TOWARDS THE MINIMIZATION OF GLOBAL MEASURES OF CONGESTION POTENTIAL FOR MOVING POINTS

> Will Evans Ivor van der Hoog David Kirkpatrick Maarten Löffler

MOVING POINTS Location-aware mobile devices

Location-aware mobile devices GPS systems

Location-aware mobile devices GPS systems

- GPS systems
- Smart phones
- Wireless sensor networks

- GPS systems
- Smart phones
- Wireless sensor networks

- GPS systems
- Smart phones
- Wireless sensor networks

- GPS systems
- Smart phones
- Wireless sensor networks
- Flock tracking

- GPS systems
- Smart phones
- Wireless sensor networks
- Flock tracking

- GPS systems Smart phones
- Wireless sensor networks
- Flock tracking

- GPS systems Smart phones
- Wireless sensor networks
- Flock tracking

- GPS systems
- Smart phones
- Wireless sensor networks
- Flock tracking

- GPS systems Smart phones
- Wireless sensor networks
- Flock tracking

- GPS systems
- Smart phones
- Wireless sensor networks
- Flock tracking

Location-aware mobile devices

- GPS systems
- Smart phones
- Wireless sensor networks
- Flock tracking

New geometric data sets

- GPS systems
- Smart phones
- Wireless sensor networks
- Flock tracking
- New geometric data sets Often very large

- GPS systems
- Smart phones
- Wireless sensor networks
- Flock tracking
- New geometric data sets Often very large Imprecise in nature

Location-aware mobile devices

- GPS systems
- Smart phones
- Wireless sensor networks
- Flock tracking

New geometric data sets Often very large Imprecise in nature Dynamic / unpredictable

UNCERTAIN POINTS Motion causes imprecision

Motion causes imprecision Suppose we have a moving point p

Motion causes imprecision Suppose we have a moving point p

Motion causes imprecision Suppose we have a moving point pWe know an upper bound on its speed

Motion causes imprecision Suppose we have a moving point pWe know an upper bound on its speed In 1 time step p can move at most dWe model the *uncertainty region* of p in the next time step by a disk of radius d

Motion causes imprecision Suppose we have a moving point pWe know an upper bound on its speed In 1 time step p can move at most dWe model the *uncertainty region* of p in the next time step by a disk of radius d

UNCERTAIN POINTS Consider n moving points

Consider n moving points Suppose that for each point we know a *location* p_i and an associated *time stamp* t_i

Consider n moving points Suppose that for each point we know a *location* p_i and an associated *time stamp* t_i We can view $(p_i, t - t_i)$ as points in \mathbb{R}^3

Consider n moving points Suppose that for each point we know a *location* p_i and an associated *time stamp* t_i We can view $(p_i, t - t_i)$ as points in \mathbb{R}^3

Consider n moving points Suppose that for each point we know a *location* p_i and an associated *time stamp* t_i We can view $(p_i, t - t_i)$ as points in \mathbb{R}^3 Points follow som Runknown z-monotone trajectory

Consider n moving points Suppose that for each point we know a *location* p_i and an associated *time stamp* t_i We can view $(p_i, t - t_i)$ as points in \mathbb{R}^3 Points follow some unknown z-monotone trajectory

Consider *n* moving points Suppose that for each point we know a *location* p_i and an associated *time stamp* t_i We can view $(p_i, t - t_i)$ as points in \mathbb{R}^3 Points follow som \mathcal{P} unknown *z*-monotone trajectory Because of speed limit, they stay in cones

Consider n moving points Suppose that for each point we know a *location* p_i and an associated *time stamp* t_i We can view $(p_i, t - t_i)$ as points in \mathbb{R}^3 Points follow some surface points z-monotone trajectory

Because of speed limit, they stay in cones

Consider n moving points Suppose that for each point we know a *location* p_i and an associated *time stamp* t_i We can view $(p_i, t - t_i)$ as points in \mathbb{R}^3 Points follow some sunknown z-monotone trajectory

Because of speed limit, they stay in cones the cones intersect x = t in disc of radius $t - t_i$, which are the uncertainty regions.

Consider n moving points Suppose that for each point we know a *location* p_i and an associated *time stamp* t_i We can view $(p_i, t - t_i)$ as points in \mathbb{R}^3 Points follow some sunknown z-monotone trajectory

Because of speed limit, they stay in cones the cones intersect x = t in disc of radius $t - t_i$, which are the uncertainty regions.

Consider n moving points Suppose that for each point we know a *location* p_i and an associated *time stamp* t_i We can view $(p_i, t - t_i)$ as points in \mathbb{R}^3

Points follow some unknown *z*-monotone trajectory

Because of speed limit, they stay in cones

The cones intersect z = t in disks of radius $t - t_i$, which are the *uncertainty regions*.

$\begin{array}{c} \textbf{LOCATION QUERIES}\\ \text{Consider }n \text{ moving points} \end{array}$

LOCATION QUERIES Consider n moving points

Consider n moving points Suppose that for each point we know a location p_i and an associated time stamp t_i

Consider n moving points Suppose that for each point we know a *location* p_i and an associated *time stamp* t_i Then the current uncertainty region of each point is a disk centered at p_i

Consider n moving points Suppose that for each point we know a *location* p_i and an associated *time stamp* t_i Then the current uncertainty region of each point is a disk centered at p_i

Consider n moving points Suppose that for each point we know a *location* p_i and an associated *time stamp* t_i Then the current uncertainty region of each point is a disk centered at p_i Each unit of time, all regions grow by d

Consider n moving points Suppose that for each point we know a *location* p_i and an associated *time stamp* t_i Then the current uncertainty region of each point is a disk centered at p_i Each unit of time, all regions grow by d

Consider n moving points Suppose that for each point we know a *location* p_i and an associated *time stamp* t_i Then the current uncertainty region of each point is a disk centered at p_i Each unit of time, all regions grow by d

We can *query* a point to update it

Consider n moving points Suppose that for each point we know a *location* p_i and an associated *time stamp* t_i Then the current uncertainty region of each point is a disk centered at p_i Each unit of time, all regions grow by d

We can *query* a point to update it

Consider n moving points Suppose that for each point we know a *location* p_i and an associated *time stamp* t_i Then the current uncertainty region of each point is a disk centered at p_i Each unit of time, all regions grow by d

We can *query* a point to update it Takes 1 unit of time to execute

Consider n moving points Suppose that for each point we know a *location* p_i and an associated *time stamp* t_i Then the current uncertainty region of each point is a disk centered at p_i Each unit of time, all regions grow by d

We can *query* a point to update it Takes 1 unit of time to execute

Consider n moving points Suppose that for each point we know a *location* p_i and an associated *time stamp* t_i Then the current uncertainty region of each point is a disk centered at p_i Each unit of time, all regions grow by d

We can query a point to update it Takes 1 unit of time to execute After a query, one region collapses to a point, but all other regions grow

Consider n moving points Suppose that for each point we know a *location* p_i and an associated *time stamp* t_i Then the current uncertainty region of each point is a disk centered at p_i Each unit of time, all regions grow by d

We can query a point to update it Takes 1 unit of time to execute After a query, one region collapses to a point, but all other regions grow

Consider n moving points Suppose that for each point we know a *location* p_i and an associated *time stamp* t_i Then the current uncertainty region of each point is a disk centered at p_i Each unit of time, all regions grow by d

We can query a point to update it Takes 1 unit of time to execute After a query, one region collapses to a point, but all other regions grow

CONGESTION MEASURES Consider a set of regions

CONGESTION MEASURES Consider a set of regions

Consider a set of regions What do they tell us about the point set?

Consider a set of regions What do they tell us about the point set? The more they overlap, the less information we have.

Consider a set of regions What do they tell us about the point set? The more they overlap, the less information we have.

Consider a set of regions What do they tell us about the point set? The more they overlap, the less information we have.

- Consider a set of regions
 - What do they tell us about the point set?
 - The more they overlap, the less information we have.
 - How do we measure how much a set of regions is "overlapping"?

PLY

PLY Ply of a point

PLY Ply of a point Given a set of regions

PLY Ply of a point Given a set of regions $\delta(p) = |\{R : p \in R\}|$

PLY Ply of a point Given a set of regions $\delta(p) = |\{R : p \in R\}|$ - 8

Ply of a point Given a set of regions $\delta(p) = |\{R : p \in R\}|$ Ply of the set of regions

Ply of a point Given a set of regions $\delta(p) = |\{R : p \in R\}|$ Ply of the set of regions Maximum ply of all points

 $\begin{array}{l} \mathsf{Ply of a point} \\ \mathsf{Given a set of regions} \\ \delta(p) = |\{R: p \in R\}| \\ \mathsf{Ply of the set of regions} \\ \mathsf{Maximum ply of all points} \\ \Delta = \max_p \delta(p) \end{array}$

 $\begin{array}{l} \mathsf{Ply of a point} \\ \mathsf{Given a set of regions} \\ \delta(p) = |\{R: p \in R\}| \\ \mathsf{Ply of the set of regions} \\ \mathsf{Maximum ply of all points} \\ \Delta = \max_p \delta(p) \end{array}$

Ply of a point Given a set of regions $\delta(p) = |\{R : p \in R\}|$ Ply of the set of regions Maximum ply of all points $\Delta = \max_p \delta(p)$ Low ply is good!

Ply of a point Given a set of regions $\delta(p) = |\{R : p \in R\}|$ Ply of the set of regions Maximum ply of all points $\Delta = \max_p \delta(p)$ Low ply is good! High ply is not *necessarily* bad.

Ply of a point Given a set of regions $\delta(p) = |\{R : p \in R\}|$ Ply of the set of regions Maximum ply of all points $\Delta = \max_p \delta(p)$ Low ply is good! High ply is not *necessarily* bad. Ply is a *local* congestion measure.

δ

TOTAL DEGREE Degree of a region

Degree of a region Number of other regions is intersects

Degree of a region Number of other regions is intersects $d(R) = |\{R' : R \cap R \neq \emptyset\}|$

Degree of a region Number of other regions is intersects $d(R) = |\{R' : R \cap R \neq \emptyset\}|$

Degree of a region Number of other regions is intersects $d(R) = |\{R' : R \cap R \neq \emptyset\}|$ Total degree of a set of regions

Degree of a region Number of other regions is intersects $d(R) = |\{R' : R \cap R \neq \emptyset\}|$ Total degree of a set of regions Sum of degrees of all regions

Degree of a region Number of other regions is intersects $d(R) = |\{R' : R \cap R \neq \emptyset\}|$ Total degree of a set of regions Sum of degrees of all regions $D = \sum_R d(R)$

Degree of a region Number of other regions is intersects $d(R) = |\{R' : R \cap R \neq \emptyset\}|$ Total degree of a set of regions Sum of degrees of all regions $D = \sum_R d(R)$

Degree of a region Number of other regions is intersects $d(R) = |\{R' : R \cap R \neq \emptyset\}|$ Total degree of a set of regions Sum of degrees of all regions $D = \sum_R d(R)$ twice the number of edges in the disk intersection graph

Degree of a region Number of other regions is intersects $d(R) = |\{R' : R \cap R \neq \emptyset\}|$ Total degree of a set of regions Sum of degrees of all regions $D = \sum_R d(R)$ twice the number of edges in the disk intersection graph Total degree is a global congestion measure.

PROBLEM STATEMENT Input

Input Set of *n* moving points with initial regions

Input

Set of n moving points with initial regions Target value τ

- Input
 - Set of n moving points with initial regions Target value τ
- Strategy

Input

Set of n moving points with initial regions Target value τ

Strategy

Select one region to query each time step

Input

Set of n moving points with initial regions Target value τ

Strategy

Select one region to query each time step Keep the total degree of the intersection graph under τ

Input

Set of n moving points with initial regions Target value τ

Strategy

Select one region to query each time step Keep the total degree of the intersection graph under τ

Problem

Input

Set of n moving points with initial regions Target value τ

Strategy

Select one region to query each time step Keep the total degree of the intersection graph under τ

Problem

Decide whether such a strategy exists.

STATIC MOVING POINTS

STATIC MOVING POINTS Consider n non-moving points

STATIC MOVING POINTS Consider n non-moving points

STATIC MOVING POINTS

Consider n non-moving points Suppose that for each point we know a *location* p_i and an associated *time stamp* t_i

STATIC MOVING POINTS

Consider n non-moving points Suppose that for each point we know a *location* p_i and an associated *time stamp* t_i Then the current uncertainty region of each point is a disk centered at p_i

Consider n non-moving points Suppose that for each point we know a *location* p_i and an associated *time stamp* t_i Then the current uncertainty region of each point is a disk centered at p_i

Consider n non-moving points Suppose that for each point we know a *location* p_i and an associated *time stamp* t_i Then the current uncertainty region of each point is a disk centered at p_i Each unit of time, all regions grow by d

Consider n non-moving points Suppose that for each point we know a *location* p_i and an associated *time stamp* t_i Then the current uncertainty region of each point is a disk centered at p_i Each unit of time, all regions grow by d

Consider n non-moving points Suppose that for each point we know a *location* p_i and an associated *time stamp* t_i Then the current uncertainty region of each point is a disk centered at p_i Each unit of time, all regions grow by d

We can *query* a point to update it

Consider n non-moving points Suppose that for each point we know a *location* p_i and an associated *time stamp* t_i Then the current uncertainty region of each point is a disk centered at p_i Each unit of time, all regions grow by d

We can *query* a point to update it

Consider n non-moving points Suppose that for each point we know a *location* p_i and an associated *time stamp* t_i Then the current uncertainty region of each point is a disk centered at p_i Each unit of time, all regions grow by d

We can *query* a point to update it Takes 1 unit of time to execute

Consider n non-moving points Suppose that for each point we know a *location* p_i and an associated *time stamp* t_i Then the current uncertainty region of each point is a disk centered at p_i Each unit of time, all regions grow by d

We can *query* a point to update it Takes 1 unit of time to execute

Consider n non-moving points Suppose that for each point we know a *location* p_i and an associated *time stamp* t_i Then the current uncertainty region of each point is a disk centered at p_i Each unit of time, all regions grow by d

We can query a point to update it Takes 1 unit of time to execute After a query, one region collapses to a point, but all other regions grow

Consider n non-moving points Suppose that for each point we know a *location* p_i and an associated *time stamp* t_i Then the current uncertainty region of each point is a disk centered at p_i Each unit of time, all regions grow by d

We can query a point to update it Takes 1 unit of time to execute After a query, one region collapses to a point, but all other regions grow

Consider n non-moving points Suppose that for each point we know a *location* p_i and an associated *time stamp* t_i Then the current uncertainty region of each point is a disk centered at p_i Each unit of time, all regions grow by d

We can query a point to update it Takes 1 unit of time to execute After a query, one region collapses to a point, but all other regions grow

Points are on a line We play the same game

Points are on a line We play the same game

Points are on a line We play the same game

R

Points are on a line We play the same game

R

We play the same game

R

We play the same game

We play the same game

Points are on a line We play the same game

Points are on a line We play the same game

Points are on a lineWe play the same gameWe want a small intersection graph

776

Points are on a lineWe play the same gameWe want a small intersection graph

1-DIMENSIONAL POINTS Points are on a line We play the same game

We want a small intersection graph

1-DIMENSIONAL POINTS Points are on a line We play the same game We want a small intersection graph What is a good strategy?

THEOREM

For any target value τ , either (i) any query strategy has uncertainty intervals with intersection graph of degree $\Omega(\tau)$ at some point in any time interval of length τ , or (ii) a simple query strategy guarantees that the total degree in the intersection graph of the uncertainty intervals is $O(\tau)$ at all times.

THEOREM

For any target value τ , either (i) ..., or (ii) a simple query strategy guarantees that the total degree in the intersection graph of the uncertainty intervals is $O(\tau)$ at all times.

The *smallest* τ for which (ii) applies is the *critical* degree

THE STRATEGY Critical radius of point p

THE STRATEGY Critical radius of point p

 $\label{eq:critical radius of point } p$

Smallest r such that the ball of radius r around p contains at least $\frac{c\tau}{r}$ other points

 $\label{eq:critical radius of point } p$

Smallest r such that the ball of radius r around p contains at least $\frac{c\tau}{r}$ other points

Critical radius of point \boldsymbol{p}

Smallest r such that the ball of radius r around p contains at least $\frac{c\tau}{r}$ other points

Critical radius of point \boldsymbol{p}

Smallest r such that the ball of radius raround p contains at least $\frac{c\tau}{r}$ other points Points in denser areas have smaller r

- Critical radius of point \boldsymbol{p}
 - Smallest r such that the ball of radius raround p contains at least $\frac{c\tau}{r}$ other points Points in denser areas have smaller r

Plan: query each point before it reaches its critical odius

- Critical radius of point \boldsymbol{p}
 - Smallest r such that the ball of radius raround p contains at least $\frac{c\tau}{r}$ other points Points in denser areas have smaller r

Plan: query each point before it reaches its critical point before it. If we do, the total degree is $\leq \tau$!

Plan: query each point before it reaches its critical radius

Plan: query each point before it reaches its critical radius

How do we do that?

Plan: query each point before it reaches its critical radius

How do we do that?

If $\sum \frac{1}{r_i} > 1$, this is impossible...

Plan: query each point before it reaches its critical radius

How do we do that?

If $\sum \frac{1}{r_i} > 1$, this is impossible...

... and then there is *no* strategy that achieves total degree $\frown \tau$

Plan: query each point before it reaches its critical radius

How do we do that?

If $\sum \frac{1}{r_i} > 1$, this is impossible...

... and then there is *no* strategy that achieves total degree $\overbrace{\tau}$

Plan: query each point before it reaches its critical radius

How do we do that?

If $\sum \frac{1}{r_i} > 1$, this is impossible...

... and then there is no strategy that achieves total degree $\leq \tau$

Plan: query each point before it reaches its critical radius

How do we do that?

If $\sum \frac{1}{r_i} > 1$, this is impossible...

... and then there is no strategy that achieves total degree $\leq \tau$

Plan: query each point before it reaches its critical radius

How do we do that?

If $\sum \frac{1}{r_i} > 1$, this is impossible...

... and then there is no strategy that achieves total degree $\leq \tau$

Plan: query each point before it reaches its critical radius

How do we do that?

If $\sum \frac{1}{r_i} > 1$, this is impossible...

... and then there is no strategy that achieves total degree $\leq \tau$

Plan: query each point before it reaches its critical radius

How do we do that?

If $\sum \frac{1}{r_i} > 1$, this is impossible...

... and then there is no strategy that achieves total degree $\leq \tau$

Plan: query each point before it reaches its critical radius

How do we do that?

If $\sum \frac{1}{r_i} > 1$, this is impossible...

... and then there is no strategy that achieves total degree $\leq \tau$

Otherwise, solve scheduling problem by grouping points in a quadtree

Points in level ℓ get query frequency $\frac{1}{2^{\ell}}$

OPEN PROBLEM How do we make this *dynamic*?

How do we make this dynamic? Problem: critical value τ changes
CONJECTURE

There is a query strategy such that at every time t, the critical degree τ at time t is maintained during the time interval $[t, t + c\tau]$.

How do we make this dynamic? Problem: critical value τ changes
CONJECTURE

There is a query strategy such that at every time t, the critical degree τ at time t is maintained during the time integral $[t, t + \epsilon]$.

IK