COMPETITIVE QUERY STRATEGIES FOR MINIMISING THE PLY OF THE POTENTIAL LOCATIONS OF MOVING POINTS

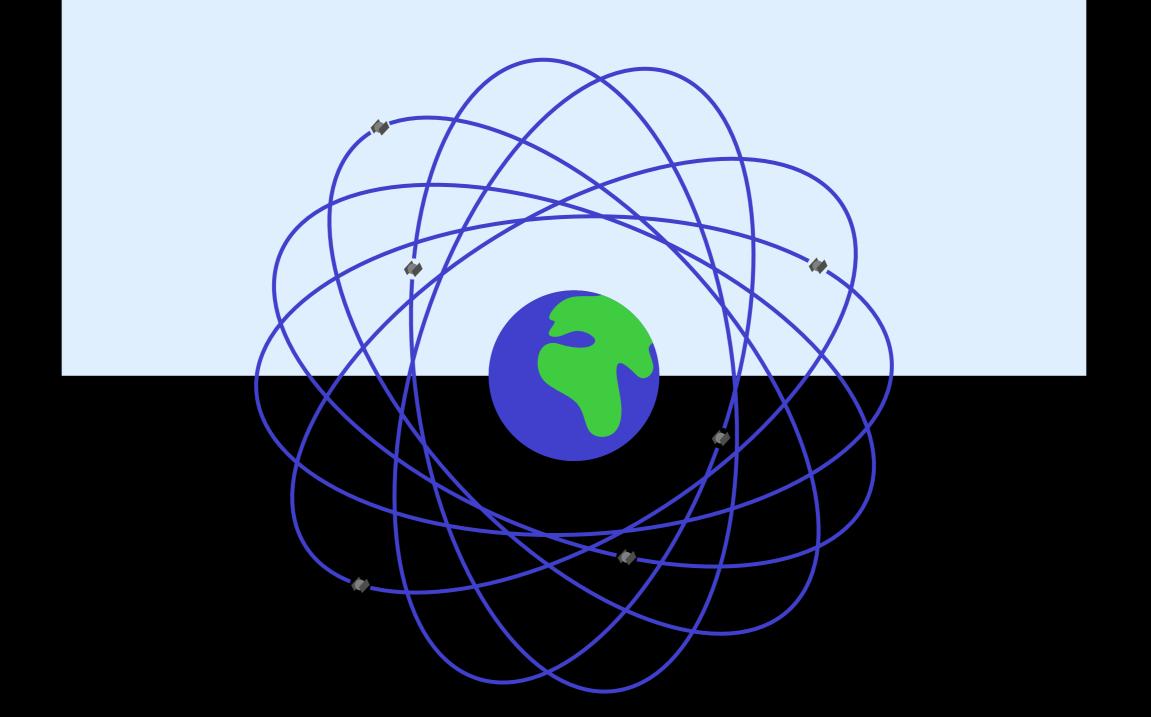
> Will Evans David Kirkpatrick Frank Staals Maarten Löffler

A BRIEF ELUCIDATION OF THE TITLE

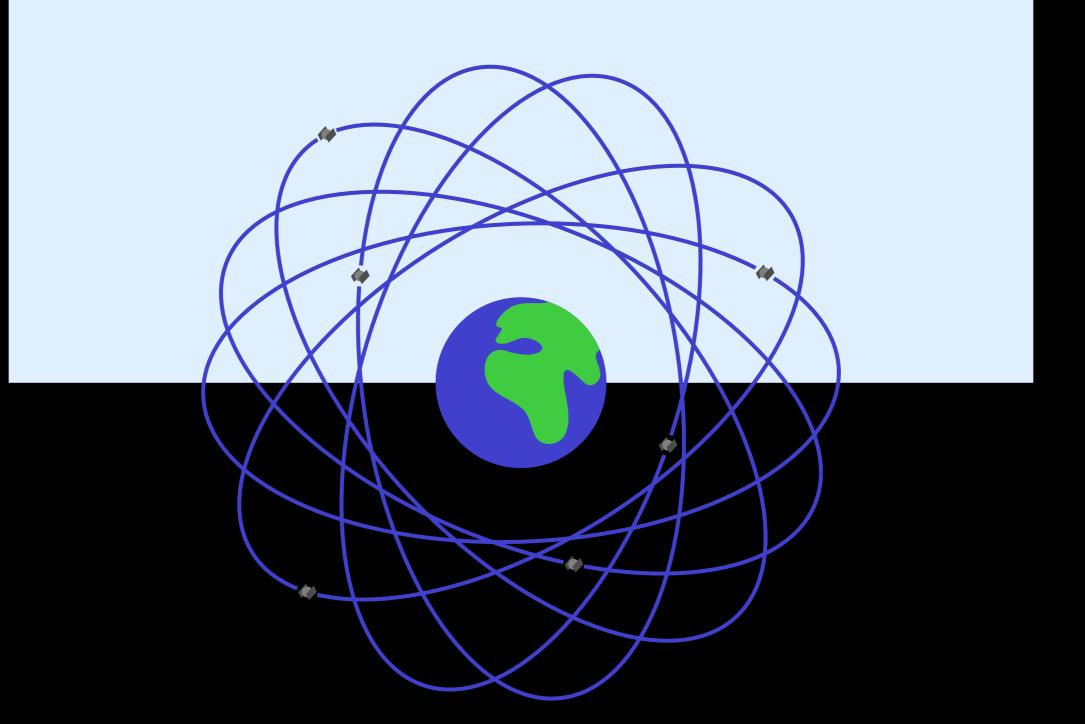
- Location-aware mobile devices

- Location-aware mobile devices
 - GPS systems

- Location-aware mobile devices
 - GPS systems



- Location-aware mobile devices
 - GPS systems
 - Smart phones



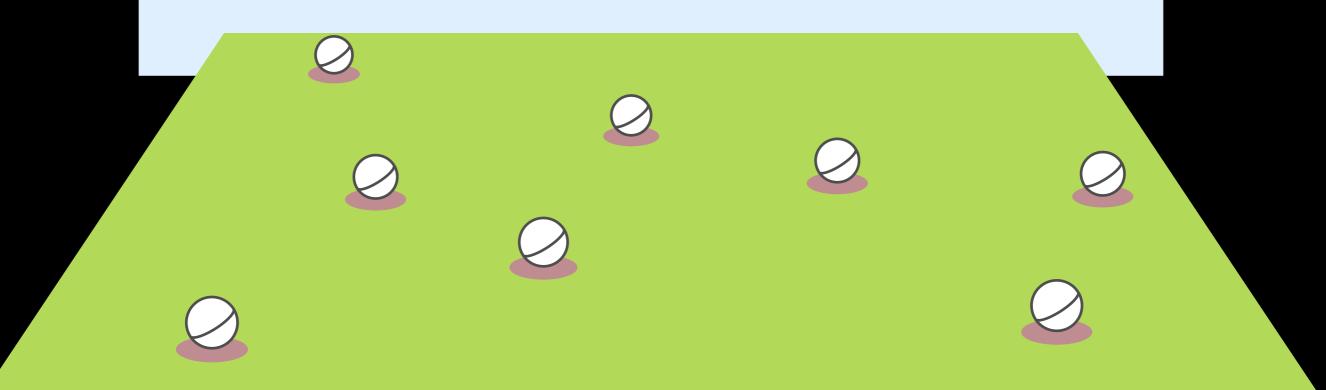
- Location-aware mobile devices
 - GPS systems
 - Smart phones

- Location-aware mobile devices
 - GPS systems
 - Smart phones

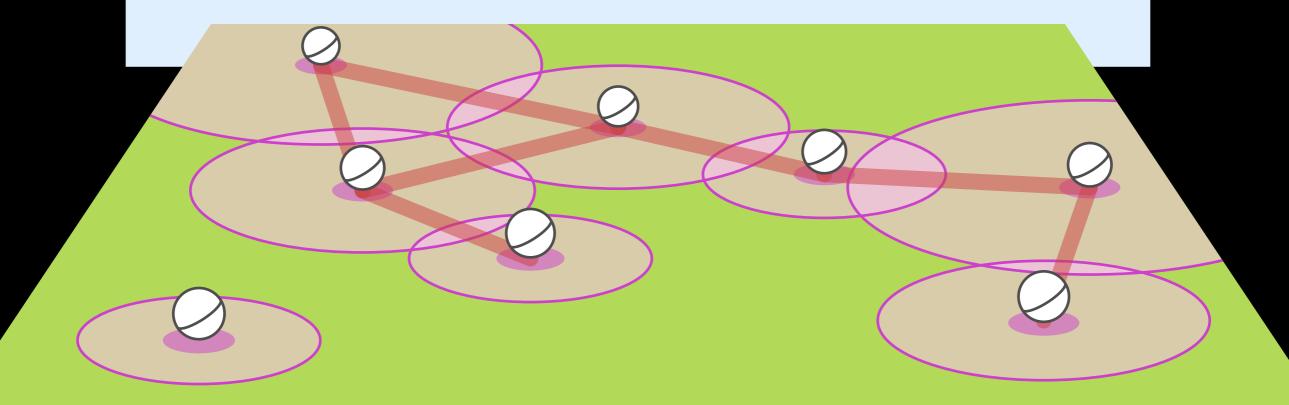
- Location-aware mobile devices
 - GPS systems
 - Smart phones

- Location-aware mobile devices
 - GPS systems
 - Smart phones
 - Wireless sensor networks

- Location-aware mobile devices
 - GPS systems
 - Smart phones
 - Wireless sensor networks

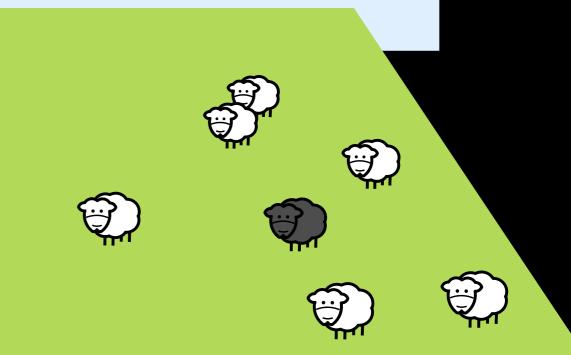


- Location-aware mobile devices
 - GPS systems
 - Smart phones
 - Wireless sensor networks

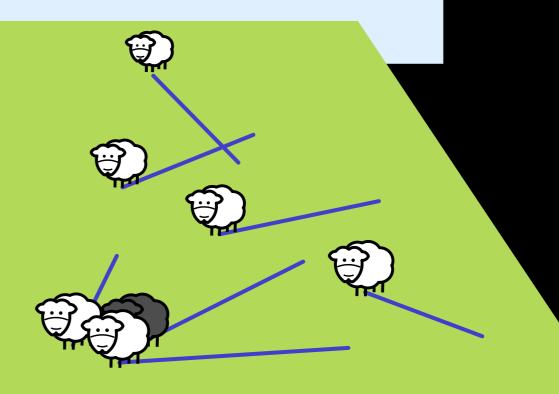


- Location-aware mobile devices
 - GPS systems
 - Smart phones
 - Wireless sensor networks
 - Flock tracking

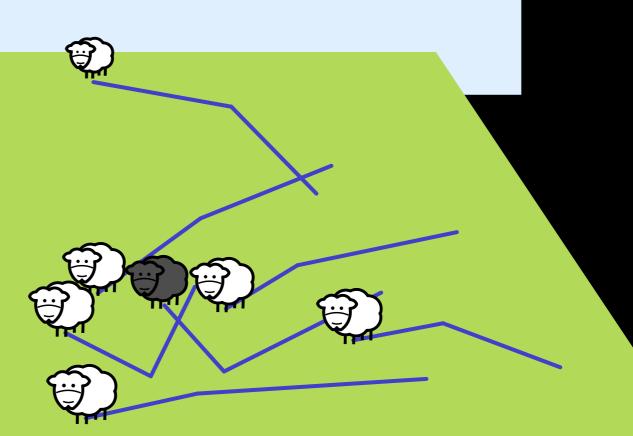
- Location-aware mobile devices
 - GPS systems
 - Smart phones
 - Wireless sensor networks
 - Flock tracking



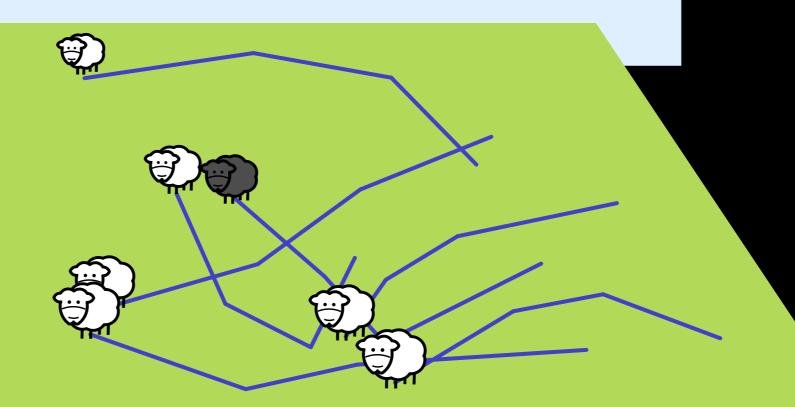
- Location-aware mobile devices
 - GPS systems
 - Smart phones
 - Wireless sensor networks
 - Flock tracking



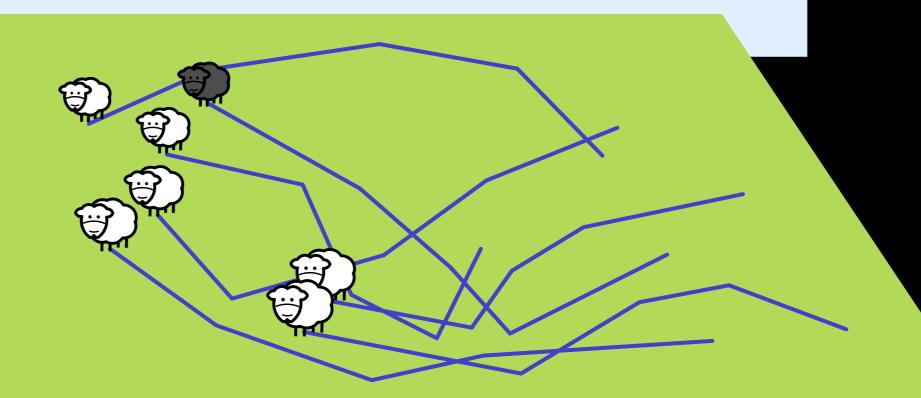
- Location-aware mobile devices
 - GPS systems
 - Smart phones
 - Wireless sensor networks
 - Flock tracking



- Location-aware mobile devices
 - GPS systems
 - Smart phones
 - Wireless sensor networks
 - Flock tracking



- Location-aware mobile devices
 - GPS systems
 - Smart phones
 - Wireless sensor networks
 - Flock tracking



- Location-aware mobile devices
 - GPS systems
 - Smart phones
 - Wireless sensor networks
 - Flock tracking

- Location-aware mobile devices
 - GPS systems
 - Smart phones
 - Wireless sensor networks
 - Flock tracking
- New geometric data sets

- Location-aware mobile devices
 - GPS systems
 - Smart phones
 - Wireless sensor networks
 - Flock tracking
- New geometric data sets
 - Often very large

- Location-aware mobile devices
 - GPS systems
 - Smart phones
 - Wireless sensor networks
 - Flock tracking
- New geometric data sets
 - Often very large
 - Imprecise in nature

- Location-aware mobile devices
 - GPS systems
 - Smart phones
 - Wireless sensor networks
 - Flock tracking
- New geometric data sets
 - Often very large
 - Imprecise in nature
 - Dynamic / unpredictable



- Motion causes imprecision

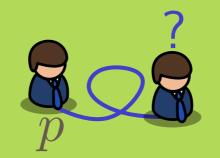
- Motion causes imprecision
 - Suppose we have a moving point p

- Motion causes imprecision
 - Suppose we have a moving point p

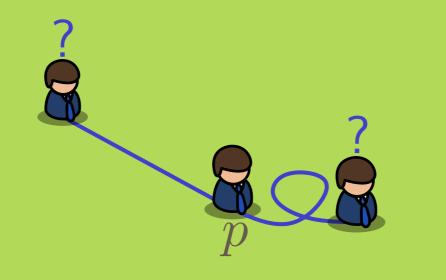
- Motion causes imprecision
 - Suppose we have a moving point \boldsymbol{p}
 - We know an upper bound on its speed

- Motion causes imprecision
 - Suppose we have a moving point \boldsymbol{p}
 - We know an upper bound on its speed
 - $\bullet~$ In 1 time step p can move at most d

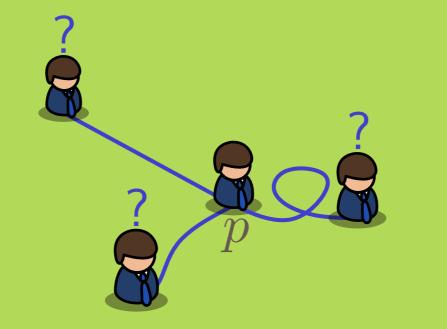
- Motion causes imprecision
 - Suppose we have a moving point \boldsymbol{p}
 - We know an upper bound on its speed
 - $\bullet~$ In 1 time step p can move at most d



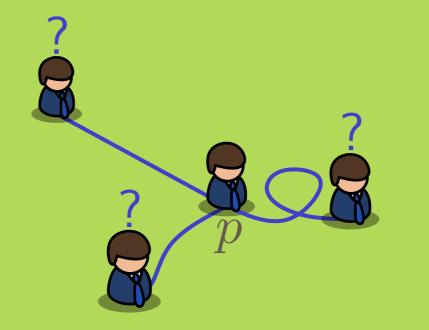
- Motion causes imprecision
 - Suppose we have a moving point \boldsymbol{p}
 - We know an upper bound on its speed
 - In 1 time step $p \ {\rm can} \ {\rm move} \ {\rm at} \ {\rm most} \ d$



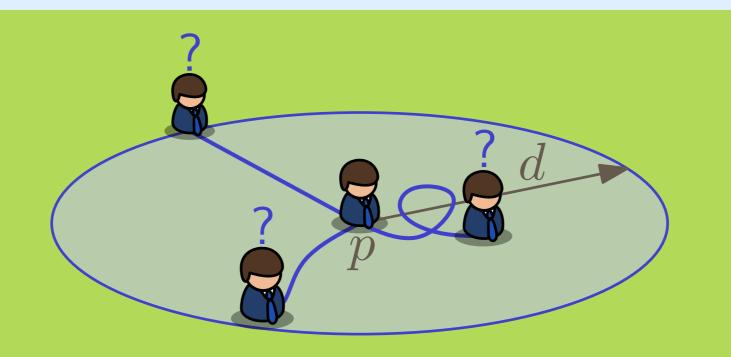
- Motion causes imprecision
 - Suppose we have a moving point \boldsymbol{p}
 - We know an upper bound on its speed
 - In 1 time step p can move at most \boldsymbol{d}



- Motion causes imprecision
 - $\bullet\,$ Suppose we have a moving point p
 - We know an upper bound on its speed
 - In 1 time step $p \ {\rm can}$ move at most d
 - We model the *potential locations* of p in the next time step by a disk of radius d

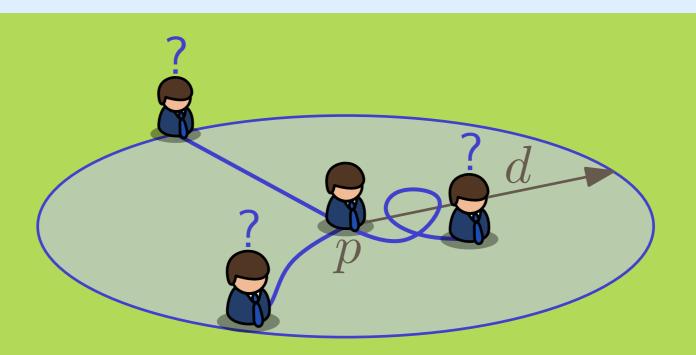


- Motion causes imprecision
 - $\bullet\,$ Suppose we have a moving point p
 - We know an upper bound on its speed
 - In 1 time step p can move at most d
 - We model the *potential locations* of p in the next time step by a disk of radius d



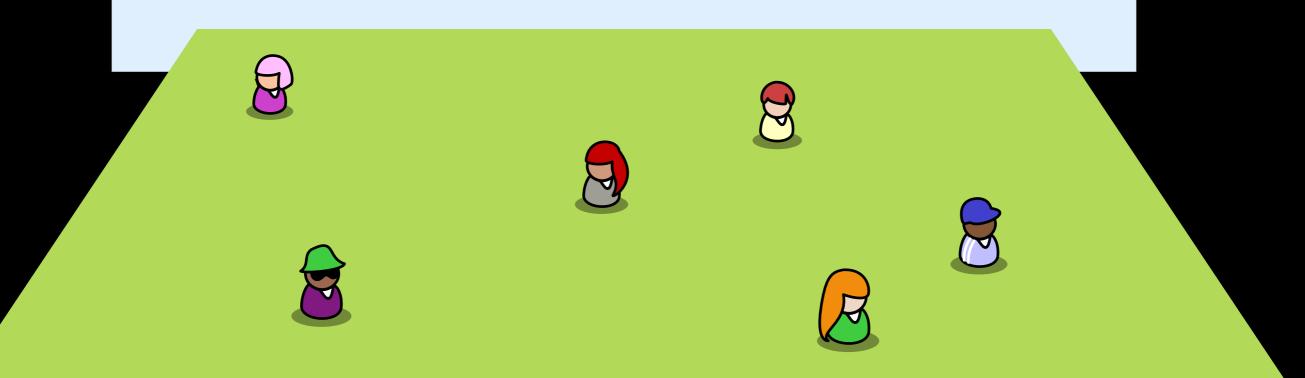
- Motion causes imprecision
 - $\bullet\,$ Suppose we have a moving point p
 - We know an upper bound on its speed
 - In 1 time step p can move at most d
 - We model the *potential locations* of *p* in the next time step by a disk of radius *d*

OBSERVATION:*If we knew where p was t time ago, we know it is now somewhere in a disk of radius td*

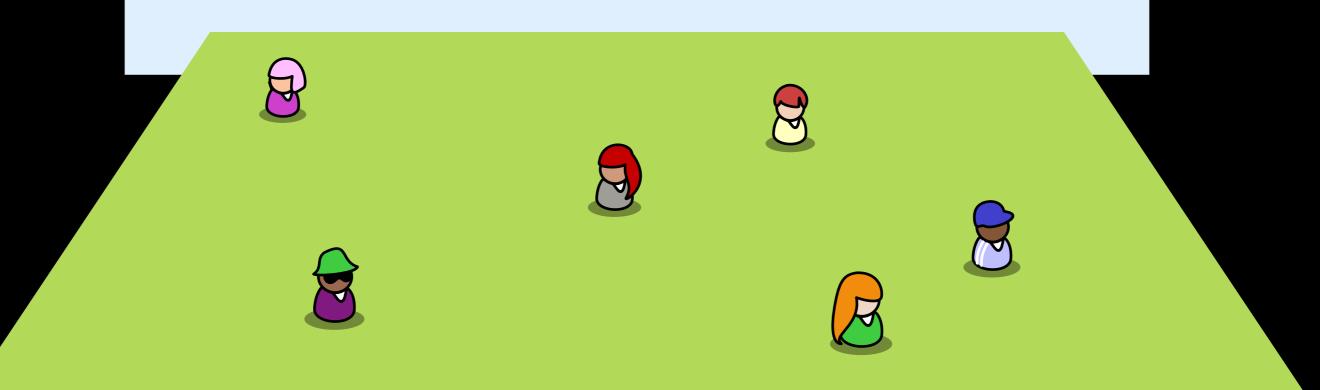


"QUERY"Consider n moving points

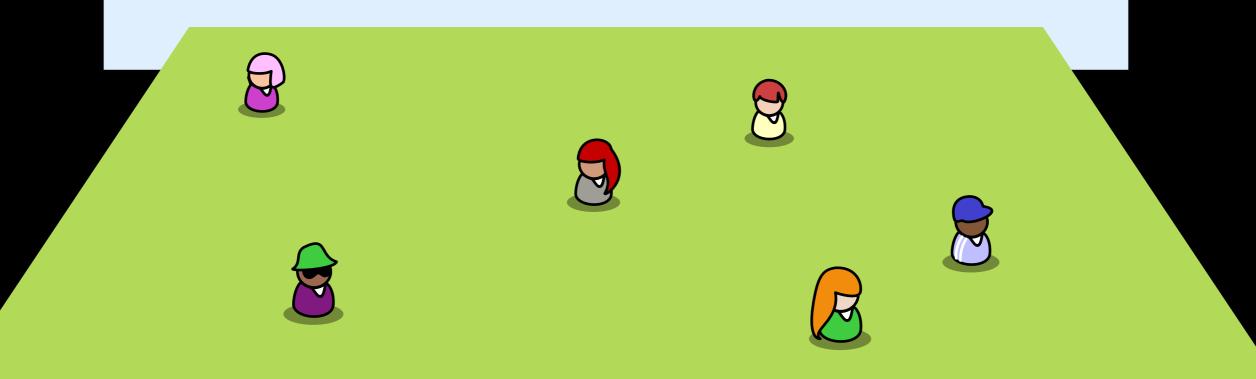
"QUERY"Consider n moving points



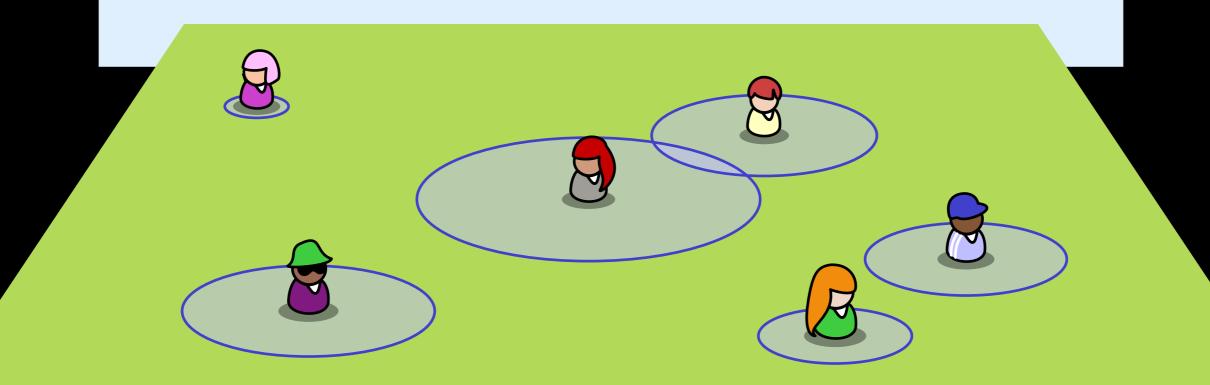
- Consider n moving points
 - Suppose that for each point we know a *location* p_i and an associated *time stamp* t_i



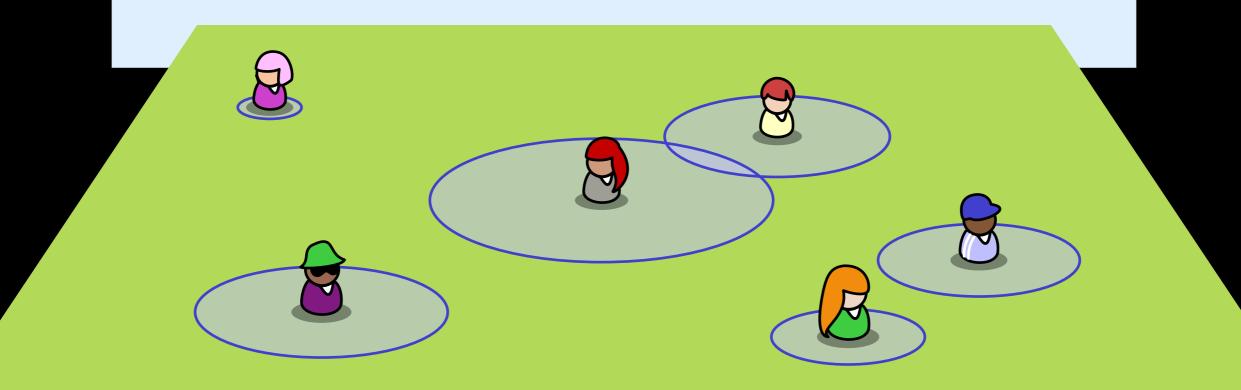
- Consider *n* moving points
 - Suppose that for each point we know a location p_i and an associated time stamp t_i
 - Then the current potential location region of each point is a disk centered at p_i



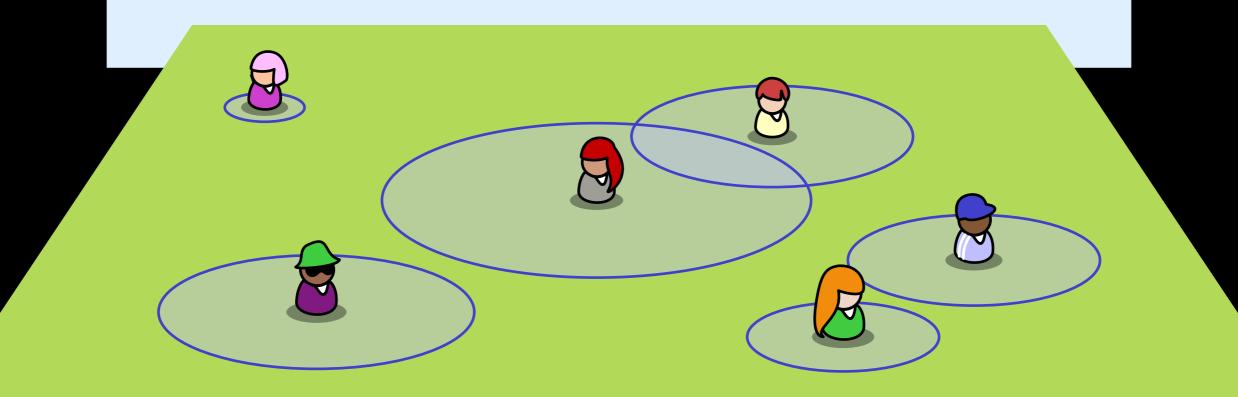
- Consider *n* moving points
 - Suppose that for each point we know a location p_i and an associated time stamp t_i
 - Then the current potential location region of each point is a disk centered at p_i



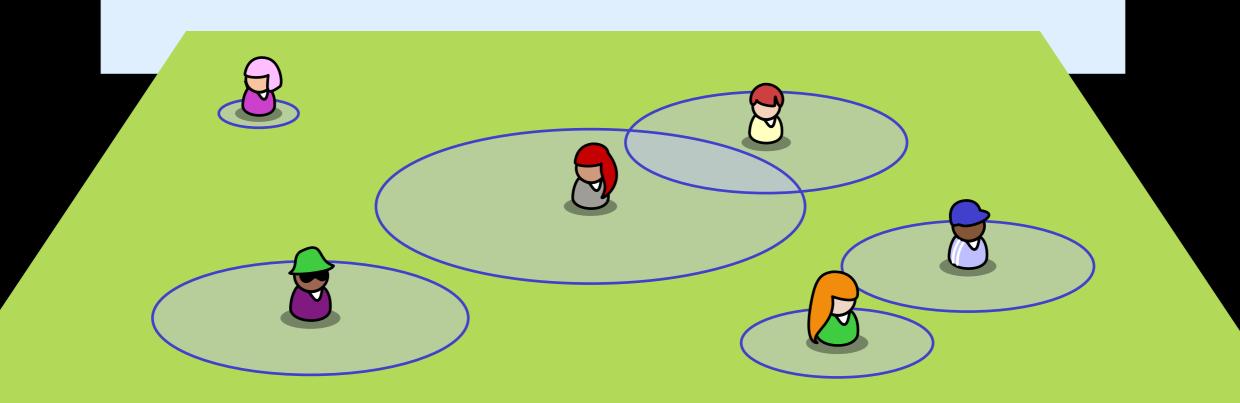
- Consider *n* moving points
 - Suppose that for each point we know a *location* p_i and an associated *time stamp* t_i
 - Then the current potential location region of each point is a disk centered at p_i
 - Each unit of time, all regions grow by \boldsymbol{d}



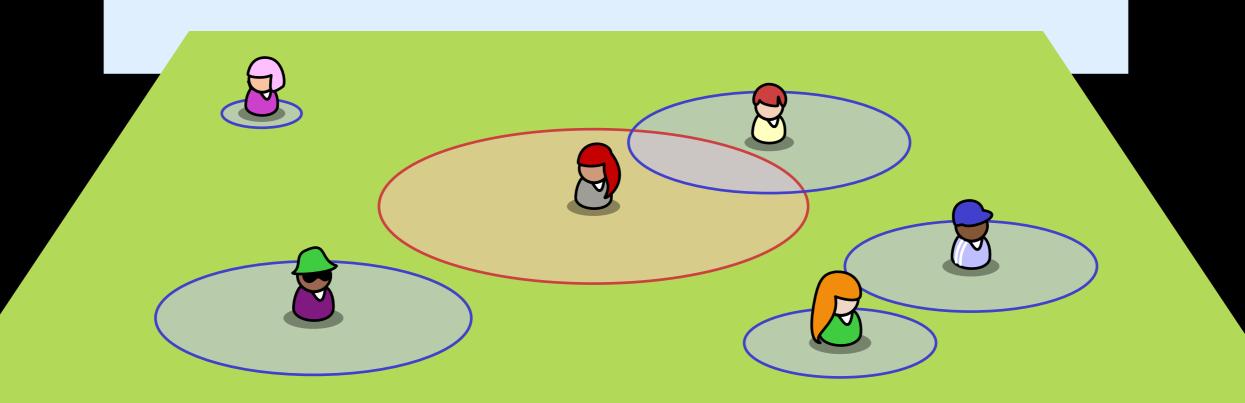
- Consider n moving points
 - Suppose that for each point we know a location p_i and an associated time stamp t_i
 - Then the current potential location region of each point is a disk centered at p_i
 - Each unit of time, all regions grow by \boldsymbol{d}



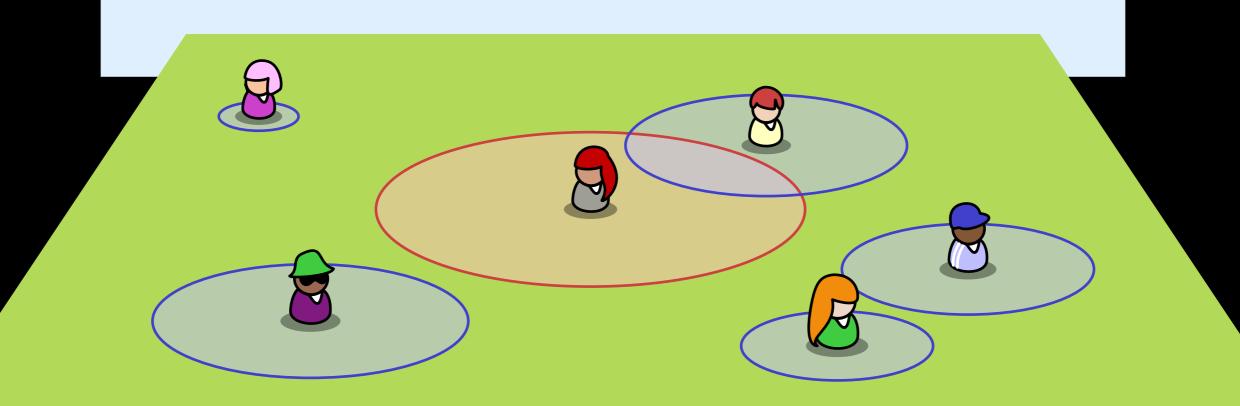
- Consider n moving points
 - Suppose that for each point we know a location p_i and an associated time stamp t_i
 - Then the current potential location region of each point is a disk centered at p_i
 - $\bullet\,$ Each unit of time, all regions grow by d
- We can *query* a point to update it



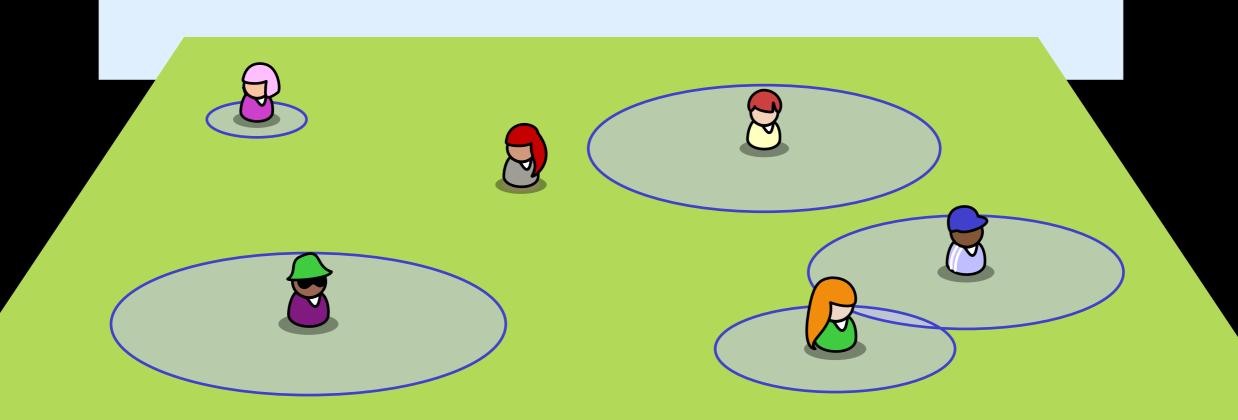
- Consider n moving points
 - Suppose that for each point we know a location p_i and an associated time stamp t_i
 - Then the current potential location region of each point is a disk centered at p_i
 - $\bullet\,$ Each unit of time, all regions grow by d
- We can *query* a point to update it



- Consider n moving points
 - Suppose that for each point we know a location p_i and an associated time stamp t_i
 - Then the current potential location region of each point is a disk centered at p_i
 - $\bullet\,$ Each unit of time, all regions grow by d
- We can *query* a point to update it
 - Takes 1 unit of time to execute



- Consider n moving points
 - Suppose that for each point we know a location p_i and an associated time stamp t_i
 - Then the current potential location region of each point is a disk centered at p_i
 - Each unit of time, all regions grow by \boldsymbol{d}
- We can *query* a point to update it
 - Takes 1 unit of time to execute



- Consider n moving points
 - Suppose that for each point we know a location p_i and an associated time stamp t_i
 - Then the current potential location region of each point is a disk centered at p_i
 - Each unit of time, all regions grow by d
- We can *query* a point to update it
 - Takes 1 unit of time to execute
 - After a query, one region collapses to a point, but all other regions grow

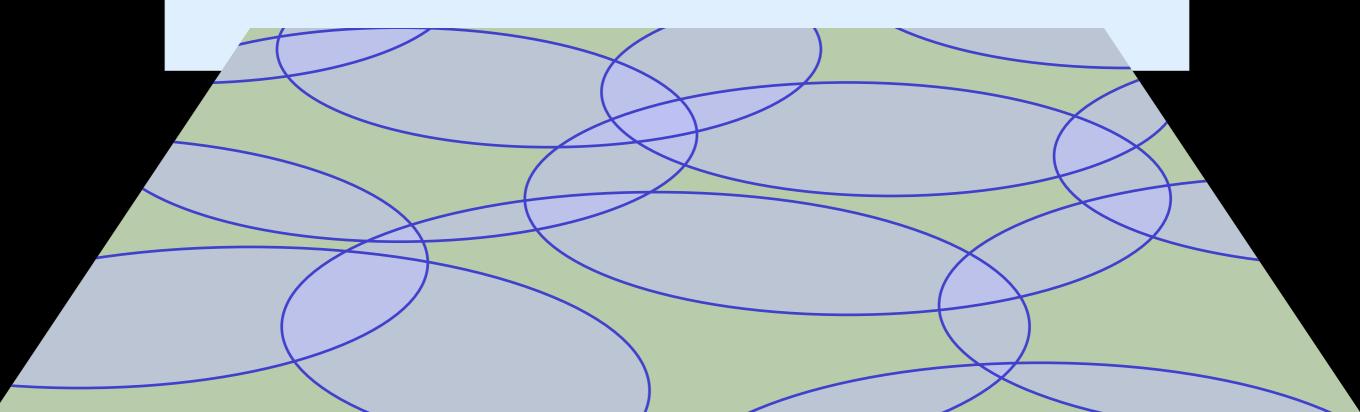
- Consider n moving points
 - Suppose that for each point we know a location p_i and an associated time stamp t_i
 - Then the current potential location region of each point is a disk centered at p_i
 - Each unit of time, all regions grow by d
- We can *query* a point to update it
 - Takes 1 unit of time to execute
 - After a query, one region collapses to a point, but all other regions grow

- Consider *n* moving points
 - Suppose that for each point we know a location p_i and an associated time stamp t_i
 - Then the current potential location region of each point is a disk centered at p_i
 - $\bullet\,$ Each unit of time, all regions grow by d
- We can *query* a point to update it
 - Takes 1 unit of time to execute
 - After a query, one region collapses to a point, but all other regions grow

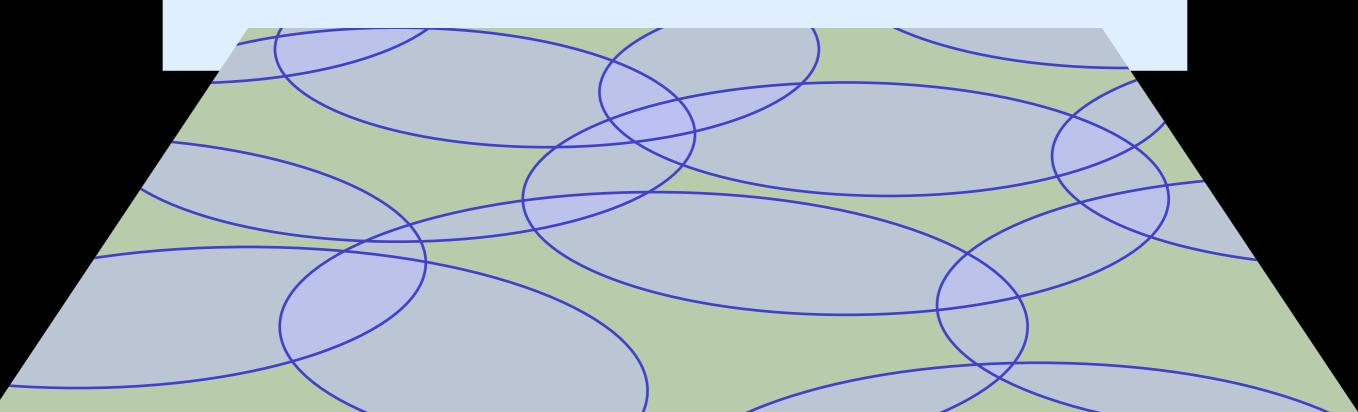
PLYPly of a point

- Ply of a point
 - Given a set of regions

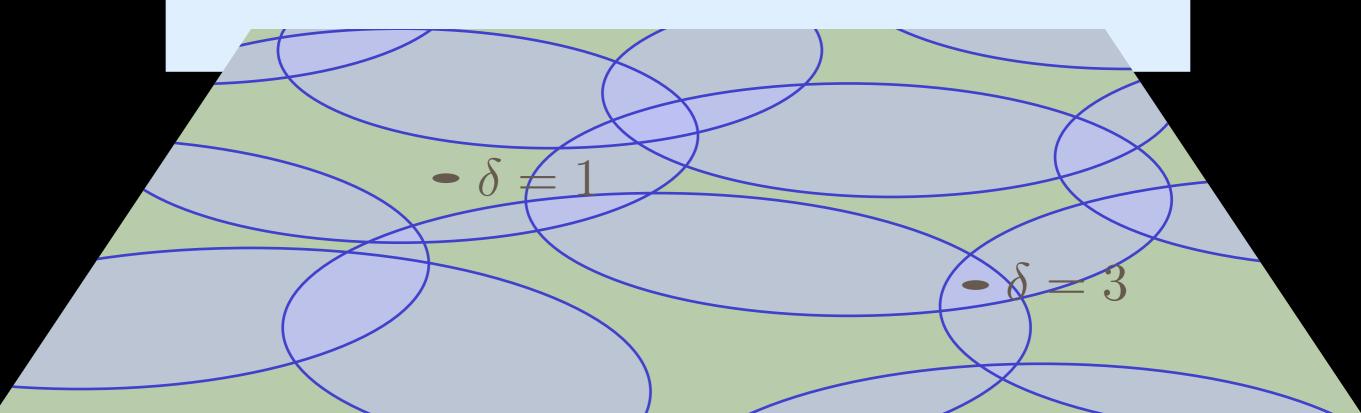
- Ply of a point
 Given a set of regions



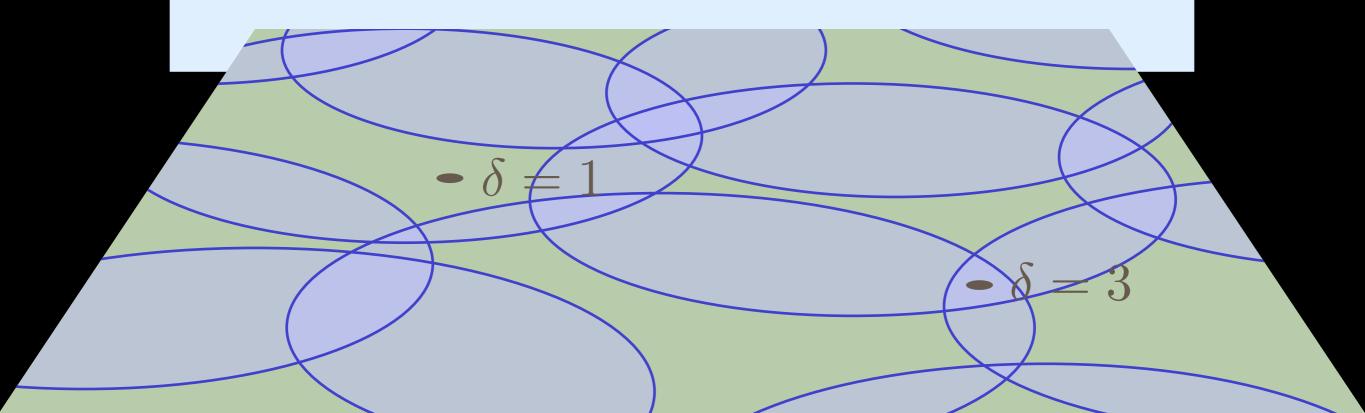
- Ply of a point
 - Given a set of regions
 - $\delta(p) = |\{R : p \in R\}|$



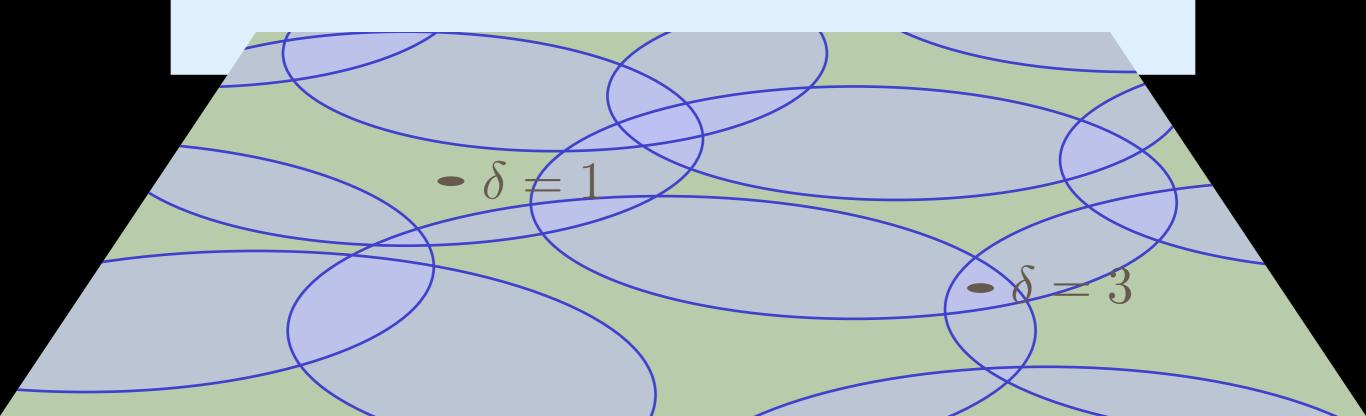
- Ply of a point
 - Given a set of regions
 - $\delta(p) = |\{R : p \in R\}|$



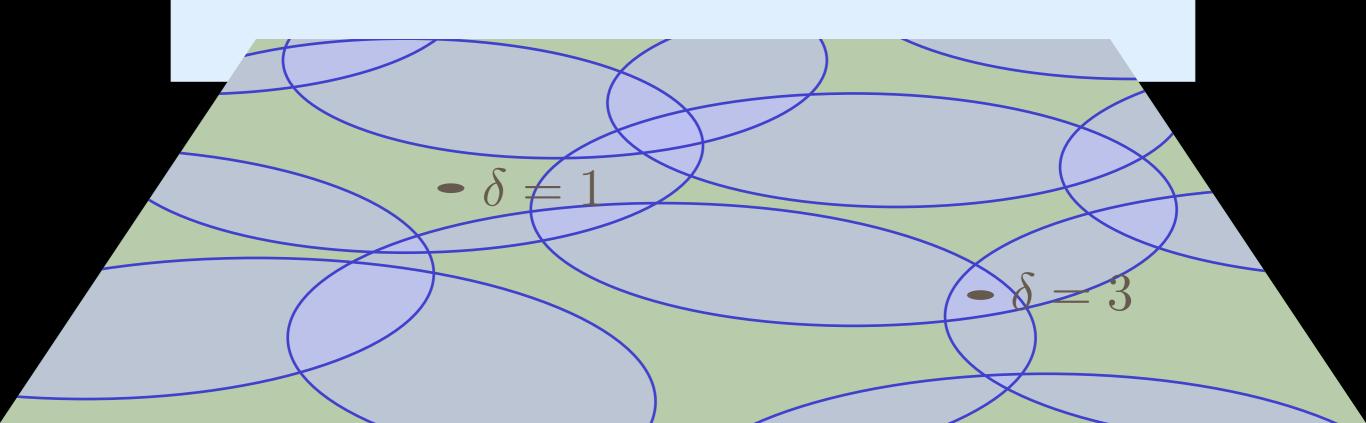
- Ply of a point
 - Given a set of regions
 - $\delta(p) = |\{R : p \in R\}|$
- Ply of the set of regions



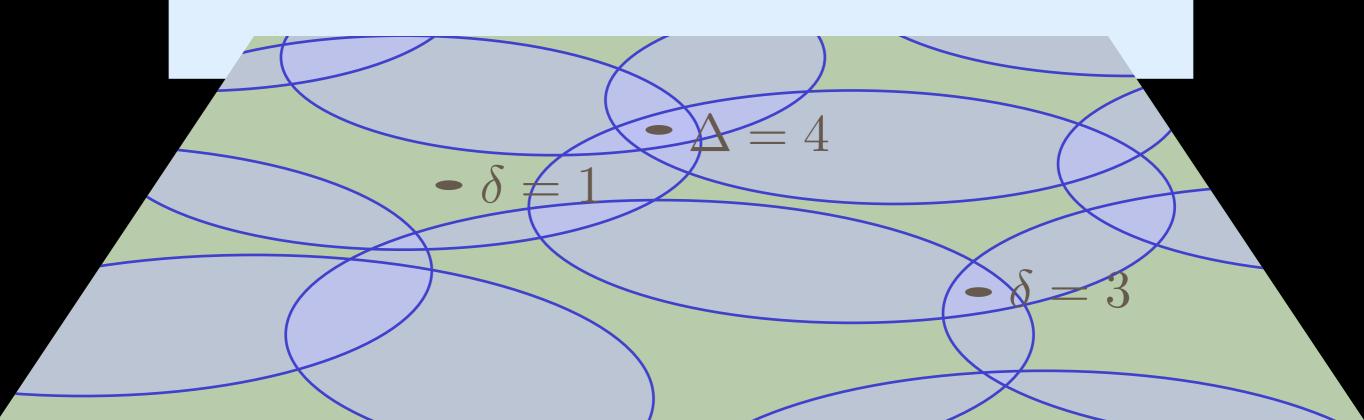
- Ply of a point
 - Given a set of regions
 - $\delta(p) = |\{R : p \in R\}|$
- Ply of the set of regions
 - Maximum ply of all points



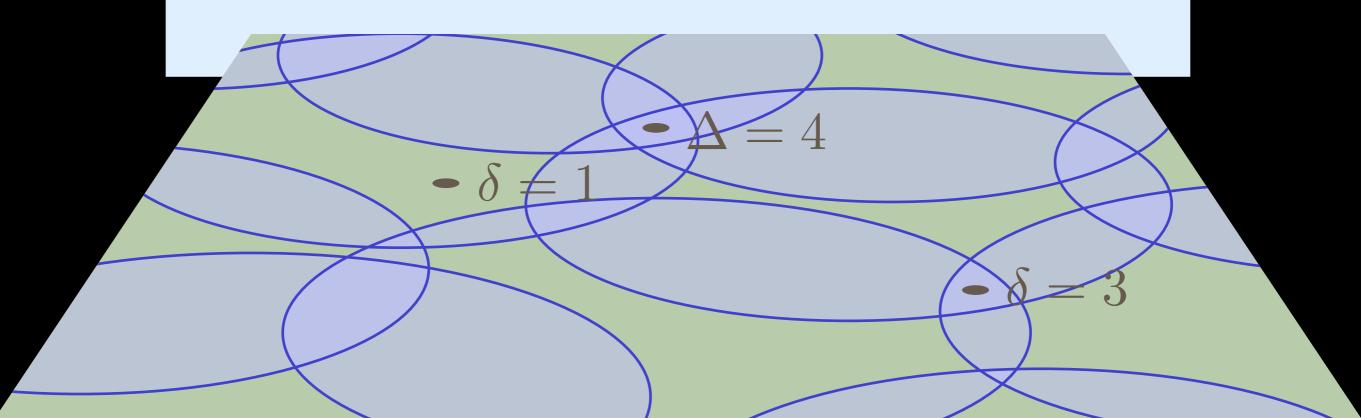
- Ply of a point
 - Given a set of regions
 - $\delta(p) = |\{R : p \in R\}|$
- Ply of the set of regions
 - Maximum ply of all points
 - $\Delta = \max_p \delta(p)$



- Ply of a point
 - Given a set of regions
 - $\delta(p) = |\{R : p \in R\}|$
- Ply of the set of regions
 - Maximum ply of all points
 - $\Delta = \max_p \delta(p)$



- Ply of a point
 - Given a set of regions
 - $\delta(p) = |\{R : p \in R\}|$
- Ply of the set of regions
 - Maximum ply of all points
 - $\Delta = \max_p \delta(p)$
- **POSTULATION:***Low ply is good!*



- Classical, "offline" algorithm

- Classical, "offline" algorithm
 - Receives the whole input at once

- Classical, "offline" algorithm
 - Receives the whole input at once
- Online algorithm

- Classical, "offline" algorithm
 - Receives the whole input at once
- Online algorithm
 - Receives a sequence of input *events*

- Classical, "offline" algorithm
 - Receives the whole input at once
- Online algorithm
 - Receives a sequence of input *events*
 - Needs to react to each event before knowing what the next event will be

- Classical, "offline" algorithm
 - Receives the whole input at once
- Online algorithm
 - Receives a sequence of input *events*
 - Needs to react to each event before knowing what the next event will be
- Competitive ratio

- Classical, "offline" algorithm
 - Receives the whole input at once
- Online algorithm
 - Receives a sequence of input *events*
 - Needs to react to each event before knowing what the next event will be
- Competitive ratio
 - Performance measure for online algorithms

- Classical, "offline" algorithm
 - Receives the whole input at once
- Online algorithm
 - Receives a sequence of input *events*
 - Needs to react to each event before knowing what the next event will be
- Competitive ratio
 - Performance measure for online algorithms
 - Cost of online algorithm divided by cost of best possible offline algorithm

COMPETITIVE QUERY STRATEGIES FOR MINIMISING THE PLY OF THE POTENTIAL LOCATIONS OF MOVING POINTS

> Will Evans David Kirkpatrick Frank Staals Maarten Löffler

COMPETITIVE QUERY STRATEGIES FOR MINIMISING THE PLY OF THE POTENTIAL LOCATIONS OF MOVING POINTS

> Will Evans David Kirkpatrick Frank Staals Maarten Löffler

PROBLEM STATEMENTInput

- Input
 - Set of *n* moving points with initial regions

- Input
 - Set of *n* moving points with initial regions
 - Target time t^*

- Input
 - Set of *n* moving points with initial regions
 - Target time t^*
- Objective

- Input
 - Set of *n* moving points with initial regions
 - Target time t^*
- Objective
 - Select one region to query each time step

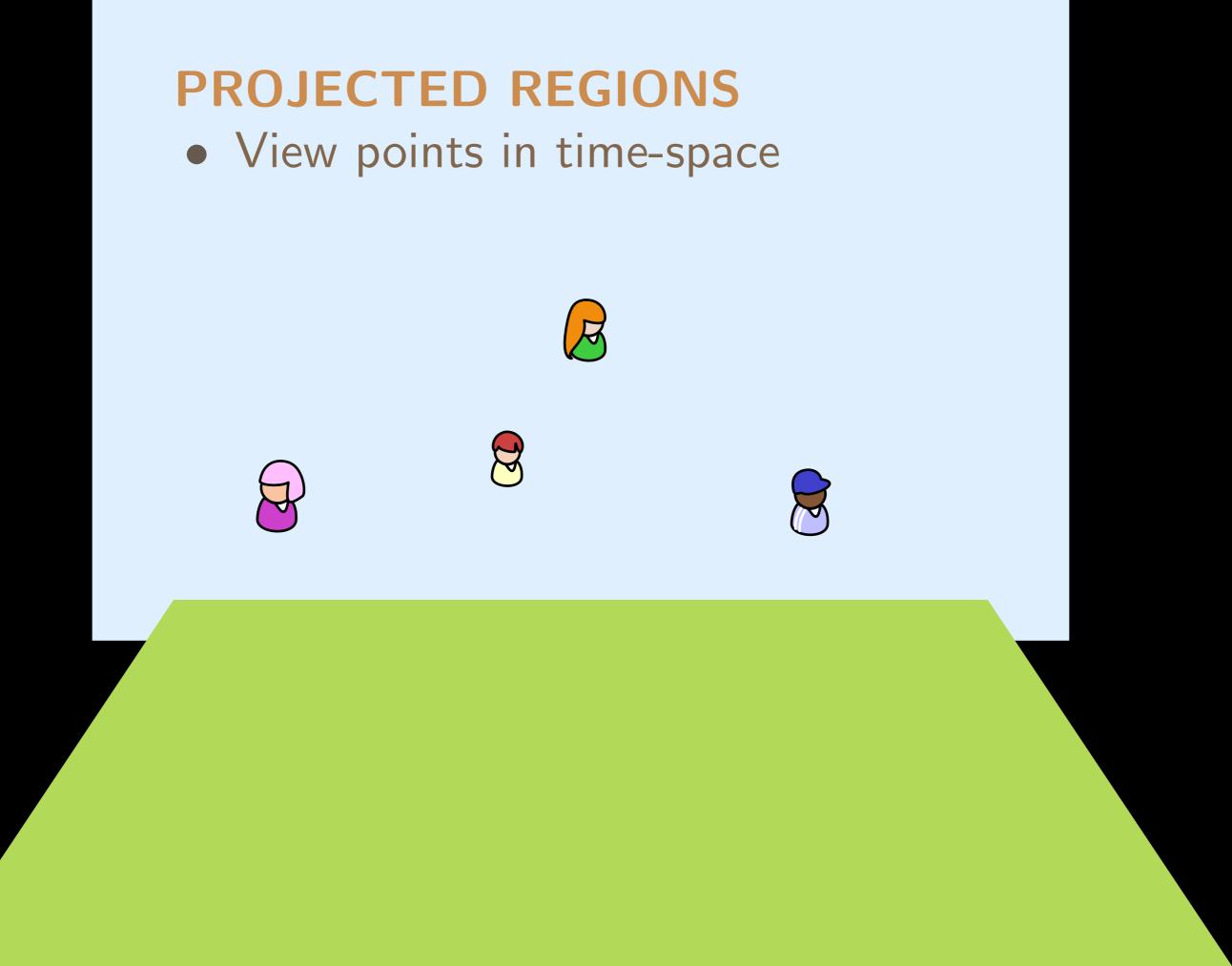
- Input
 - Set of *n* moving points with initial regions
 - Target time t^*
- Objective
 - Select one region to query each time step
 - Minimize the ply of the regions at time t^*

- Input
 - Set of *n* moving points with initial regions
 - Target time t^*
- Objective
 - Select one region to query each time step
 - Minimize the ply of the regions at time t^{*}
- Competitive analysis

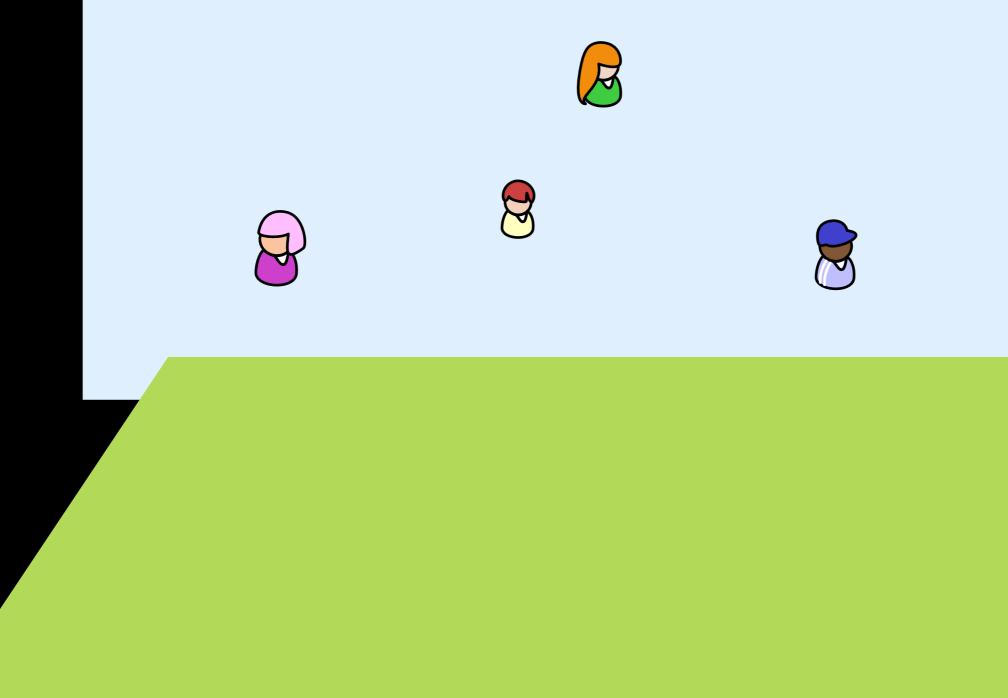
- Input
 - Set of *n* moving points with initial regions
 - Target time t^*
- Objective
 - Select one region to query each time step
 - Minimize the ply of the regions at time t^*
- Competitive analysis
 - Compare against adversary that knows the full trajectories of the points in advance

TECHNICAL STUFF

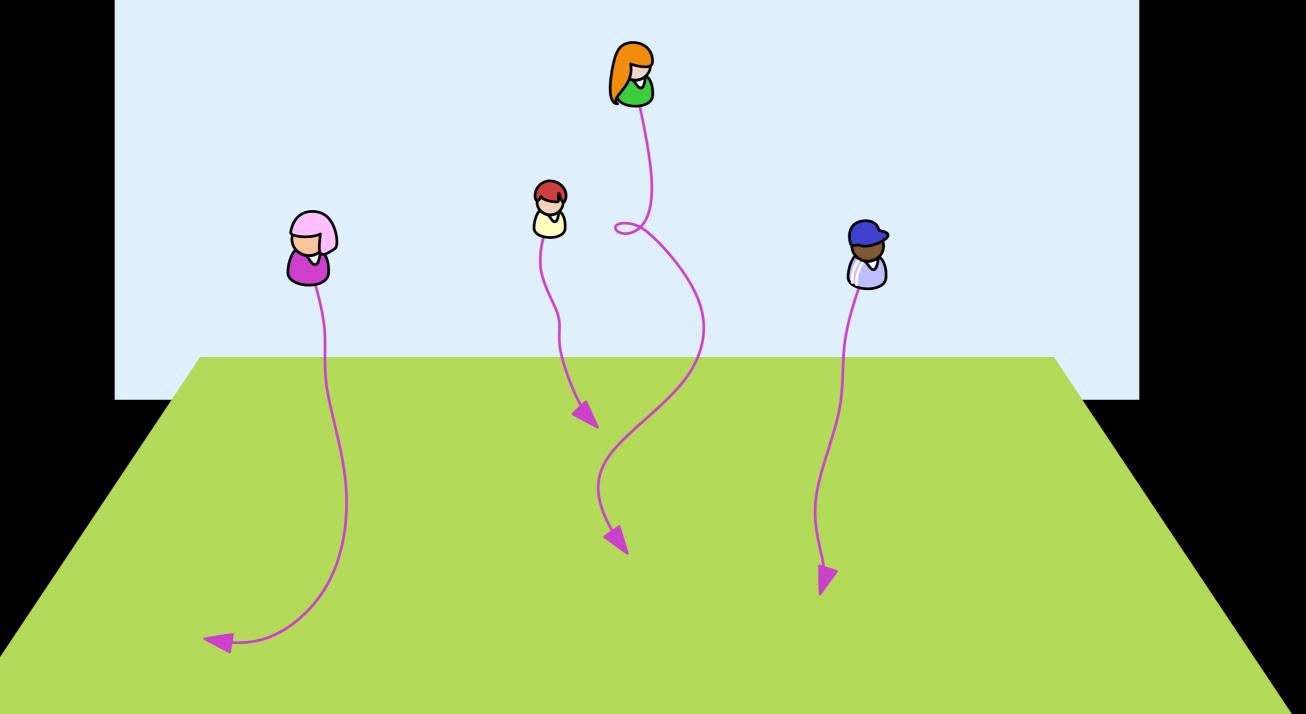
- View points in time-space



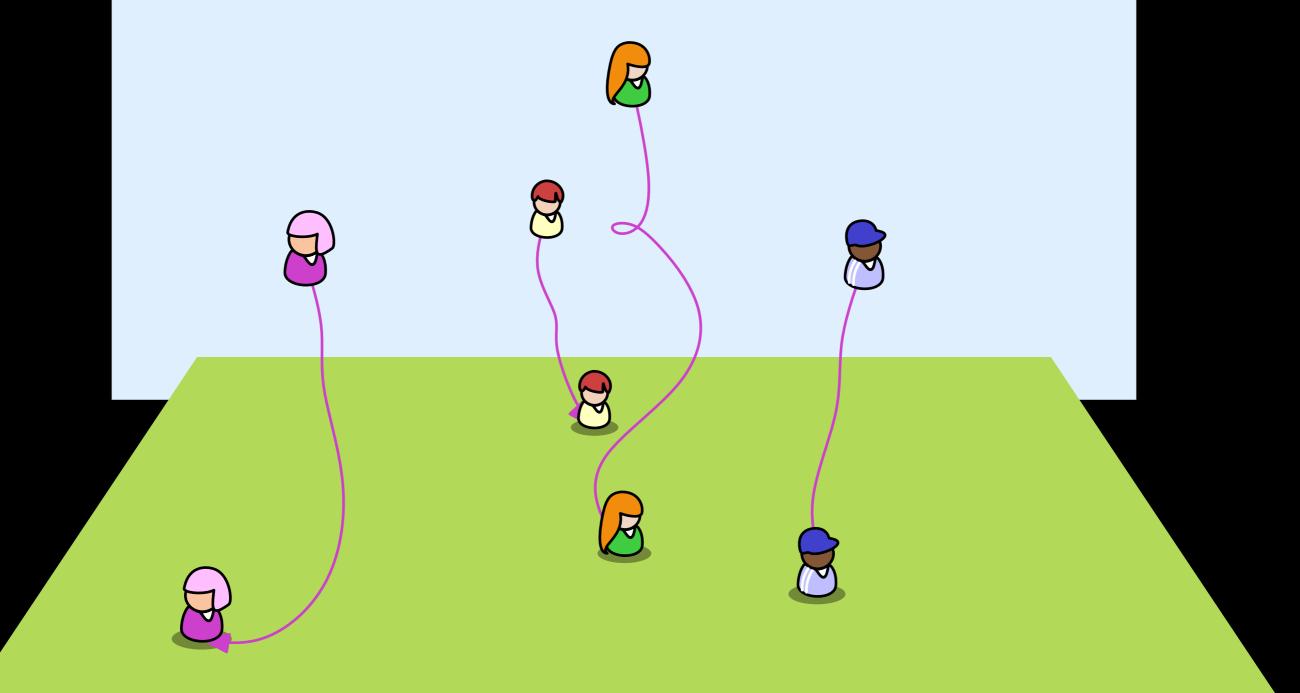
- View points in time-space
 - Points follow some unknown *z*-monotone trajectory



- View points in time-space
 - Points follow some unknown *z*-monotone trajectory



- View points in time-space
 - Points follow some unknown z-monotone trajectory



- View points in time-space
 - Points follow some unknown *z*-monotone trajectory
 - Because of speed limit, they stay in cones

- View points in time-space
 - Points follow some unknown *z*-monotone trajectory
 - Because of speed limit, they stay in cones

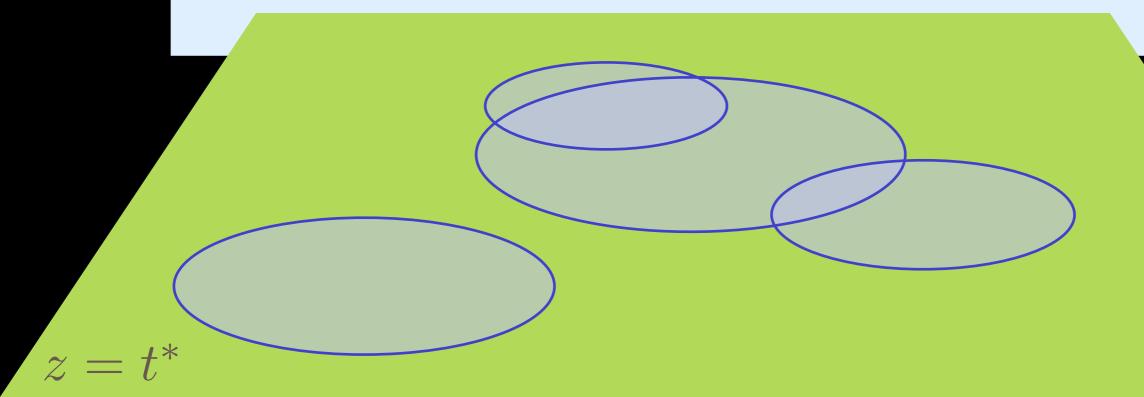
- View points in time-space
 - Points follow some unknown *z*-monotone trajectory
 - Because of speed limit, they stay in cones
- Now consider $t^* \nearrow$

- View points in time-space
 - Points follow some unknown *z*-monotone trajectory
 - Because of speed limit, they stay in cones
- Now consider $t^* \nearrow$
 - Cones intersect the plane $z = t^*$ in disks

- View points in time-space
 - Points follow some unknown *z*-monotone trajectory
 - Because of speed limit, they stay in cones
- Now consider $t^* \nearrow$
 - Cones intersect the plane $z = t^*$ in disks

- View points in time-space
 - Points follow some unknown *z*-monotone trajectory
 - Because of speed limit, they stay in cones
- Now consider $t^* \nearrow$
 - Cones intersect the plane $z = t^*$ in disks
 - These are the *projected uncertainty regions*

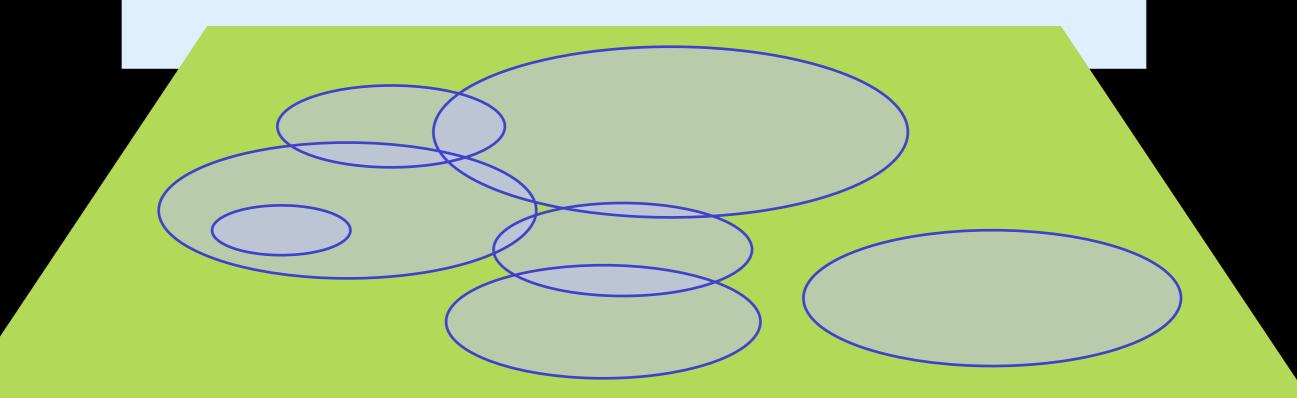
- View points in time-space
 - Points follow some unknown *z*-monotone trajectory
 - Because of speed limit, they stay in cones
- Now consider t^*
 - Cones intersect the plane $z = t^*$ in disks
 - These are the *projected uncertainty regions*



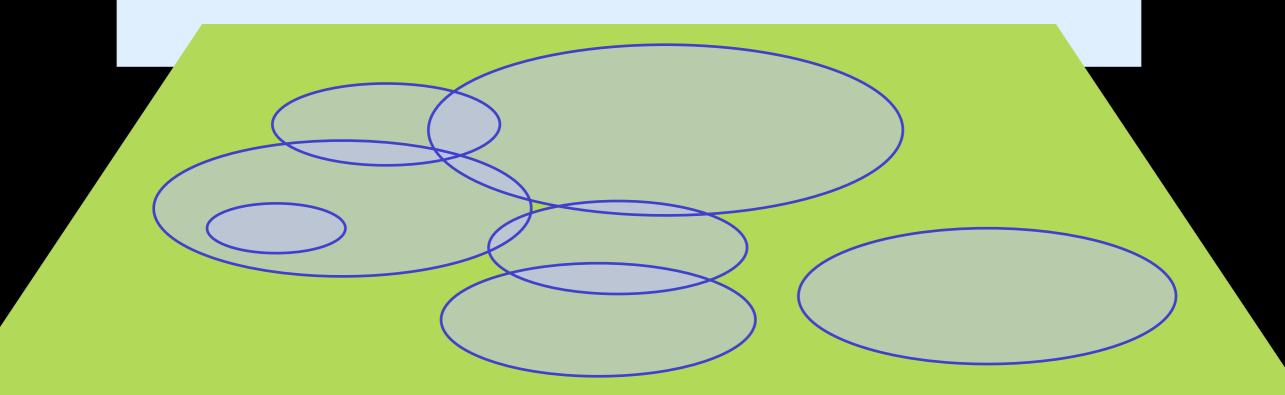
- View points in time-space
 - Points follow some unknown *z*-monotone trajectory
 - Because of speed limit, they stay in cones
- Now consider t^*
 - Cones intersect the plane $z = t^*$ in disks
 - These are the *projected uncertainty regions*
 - Projected regions never grow, and they shrink to radius $t^* t$ when we query them

• Let's just always query the region with the largest ply.

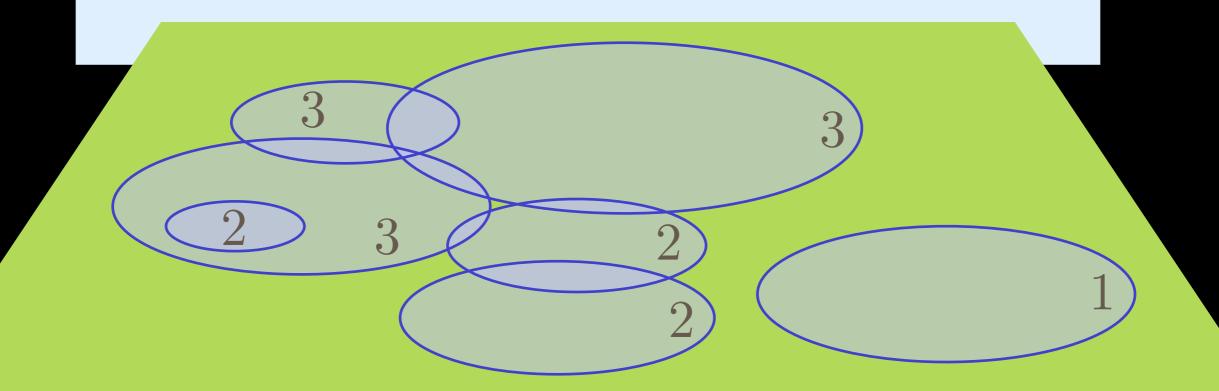
• Let's just always query the region with the largest ply.



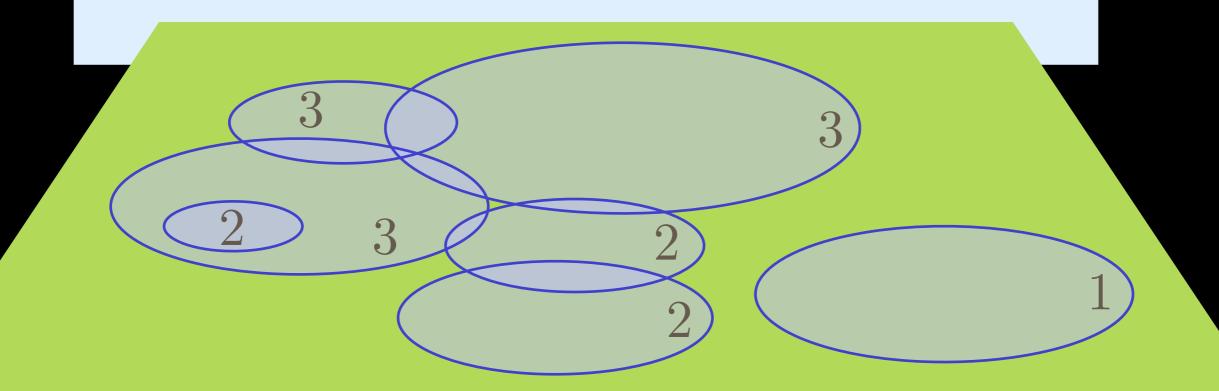
- Let's just always query the region with the largest ply.
 - Let δ_i be the max ply in region R_i



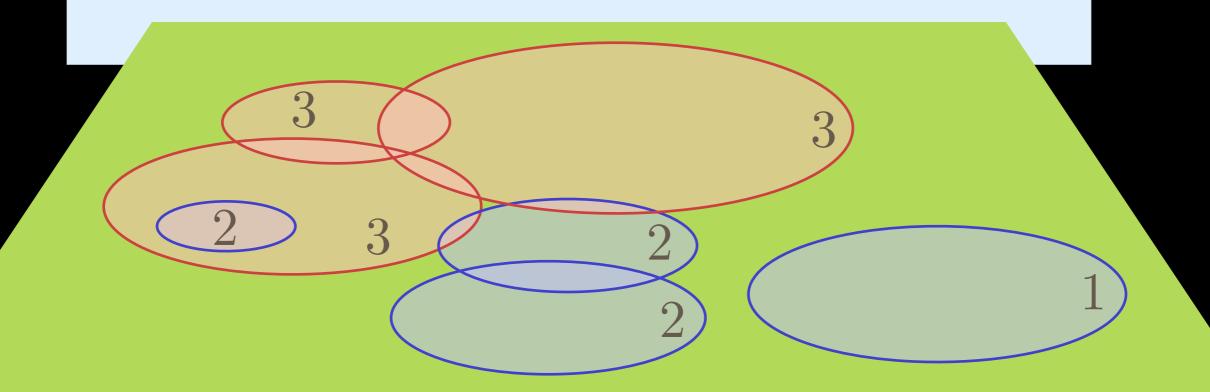
- Let's just always query the region with the largest ply.
 - Let δ_i be the max ply in region R_i



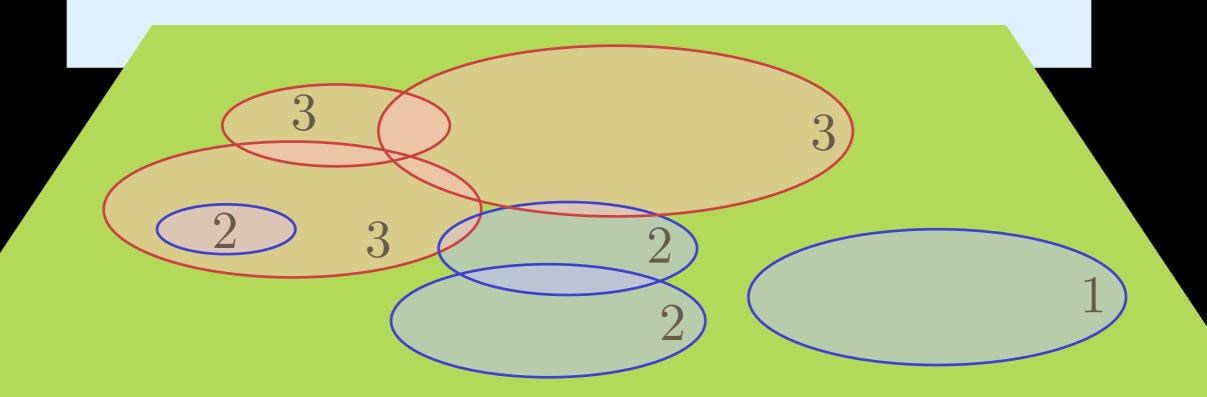
- Let's just always query the region with the largest ply.
 - Let δ_i be the max ply in region R_i
 - Find region R_i with largest δ_i



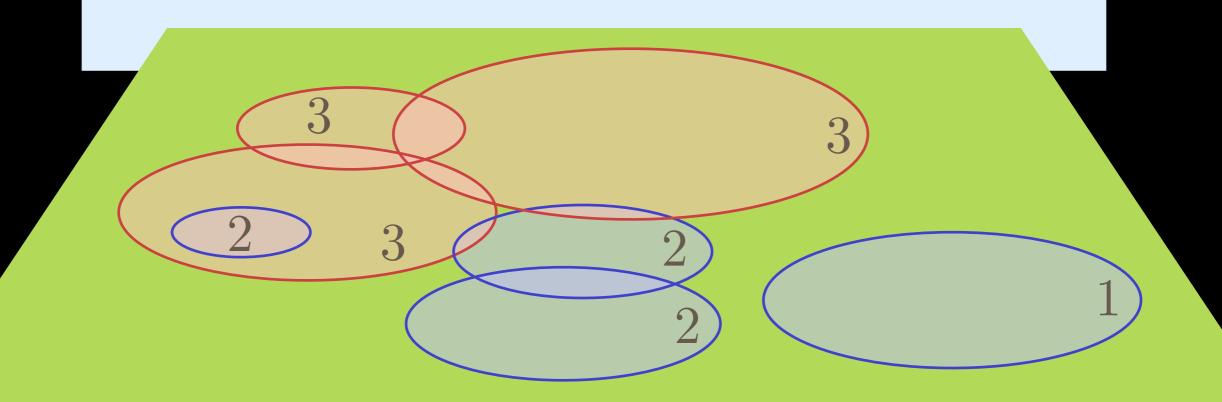
- Let's just always query the region with the largest ply.
 - Let δ_i be the max ply in region R_i
 - Find region R_i with largest δ_i



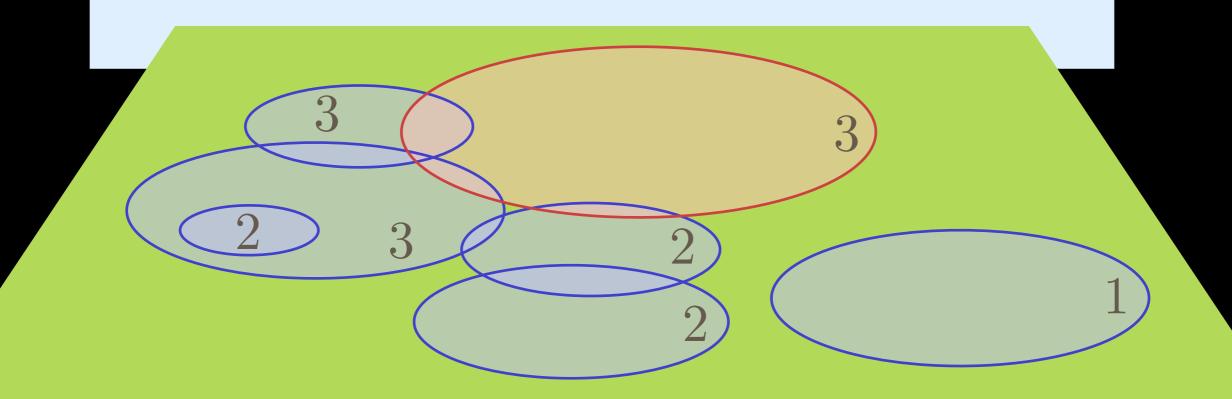
- Let's just always query the region with the largest ply.
 - Let δ_i be the max ply in region R_i
 - Find region R_i with largest δ_i
 - Of course, R_i is not unique



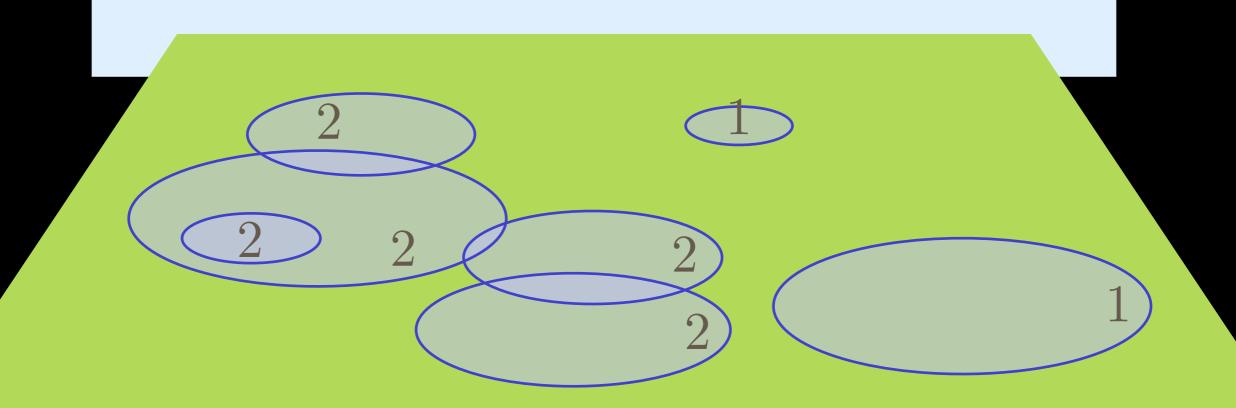
- Let's just always query the region with the largest ply.
 - Let δ_i be the max ply in region R_i
 - Find region R_i with largest δ_i
 - Of course, R_i is not unique
 - Query any of them



- Let's just always query the region with the largest ply.
 - Let δ_i be the max ply in region R_i
 - Find region R_i with largest δ_i
 - Of course, R_i is not unique
 - Query any of them



- Let's just always query the region with the largest ply.
 - Let δ_i be the max ply in region R_i
 - Find region R_i with largest δ_i
 - Of course, R_i is not unique
 - Query any of them

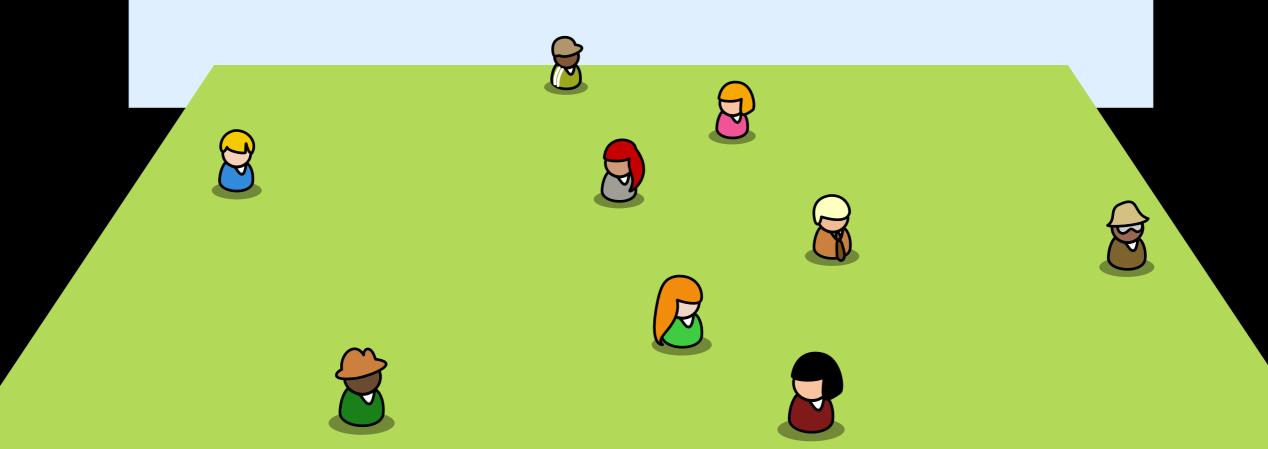


- Let's just always query the region with the largest ply.
 - Let δ_i be the max ply in region R_i
 - Find region R_i with largest δ_i
 - Of course, R_i is not unique
 - Query any of them

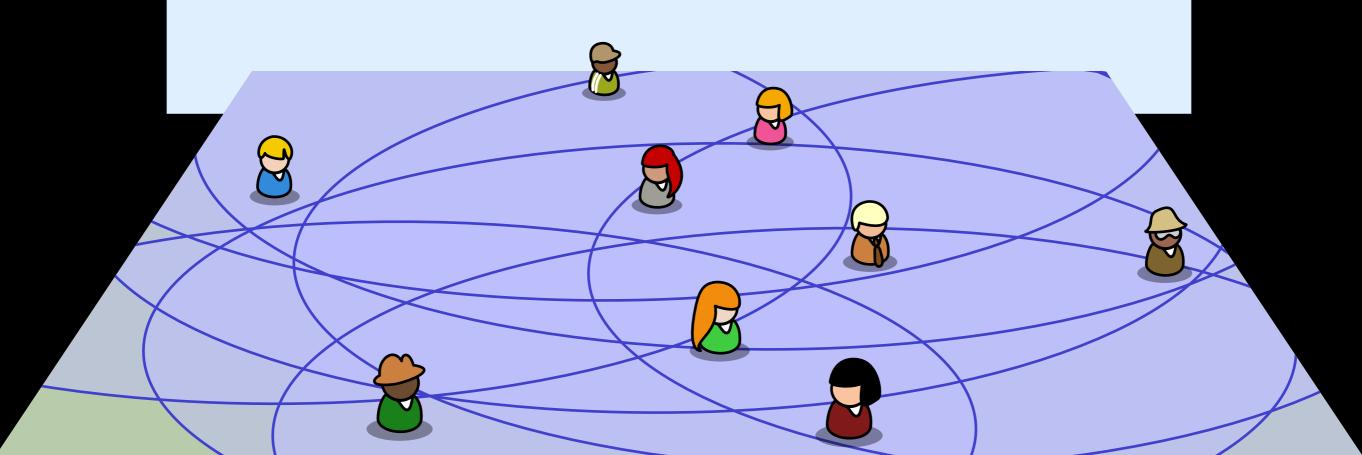
CLAIM: Resulting ply Δ can be a factor n larger than optimal!

6

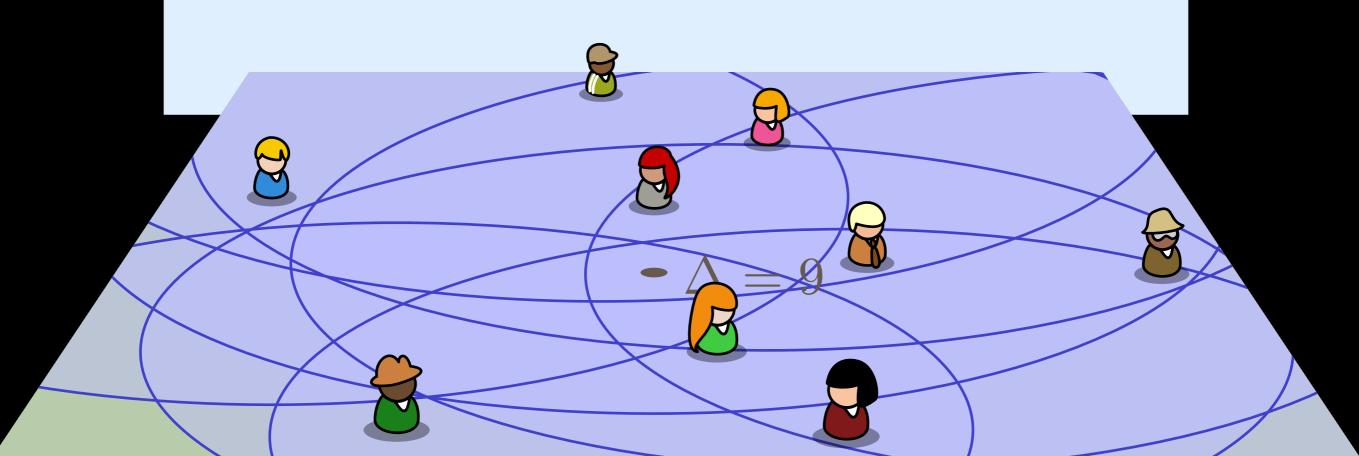
- Let's just always query the region with the largest ply.
 - Let δ_i be the max ply in region R_i
 - Find region R_i with largest δ_i
 - Of course, R_i is not unique
 - Query any of them



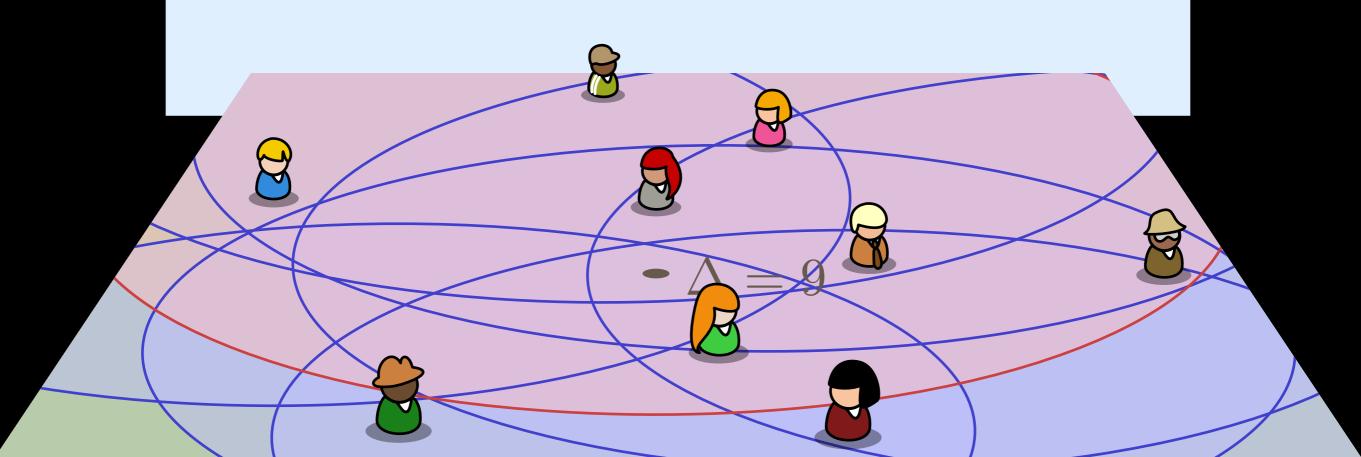
- Let's just always query the region with the largest ply.
 - Let δ_i be the max ply in region R_i
 - Find region R_i with largest δ_i
 - Of course, R_i is not unique
 - Query any of them



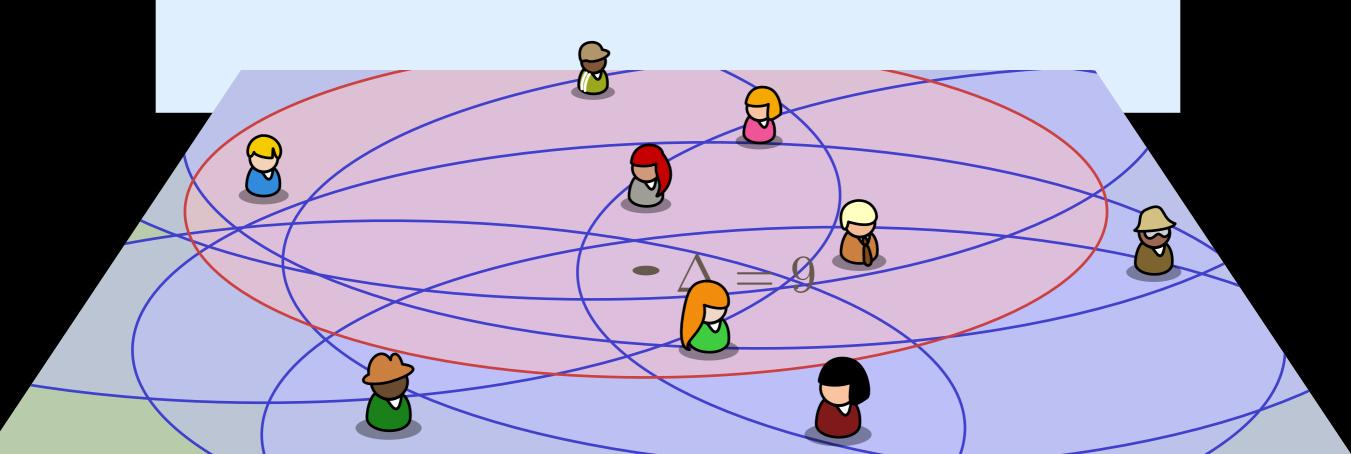
- Let's just always query the region with the largest ply.
 - Let δ_i be the max ply in region R_i
 - Find region R_i with largest δ_i
 - Of course, R_i is not unique
 - Query any of them



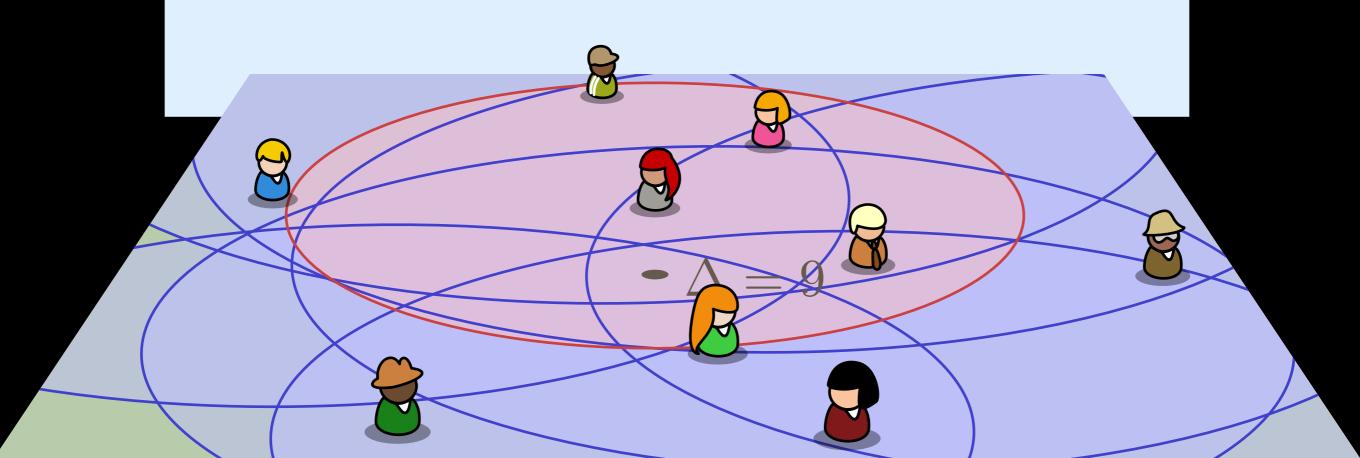
- Let's just always query the region with the largest ply.
 - Let δ_i be the max ply in region R_i
 - Find region R_i with largest δ_i
 - Of course, R_i is not unique
 - Query any of them



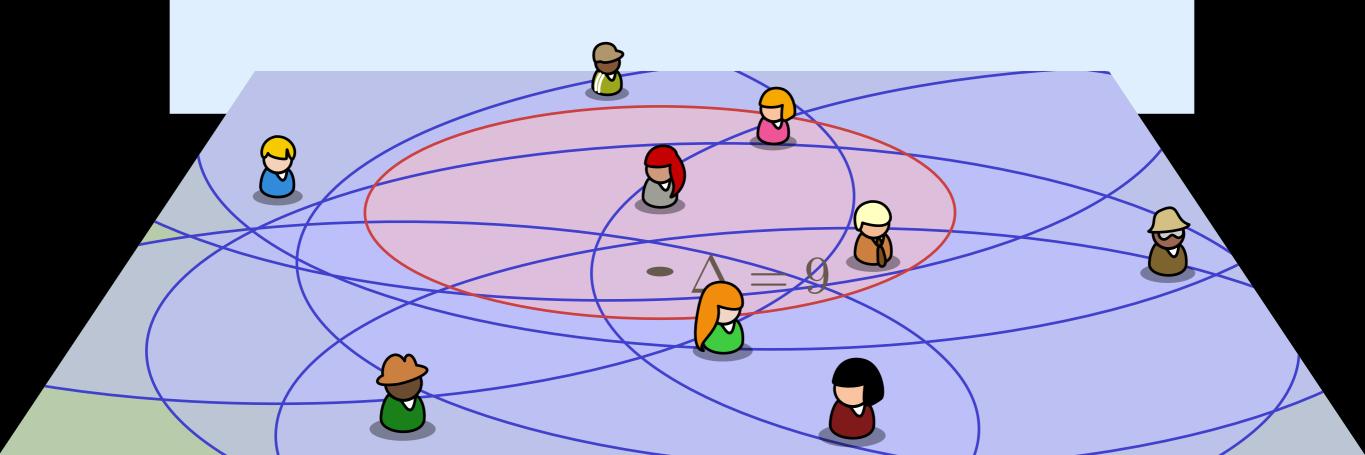
- Let's just always query the region with the largest ply.
 - Let δ_i be the max ply in region R_i
 - Find region R_i with largest δ_i
 - Of course, R_i is not unique
 - Query any of them



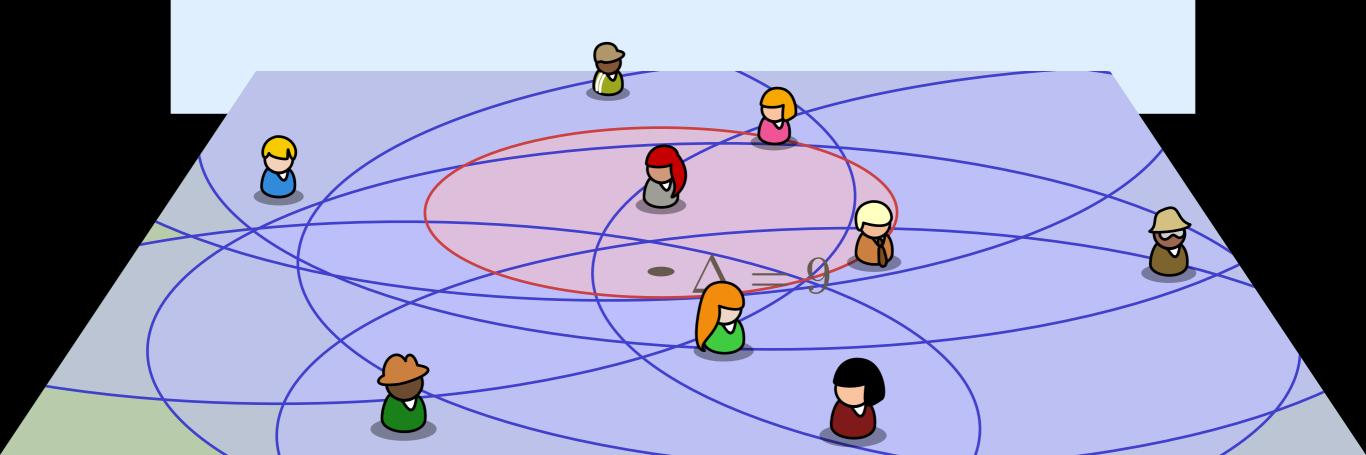
- Let's just always query the region with the largest ply.
 - Let δ_i be the max ply in region R_i
 - Find region R_i with largest δ_i
 - Of course, R_i is not unique
 - Query any of them

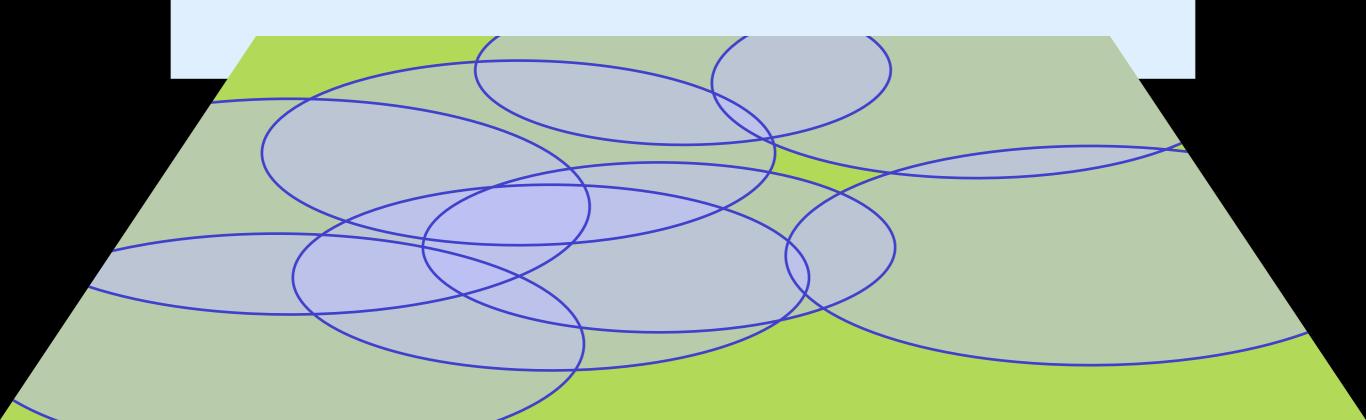


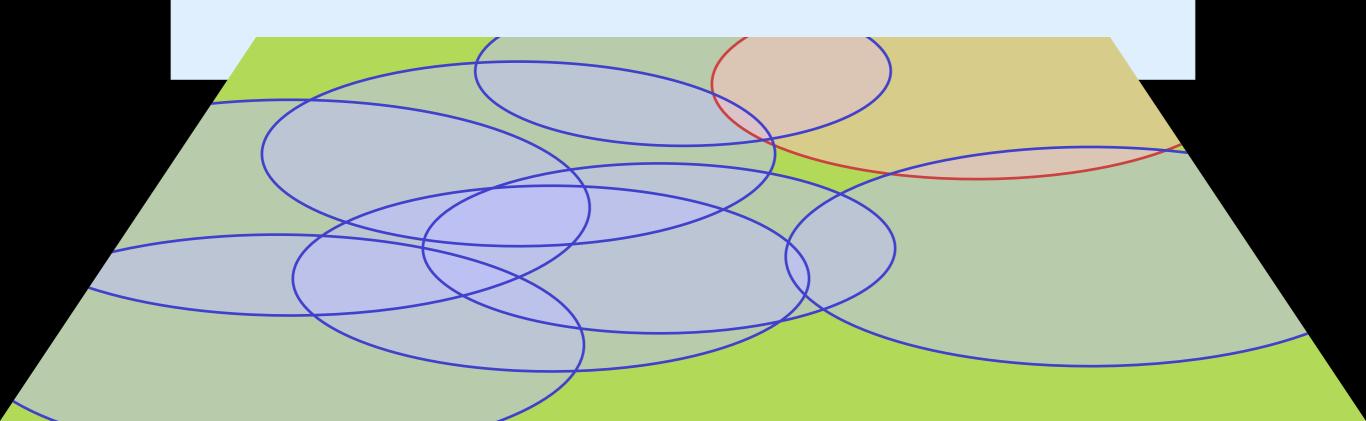
- Let's just always query the region with the largest ply.
 - Let δ_i be the max ply in region R_i
 - Find region R_i with largest δ_i
 - Of course, R_i is not unique
 - Query any of them

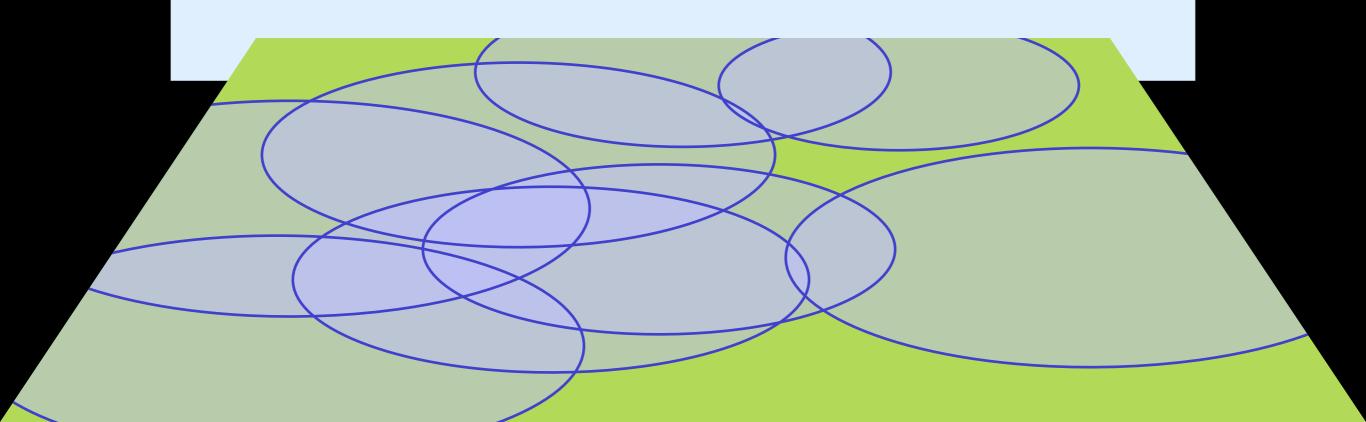


- Let's just always query the region with the largest ply.
 - Let δ_i be the max ply in region R_i
 - Find region R_i with largest δ_i
 - Of course, R_i is not unique
 - Query any of them





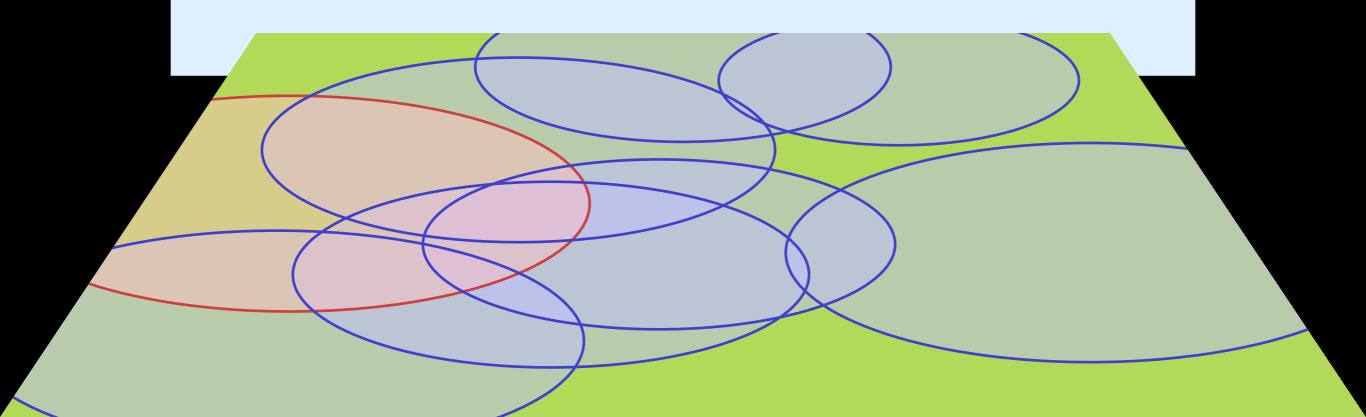




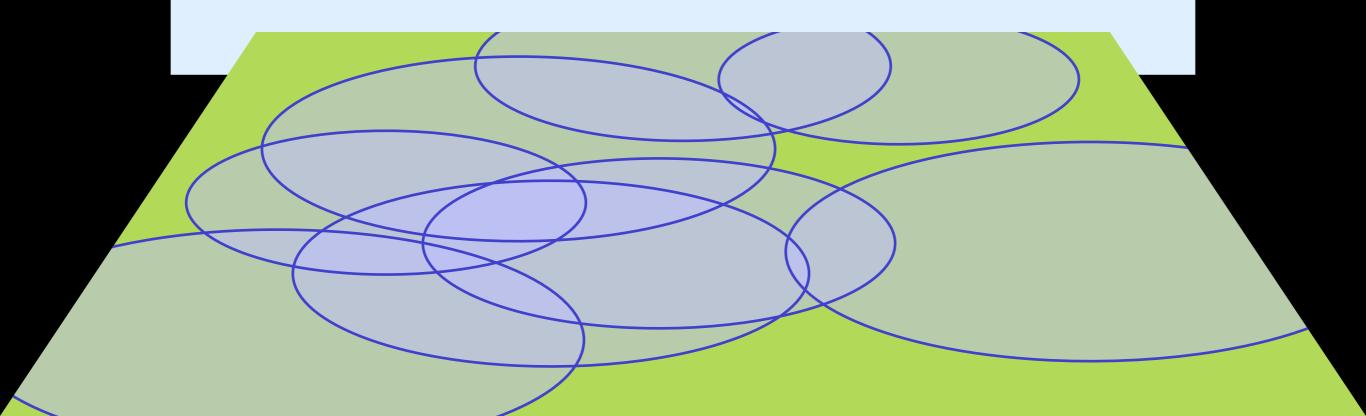
- Why not just always query the largest region?
 - Never query the same region twice



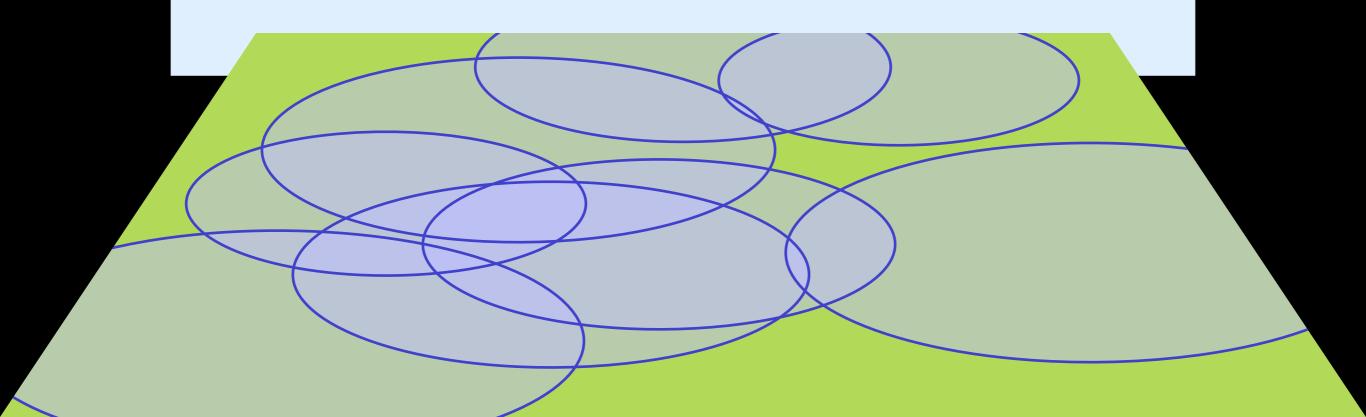
- Why not just always query the largest region?
 - Never query the same region twice



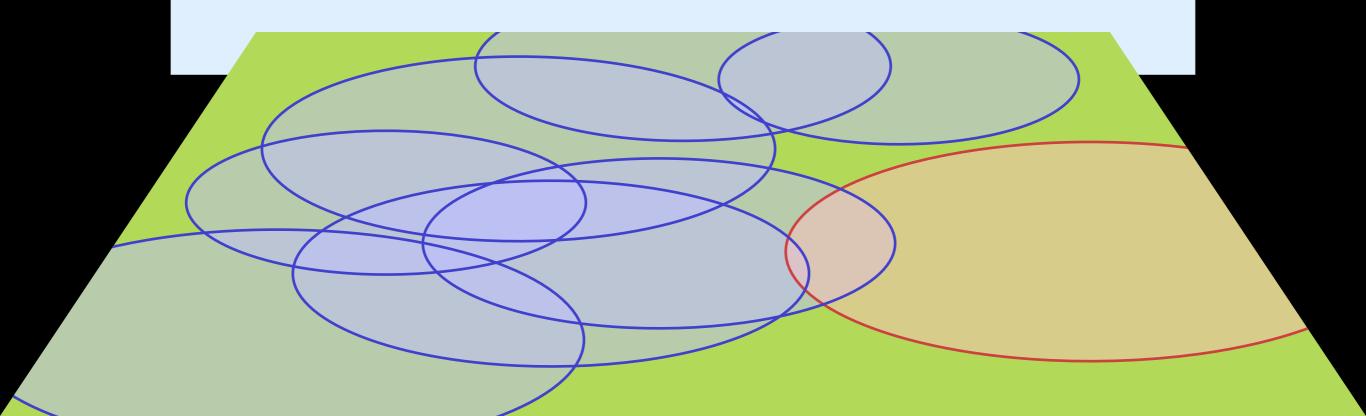
- Why not just always query the largest region?
 - Never query the same region twice



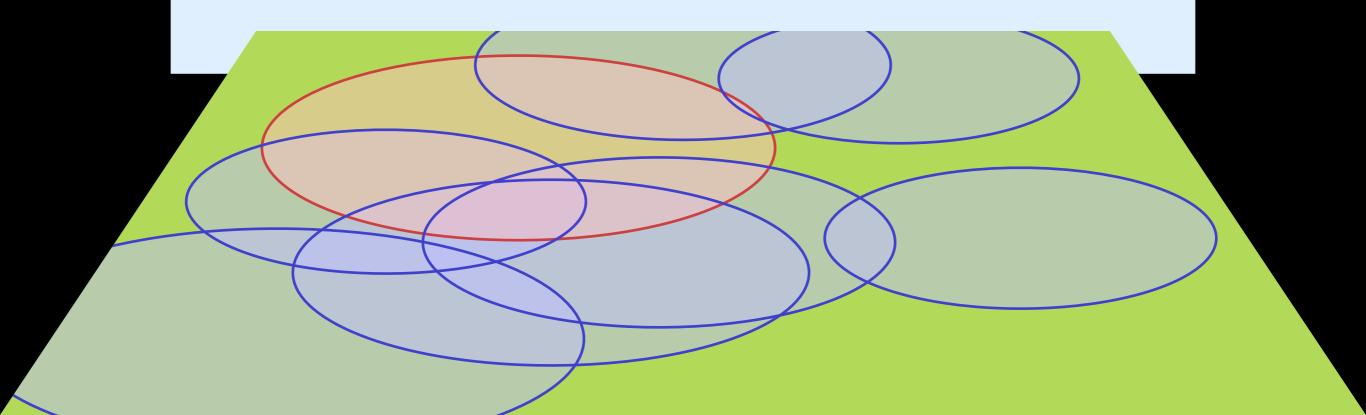
- Why not just always query the largest region?
 - Never query the same region twice
 - Effectively, query cyclicy



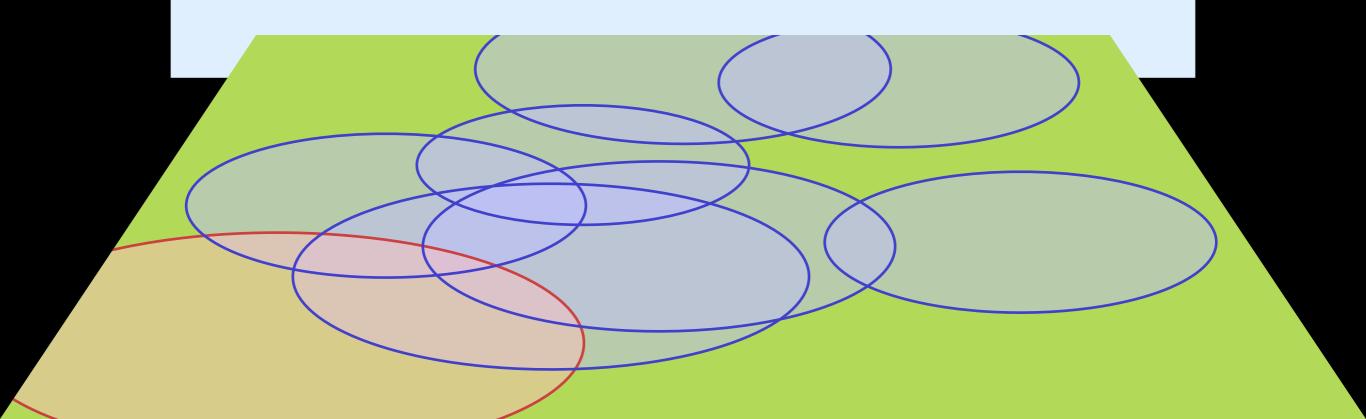
- Why not just always query the largest region?
 - Never query the same region twice
 - Effectively, query cyclicy



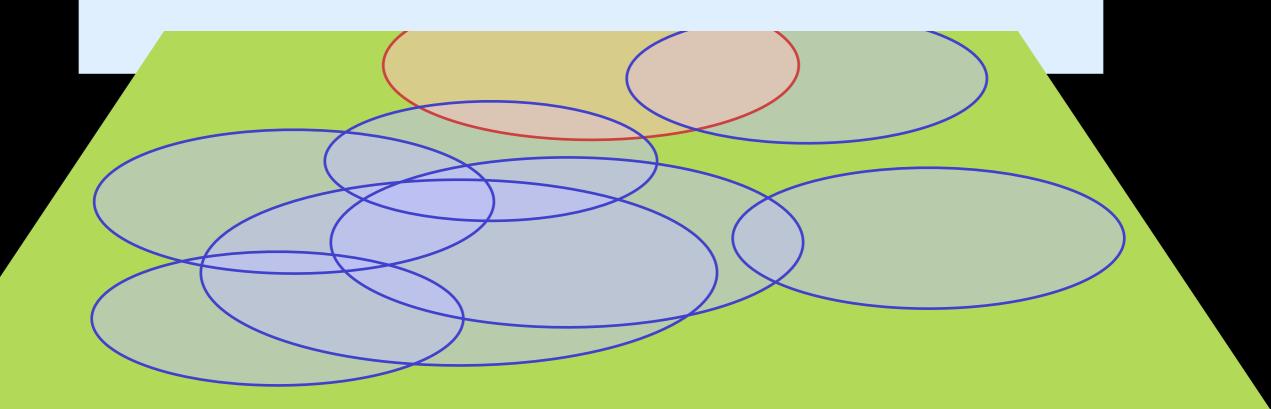
- Why not just always query the largest region?
 - Never query the same region twice
 - Effectively, query cyclicy



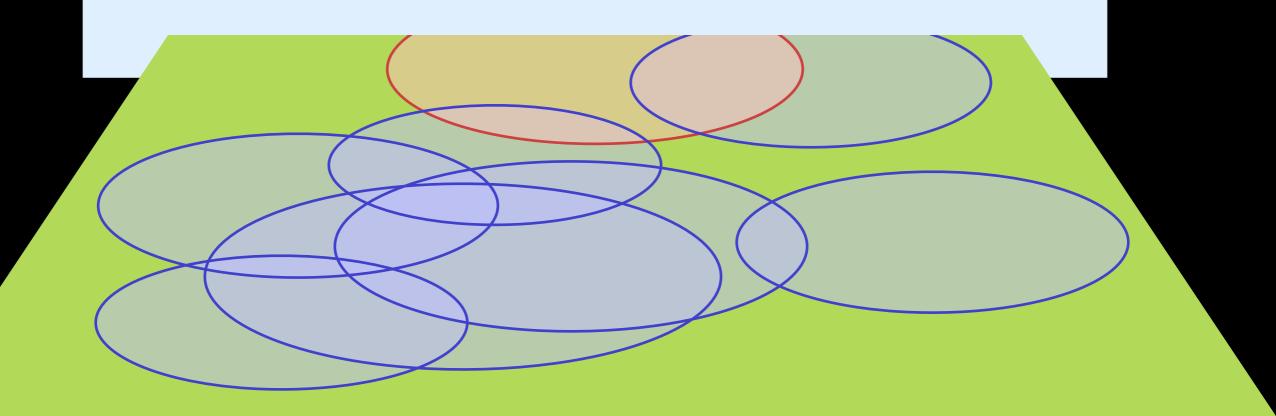
- Why not just always query the largest region?
 - Never query the same region twice
 - Effectively, query cyclicy



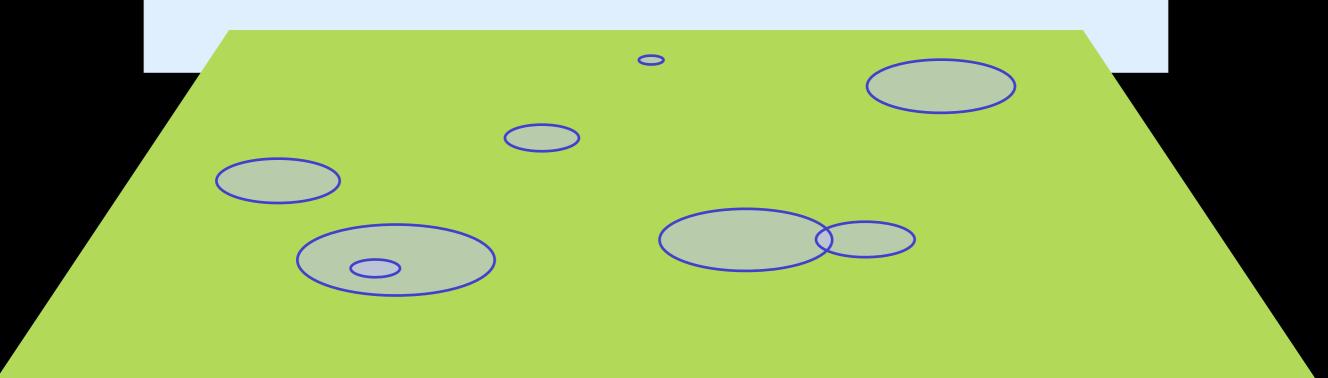
- Why not just always query the largest region?
 - Never query the same region twice
 - Effectively, query cyclicy



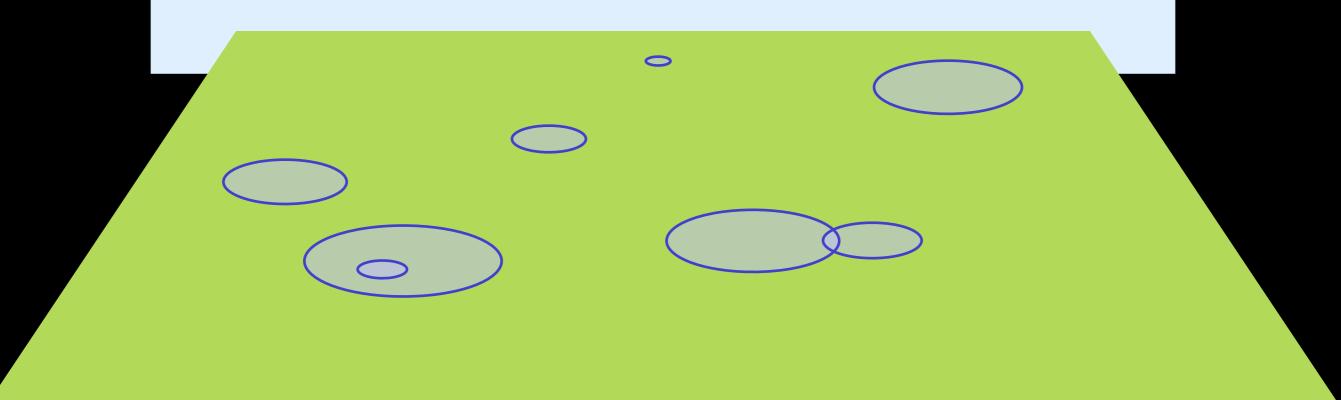
- Why not just always query the largest region?
 - Never query the same region twice
 - Effectively, query cyclicy
 - Final regions at t^{\ast} will have sizes 1 to n



- Why not just always query the largest region?
 - Never query the same region twice
 - Effectively, query cyclicy
 - Final regions at t^{\ast} will have sizes 1 to n



- Why not just always query the largest region?
 - Never query the same region twice
 - Effectively, query cyclicy
 - Final regions at t^{\ast} will have sizes $1 \mbox{ to } n$
 - Configuration depends on order



- Why not just always query the largest region?
 - Never query the same region twice
 - Effectively, query cyclicy
 - Final regions at t^{\ast} will have sizes $1 \mbox{ to } n$

0

• Configuration depends on order

- Why not just always query the largest region?
 - Never query the same region twice
 - Effectively, query cyclicy
 - Final regions at t^{\ast} will have sizes 1 to n

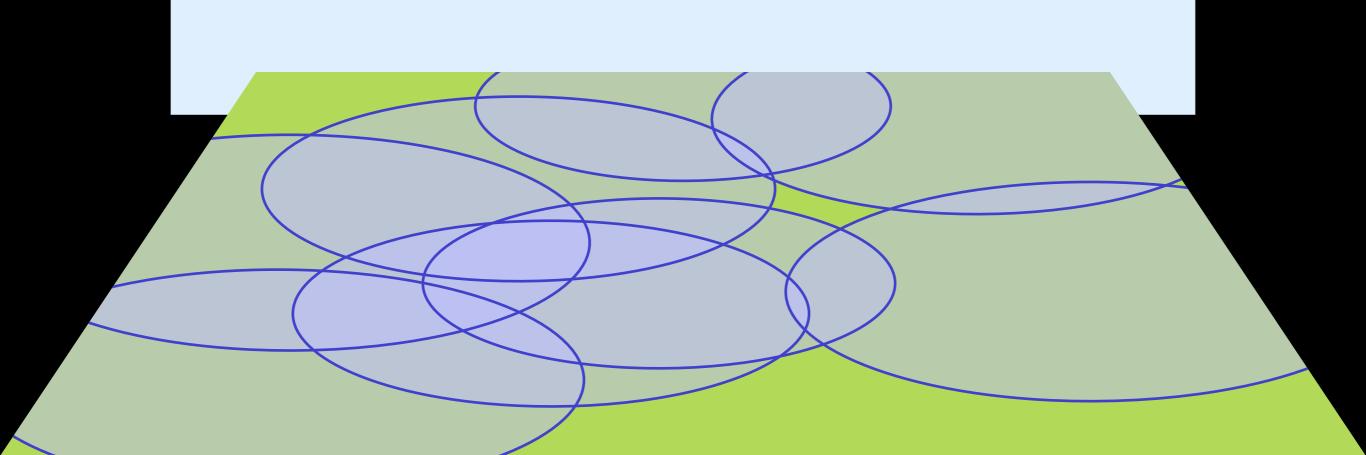
• Configuration depends on order

- Why not just always query the largest region?
 - Never query the same region twice
 - Effectively, query cyclicy
 - Final regions at t^{\ast} will have sizes $1 \mbox{ to } n$
 - Configuration depends on order

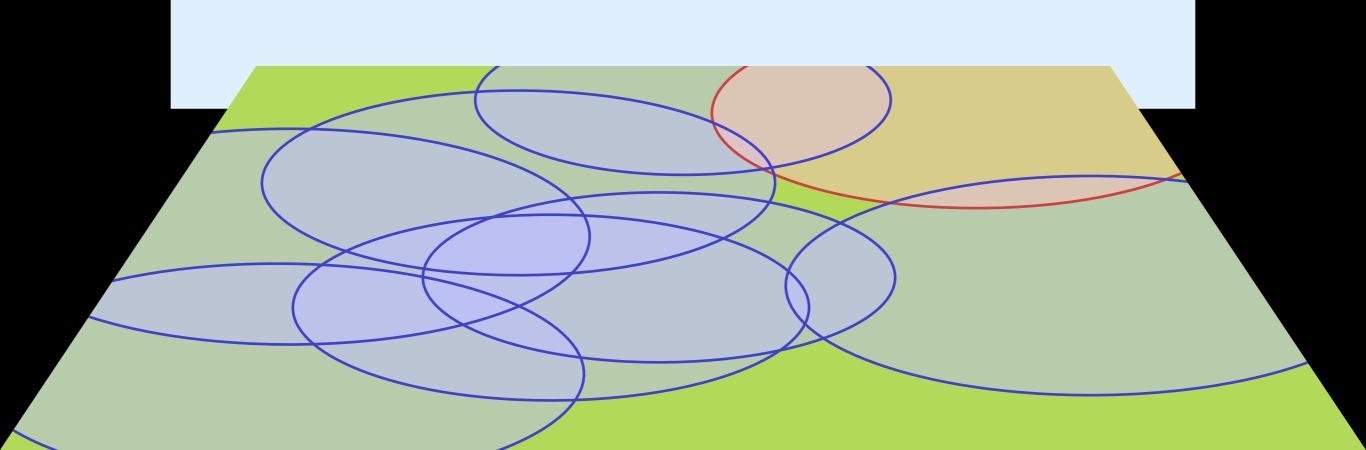
- Why not just always query the largest region?
 - Never query the same region twice
 - Effectively, query cyclicy
 - Final regions at t^{\ast} will have sizes $1 \mbox{ to } n$
 - Configuration depends on order

- Keep querying cyclicly until $\tau=n$

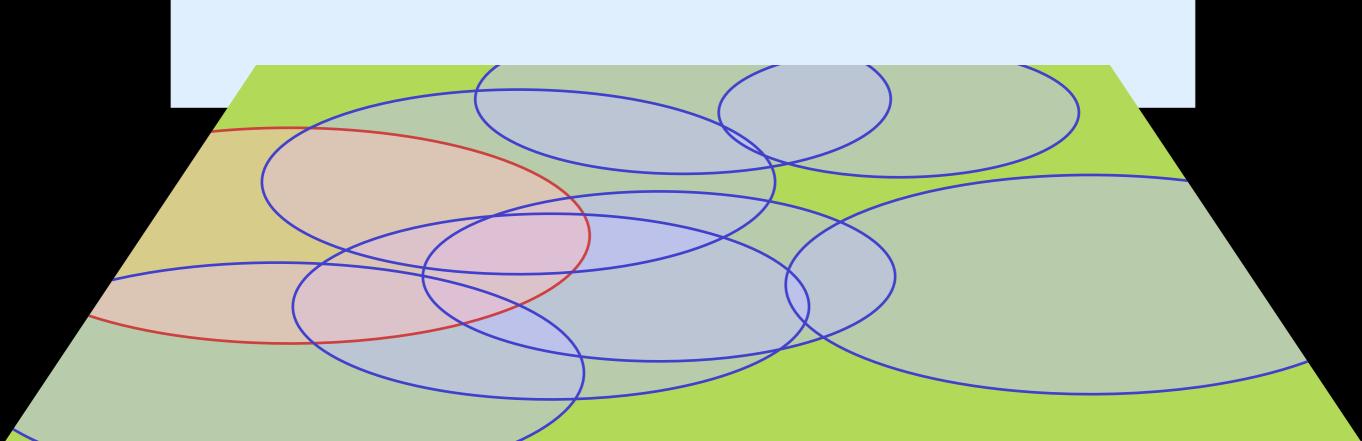
• Keep querying cyclicly until $\tau = n$



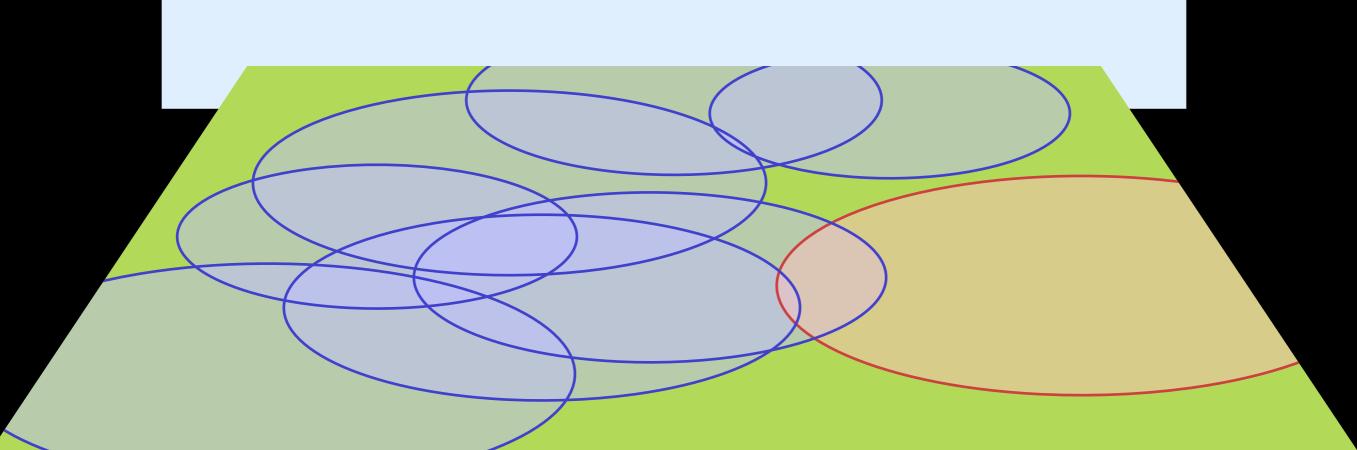
• Keep querying cyclicly until $\tau=n$



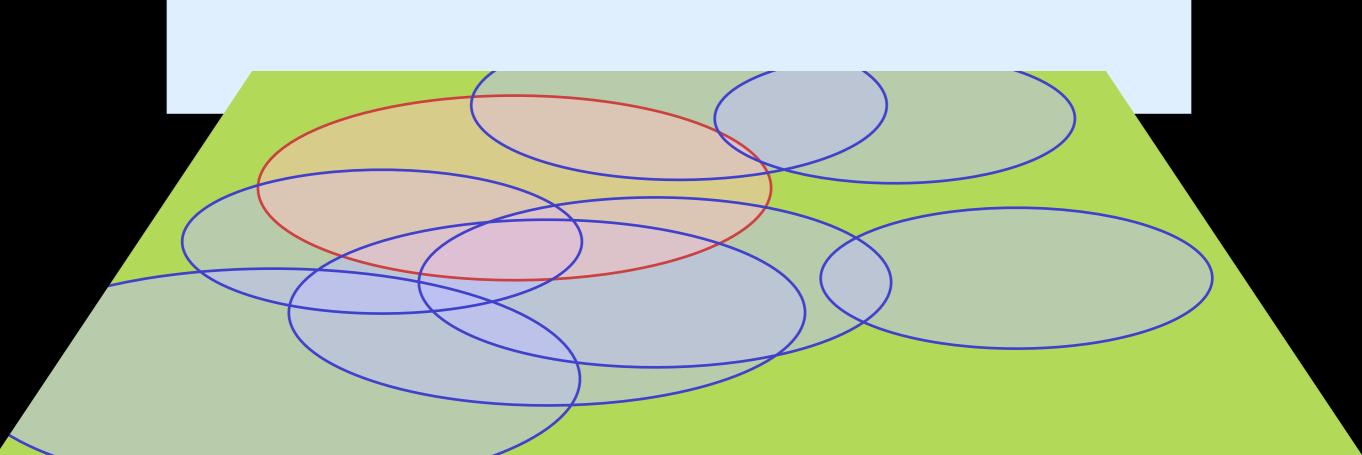
• Keep querying cyclicly until $\tau = n$

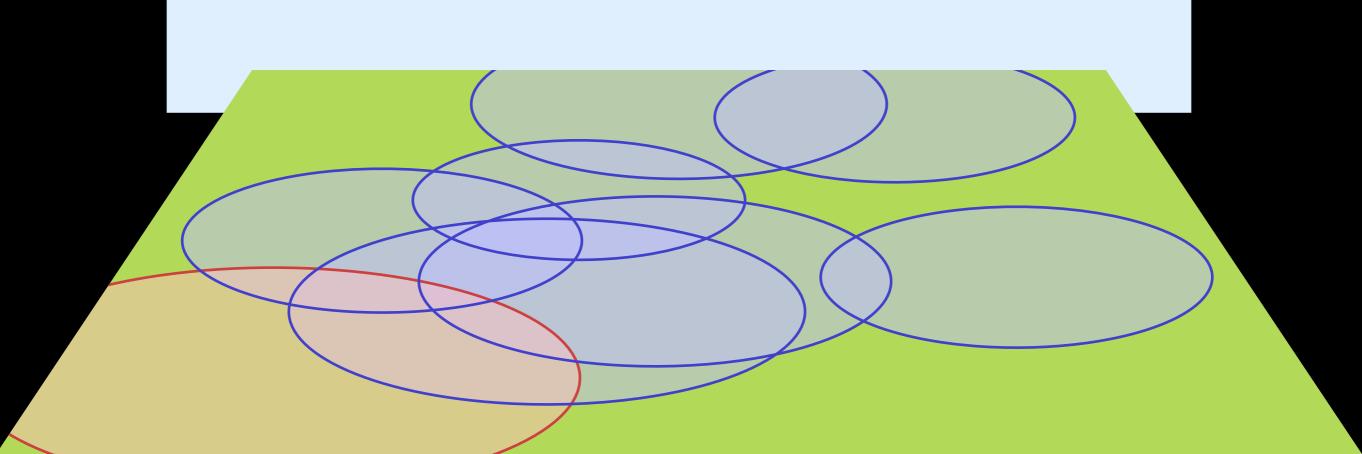


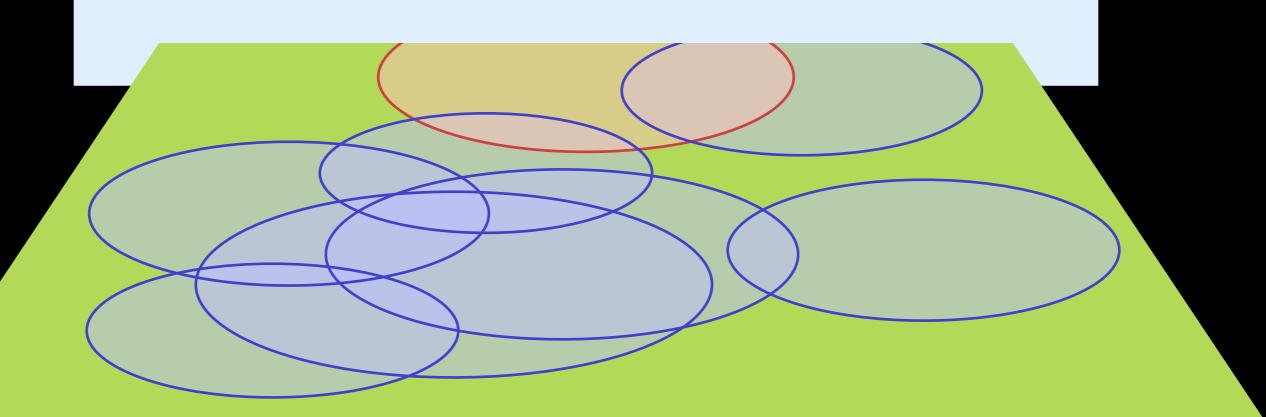
• Keep querying cyclicly until $\tau=n$

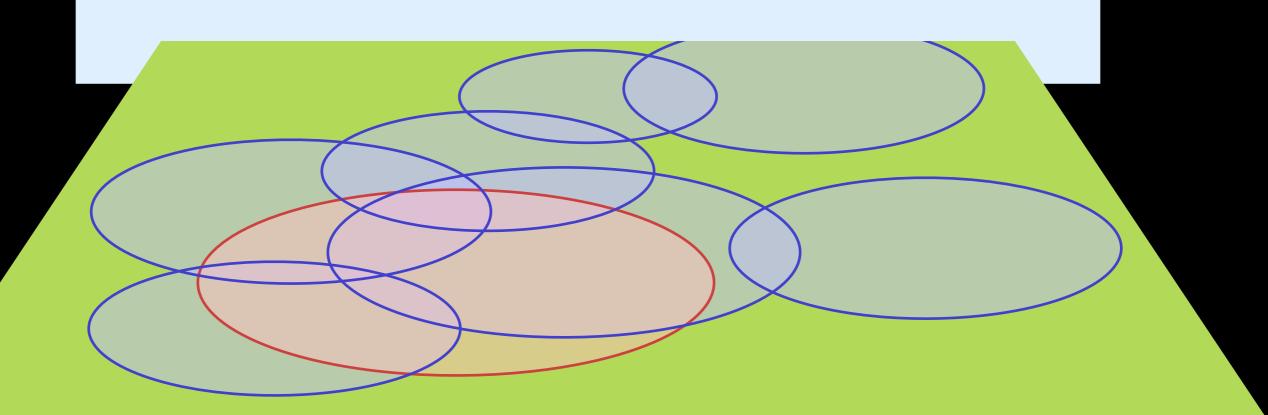


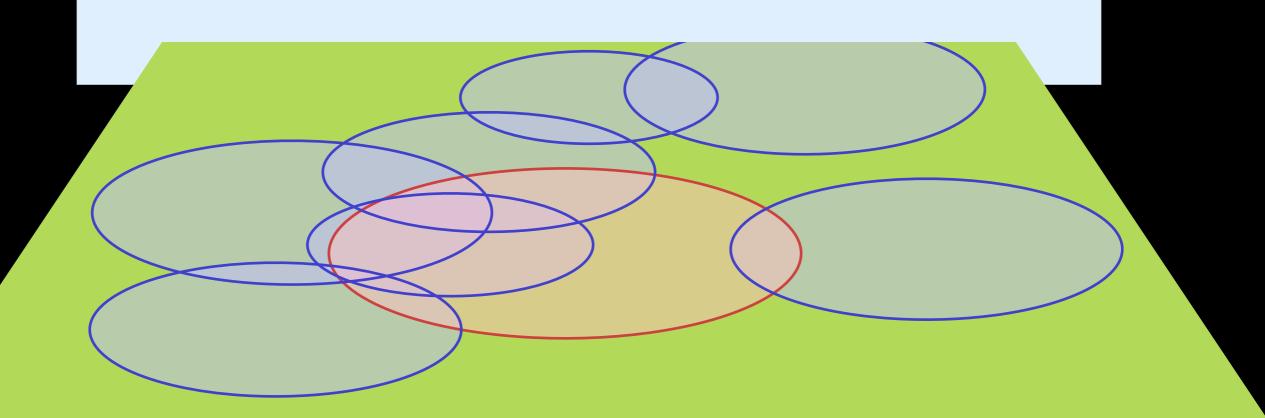
• Keep querying cyclicly until $\tau=n$

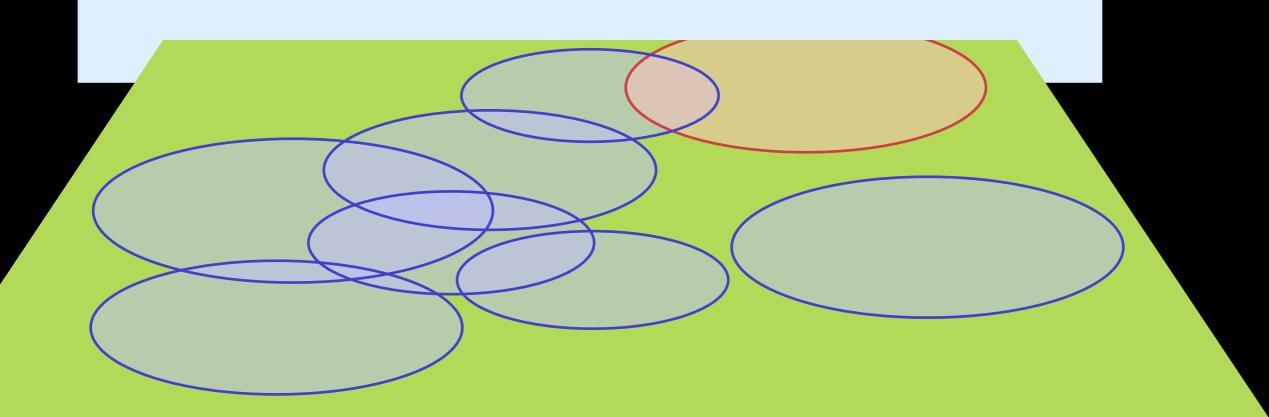


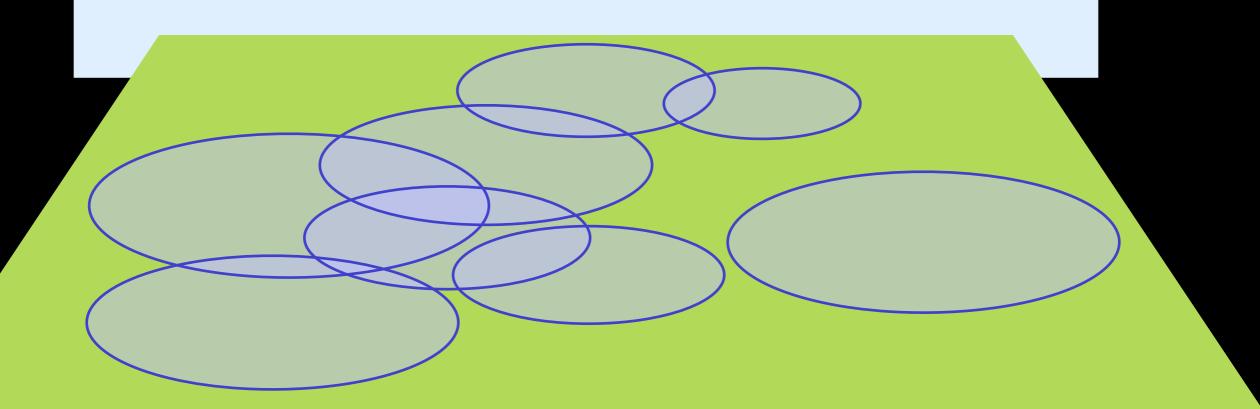




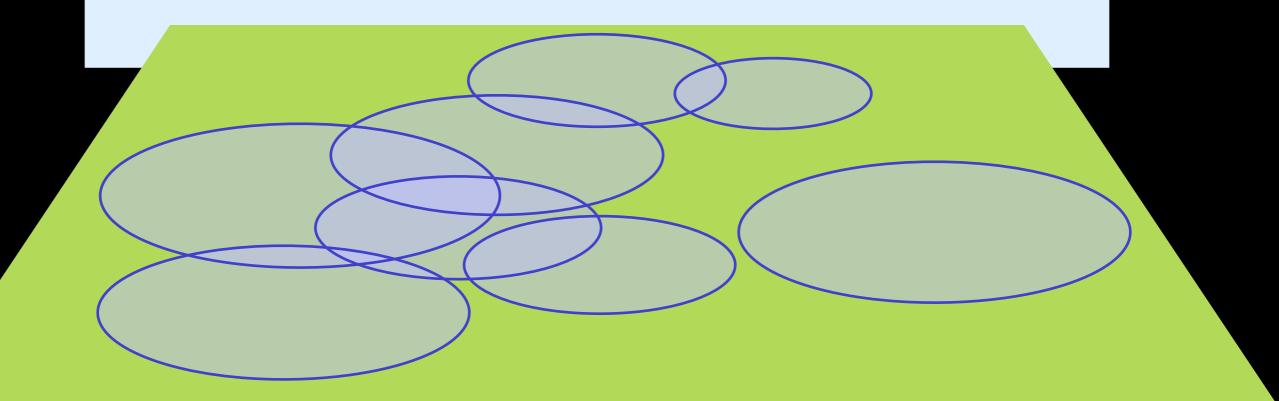




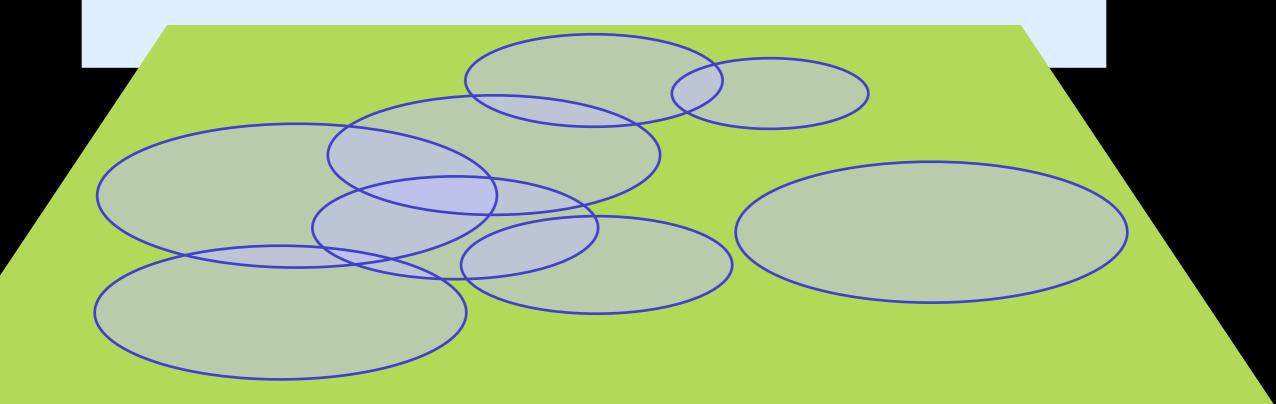




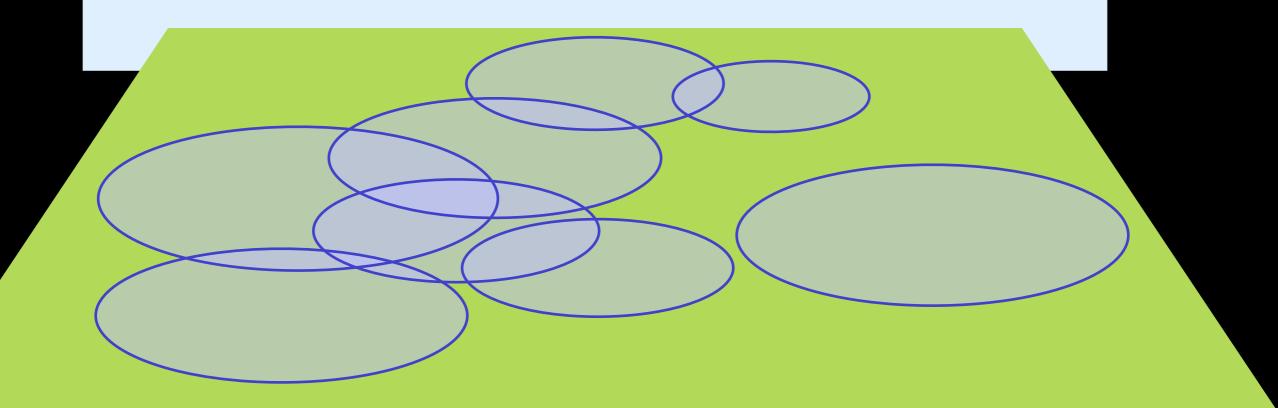
- Keep querying cyclicly until $\tau = n$
 - Now regions have sizes n+1 to 2n



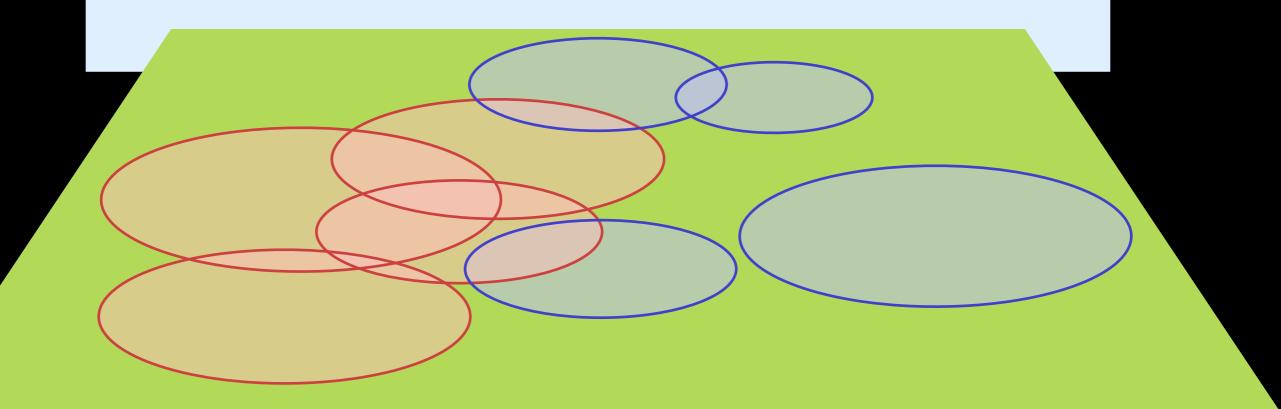
- Keep querying cyclicly until $\tau = n$
 - Now regions have sizes n+1 to 2n
- While there are still regions left



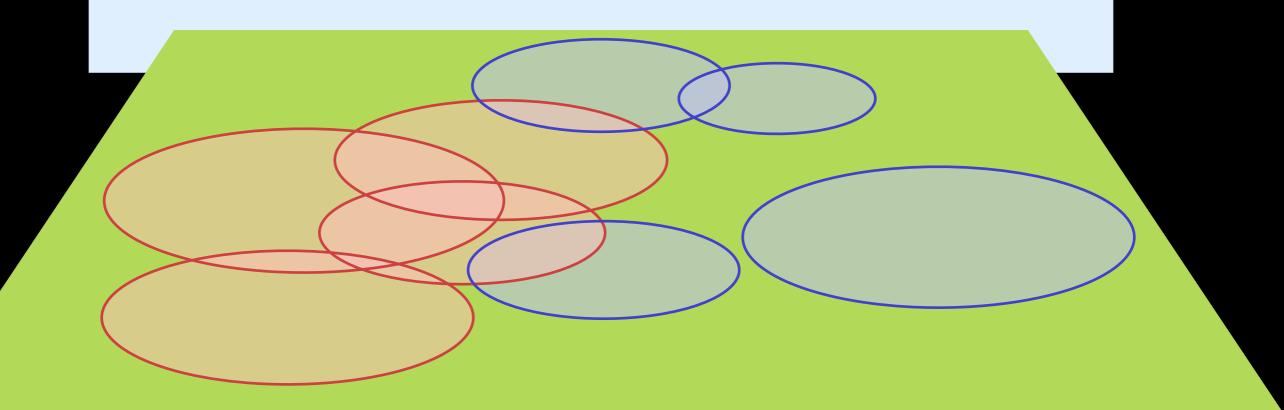
- Keep querying cyclicly until $\tau = n$
 - Now regions have sizes n+1 to 2n
- While there are still regions left
 - Find the $\frac{1}{2}n$ regions with highest ply



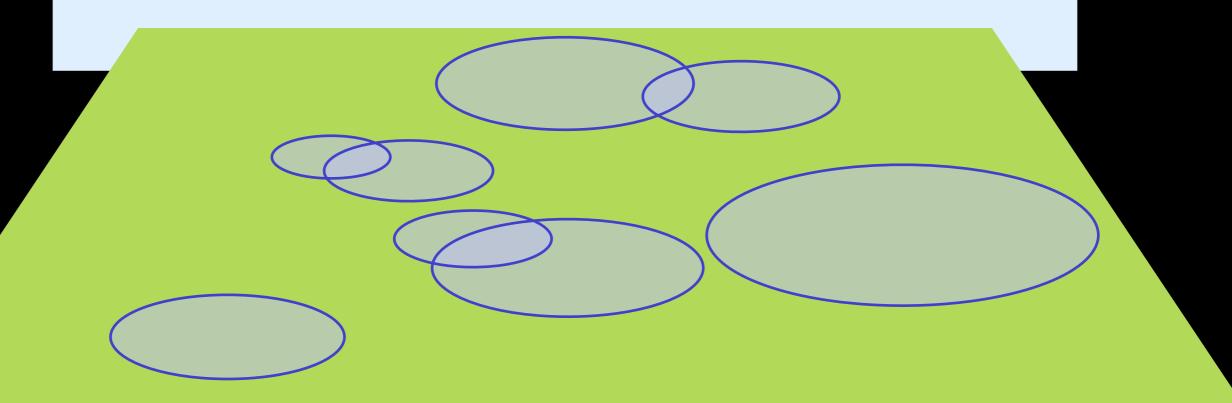
- Keep querying cyclicly until $\tau = n$
 - Now regions have sizes n+1 to 2n
- While there are still regions left
 - Find the $\frac{1}{2}n$ regions with highest ply



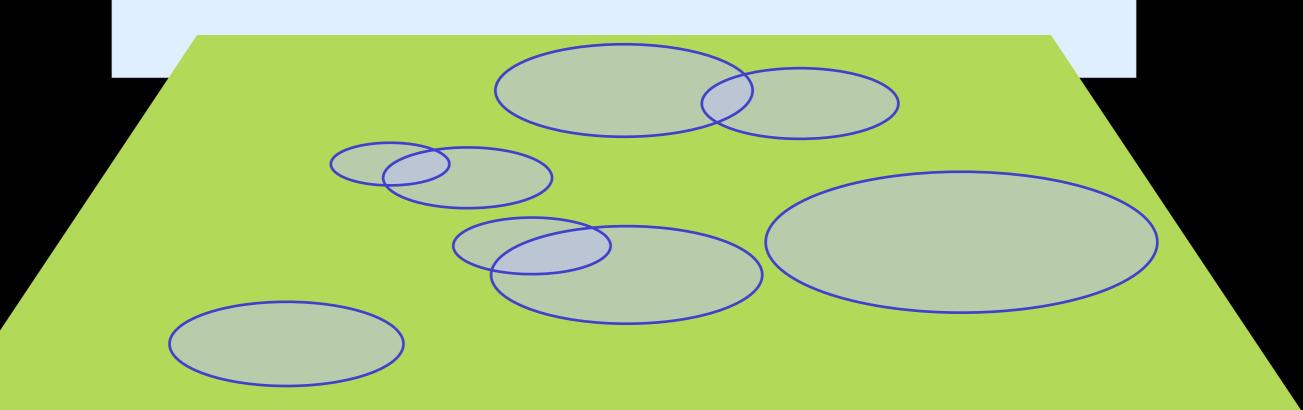
- Keep querying cyclicly until $\tau = n$
 - Now regions have sizes n+1 to 2n
- While there are still regions left
 - Find the $\frac{1}{2}n$ regions with highest ply
 - Query all of them once, in any order



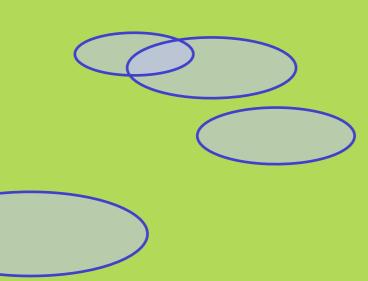
- Keep querying cyclicly until $\tau = n$
 - Now regions have sizes n+1 to 2n
- While there are still regions left
 - Find the $\frac{1}{2}n$ regions with highest ply
 - Query all of them once, in any order



- Keep querying cyclicly until $\tau = n$
 - Now regions have sizes n+1 to 2n
- While there are still regions left
 - Find the $\frac{1}{2}n$ regions with highest ply
 - Query all of them once, in any order
 - Throw away the others; set $n = \frac{1}{2}n$



- Keep querying cyclicly until $\tau = n$
 - Now regions have sizes n+1 to 2n
- While there are still regions left
 - Find the $\frac{1}{2}n$ regions with highest ply
 - Query all of them once, in any order
 - Throw away the others; set $n = \frac{1}{2}n$



- Keep querying cyclicly until $\tau = n$
 - Now regions have sizes n+1 to 2n
- While there are still regions left
 - Find the $\frac{1}{2}n$ regions with highest ply
 - Query all of them once, in any order
 - Throw away the others; set $n = \frac{1}{2}n$
 - Repeat

- Keep querying cyclicly until $\tau = n$
 - Now regions have sizes n+1 to 2n
- While there are still regions left
 - Find the $\frac{1}{2}n$ regions with highest ply
 - Query all of them once, in any order
 - Throw away the others; set $n = \frac{1}{2}n$
 - Repeat

- Keep querying cyclicly until $\tau = n$
 - Now regions have sizes n+1 to 2n
- While there are still regions left
 - Find the $\frac{1}{2}n$ regions with highest ply
 - Query all of them once, in any order
 - Throw away the others; set $n = \frac{1}{2}n$
 - Repeat

- Keep querying cyclicly until $\tau = n$
 - Now regions have sizes n+1 to 2n
- While there are still regions left
 - Find the $\frac{1}{2}n$ regions with highest ply
 - Query all of them once, in any order
 - Throw away the others; set $n = \frac{1}{2}n$
 - Repeat

- Keep querying cyclicly until $\tau = n$
 - Now regions have sizes n+1 to 2n
- While there are still regions left
 - Find the $\frac{1}{2}n$ regions with highest ply
 - Query all of them once, in any order
 - Throw away the others; set $n = \frac{1}{2}n$
 - Repeat

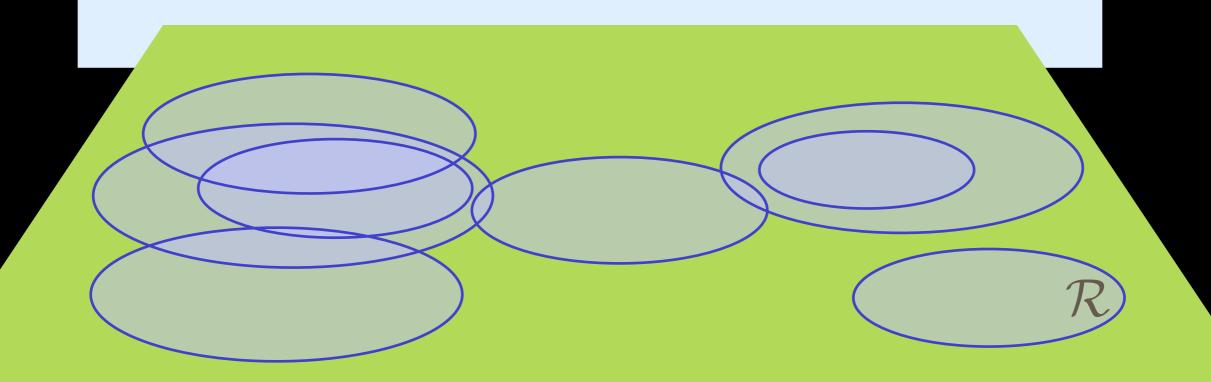
- Keep querying cyclicly until $\tau = n$
 - Now regions have sizes n+1 to 2n
- While there are still regions left
 - Find the $\frac{1}{2}n$ regions with highest ply
 - Query all of them once, in any order
 - Throw away the others; set $n = \frac{1}{2}n$
 - Repeat

CLAIM: Resulting ply Δ is within a constant factor of optimal!

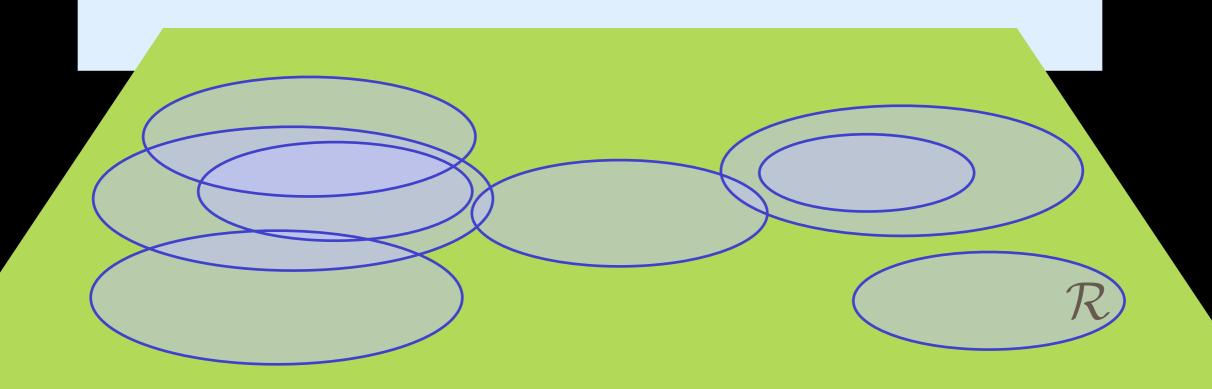
We may need a bit of notation

- We may need a bit of notation
 - \mathcal{R} : *n* regions of sizes $n + 1 \dots 2n$

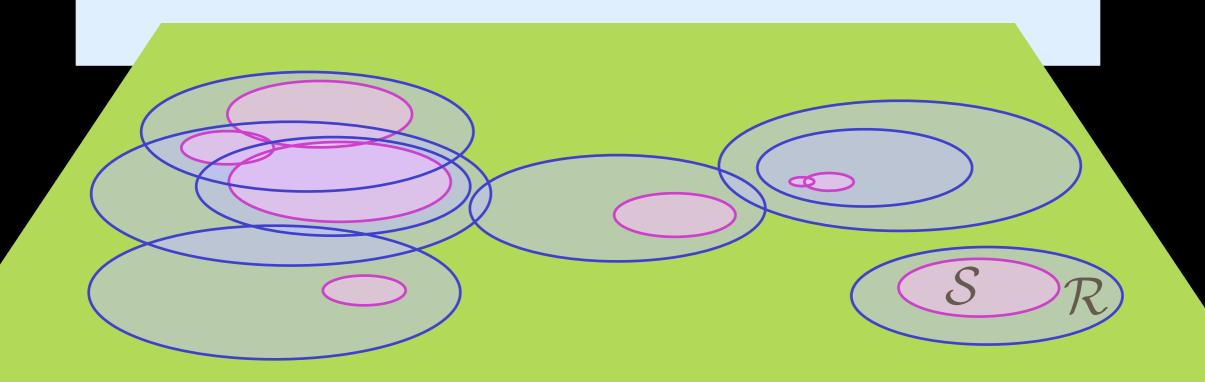
- We may need a bit of notation
 - \mathcal{R} : *n* regions of sizes $n + 1 \dots 2n$



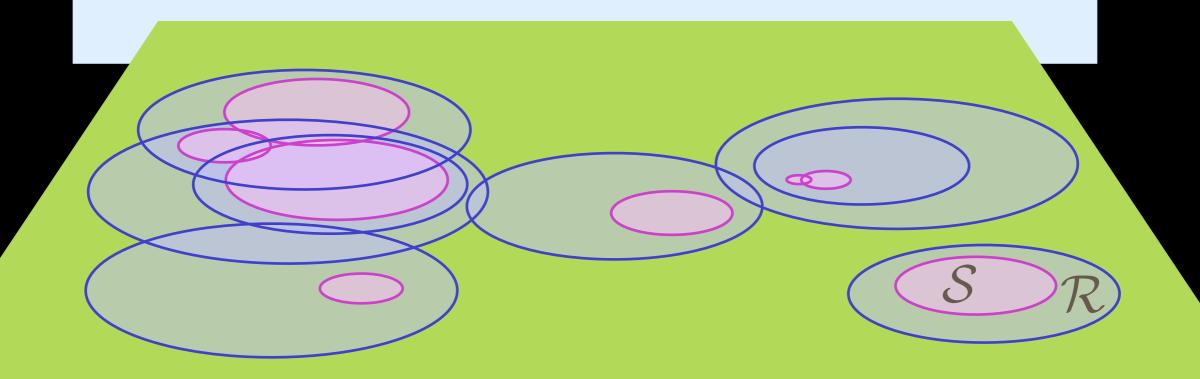
- We may need a bit of notation
 - \mathcal{R} : *n* regions of sizes $n + 1 \dots 2n$
 - S: optimal final regions of sizes $1 \dots n$



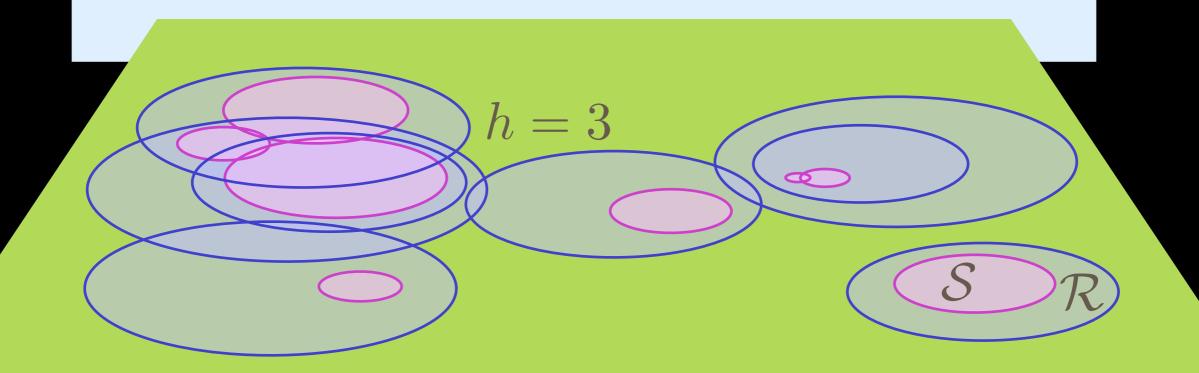
- We may need a bit of notation
 - \mathcal{R} : *n* regions of sizes $n + 1 \dots 2n$
 - S: optimal final regions of sizes $1 \dots n$



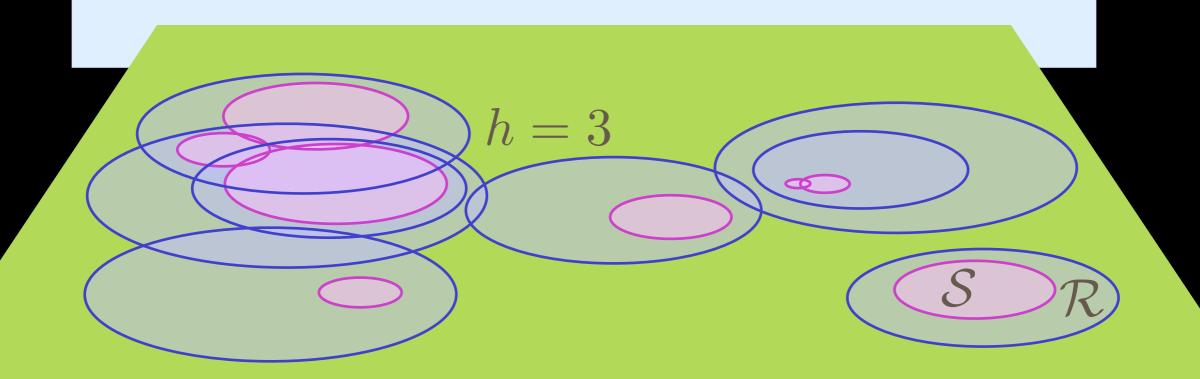
- We may need a bit of notation
 - \mathcal{R} : *n* regions of sizes $n + 1 \dots 2n$
 - S: optimal final regions of sizes $1 \dots n$
 - h: half of the \mathcal{R} has ply at least h



- We may need a bit of notation
 - \mathcal{R} : *n* regions of sizes $n + 1 \dots 2n$
 - S: optimal final regions of sizes $1 \dots n$
 - h: half of the \mathcal{R} has ply at least h

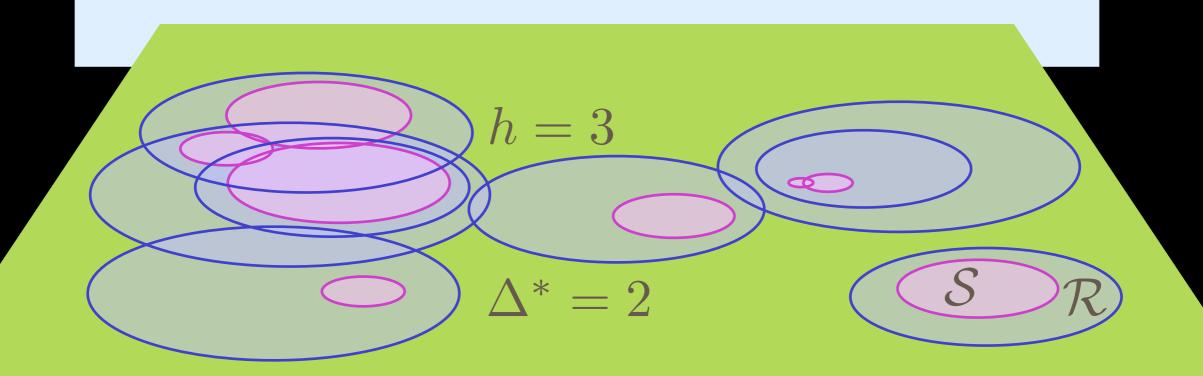


- We may need a bit of notation
 - \mathcal{R} : *n* regions of sizes $n + 1 \dots 2n$
 - S: optimal final regions of sizes $1 \dots n$
 - h: half of the \mathcal{R} has ply at least h
 - Δ^* : optimal ply (the ply of S)

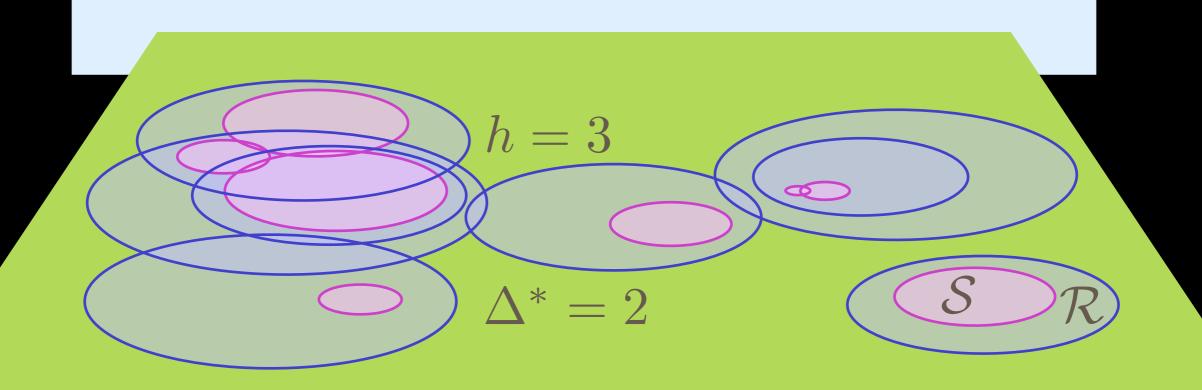


- We may need a bit of notation
 - \mathcal{R} : *n* regions of sizes $n + 1 \dots 2n$
 - S: optimal final regions of sizes $1 \dots n$
 - h: half of the \mathcal{R} has ply at least h

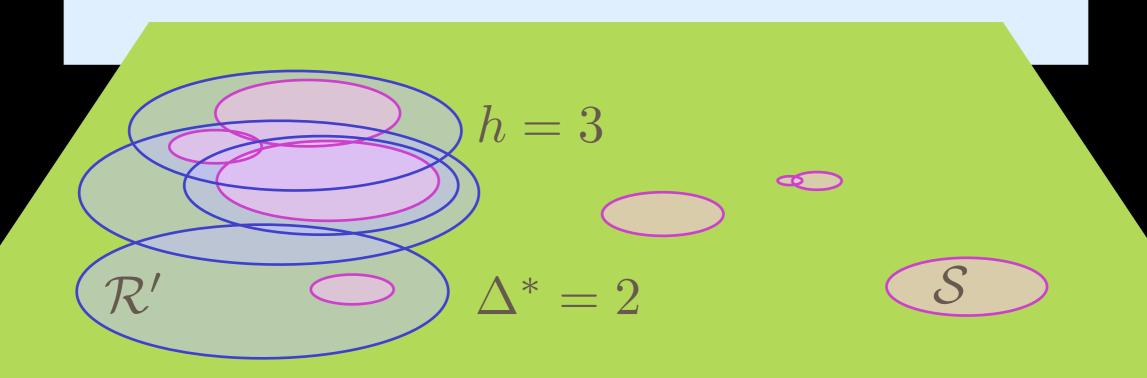
• Δ^* : optimal ply (the ply of S)



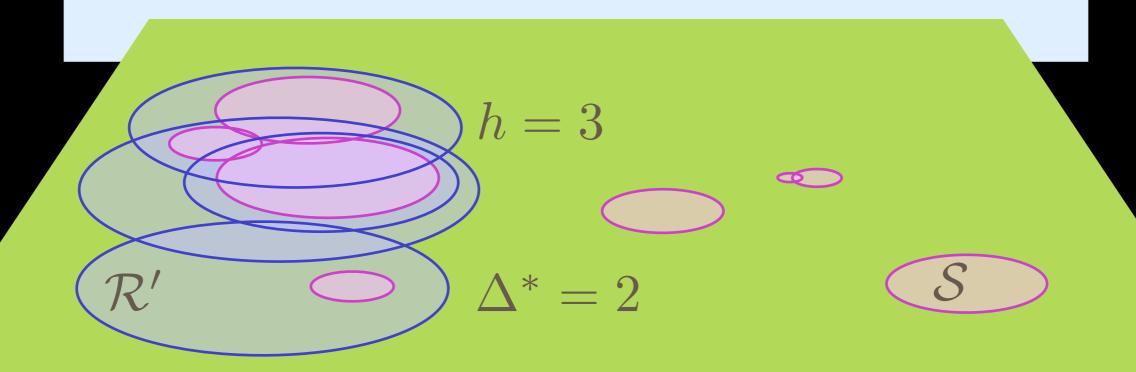
- We may need a bit of notation
 - \mathcal{R} : *n* regions of sizes $n + 1 \dots 2n$
 - S: optimal final regions of sizes $1 \dots n$
 - h: half of the \mathcal{R} has ply at least h
 - Δ^* : optimal ply (the ply of S)
 - \mathcal{R}' : half of \mathcal{R} with highest ply (at least h)



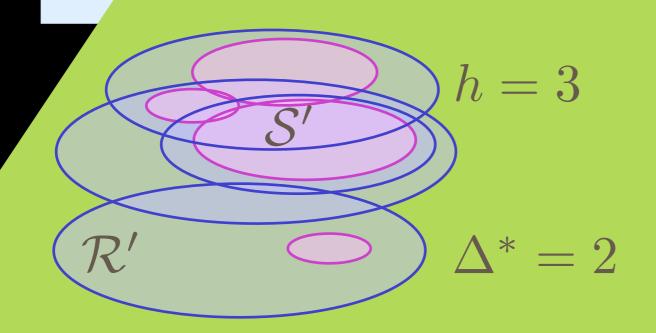
- We may need a bit of notation
 - \mathcal{R} : *n* regions of sizes $n + 1 \dots 2n$
 - S: optimal final regions of sizes $1 \dots n$
 - h: half of the \mathcal{R} has ply at least h
 - Δ^* : optimal ply (the ply of S)
 - \mathcal{R}' : half of \mathcal{R} with highest ply (at least h)



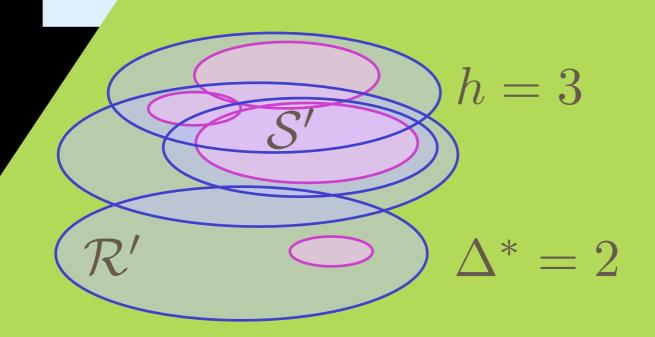
- We may need a bit of notation
 - \mathcal{R} : *n* regions of sizes $n + 1 \dots 2n$
 - S: optimal final regions of sizes $1 \dots n$
 - h: half of the \mathcal{R} has ply at least h
 - Δ^* : optimal ply (the ply of S)
 - \mathcal{R}' : half of \mathcal{R} with highest ply (at least h)
 - \mathcal{S}' : optimal regions corresponding to \mathcal{R}'



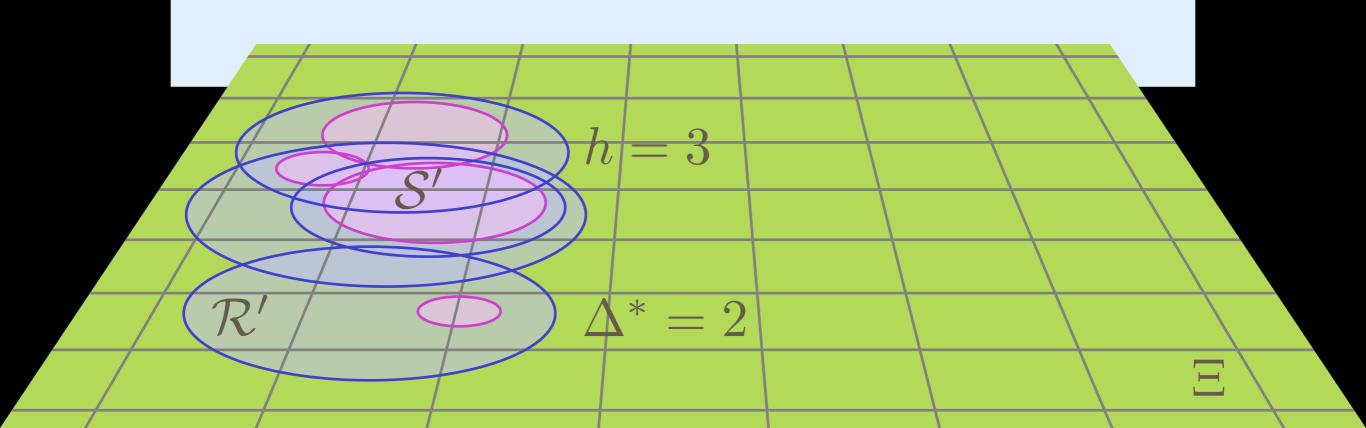
- We may need a bit of notation
 - \mathcal{R} : *n* regions of sizes $n + 1 \dots 2n$
 - S: optimal final regions of sizes $1 \dots n$
 - h: half of the \mathcal{R} has ply at least h
 - Δ^* : optimal ply (the ply of S)
 - \mathcal{R}' : half of \mathcal{R} with highest ply (at least h)
 - \mathcal{S}' : optimal regions corresponding to \mathcal{R}'



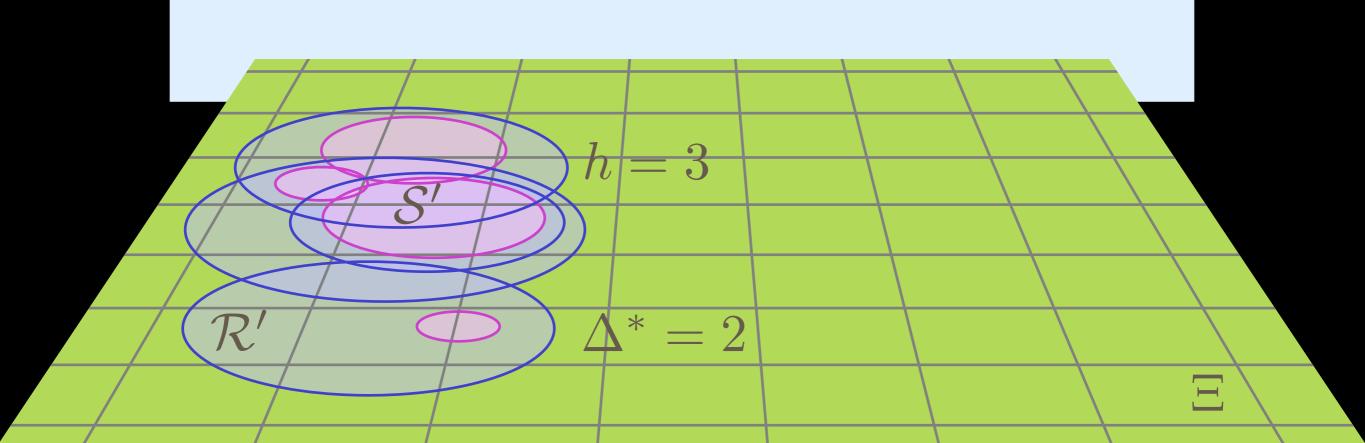
- We may need a bit of notation
 - \mathcal{R} : *n* regions of sizes $n + 1 \dots 2n$
 - S: optimal final regions of sizes $1 \dots n$
 - h: half of the \mathcal{R} has ply at least h
 - Δ^* : optimal ply (the ply of S)
 - \mathcal{R}' : half of \mathcal{R} with highest ply (at least h)
 - \mathcal{S}' : optimal regions corresponding to \mathcal{R}'
 - Ξ : a grid with cells of size $\Theta(n)$



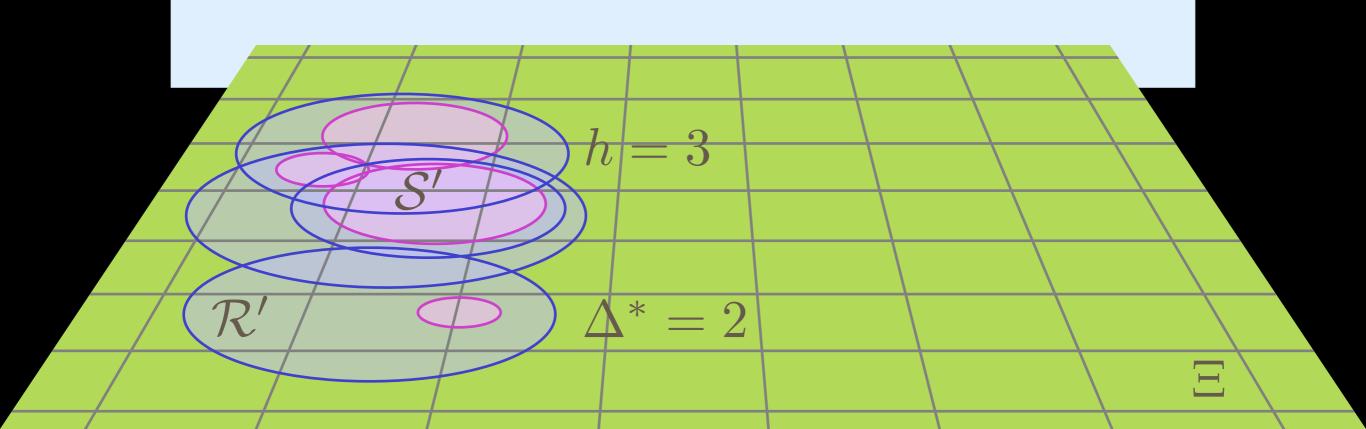
- We may need a bit of notation
 - \mathcal{R} : *n* regions of sizes $n + 1 \dots 2n$
 - S: optimal final regions of sizes $1 \dots n$
 - h: half of the \mathcal{R} has ply at least h
 - Δ^* : optimal ply (the ply of S)
 - \mathcal{R}' : half of \mathcal{R} with highest ply (at least h)
 - \mathcal{S}' : optimal regions corresponding to \mathcal{R}'
 - Ξ : a grid with cells of size $\Theta(n)$



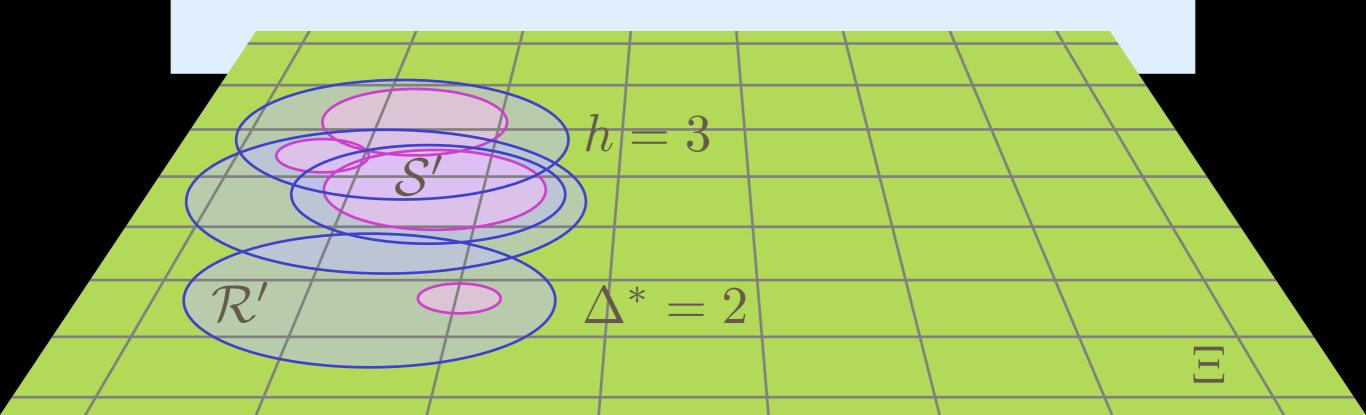
• Now for the argument. . .



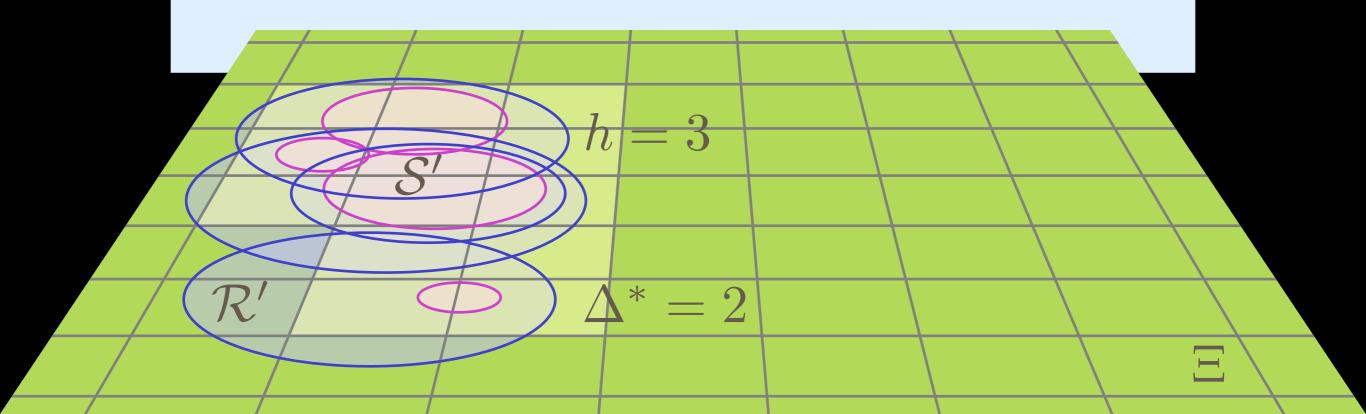
- Now for the argument...
 - \mathcal{S}' covers an area of at least $\Omega(n^3/\Delta^*)$



- Now for the argument...
 - \mathcal{S}' covers an area of at least $\Omega(n^3/\Delta^*)$ \mathcal{S}' intersects at least $\Omega(n/\Delta^*)$ cells of Ξ

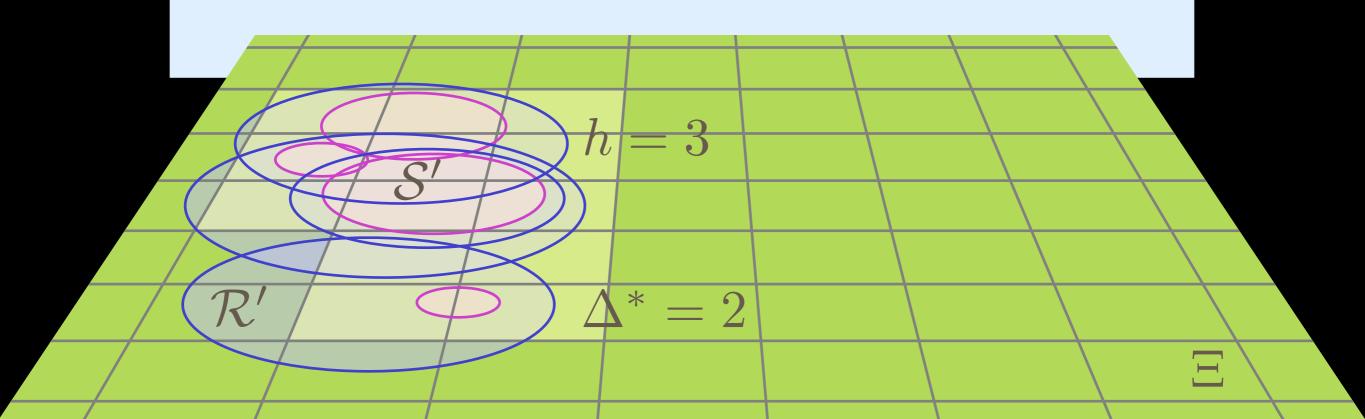


- Now for the argument...
 - \mathcal{S}' covers an area of at least $\Omega(n^3/\Delta^*)$ \mathcal{S}' intersects at least $\Omega(n/\Delta^*)$ cells of Ξ



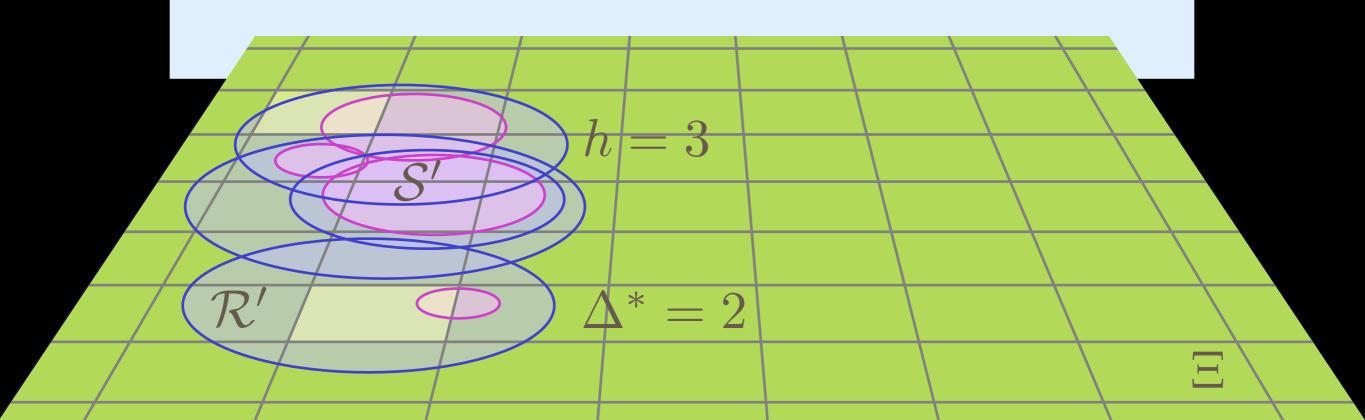
- Now for the argument...

 - S' covers an area of at least Ω(n³/Δ*)
 S' intersects at least Ω(n/Δ*) cells of Ξ
 There is an independent set I of cells of Ξ that are intersected by \mathcal{S}' of size $\Omega(n/\Delta^*)$

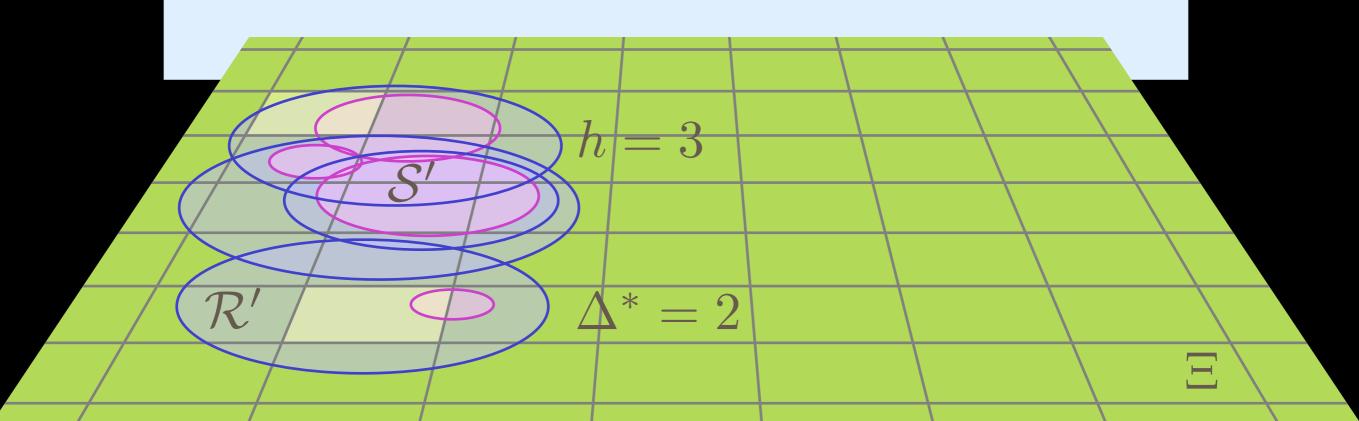


- Now for the argument...

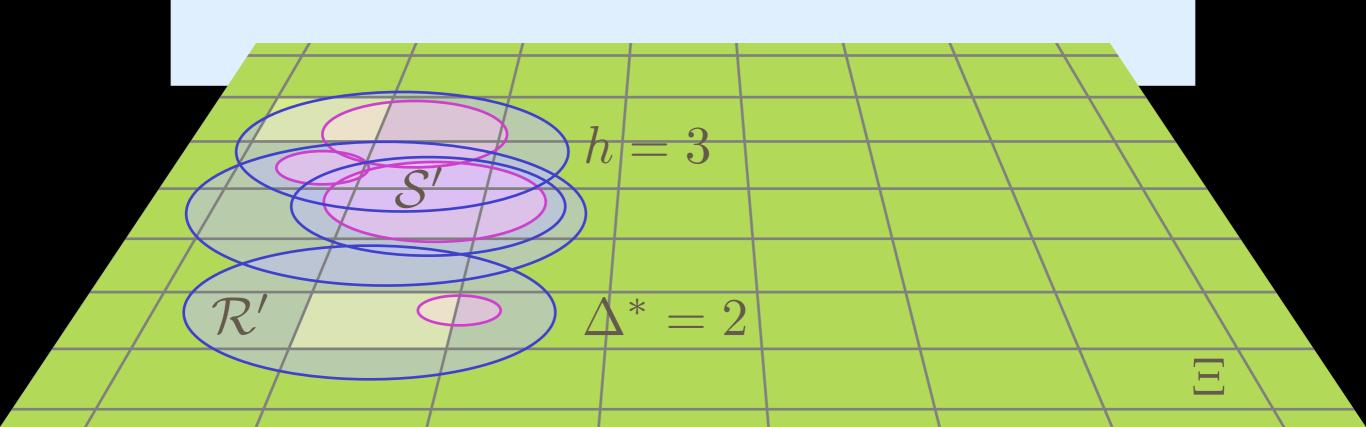
 - S' covers an area of at least Ω(n³/Δ*)
 S' intersects at least Ω(n/Δ*) cells of Ξ
 There is an independent set I of cells of Ξ that are intersected by \mathcal{S}' of size $\Omega(n/\Delta^*)$



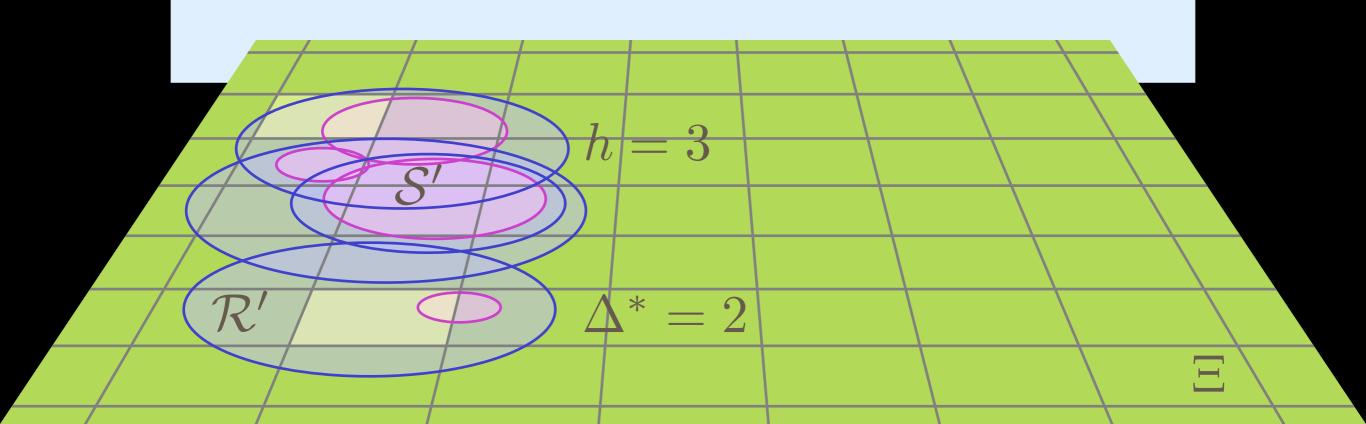
- Now for the argument. . .
 - \mathcal{S}' covers an area of at least $\Omega(n^3/\Delta^*)$
 - \mathcal{S}' intersects at least $\Omega(n/\Delta^*)$ cells of Ξ
 - There is an independent set I of cells of Ξ that are intersected by \mathcal{S}' of size $\Omega(n/\Delta^*)$
 - Each cell of I is intersected by at least h unique regions of \mathcal{R}'



- Now for the argument. . .
 - \mathcal{S}' covers an area of at least $\Omega(n^3/\Delta^*)$
 - \mathcal{S}' intersects at least $\Omega(n/\Delta^*)$ cells of Ξ
 - There is an independent set I of cells of Ξ that are intersected by \mathcal{S}' of size $\Omega(n/\Delta^*)$
 - Each cell of I is intersected by at least h unique regions of \mathcal{R}'
 - There are $\Omega(h\cdot n/\Delta^*)$ regions in \mathcal{R}'

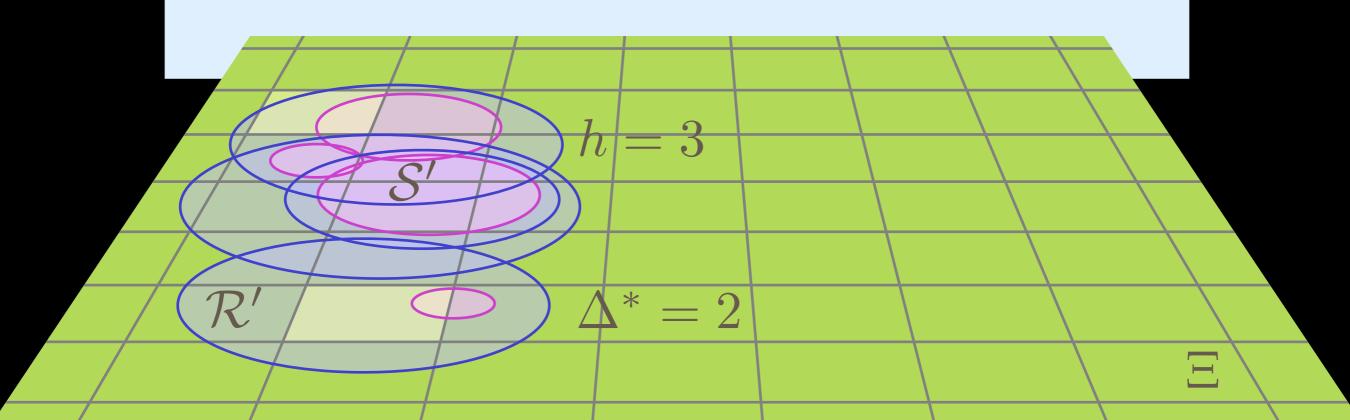


- Now for the argument. . .
 - \mathcal{S}' covers an area of at least $\Omega(n^3/\Delta^*)$
 - \mathcal{S}' intersects at least $\Omega(n/\Delta^*)$ cells of Ξ
 - There is an independent set I of cells of Ξ that are intersected by \mathcal{S}' of size $\Omega(n/\Delta^*)$
 - Each cell of I is intersected by at least h unique regions of \mathcal{R}'
 - There are $\Omega(h \cdot n/\Delta^*)$ regions in \mathcal{R}'
 - So... $h \in O(\Delta^*)$



- Now for the argument. . .
 - \mathcal{S}' covers an area of at least $\Omega(n^3/\Delta^*)$
 - \mathcal{S}' intersects at least $\Omega(n/\Delta^*)$ cells of Ξ
 - There is an independent set I of cells of Ξ that are intersected by \mathcal{S}' of size $\Omega(n/\Delta^*)$
 - Each cell of I is intersected by at least h unique regions of \mathcal{R}'
 - There are $\Omega(h \cdot n/\Delta^*)$ regions in \mathcal{R}'
 - So... $h \in O(\Delta^*)$

• !!!



• Limited time τ

- Limited time τ
 - Depends average time ℓ since last query

- Limited time τ
 - Depends average time ℓ since last query
 - Competitive ratio: $O(\sqrt{\ell/\tau + 1})$

- Limited time τ
 - Depends average time ℓ since last query
 - Competitive ratio: $O(\sqrt{\ell/\tau + 1})$
- Dimension d

- Limited time τ
 - Depends average time ℓ since last query
 - Competitive ratio: $O(\sqrt{\ell/\tau + 1})$
- Dimension d
 - Analysis goes through mostly unchanged

- Limited time τ
 - Depends average time ℓ since last query
 - Competitive ratio: $O(\sqrt{\ell/\tau + 1})$
- Dimension d
 - Analysis goes through mostly unchanged
 - Competitive ratio: $O((\ell/\tau + 1)^{d \frac{d}{d+1}})$

- Limited time τ
 - Depends average time ℓ since last query
 - Competitive ratio: $O(\sqrt{\ell/\tau + 1})$
- Dimension d
 - Analysis goes through mostly unchanged
 - Competitive ratio: $O((\ell/\tau + 1)^{d \frac{d}{d+1}})$
- Lower bounds

- Limited time τ
 - Depends average time ℓ since last query
 - Competitive ratio: $O(\sqrt{\ell/\tau + 1})$
- Dimension d
 - Analysis goes through mostly unchanged
 - Competitive ratio: $O((\ell/\tau + 1)^{d \frac{d}{d+1}})$
- Lower bounds
 - Ratios are tight up to constant factor

- Limited time τ
 - Depends average time ℓ since last query
 - Competitive ratio: $O(\sqrt{\ell/\tau + 1})$
- Dimension d
 - Analysis goes through mostly unchanged
 - Competitive ratio: $O((\ell/\tau+1)^{d-\frac{d}{d+1}})$
- Lower bounds
 - Ratios are tight up to constant factor
- NP-hardness

- Limited time τ
 - Depends average time ℓ since last query
 - Competitive ratio: $O(\sqrt{\ell/\tau + 1})$
- Dimension d
 - Analysis goes through mostly unchanged
 - Competitive ratio: $O((\ell/\tau + 1)^{d \frac{a}{d+1}})$
- Lower bounds
 - Ratios are tight up to constant factor
- NP-hardness
 - Even knowing the full trajectories

