TOWARDS THE MINIMIZATION OF GLOBAL MEASURES OF CONGESTION POTENTIAL FOR MOVING POINTS

Will Evans
Ivor van der Hoog
David Kirkpatrick
Maarten Löffler

MOVING POINTS

MOVING POINTS

Location-aware mobile devices

MOVING POINTS

Location-aware mobile devices GPS systems

MOVING POINTS

Location-aware mobile devices GPS systems

MOVING POINTS

Location-aware mobile devices GPS systems
Smart phones

MOVING POINTS

Location-aware mobile devices
GPS systems
Smart phones

MOVING POINTS

Location-aware mobile devices
GPS systems
Smart phones

MOVING POINTS

Location-aware mobile devices
GPS systems
Smart phones

MOVING POINTS

Location-aware mobile devices
GPS systems
Smart phones
Wireless sensor networks

MOVING POINTS

Location-aware mobile devices
GPS systems
Smart phones
Wireless sensor networks

θ

MOVING POINTS

Location-aware mobile devices
GPS systems
Smart phones
Wireless sensor networks

MOVING POINTS

Location-aware mobile devices
GPS systems
Smart phones
Wireless sensor networks
Flock tracking

MOVING POINTS

Location-aware mobile devices
GPS systems
Smart phones
Wireless sensor networks
Flock tracking

MOVING POINTS

Location-aware mobile devices
GPS systems
Smart phones
Wireless sensor networks
Flock tracking

MOVING POINTS

Location-aware mobile devices
GPS systems
Smart phones
Wireless sensor networks
Flock tracking

MOVING POINTS

Location-aware mobile devices
GPS systems
Smart phones
Wireless sensor networks
Flock tracking

MOVING POINTS

Location-aware mobile devices
GPS systems
Smart phones
Wireless sensor networks
Flock tracking

MOVING POINTS

Location-aware mobile devices
GPS systems
Smart phones
Wireless sensor networks
Flock tracking

MOVING POINTS

Location-aware mobile devices
GPS systems
Smart phones
Wireless sensor networks
Flock tracking
New geometric data sets

MOVING POINTS

Location-aware mobile devices
GPS systems
Smart phones
Wireless sensor networks
Flock tracking
New geometric data sets Often very large

MOVING POINTS

Location-aware mobile devices
GPS systems
Smart phones
Wireless sensor networks
Flock tracking
New geometric data sets
Often very large
Imprecise in nature

MOVING POINTS

Location-aware mobile devices
GPS systems
Smart phones
Wireless sensor networks
Flock tracking
New geometric data sets
Often very large
Imprecise in nature
Dynamic / unpredictable

UNCERTAIN POINTS

UNCERTAIN POINTS
 Motion causes imprecision

UNCERTAIN POINTS

Motion causes imprecision Suppose we have a moving point p

UNCERTAIN POINTS

Motion causes imprecision Suppose we have a moving point p

UNCERTAIN POINTS

Motion causes imprecision
Suppose we have a moving point p
We know an upper bound on its speed

UNCERTAIN POINTS

Motion causes imprecision
Suppose we have a moving point p
We know an upper bound on its speed In 1 time step p can move at most d

UNCERTAIN POINTS

Motion causes imprecision
Suppose we have a moving point p
We know an upper bound on its speed In 1 time step p can move at most d

UNCERTAIN POINTS

Motion causes imprecision
Suppose we have a moving point p
We know an upper bound on its speed In 1 time step p can move at most d

UNCERTAIN POINTS

Motion causes imprecision
Suppose we have a moving point p
We know an upper bound on its speed In 1 time step p can move at most d

UNCERTAIN POINTS

Motion causes imprecision
Suppose we have a moving point p
We know an upper bound on its speed In 1 time step p can move at most d We model the uncertainty region of p in the next time step by a disk of radius d

UNCERTAIN POINTS

Motion causes imprecision
Suppose we have a moving point p
We know an upper bound on its speed In 1 time step p can move at most d We model the uncertainty region of p in the next time step by a disk of radius d

UNCERTAIN POINTS

UNCERTAIN POINTS
 Consider n moving points

UNCERTAIN POINTS

Consider n moving points
Suppose that for each point we know a location p_{i} and an associated time stamp t_{i}

UNCERTAIN POINTS

Consider n moving points
Suppose that for each point we know a location p_{i} and an associated time stamp t_{i} We can view $\left(p_{i}, t-t_{i}\right)$ as points in \mathbb{R}^{3}

UNCERTAIN POINTS

Consider n moving points
Suppose that for each point we know a location p_{i} and an associated time stamp t_{i} We can view $\left(p_{i}, t-t_{i}\right)$ as points in \mathbb{R}^{3}
B

8

8

UNCERTAIN POINTS

Consider n moving points
Suppose that for each point we know a location p_{i} and an associated time stamp t_{i} We can view $\left(p_{i}, t-t_{i}\right)$ as points in \mathbb{R}^{3}
Points follow som Bunknown z-monotone trajectory

8
8

UNCERTAIN POINTS

Consider n moving points
Suppose that for each point we know a location p_{i} and an associated time stamp t_{i} We can view $\left(p_{i}, t-t_{i}\right)$ as points in \mathbb{R}^{3}
Points follow som Bunknown z-monotone trajectory

UNCERTAIN POINTS

Consider n moving points
Suppose that for each point we know a location p_{i} and an associated time stamp t_{i} We can view $\left(p_{i}, t-t_{i}\right)$ as points in \mathbb{R}^{3} Points follow som Bunknown z-monotone trajectory

UNCERTAIN POINTS

Consider n moving points
Suppose that for each point we know a location p_{i} and an associated time stamp t_{i} We can view $\left(p_{i}, t-t_{i}\right)$ as points in \mathbb{R}^{3}
Points follow som Bunknown z-monotone trajectory
Because of siged limit, they stay in cones

UNCERTAIN POINTS

Consider n moving points
Suppose that for each point we know a location p_{i} and an associated time stamp t_{i} We can view $\left(p_{i}, t-t_{i}\right)$ as points in \mathbb{R}^{3}
Points follow som Bunnown z-monotone trajectory
Because of siged limin they stay in cones

UNCERTAIN POINTS

Consider n moving points
Suppose that for each point we know a location p_{i} and an associated time stamp t_{i} We can view $\left(p_{i}, t-t_{i}\right)$ as points in \mathbb{R}^{3}
Points follow som unknown z-monotone trajectory
Because of sighed limit they stay in cones Gie cones inf sect , $\Rightarrow t$ in di of radius

UNCERTAIN POINTS

Consider n moving points
Suppose that for each point we know a location p_{i} and an associated time stamp t_{i} We can view $\left(p_{i}, t-t_{i}\right)$ as points in \mathbb{R}^{3}
Points follow som unknown z-monotone trajectory
Because of sighed limit they stay in cones Gie cones inf sect , $\Rightarrow t$ in di of radius

UNCERTAIN POINTS

Consider n moving points
Suppose that for each point we know a location p_{i} and an associated time stamp t_{i} We can view $\left(p_{i}, t-t_{i}\right)$ as points in \mathbb{R}^{3}
Points follow some unknown z-monotone trajectory
Because of speed limit, they stay in cones
The cones intersect $z=t$ in disks of radius $t-t_{i}$, which are the uncertainty regions.

LOCATION QUERIES

LOCATION QUERIES

Consider n moving points

LOCATION QUERIES
 Consider n moving points

8
8
令
B.

LOCATION QUERIES

Consider n moving points Suppose that for each point we know a location p_{i} and an associated time stamp t_{i}

8
8

옹

LOCATION QUERIES

Consider n moving points
Suppose that for each point we know a location p_{i} and an associated time stamp t_{i} Then the current uncertainty region of each point is a disk centered at p_{i}

8

LOCATION QUERIES

Consider n moving points
Suppose that for each point we know a location p_{i} and an associated time stamp t_{i} Then the current uncertainty region of each point is a disk centered at p_{i}

LOCATION QUERIES

Consider n moving points
Suppose that for each point we know a location p_{i} and an associated time stamp t_{i} Then the current uncertainty region of each point is a disk centered at p_{i} Each unit of time, all regions grow by d

LOCATION QUERIES

Consider n moving points

Suppose that for each point we know a location p_{i} and an associated time stamp t_{i} Then the current uncertainty region of each point is a disk centered at p_{i} Each unit of time, all regions grow by d

LOCATION QUERIES

Consider n moving points
Suppose that for each point we know a location p_{i} and an associated time stamp t_{i} Then the current uncertainty region of each point is a disk centered at p_{i} Each unit of time, all regions grow by d We can query a point to update it

LOCATION QUERIES

Consider n moving points
Suppose that for each point we know a location p_{i} and an associated time stamp t_{i}
Then the current uncertainty region of each point is a disk centered at p_{i}
Each unit of time, all regions grow by d We can query a point to update it

LOCATION QUERIES

Consider n moving points
Suppose that for each point we know a location p_{i} and an associated time stamp t_{i} Then the current uncertainty region of each point is a disk centered at p_{i} Each unit of time, all regions grow by d We can query a point to update it Takes 1 unit of time to execute

LOCATION QUERIES

Consider n moving points
Suppose that for each point we know a location p_{i} and an associated time stamp t_{i} Then the current uncertainty region of each point is a disk centered at p_{i} Each unit of time, all regions grow by d We can query a point to update it Takes 1 unit of time to execute

LOCATION QUERIES

Consider n moving points
Suppose that for each point we know a location p_{i} and an associated time stamp t_{i}
Then the current uncertainty region of each point is a disk centered at p_{i}
Each unit of time, all regions grow by d
We can query a point to update it
Takes 1 unit of time to execute After a query, one region collapses to a point, but all other regions grow

LOCATION QUERIES

Consider n moving points
Suppose that for each point we know a location p_{i} and an associated time stamp t_{i} Then the current uncertainty region of each point is a disk centered at p_{i} Each unit of time, all regions grow by d We can query a point to update it Takes 1 unit of time to execute After a query, one region collapses to a point, but all other regions grow

LOCATION QUERIES

Consider n moving points
Suppose that for each point we know a location p_{i} and an associated time stamp t_{i} Then the current uncertainty region of each point is a disk centered at p_{i} Each unit of time, all regions grow by d We can query a point to update it Takes 1 unit of time to execute After a query, one region collapses to a point, but all other regions grow

CONGESTION MEASURES

CONGESTION MEASURES

Consider a set of regions

CONGESTION MEASURES

Consider a set of regions

CONGESTION MEASURES

Consider a set of regions What do they tell us about the point set?

CONGESTION MEASURES

Consider a set of regions
What do they tell us about the point set?
The more they overlap, the less information we have.

CONGESTION MEASURES

Consider a set of regions
What do they tell us about the point set?
The more they overlap, the less information we have.

CONGESTION MEASURES

Consider a set of regions
What do they tell us about the point set?
The more they overlap, the less information we have.

CONGESTION MEASURES

Consider a set of regions
What do they tell us about the point set?
The more they overlap, the less information we have.
How do we measure how much a set of regions is "overlapping"?

PLY

PLY
Ply of a point

PLY
Ply of a point
Given a set of regions

PLY
Ply of a point
Given a set of regions

PLY
Ply of a point
Given a set of regions
$\delta(p)=|\{R: p \in R\}|$

PLY
Ply of a point
Given a set of regions
$\delta(p)=|\{R: p \in R\}|$

PLY
Ply of a point
Given a set of regions
$\delta(p)=|\{R: p \in R\}|$
Ply of the set of regions

Ply of a point
Given a set of regions
$\delta(p)=|\{R: p \in R\}|$
Ply of the set of regions
Maximum ply of all points

Ply of a point
Given a set of regions
$\delta(p)=|\{R: p \in R\}|$
Ply of the set of regions
Maximum ply of all points

$$
\Delta=\max _{p} \delta(p)
$$

Ply of a point
Given a set of regions
$\delta(p)=|\{R: p \in R\}|$
Ply of the set of regions
Maximum ply of all points
$\Delta=\max _{p} \delta(p)$

Ply of a point
Given a set of regions
$\delta(p)=|\{R: p \in R\}|$
Ply of the set of regions
Maximum ply of all points
$\Delta=\max _{p} \delta(p)$
Low ply is good!

Ply of a point
Given a set of regions
$\delta(p)=|\{R: p \in R\}|$
Ply of the set of regions
Maximum ply of all points
$\Delta=\max _{p} \delta(p)$
Low ply is good!
High ply is not necessarily bad.

Ply of a point
Given a set of regions
$\delta(p)=|\{R: p \in R\}|$
Ply of the set of regions
Maximum ply of all points
$\Delta=\max _{p} \delta(p)$
Low ply is good!
High ply is not necessarily bad.
Ply is a local congestion measure.

TOTAL DEGREE

TOTAL DEGREE

Degree of a region

TOTAL DEGREE

Degree of a region
Number of other regions is intersects

TOTAL DEGREE

Degree of a region
Number of other regions is intersects $d(R)=\left|\left\{R^{\prime}: R \cap R \neq \emptyset\right\}\right|$

TOTAL DEGREE

Degree of a region
Number of other regions is intersects $d(R)=\left|\left\{R^{\prime}: R \cap R \neq \emptyset\right\}\right|$

TOTAL DEGREE

Degree of a region
Number of other regions is intersects $d(R)=\left|\left\{R^{\prime}: R \cap R \neq \emptyset\right\}\right|$
Total degree of a set of regions

TOTAL DEGREE

Degree of a region
Number of other regions is intersects $d(R)=\left|\left\{R^{\prime}: R \cap R \neq \emptyset\right\}\right|$
Total degree of a set of regions Sum of degrees of all regions

TOTAL DEGREE

Degree of a region
Number of other regions is intersects $d(R)=\left|\left\{R^{\prime}: R \cap R \neq \emptyset\right\}\right|$
Total degree of a set of regions Sum of degrees of all regions

$$
D=\sum_{R} d(R)
$$

TOTAL DEGREE

Degree of a region
Number of other regions is intersects $d(R)=\left|\left\{R^{\prime}: R \cap R \neq \emptyset\right\}\right|$
Total degree of a set of regions Sum of degrees of all regions

$$
D=\sum_{R} d(R)
$$

TOTAL DEGREE

Degree of a region
Number of other regions is intersects $d(R)=\left|\left\{R^{\prime}: R \cap R \neq \emptyset\right\}\right|$
Total degree of a set of regions Sum of degrees of all regions
$D=\sum_{R} d(R)$
twice the number of edges in the disk intersection graph

TOTAL DEGREE

Degree of a region
Number of other regions is intersects $d(R)=\left|\left\{R^{\prime}: R \cap R \neq \emptyset\right\}\right|$
Total degree of a set of regions Sum of degrees of all regions $D=\sum_{R} d(R)$
twice the number of edges in the disk intersection graph
Total degree is a global congestion measure.

PROBLEM STATEMENT

PROBLEM STATEMENT
Input

PROBLEM STATEMENT

Input
Set of n moving points with initial regions

PROBLEM STATEMENT

Input
Set of n moving points with initial regions Target value τ

PROBLEM STATEMENT

Input
Set of n moving points with initial regions Target value τ
Strategy

PROBLEM STATEMENT

Input
Set of n moving points with initial regions Target value τ
Strategy
Select one region to query each time step

PROBLEM STATEMENT

Input
Set of n moving points with initial regions Target value τ
Strategy
Select one region to query each time step Keep the total degree of the intersection graph under τ

PROBLEM STATEMENT

Input
Set of n moving points with initial regions Target value τ
Strategy
Select one region to query each time step Keep the total degree of the intersection graph under τ
Problem

PROBLEM STATEMENT

Input
Set of n moving points with initial regions Target value τ
Strategy
Select one region to query each time step Keep the total degree of the intersection graph under τ
Problem
Decide whether such a strategy exists.

STATIC MOVING POINTS

STATIC MOVING POINTS

Consider n non-moving points

STATIC MOVING POINTS

Consider n non-moving points

8
8
会
B

STATIC MOVING POINTS

Consider n non-moving points Suppose that for each point we know a location p_{i} and an associated time stamp t_{i}

8
8
令

STATIC MOVING POINTS

Consider n non-moving points Suppose that for each point we know a location p_{i} and an associated time stamp t_{i} Then the current uncertainty region of each point is a disk centered at p_{i}

STATIC MOVING POINTS

Consider n non-moving points
Suppose that for each point we know a location p_{i} and an associated time stamp t_{i} Then the current uncertainty region of each point is a disk centered at p_{i}

STATIC MOVING POINTS

Consider n non-moving points
Suppose that for each point we know a location p_{i} and an associated time stamp t_{i} Then the current uncertainty region of each point is a disk centered at p_{i} Each unit of time, all regions grow by d

STATIC MOVING POINTS

Consider n non-moving points
Suppose that for each point we know a location p_{i} and an associated time stamp t_{i} Then the current uncertainty region of each point is a disk centered at p_{i} Each unit of time, all regions grow by d

STATIC MOVING POINTS

Consider n non-moving points
Suppose that for each point we know a location p_{i} and an associated time stamp t_{i}
Then the current uncertainty region of each point is a disk centered at p_{i}
Each unit of time, all regions grow by d We can query a point to update it

STATIC MOVING POINTS

Consider n non-moving points
Suppose that for each point we know a location p_{i} and an associated time stamp t_{i}
Then the current uncertainty region of each point is a disk centered at p_{i}
Each unit of time, all regions grow by d We can query a point to update it

STATIC MOVING POINTS

Consider n non-moving points
Suppose that for each point we know a location p_{i} and an associated time stamp t_{i}
Then the current uncertainty region of each point is a disk centered at p_{i} Each unit of time, all regions grow by d We can query a point to update it Takes 1 unit of time to execute

STATIC MOVING POINTS

Consider n non-moving points
Suppose that for each point we know a location p_{i} and an associated time stamp t_{i}
Then the current uncertainty region of each point is a disk centered at p_{i}
Each unit of time, all regions grow by d We can query a point to update it Takes 1 unit of time to execute

STATIC MOVING POINTS

Consider n non-moving points
Suppose that for each point we know a location p_{i} and an associated time stamp t_{i}
Then the current uncertainty region of each point is a disk centered at p_{i}
Each unit of time, all regions grow by d
We can query a point to update it
Takes 1 unit of time to execute After a query, one region collapses to a point, but all other regions grow

STATIC MOVING POINTS

Consider n non-moving points
Suppose that for each point we know a location p_{i} and an associated time stamp t_{i}
Then the current uncertainty region of each point is a disk centered at p_{i}
Each unit of time, all regions grow by d
We can query a point to update it
Takes 1 unit of time to execute After a query, one region collapses to a point, but all other regions grow

STATIC MOVING POINTS

Consider n non-moving points
Suppose that for each point we know a location p_{i} and an associated time stamp t_{i}
Then the current uncertainty region of each point is a disk centered at p_{i}
Each unit of time, all regions grow by d
We can query a point to update it
Takes 1 unit of time to execute After a query, one region collapses to a point, but all other regions grow

1-DIMENSIONAL POINTS

1-DIMENSIONAL POINTS
 Points are on a line

1-DIMENSIONAL POINTS Points are on a line

1-DIMENSIONAL POINTS
 Points are on a line

y $B \quad 8 \quad 8 \quad 8 \quad 8 g \theta$

1-DIMENSIONAL POINTS

Points are on a line We play the same game

1-DIMENSIONAL POINTS

Points are on a line We play the same game

1-DIMENSIONAL POINTS

Points are on a line We play the same game

1-DIMENSIONAL POINTS

Points are on a line We play the same game

1-DIMENSIONAL POINTS

Points are on a line We play the same game

1-DIMENSIONAL POINTS

Points are on a line We play the same game

1-DIMENSIONAL POINTS

Points are on a line We play the same game

1-DIMENSIONAL POINTS

Points are on a line We play the same game

1-DIMENSIONAL POINTS

Points are on a line We play the same game

1-DIMENSIONAL POINTS

Points are on a line We play the same game We want a small intersection graph

1-DIMENSIONAL POINTS

Points are on a line We play the same game We want a small intersection graph

1-DIMENSIONAL POINTS

Points are on a line We play the same game We want a small intersection graph

1-DIMENSIONAL POINTS

Points are on a line We play the same game We want a small intersection graph What is a good strategy?

THEOREM

THEOREM

For any target value τ, either (i) any query strategy has uncertainty intervals with intersection graph of degree $\Omega(\tau)$ at some point in any time interval of length τ, or
(ii) a simple query strategy guarantees that the total degree in the intersection graph of the uncertainty intervals is $O(\tau)$ at all times.

THEOREM

For any target value τ, either (i) \ldots, or
(ii) a simple query strategy guarantees that the total degree in the intersection graph of the uncertainty intervals is $O(\tau)$ at all times.

The smallest τ for which (ii)
applies is the critical degree

THE STRATEGY

THE STRATEGY

Critical radius of point p

THE STRATEGY

Critical radius of point p

THE STRATEGY

Critical radius of point p
Smallest r such that the ball of radius r around p contains at least $\frac{c \tau}{r}$ other points

THE STRATEGY

Critical radius of point p
Smallest r such that the ball of radius r around p contains at least $\frac{c \tau}{r}$ other points

THE STRATEGY

Critical radius of point p
Smallest r such that the ball of radius r around p contains at least $\frac{c \tau}{r}$ other points

THE STRATEGY

Critical radius of point p
Smallest r such that the ball of radius r around p contains at least $\frac{c \tau}{r}$ other points Points in denser areas have smaller r

THE STRATEGY

Critical radius of point p
Smallest r such that the ball of radius r around p contains at least $\frac{c \tau}{r}$ other points
Points in denser areas have smaller r
Plan: query each point before it reaches its critical gidius

THE STRATEGY

Critical radius of point p
Smallest r such that the ball of radius r around p contains at least $\frac{c \tau}{r}$ other points
Points in denser areas have smaller r
Plan: query each point before it reaches its critical gidius

If we do, the total degkee is $\leq \tau$!

THE STRATEGY

Plan: query each point before it reaches its critical radius

THE STRATEGY

Plan: query each point before it reaches its critical radius How do we do that?

THE STRATEGY

Plan: query each point before it reaches its critical radius

How do we do that?
If $\sum \frac{1}{r_{i}}>1$, this is impossible...

THE STRATEGY

Plan: query each point before it reaches its critical radius
How do we do that?
If $\sum \frac{1}{r_{i}}>1$, this is impossible...
... and then there is no strategy that achieves total degree $\overbrace{}^{\tau}$

THE STRATEGY

Plan: query each point before it reaches its critical radius

How do we do that?
If $\sum \frac{1}{r_{i}}>1$, this is impossible...
... and then there is no strategy that achieves total degree \Im^{τ}
Otherwise, solve schearling problem by grouping points in \nexists quadtree

THE STRATEGY

Plan: query each point before it reaches its critical radius

How do we do that?
If $\sum \frac{1}{r_{i}}>1$, this is impossible...
... and then there is no strategy that achieves total degree $\leq \tau$
Otherwise, solve scheduling problem by grouping points in a quadtree

THE STRATEGY

Plan: query each point before it reaches its critical radius
How do we do that?
If $\sum \frac{1}{r_{i}}>1$, this is impossible...
... and then there is no strategy that achieves total degree $\leq \tau$
Otherwise, solve scheduling problem by grouping points in a quadtree

THE STRATEGY

Plan: query each point before it reaches its critical radius
How do we do that?
If $\sum \frac{1}{r_{i}}>1$, this is impossible...
... and then there is no strategy that achieves total degree $\leq \tau$
Otherwise, solve scheduling problem by grouping points in a quadtree

THE STRATEGY

Plan: query each point before it reaches its critical radius
How do we do that?
If $\sum \frac{1}{r_{i}}>1$, this is impossible...
... and then there is no strategy that achieves total degree $\leq \tau$
Otherwise, solve scheduling problem by grouping points in a quadtree

THE STRATEGY

Plan: query each point before it reaches its critical radius
How do we do that?
If $\sum \frac{1}{r_{i}}>1$, this is impossible...
... and then there is no strategy that achieves total degree $\leq \tau$
Otherwise, solve scheduling problem by grouping points in a quadtree

THE STRATEGY

Plan: query each point before it reaches its critical radius
How do we do that?
If $\sum \frac{1}{r_{i}}>1$, this is impossible...
... and then there is no strategy that achieves total degree $\leq \tau$
Otherwise, solve scheduling problem by grouping points in a quadtree
Points in level ℓ get query frequency $\frac{1}{2^{\ell}}$

OPEN PROBLEM

\because
$8-8$ है 8,89

OPEN PROBLEM

How do we make this dynamic?

E 8 \& \& \& \& 8, 89

OPEN PROBLEM

How do we make this dynamic? Problem: critical value τ changes

8

8 है 8 8xat

OPEN PROBLEM

How do we make this dynamic? Problem: critical value τ changes

OPEN PROBLEM

How do we make this dynamic? Problem: critical value τ changes

OPEN PROBLEM

How do we make this dynamic? Problem: critical value τ changes

OPEN PROBLEM

How do we make this dynamic? Problem: critical value τ changes

OPEN PROBLEM

How do we make this dynamic? Problem: critical value τ changes CONJECTURE
There is a query strategy such that at every time t, the critical degree τ at time t is maintained during the time interval $[t, t+c \tau]$.

OPEN PROBLEM

How do we make this dynamic? Problem: critical value τ changes

CONJECTURE

There is a query stgtegy such that at every time t, the chical degree τ at time t is maintained during the time integal $[t, t+8] . \alpha$

