Largest Subsets of Triangles in Triangulations

Boris Aronov Marc van Kreveld
Maarten Löffler Rodrigo Silveira

Polytechnic University, New York, USA
Utrecht University, the Netherlands

Overview

- Introduction
- Triangulations
- Subregions of good triangles
- Overview of our results
- The interesting stuff
- Convex regions: constructive result
- Bounded angular change: NP-hardness result
- Concluding remarks

Triangulations

Good Subregions

- We want a nicely shaped good region:

Good Subregions

- We want a nicely shaped good region:
- All good triangles

Good Subregions

- We want a nicely shaped good region:
- All good triangles
- Convex polygon

Good Subregions

- We want a nicely shaped good region:
- All good triangles
- Convex polygon
- Monotone polygon

Good Subregions

- We want a nicely shaped good region:
- All good triangles
- Convex polygon
- Monotone polygon
- Bounded angular change (e.g. $<3 \pi$)

Good Subregions

- We want a nicely shaped good region:
- All good triangles
- Convex polygon
- Monotone polygon
- Bounded angular change (e.g. $<3 \pi$)
- Bounded negative angle (e.g. $>-\pi$)

Good Subregions

- We want a nicely shaped good region:
- All good triangles
- Convex polygon
- Monotone polygon
- Bounded angular change (e.g. $<3 \pi$)
- Bounded negative angle (e.g. $>-\pi$)
- Best measure depends on application

Results

- Largest convex subregion
- Plane sweep and dynamic programming
- Largest monotone subregion
- Direction given: similar to convex
- Direction not given: try all directions
$O\left(n^{3}\right)$
- Bounded angular change
- Reduction from KNAPSACK
- Bounded negative angle
- Dynamic programming

Largest Convex Good Region

- Peeling potatoes
- Given a simple polygon
- What is the largest convex subpolygon?
- Can be solved in $O\left(n^{7}\right)$ time [Chang \& Yap, 1986]
- Peeling meshed potatoes
- Given a triangulated polygon (with Steiner points)
- What is the largest triangle-respecting convex subpolygon?
- Can be solved in $O\left(n^{2}\right)$ time

Promising Pairs of Edges

- Given edges e and e^{\prime}
- Let x_{l} be rightmost left x-coordinate
- Let x_{r} be leftmost right x-coordinate
- $T\left(e, e^{\prime}\right)$ is bounded by e, e^{\prime}, x_{l} and x_{r}
- If $T\left(e, e^{\prime}\right)$ intersects no bad triangles, (e, e^{\prime}) is promising

Promising Pairs of Edges

- Given edges e and e^{\prime}
- Let x_{l} be rightmost left x-coordinate
- Let x_{r} be leftmost right x-coordinate
- $T\left(e, e^{\prime}\right)$ is bounded by e, e^{\prime}, x_{l} and x_{r}
- If $T\left(e, e^{\prime}\right)$ intersects no bad triangles, (e, e^{\prime}) is promising

Promising Pairs of Edges

- Given edges e and e^{\prime}
- Let x_{l} be rightmost left x-coordinate
- Let x_{r} be leftmost right x-coordinate
- $T\left(e, e^{\prime}\right)$ is bounded by e, e^{\prime}, x_{l} and x_{r}
- If $T\left(e, e^{\prime}\right)$ intersects no bad triangles, (e, e^{\prime}) is promising

Promising Pairs of Edges

- Given edges e and e^{\prime}
- Let x_{l} be rightmost left x-coordinate
- Let x_{r} be leftmost right x-coordinate
- $T\left(e, e^{\prime}\right)$ is bounded by e, e^{\prime}, x_{l} and x_{r}
- If $T\left(e, e^{\prime}\right)$ intersects no bad triangles, (e, e^{\prime}) is promising

Largest Convex Good Region

- Two step algorithm
- Step 1: Computing a table of promising pairs
- Plane sweep
- Step 2: Computing the largest convex region
- Dynamic programming

Computing All Promising Pairs

- Sweep vertical line l
- Maintain, for every edge e crossing l :
- Ehm... does this algorithm actually work...?

Dynamic Programming

- Given promising pair of edges e and e^{\prime}
- $P\left(e, e^{\prime}\right)$ is largest good convex polygon left and up to $T\left(e, e^{\prime}\right)$
- Inspect all edges $e^{\prime \prime}$ connected to e or e^{\prime}
- Take largest P that:
- Is convex
- Does not contain bad triangles

Dynamic Programming

- Given promising pair of edges e and e^{\prime}
- $P\left(e, e^{\prime}\right)$ is largest good convex polygon left and up to $T\left(e, e^{\prime}\right)$
- Inspect all edges $e^{\prime \prime}$ connected to e or e^{\prime}
- Take largest P that:
- Is convex
- Does not contain bad triangles

Dynamic Programming

- Given promising pair of edges e and e^{\prime}
- $P\left(e, e^{\prime}\right)$ is largest good convex polygon left and up to $T\left(e, e^{\prime}\right)$
- Inspect all edges $e^{\prime \prime}$ connected to e or e^{\prime}
- Take largest P that:
- Is convex
- Does not contain bad triangles

Dynamic Programming

- Given promising pair of edges e and e^{\prime}
- $P\left(e, e^{\prime}\right)$ is largest good convex polygon left and up to $T\left(e, e^{\prime}\right)$
- Inspect all edges $e^{\prime \prime}$ connected to e or e^{\prime}
- Take largest P that:
- Is convex
- Does not contain bad triangles

Dynamic Programming

- Given promising pair of edges e and e^{\prime}
- $P\left(e, e^{\prime}\right)$ is largest good convex polygon left and up to $T\left(e, e^{\prime}\right)$
- Inspect all edges $e^{\prime \prime}$ connected to e or e^{\prime}
- Take largest P that:
- Is convex
- Does not contain bad triangles

Dynamic Programming

- Given promising pair of edges e and e^{\prime}
- $P\left(e, e^{\prime}\right)$ is largest good convex polygon left and up to $T\left(e, e^{\prime}\right)$
- Inspect all edges $e^{\prime \prime}$ connected to e or e^{\prime}
- Take largest P that:
- Is convex
- Does not contain bad triangles

Dynamic Programming

- Given promising pair of edges e and e^{\prime}
- $P\left(e, e^{\prime}\right)$ is largest good convex polygon left and up to $T\left(e, e^{\prime}\right)$
- Inspect all edges $e^{\prime \prime}$ connected to e or e^{\prime}
- Take largest P that:
- Is convex
- Does not contain bad triangles

Dynamic Programming

- Given promising pair of edges e and e^{\prime}
- $P\left(e, e^{\prime}\right)$ is largest good convex polygon left and up to $T\left(e, e^{\prime}\right)$
- Inspect all edges $e^{\prime \prime}$ connected to e or e^{\prime}
- Take largest P that:
- Is convex
- Does not contain bad triangles

Dynamic Programming

- Given promising pair of edges e and e^{\prime}
- $P\left(e, e^{\prime}\right)$ is largest good convex polygon left and up to $T\left(e, e^{\prime}\right)$
- Inspect all edges $e^{\prime \prime}$ connected to e or e^{\prime}
- Take largest P that:
- Is convex
- Does not contain bad triangles

Dynamic Programming

- Given promising pair of edges e and e^{\prime}
- $P\left(e, e^{\prime}\right)$ is largest good convex polygon left and up to $T\left(e, e^{\prime}\right)$
- Inspect all edges $e^{\prime \prime}$ connected to e or e^{\prime}
- Take largest P that:
- Is convex
- Does not contain bad triangles

Dynamic Programming

- Given promising pair of edges e and e^{\prime}
- $P\left(e, e^{\prime}\right)$ is largest good convex polygon left and up to $T\left(e, e^{\prime}\right)$
- Inspect all edges $e^{\prime \prime}$ connected to e or e^{\prime}
- Take largest P that:
- Is convex
- Does not contain bad triangles

Bounded Angular Change

- NP-hard
- KNAPSACK

Concluding Remarks

- We have some relitavely efficient results, and an NP-hardness proof
- Open problems
- Well... maybe the same problem in 3D?

Questions?

