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• Smart phones

• Location-aware mobile devices
• GPS systems

• Often very large
• New geometric data sets

• Imprecise in nature

• Flock tracking

• Dynamic / unpredictable

• Wireless sensor networks
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• Suppose we have a moving point p
• Motion causes imprecision

?

?

• We know an upper bound on its speed

• In 1 time step p can move at most d

? d

• We model the potential locations of p in
the next time step by a disk of radius d

p

OBSERVATION:If we knew where p
was t time ago, we know it is now
somewhere in a disk of radius td
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“PLY”

• Ply of the set of regions

• Given a set of regions
• δ(p) = |{R : p ∈ R}|

• Ply of a point

• Maximum ply of all points
• ∆ = maxp δ(p)

δ = 1

δ = 3

∆ = 4

POSTULATION:Low ply is good!
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• Receives the whole input at once
• Classical, “offline” algorithm

• Receives a sequence of input events
• Online algorithm

• Needs to react to each event before
knowing what the next event will be

• Competitive ratio
• Performance measure for online algorithms
• Cost of online algorithm divided by cost of

best possible offline algorithm
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PROBLEM STATEMENT
• Input
• Set of n moving points with initial regions
• Target time t∗

• Objective
• Select one region to query each time step
• Minimize the ply of the regions at time t∗

• Competitive analysis
• Compare against adversary that knows the

full trajectories of the points in advance
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• These are the projected uncertainty regions
• Cones intersect the plane z = t∗ in disks

PROJECTED REGIONS
• View points in time-space
• Points follow some unknown z-monotone

trajectory
• Because of speed limit, they stay in cones

z = t∗

• Now consider t∗

• Projected regions never grow, and they
shrink to radius t∗ − t when we query them



STRATEGY ATTEMPT 1



STRATEGY ATTEMPT 1
• Let’s just always query the region

with the largest ply.



STRATEGY ATTEMPT 1
• Let’s just always query the region

with the largest ply.



STRATEGY ATTEMPT 1
• Let’s just always query the region

with the largest ply.
• Let δi be the max ply in region Ri



STRATEGY ATTEMPT 1
• Let’s just always query the region

with the largest ply.
• Let δi be the max ply in region Ri

3

1
2

22 3

3



STRATEGY ATTEMPT 1
• Let’s just always query the region

with the largest ply.
• Let δi be the max ply in region Ri
• Find region Ri with largest δi

3

1
2

22 3

3



STRATEGY ATTEMPT 1
• Let’s just always query the region

with the largest ply.
• Let δi be the max ply in region Ri
• Find region Ri with largest δi

3

1
2

22 3

3



STRATEGY ATTEMPT 1
• Let’s just always query the region

with the largest ply.
• Let δi be the max ply in region Ri
• Find region Ri with largest δi
• Of course, Ri is not unique

3

1
2

22 3

3



STRATEGY ATTEMPT 1
• Let’s just always query the region

with the largest ply.
• Let δi be the max ply in region Ri
• Find region Ri with largest δi
• Of course, Ri is not unique

3

1
2

22 3

3

• Query any of them



STRATEGY ATTEMPT 1
• Let’s just always query the region

with the largest ply.
• Let δi be the max ply in region Ri
• Find region Ri with largest δi
• Of course, Ri is not unique

3

1
2

22 3

3

• Query any of them



STRATEGY ATTEMPT 1
• Let’s just always query the region

with the largest ply.
• Let δi be the max ply in region Ri
• Find region Ri with largest δi
• Of course, Ri is not unique
• Query any of them

1

1
2

22 2

2



STRATEGY ATTEMPT 1
• Let’s just always query the region

with the largest ply.
• Let δi be the max ply in region Ri
• Find region Ri with largest δi

CLAIM:Resulting ply ∆ can be a
factor n larger than optimal!

• Of course, Ri is not unique
• Query any of them

1

1
2

22 2

2



STRATEGY ATTEMPT 1
• Let’s just always query the region

with the largest ply.
• Let δi be the max ply in region Ri
• Find region Ri with largest δi

CLAIM:Resulting ply ∆ can be a
factor n larger than optimal!

• Of course, Ri is not unique
• Query any of them



STRATEGY ATTEMPT 1
• Let’s just always query the region

with the largest ply.
• Let δi be the max ply in region Ri
• Find region Ri with largest δi

CLAIM:Resulting ply ∆ can be a
factor n larger than optimal!

• Of course, Ri is not unique
• Query any of them



STRATEGY ATTEMPT 1
• Let’s just always query the region

with the largest ply.
• Let δi be the max ply in region Ri
• Find region Ri with largest δi

CLAIM:Resulting ply ∆ can be a
factor n larger than optimal!

• Of course, Ri is not unique

∆ = 9

• Query any of them



STRATEGY ATTEMPT 1
• Let’s just always query the region

with the largest ply.
• Let δi be the max ply in region Ri
• Find region Ri with largest δi

CLAIM:Resulting ply ∆ can be a
factor n larger than optimal!

• Of course, Ri is not unique

∆ = 9

• Query any of them



STRATEGY ATTEMPT 1
• Let’s just always query the region

with the largest ply.
• Let δi be the max ply in region Ri
• Find region Ri with largest δi

CLAIM:Resulting ply ∆ can be a
factor n larger than optimal!

• Of course, Ri is not unique

∆ = 9

• Query any of them



STRATEGY ATTEMPT 1
• Let’s just always query the region

with the largest ply.
• Let δi be the max ply in region Ri
• Find region Ri with largest δi

CLAIM:Resulting ply ∆ can be a
factor n larger than optimal!

• Of course, Ri is not unique

∆ = 9

• Query any of them



STRATEGY ATTEMPT 1
• Let’s just always query the region

with the largest ply.
• Let δi be the max ply in region Ri
• Find region Ri with largest δi

CLAIM:Resulting ply ∆ can be a
factor n larger than optimal!

• Of course, Ri is not unique

∆ = 9

• Query any of them



STRATEGY ATTEMPT 1
• Let’s just always query the region

with the largest ply.
• Let δi be the max ply in region Ri
• Find region Ri with largest δi

CLAIM:Resulting ply ∆ can be a
factor n larger than optimal!

• Of course, Ri is not unique

∆ = 9

• Query any of them



STRATEGY ATTEMPT 2



STRATEGY ATTEMPT 2
• Why not just always query the

largest region?



STRATEGY ATTEMPT 2
• Why not just always query the

largest region?



STRATEGY ATTEMPT 2
• Why not just always query the

largest region?



STRATEGY ATTEMPT 2
• Why not just always query the

largest region?



STRATEGY ATTEMPT 2
• Why not just always query the

largest region?
• Never query the same region twice



STRATEGY ATTEMPT 2
• Why not just always query the

largest region?
• Never query the same region twice



STRATEGY ATTEMPT 2
• Why not just always query the

largest region?
• Never query the same region twice



STRATEGY ATTEMPT 2
• Why not just always query the

largest region?

• Effectively, query cyclicy
• Never query the same region twice



STRATEGY ATTEMPT 2
• Why not just always query the

largest region?

• Effectively, query cyclicy
• Never query the same region twice



STRATEGY ATTEMPT 2
• Why not just always query the

largest region?

• Effectively, query cyclicy
• Never query the same region twice



STRATEGY ATTEMPT 2
• Why not just always query the

largest region?

• Effectively, query cyclicy
• Never query the same region twice



STRATEGY ATTEMPT 2
• Why not just always query the

largest region?

• Effectively, query cyclicy
• Never query the same region twice



STRATEGY ATTEMPT 2
• Why not just always query the

largest region?

• Effectively, query cyclicy
• Final regions at t∗ will have sizes 1 to n

• Never query the same region twice



STRATEGY ATTEMPT 2
• Why not just always query the

largest region?

• Effectively, query cyclicy
• Final regions at t∗ will have sizes 1 to n

• Never query the same region twice



STRATEGY ATTEMPT 2
• Why not just always query the

largest region?

• Effectively, query cyclicy
• Final regions at t∗ will have sizes 1 to n
• Configuration depends on order

• Never query the same region twice



STRATEGY ATTEMPT 2
• Why not just always query the

largest region?

• Effectively, query cyclicy
• Final regions at t∗ will have sizes 1 to n
• Configuration depends on order

CLAIM:Resulting ply ∆ can be a
factor

√
n larger than optimal!

• Never query the same region twice



STRATEGY ATTEMPT 2
• Why not just always query the

largest region?

• Effectively, query cyclicy
• Final regions at t∗ will have sizes 1 to n
• Configuration depends on order

CLAIM:Resulting ply ∆ can be a
factor

√
n larger than optimal!

• Never query the same region twice



STRATEGY ATTEMPT 2
• Why not just always query the

largest region?

• Effectively, query cyclicy
• Final regions at t∗ will have sizes 1 to n
• Configuration depends on order

CLAIM:Resulting ply ∆ can be a
factor

√
n larger than optimal!

• Never query the same region twice



STRATEGY ATTEMPT 2
• Why not just always query the

largest region?

• Effectively, query cyclicy
• Final regions at t∗ will have sizes 1 to n
• Configuration depends on order

CLAIM:Resulting ply ∆ can be a
factor

√
n larger than optimal!

• Never query the same region twice



STRATEGY ATTEMPT 3



STRATEGY ATTEMPT 3
• Keep querying cyclicly until τ = n



STRATEGY ATTEMPT 3
• Keep querying cyclicly until τ = n



STRATEGY ATTEMPT 3
• Keep querying cyclicly until τ = n



STRATEGY ATTEMPT 3
• Keep querying cyclicly until τ = n



STRATEGY ATTEMPT 3
• Keep querying cyclicly until τ = n



STRATEGY ATTEMPT 3
• Keep querying cyclicly until τ = n



STRATEGY ATTEMPT 3
• Keep querying cyclicly until τ = n



STRATEGY ATTEMPT 3
• Keep querying cyclicly until τ = n



STRATEGY ATTEMPT 3
• Keep querying cyclicly until τ = n



STRATEGY ATTEMPT 3
• Keep querying cyclicly until τ = n



STRATEGY ATTEMPT 3
• Keep querying cyclicly until τ = n



STRATEGY ATTEMPT 3
• Keep querying cyclicly until τ = n



STRATEGY ATTEMPT 3
• Keep querying cyclicly until τ = n
• Now regions have sizes n+ 1 to 2n



STRATEGY ATTEMPT 3
• Keep querying cyclicly until τ = n
• Now regions have sizes n+ 1 to 2n

• While there are still regions left



STRATEGY ATTEMPT 3
• Keep querying cyclicly until τ = n
• Now regions have sizes n+ 1 to 2n

• While there are still regions left
• Find the 1

2n regions with highest ply



STRATEGY ATTEMPT 3
• Keep querying cyclicly until τ = n
• Now regions have sizes n+ 1 to 2n

• While there are still regions left
• Find the 1

2n regions with highest ply



STRATEGY ATTEMPT 3
• Keep querying cyclicly until τ = n
• Now regions have sizes n+ 1 to 2n

• While there are still regions left
• Find the 1

2n regions with highest ply
• Query all of them once, in any order



STRATEGY ATTEMPT 3
• Keep querying cyclicly until τ = n
• Now regions have sizes n+ 1 to 2n

• While there are still regions left
• Find the 1

2n regions with highest ply
• Query all of them once, in any order



STRATEGY ATTEMPT 3
• Keep querying cyclicly until τ = n
• Now regions have sizes n+ 1 to 2n

• While there are still regions left
• Find the 1

2n regions with highest ply
• Query all of them once, in any order
• Throw away the others; set n = 1

2n



STRATEGY ATTEMPT 3
• Keep querying cyclicly until τ = n
• Now regions have sizes n+ 1 to 2n

• While there are still regions left
• Find the 1

2n regions with highest ply
• Query all of them once, in any order
• Throw away the others; set n = 1

2n



STRATEGY ATTEMPT 3
• Keep querying cyclicly until τ = n
• Now regions have sizes n+ 1 to 2n

• While there are still regions left
• Find the 1

2n regions with highest ply
• Query all of them once, in any order
• Throw away the others; set n = 1

2n• Repeat



STRATEGY ATTEMPT 3
• Keep querying cyclicly until τ = n
• Now regions have sizes n+ 1 to 2n

• While there are still regions left
• Find the 1

2n regions with highest ply
• Query all of them once, in any order
• Throw away the others; set n = 1

2n• Repeat



STRATEGY ATTEMPT 3
• Keep querying cyclicly until τ = n
• Now regions have sizes n+ 1 to 2n

• While there are still regions left
• Find the 1

2n regions with highest ply
• Query all of them once, in any order
• Throw away the others; set n = 1

2n• Repeat



STRATEGY ATTEMPT 3
• Keep querying cyclicly until τ = n
• Now regions have sizes n+ 1 to 2n

• While there are still regions left
• Find the 1

2n regions with highest ply
• Query all of them once, in any order
• Throw away the others; set n = 1

2n• Repeat



STRATEGY ATTEMPT 3
• Keep querying cyclicly until τ = n
• Now regions have sizes n+ 1 to 2n

• While there are still regions left
• Find the 1

2n regions with highest ply
• Query all of them once, in any order
• Throw away the others; set n = 1

2n• Repeat



STRATEGY ATTEMPT 3
• Keep querying cyclicly until τ = n
• Now regions have sizes n+ 1 to 2n

• While there are still regions left
• Find the 1

2n regions with highest ply
• Query all of them once, in any order
• Throw away the others; set n = 1

2n

CLAIM:Resulting ply ∆ is within a
constant factor of optimal!

• Repeat
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• NP-hardness
• Even knowing the full trajectories



THANK YOU!


