Largest Subsets of Triangles in Triangulations

Boris Aronov Marc van Kreveld Maarten Löffler Rodrigo Silveira

Polytechnic University, New York, USA Utrecht University, the Netherlands

Overview

Introduction

- Triangulations
- Subregions of *good* triangles
- Overview of our results
- The interesting stuff
 - Convex regions: constructive result
 - Bounded angular change: NP-hardness result
- Concluding remarks

Triangulations

• We want a nicely shaped good region:

• We want a nicely shaped good region:

• All good triangles

- We want a nicely shaped good region:
 - All good triangles
 - Convex polygon

- We want a nicely shaped good region:
 - All good triangles
 - Convex polygon
 - Monotone polygon

- We want a nicely shaped good region:
 - All good triangles
 - Convex polygon
 - Monotone polygon
 - Bounded angular change (e.g. $< 3\pi$)

- We want a nicely shaped good region:
 - All good triangles
 - Convex polygon
 - Monotone polygon
 - Bounded angular change (e.g. $< 3\pi$)
 - Bounded negative angle (e.g. $> -\pi$)

- We want a nicely shaped good region:
 - All good triangles
 - Convex polygon
 - Monotone polygon
 - Bounded angular change (e.g. $< 3\pi$)
 - Bounded negative angle (e.g. $> -\pi$)
- Best measure depends on application

Results

- Largest convex subregion
 - Plane sweep and dynamic programming
- Largest monotone subregion
 - Direction given: similar to convex
 - Direction not given: try all directions
- Bounded angular change
 - Reduction from KNAPSACK
- Bounded negative angle
 - Dynamic programming

 $O(n^2)$

 $O(n^2)$

 $O(n^3)$

NP-hard

 $O(n^{6})$

Largest Convex Good Region

- Peeling potatoes
 - Given a simple polygon
 - What is the largest convex subpolygon?
 - Can be solved in $O(n^7)$ time [Chang & Yap, 1986]
- Peeling *meshed* potatoes
 - Given a *triangulated* polygon (with Steiner points)
 - What is the largest *triangle-respecting* convex subpolygon?
 - Can be solved in $O(n^2)$ time

- Given edges e and e'
- Let x_l be rightmost left x-coordinate
- Let x_r be leftmost right x-coordinate
- T(e, e') is bounded by e, e', x_l and x_r
- If T(e, e') intersects no bad triangles, (e, e') is promising

- Given edges e and e'
- Let x_l be rightmost left x-coordinate
- Let x_r be leftmost right x-coordinate
- T(e, e') is bounded by e, e', x_l and x_r
- If T(e, e') intersects no bad triangles, (e, e') is promising

- Given edges e and e'
- Let x_l be rightmost left x-coordinate
- Let x_r be leftmost right x-coordinate
- T(e, e') is bounded by e, e', x_l and x_r
- If T(e, e') intersects no bad triangles, (e, e') is promising

- Given edges e and e'
- Let x_l be rightmost left x-coordinate
- Let x_r be leftmost right x-coordinate
- T(e, e') is bounded by e, e', x_l and x_r
- If T(e, e') intersects no bad triangles, (e, e') is promising

Largest Convex Good Region

- Two step algorithm
- Step 1: Computing a table of promising pairs
 - Plane sweep

Step 2: Computing the largest convex region
Dynamic programming

Computing All Promising Pairs

- Sweep vertical line l
- Maintain, for every edge *e* crossing *l*:
 - Ehm... does this algorithm actually work...?

- Given promising pair of edges e and e^\prime
- P(e, e') is largest good convex polygon left and up to T(e, e')
- Inspect all edges e'' connected to e or e'
- Take largest P that:
 - Is convex
 - Does not contain bad triangles

- Given promising pair of edges e and e^\prime
- P(e, e') is largest good convex polygon left and up to T(e, e')
- Inspect all edges e'' connected to e or e'
- Take largest P that:
 - Is convex
 - Does not contain bad triangles

- Given promising pair of edges e and e^\prime
- P(e, e') is largest good convex polygon left and up to T(e, e')
- Inspect all edges e'' connected to e or e'
- Take largest P that:
 - Is convex
 - Does not contain bad triangles

- Given promising pair of edges e and e^\prime
- P(e, e') is largest good convex polygon left and up to T(e, e')
- Inspect all edges e'' connected to e or e'
- Take largest P that:
 - Is convex
 - Does not contain bad triangles

- Given promising pair of edges e and e^\prime
- P(e, e') is largest good convex polygon left and up to T(e, e')
- Inspect all edges e'' connected to e or e'
- Take largest P that:
 - Is convex
 - Does not contain bad triangles

- Given promising pair of edges e and e^\prime
- P(e, e') is largest good convex polygon left and up to T(e, e')
- Inspect all edges e'' connected to e or e'
- Take largest P that:
 - Is convex
 - Does not contain bad triangles

- Given promising pair of edges e and e^\prime
- P(e, e') is largest good convex polygon left and up to T(e, e')
- Inspect all edges e'' connected to e or e'
- Take largest P that:
 - Is convex
 - Does not contain bad triangles

- Given promising pair of edges e and e^\prime
- P(e, e') is largest good convex polygon left and up to T(e, e')
- Inspect all edges e'' connected to e or e'
- Take largest P that:
 - Is convex
 - Does not contain bad triangles

- Given promising pair of edges e and e^\prime
- P(e, e') is largest good convex polygon left and up to T(e, e')
- Inspect all edges e'' connected to e or e'
- Take largest P that:
 - Is convex
 - Does not contain bad triangles

- Given promising pair of edges e and e^\prime
- P(e, e') is largest good convex polygon left and up to T(e, e')
- Inspect all edges e'' connected to e or e'
- Take largest P that:
 - Is convex
 - Does not contain bad triangles

- Given promising pair of edges e and e^\prime
- P(e, e') is largest good convex polygon left and up to T(e, e')
- Inspect all edges e'' connected to e or e'
- Take largest P that:
 - Is convex
 - Does not contain bad triangles

Bounded Angular Change

NP-hard KNAPSACK

Concluding Remarks

- We have some relitavely efficient results, and an NP-hardness proof
- Open problems
 - Well... maybe the same problem in 3D? \odot

Questions?