- $\operatorname{mem}(\mathcal{S})=\max _{u \in U}|\{C \in \mathcal{S} \mid u \in C\}|$

MEMBERSHIP DIMENSION

- Definition
- Largest number of categories anyone is in
- $\operatorname{mem}(\mathcal{S})=\max _{u \in U}|\{C \in \mathcal{S} \mid u \in C\}|$
- Rationale

MEMBERSHIP DIMENSION

- Definition
- Largest number of categories anyone is in
- $\operatorname{mem}(\mathcal{S})=\max _{u \in U}|\{C \in \mathcal{S} \mid u \in C\}|$
- Rationale
- Captures the "cognitive load" of people

MEMBERSHIP DIMENSION

- Definition
- Largest number of categories anyone is in
- $\operatorname{mem}(\mathcal{S})=\max _{u \in U}|\{C \in \mathcal{S} \mid u \in C\}|$
- Rationale
- Captures the "cognitive load" of people
- We expect the membership dimension to be small

RESULTS

RESULTS

- Simple routing works?

RESULTS

- Simple routing works?
- yes $\rightarrow \operatorname{shat}(G, \mathcal{S})$

RESULTS

- Simple routing works?
- yes $\rightarrow \operatorname{shat}(G, \mathcal{S})$
- $\operatorname{shat}(G, \mathcal{S}) \wedge \exists T$: inco $(T, \mathcal{S}) \rightarrow$ yes

RESULTS

- Simple routing works?
- yes $\rightarrow \operatorname{shat}(G, \mathcal{S})$
- $\operatorname{shat}(G, \mathcal{S}) \wedge \exists T: \operatorname{inco}(T, \mathcal{S}) \rightarrow$ yes
- Bounds on membership dimension

RESULTS

- Simple routing works?
- yes $\rightarrow \operatorname{shat}(G, \mathcal{S})$
- $\operatorname{shat}(G, \mathcal{S}) \wedge \exists T: \operatorname{inco}(T, \mathcal{S}) \rightarrow$ yes
- Bounds on membership dimension
- $\exists G \exists \mathcal{S}:$ yes $\wedge \operatorname{mem}(\mathcal{S})=1$

RESULTS

- Simple routing works?
- yes $\rightarrow \operatorname{shat}(G, \mathcal{S})$
- $\operatorname{shat}(G, \mathcal{S}) \wedge \exists T: \operatorname{inco}(T, \mathcal{S}) \rightarrow$ yes
- Bounds on membership dimension
- $\exists G \exists \mathcal{S}$: yes $\wedge \operatorname{mem}(\mathcal{S})=1$
- $\forall G \forall \mathcal{S}$: yes $\rightarrow \operatorname{mem}(\mathcal{S}) \geq \operatorname{diam}(G)$

RESULTS

- Simple routing works?
- yes $\rightarrow \operatorname{shat}(G, \mathcal{S})$
- $\operatorname{shat}(G, \mathcal{S}) \wedge \exists T: \operatorname{inco}(T, \mathcal{S}) \rightarrow$ yes
- Bounds on membership dimension
- $\exists G \exists \mathcal{S}$: yes $\wedge \operatorname{mem}(\mathcal{S})=1$
- $\forall G \forall \mathcal{S}$: yes $\rightarrow \operatorname{mem}(\mathcal{S}) \geq \operatorname{diam}(G)$
- $\forall G \exists \mathcal{S}:$ yes $\wedge \operatorname{mem}(\mathcal{S}) \leq(\operatorname{diam}(G)+\log n)^{2}$

RESULTS

- Simple routing works?
- yes $\rightarrow \operatorname{shat}(G, \mathcal{S})$
- $\operatorname{shat}(G, \mathcal{S}) \wedge \exists T: \operatorname{inco}(T, \mathcal{S}) \rightarrow$ yes
- Bounds on membership dimension
- $\exists G \exists \mathcal{S}$: yes $\wedge \operatorname{mem}(\mathcal{S})=1$
- $\forall G \forall \mathcal{S}$: yes $\rightarrow \operatorname{mem}(\mathcal{S}) \geq \operatorname{diam}(G)$
- $\forall G \exists \mathcal{S}: \operatorname{yes} \wedge \operatorname{mem}(\mathcal{S}) \leq(\operatorname{diam}(G)+\log n)^{2}$
- $\forall \mathcal{S} \exists G$: no

PART III TECHNICAL DETAILS

CATEGORY CONSTRUCTION

CATEGORY CONSTRUCTION

- Start with arbitrary graph G

CATEGORY CONSTRUCTION

- Start with arbitrary graph G

CATEGORY CONSTRUCTION

- Start with arbitrary graph G
- Compute spanning tree T of G

CATEGORY CONSTRUCTION

- Start with arbitrary graph G
- Compute spanning tree T of G

CATEGORY CONSTRUCTION

- Start with arbitrary graph G
- Compute spanning tree T of G - $\operatorname{diam}(T) \leq 2 \operatorname{diam}(G)$

CATEGORY CONSTRUCTION

- Start with arbitrary graph G
- Compute spanning tree T of G - $\operatorname{diam}(T) \leq 2 \operatorname{diam}(G)$
- Embed T in binary tree B

CATEGORY CONSTRUCTION

- Start with arbitrary graph G
- Compute spanning tree T of G - $\operatorname{diam}(T) \leq 2 \operatorname{diam}(G)$
- Embed T in binary tree B

CATEGORY CONSTRUCTION

- Start with arbitrary graph G
- Compute spanning tree T of G - $\operatorname{diam}(T) \leq 2 \operatorname{diam}(G)$
- Embed T in binary tree B

CATEGORY CONSTRUCTION

- Start with arbitrary graph G
- Compute spanning tree T of G - $\operatorname{diam}(T) \leq 2 \operatorname{diam}(G)$
- Embed T in binary tree B

CATEGORY CONSTRUCTION

- Start with arbitrary graph G
- Compute spanning tree T of G - $\operatorname{diam}(T) \leq 2 \operatorname{diam}(G)$
- Embed T in binary tree B

CATEGORY CONSTRUCTION

- Start with arbitrary graph G
- Compute spanning tree T of G - $\operatorname{diam}(T) \leq 2 \operatorname{diam}(G)$
- Embed T in binary tree B

CATEGORY CONSTRUCTION

- Start with arbitrary graph G
- Compute spanning tree T of G - $\operatorname{diam}(T) \leq 2 \operatorname{diam}(G)$
- Embed T in binary tree B

CATEGORY CONSTRUCTION

- Start with arbitrary graph G
- Compute spanning tree T of G - $\operatorname{diam}(T) \leq 2 \operatorname{diam}(G)$
- Embed T in binary tree B - $\operatorname{diam}(B) \leq \operatorname{diam}(T)+\log n$

CATEGORY CONSTRUCTION

CATEGORY CONSTRUCTION

- Choose an arbitrary root for B

CATEGORY CONSTRUCTION

- Choose an arbitrary root for B

CATEGORY CONSTRUCTION

- Choose an arbitrary root for B
- For every node v in B and integer $d \leq \operatorname{diam}(B)$ create two categories

CATEGORY CONSTRUCTION

- Choose an arbitrary root for B
- For every node v in B and integer $d \leq \operatorname{diam}(B)$ create two categories

CATEGORY CONSTRUCTION

- Choose an arbitrary root for B
- For every node v in B and integer $d \leq \operatorname{diam}(B)$ create two categories
- One contains all nodes in the left subtree of B at v and the first d levels of the right subtree of B at v

CATEGORY CONSTRUCTION

- Choose an arbitrary root for B
- For every node v in B and integer $d \leq \operatorname{diam}(B)$ create two categories
- One contains all nodes in the left subtree of B at v and the first d levels of the right subtree of B at v

CATEGORY CONSTRUCTION

- Choose an arbitrary root for B
- For every node v in B and integer $d \leq \operatorname{diam}(B)$ create two categories
- One contains all nodes in the left subtree of B at v and the first d levels of the right subtree of B at v
- The other one is symmetric

CATEGORY CONSTRUCTION

- Choose an arbitrary root for B
- For every node v in B and integer $d \leq \operatorname{diam}(B)$ create two categories
- One contains all nodes in the left subtree of B at v and the first d levels of the right subtree of B at v
- The other one is symmetric

CATEGORY CONSTRUCTION

- Choose an arbitrary root for B
- For every node v in B and integer $d \leq \operatorname{diam}(B)$ create two categories
- One contains all nodes in the left subtree of B at v and the first d levels of the right subtree of B at v
- The other one is symmetric

CATEGORY CONSTRUCTION

- Choose an arbitrary root for B
- For every node v in B and integer $d \leq \operatorname{diam}(B)$ create two categories
- One contains all nodes in the left subtree of B at v and the first d levels of the right subtree of B at v
- The other one is symmetric
- Routing works!

CATEGORY CONSTRUCTION

- Choose an arbitrary root for B
- For every node v in B and integer $d \leq \operatorname{diam}(B)$ create two categories
- One contains all nodes in the left subtree of B at v and the first d levels of the right subtree of B at v
- The other one is symmetric
- Routing works!
- $\operatorname{mem}(\mathcal{S})=\operatorname{diam}(B)^{2}$

PART IV DISCUSSION

CONCLUSION

CONCLUSION

- Main result

CONCLUSION

- Main result
- For any given graph, there exists a set of categories of low membership dimension that makes simple routing work

CONCLUSION

- Main result
- For any given graph, there exists a set of categories of low membership dimension that makes simple routing work
- Theoretical evidence that category-based routing is a feasible explanation of Milgram's experiment

OPEN QUESTIONS

OPEN QUESTIONS

- Close the gap

OPEN QUESTIONS

- Close the gap
- Membership dimension is between $\operatorname{diam}(G)$ and $(\operatorname{diam}(G)+\log n)^{2}$

OPEN QUESTIONS

- Close the gap
- Membership dimension is between $\operatorname{diam}(G)$ and $(\operatorname{diam}(G)+\log n)^{2}$
- Real world data

OPEN QUESTIONS

- Close the gap
- Membership dimension is between $\operatorname{diam}(G)$ and $(\operatorname{diam}(G)+\log n)^{2}$
- Real world data
- To what extent are real data sets shattered and internally connected?

OPEN QUESTIONS

- Close the gap
- Membership dimension is between $\operatorname{diam}(G)$ and $(\operatorname{diam}(G)+\log n)^{2}$
- Real world data
- To what extent are real data sets shattered and internally connected?
- Slightly less simple routing

OPEN QUESTIONS

- Close the gap
- Membership dimension is between $\operatorname{diam}(G)$ and $(\operatorname{diam}(G)+\log n)^{2}$
- Real world data
- To what extent are real data sets shattered and internally connected?
- Slightly less simple routing
- Can the routing strategy be made stronger in a fair way?

THANK YOU!

