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• Smart phones

• Location-aware mobile devices
• GPS systems

• Often very large
• New geometric data sets

• Imprecise in nature

• Flock tracking

• Dynamic / unpredictable

• Wireless sensor networks
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CONGESTION MEASURES
• Consider a set of regions
• What do they tell us about the point set?

• The more they overlap, the less
information we have.

• How do we measure how much a set of
regions is “overlapping”?
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• Ply of the set of regions

• Given a set of regions
• δ(p) = |{R : p ∈ R}|

• Ply of a point

• Maximum ply of all points
• ∆ = maxp δ(p)

δ = 1

δ = 3

∆ = 4

• Low ply is good!
• High ply is not necessarily bad.
• Ply is a local congestion measure.
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• Total degree of a set of regions

• Number of other regions is intersects
• d(R) = |{R′ : R ∩R 6= ∅}|

• Degree of a region

• Sum of degrees of all regions
• D =

∑
R d(R)

d = 5

d = 6
D = 42

• twice the number of edges in the disk
intersection graph

• Total degree is a global congestion
measure.
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PROBLEM STATEMENT
• Input
• Set of n moving points with initial regions
• Target value τ

• Strategy
• Select one region to query each time step
• Keep the total degree of the intersection

graph under τ

• Problem
• Decide whether such a strategy exists.
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1-DIMENSIONAL POINTS
• Points are on a line
• We play the same game
• We want a small intersection graph
• What is a good strategy?
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• The smallest τ for which (ii)
applies is the critical degree

For any target value τ , either
(i) ..., or
(ii) a simple query strategy guarantees
that the total degree in the
intersection graph of the uncertainty
intervals is O(τ) at all times.
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THE STRATEGY
• Plan: query each point before it

reaches its critical radius

• If
∑

1
ri
> 1, this is impossible...

• Otherwise, solve scheduling problem by
grouping points in a quadtree

• How do we do that?

• ... and then there is no strategy that
achieves total degree ≤ τ

• Points in level ` get query frequency 1
2`
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• How do we make this dynamic?

There is a query strategy such that at
every time t, the critical degree τ at
time t is maintained during the time
interval [t, t+ cτ ].

CONJECTURE
• Problem: critical value τ changes

THANK YOU!


