THANK YOU!

NEW APPROACHES FOR REPRESENTATIVE TRAJECTORIES

THANK YOU!

Homotopy Measures for Representative Central Trajectories Trajectories 10:50 - 11:10 11:10 - 11:30 Erin Chambers Marc van Kreveld Irina Kostitsyna Maarten Löffler Maarten Löffler Frank Staals Frank Staals

TRAJECTORIES Let P be n points in the plane

TRAJECTORIESLet P be n points in the plane

- Let P be n points in the plane
- Now suppose your points run away

- Let P be n points in the plane
- Now suppose your points run away

- Let P be n points in the plane
- Now suppose your points run away

- Let P be n points in the plane
- Now suppose your points run away

- Let P be n points in the plane
- Now suppose your points run away

- Let P be n points in the plane
- Now suppose your points run away

- Let P be n points in the plane
- Now suppose your points run away
- P traces a set of n trajectories

- Let P be n points in the plane
- Now suppose your points run away
- P traces a set of n trajectories

DEFINITION.

A *trajectory* is a polyline defined by a sequence of points, each with a location in \mathbb{R}^d and a time stamp in \mathbb{R} .

• Trajectories are ubiquitous

- Trajectories are ubiquitous
 - GPS technology

- Trajectories are ubiquitous
 - GPS technology
 - Cyclists

- Trajectories are ubiquitous
 - GPS technology
 - Cyclists

- Trajectories are ubiquitous
 - GPS technology
 - Cyclists

- Trajectories are ubiquitous
 - GPS technology
 - Cyclists

- Trajectories are ubiquitous
 - GPS technology
 - Cyclists

- Trajectories are ubiquitous
 - GPS technology
 - Cyclists
 - Hurricanes

- Trajectories are ubiquitous
 - GPS technology
 - Cyclists
 - Hurricanes

- Trajectories are ubiquitous
 - GPS technology
 - Cyclists
 - Hurricanes

- Trajectories are ubiquitous
 - GPS technology
 - Cyclists
 - Hurricanes

- Trajectories are ubiquitous
 - GPS technology
 - Cyclists
 - Hurricanes

- Trajectories are ubiquitous
 - GPS technology
 - Cyclists
 - Hurricanes

- Trajectories are ubiquitous
 - GPS technology
 - Cyclists
 - Hurricanes

- Trajectories are ubiquitous
 - GPS technology
 - Cyclists
 - Hurricanes
 - Deer

- Trajectories are ubiquitous
 - GPS technology
 - Cyclists
 - Hurricanes
 - Deer

- Trajectories are ubiquitous
 - GPS technology
 - Cyclists
 - Hurricanes
 - Deer

- Trajectories are ubiquitous
 - GPS technology
 - Cyclists
 - Hurricanes
 - Deer

- Trajectories are ubiquitous
 - GPS technology
 - Cyclists
 - Hurricanes
 - Deer

- Trajectories are ubiquitous
 - GPS technology
 - Cyclists
 - Hurricanes
 - Deer

- Trajectories are ubiquitous
 - GPS technology
 - Cyclists
 - Hurricanes
 - Deer

- Trajectories are ubiquitous
 - GPS technology
 - Cyclists
 - Hurricanes
 - Deer

- Trajectories are ubiquitous
 - GPS technology
 - Cyclists
 - Hurricanes
 - Deer

- Trajectories are ubiquitous
 - GPS technology
 - Cyclists
 - Hurricanes
 - Deer

- Trajectories are ubiquitous
 - GPS technology
 - Cyclists
 - Hurricanes
 - Deer
- Trajectories are interesting

- Trajectories are ubiquitous
 - GPS technology
 - Cyclists
 - Hurricanes
 - Deer
- Trajectories are interesting
 - Many different analysis tasks

- Trajectories are ubiquitous
 - GPS technology
 - Cyclists
 - Hurricanes
 - Deer
- Trajectories are interesting
 - Many different analysis tasks
 - Complex geometry

- Trajectories are ubiquitous
 - GPS technology
 - Cyclists
 - Hurricanes
 - Deer
- Trajectories are interesting
 - Many different analysis tasks
 - Complex geometry
 - Lots of fun!

REPRESENTATIVE TRAJECTORY Problem

- Problem
 - Suppose we have lots of trajectories

- Problem
 - Suppose we have lots of trajectories

- Problem
 - Suppose we have lots of trajectories
 - Suppose we want to extract significant patterns

- Problem
 - Suppose we have lots of trajectories
 - Suppose we want to extract significant patterns

- Problem
 - Suppose we have lots of trajectories
 - Suppose we want to extract significant patterns

- Problem
 - Suppose we have lots of trajectories
 - Suppose we want to extract significant patterns
- Solution

- Problem
 - Suppose we have lots of trajectories
 - Suppose we want to extract significant patterns
- Solution
 - Cluster the trajectories

- Problem
 - Suppose we have lots of trajectories
 - Suppose we want to extract significant patterns
- Solution
 - Cluster the trajectories

- Problem
 - Suppose we have lots of trajectories
 - Suppose we want to extract significant patterns
- Solution
 - Cluster the trajectories
 - Pick a good representative for each cluster

- Problem
 - Suppose we have lots of trajectories
 - Suppose we want to extract significant patterns
- Solution
 - Cluster the trajectories
 - Pick a good representative for each cluster

- Problem
 - Suppose we have lots of trajectories
 - Suppose we want to extract significant patterns
- Solution
 - Cluster the trajectories
 - Pick a good representative for each cluster
 - Keep only the representatives

- Problem
 - Suppose we have lots of trajectories
 - Suppose we want to extract significant patterns
- Solution
 - Cluster the trajectories
 - Pick a good representative for each cluster
 - Keep only the representatives

- Problem
 - Suppose we have lots of trajectories
 - Suppose we want to extract significant patterns
- Solution
 - Cluster the trajectories
 - Pick a good representative for each cluster
 - Keep only the representatives
- But what is a good representative?

REPRESENTATIVE TRAJECTORYInput: a set of 'similar' trajectories

- Input: a set of 'similar' trajectories
 - Sort of the same start and end points

- Input: a set of 'similar' trajectories
 - Sort of the same start and end points
 - Sort of the same shape

- Input: a set of 'similar' trajectories
 - Sort of the same start and end points
 - Sort of the same shape

- Input: a set of 'similar' trajectories
 - Sort of the same start and end points
 - Sort of the same shape
- Output: a representative trajectory

- Input: a set of 'similar' trajectories
 - Sort of the same start and end points
 - Sort of the same shape
- Output: a representative trajectory
 - Should also have sort of the same shape

- Input: a set of 'similar' trajectories
 - Sort of the same start and end points
 - Sort of the same shape
- Output: a representative trajectory
 - Should also have sort of the same shape
 - Shape should represent the whole set of input trajectories

- Input: a set of 'similar' trajectories
 - Sort of the same start and end points
 - Sort of the same shape
- Output: a representative trajectory
 - Should also have sort of the same shape
 - Shape should represent the whole set of input trajectories

USE INPUT TRAJECTORY?

USE INPUT TRAJECTORY?

• No?

USE INPUT TRAJECTORY?

• No?

• Parameterised mean trajectory

USE INPUT TRAJECTORY?

• No?

• Parameterised mean trajectory

• No?

- Parameterised mean trajectoryMay interfere with environment!

• No?

- Parameterised mean trajectoryMay interfere with environment!

- No?
 - Parameterised mean trajectory
 - May interfere with environment!
- Yes?

- No?
 - Parameterised mean trajectory
 - May interfere with environment!
- Yes?

- No?
 - Parameterised mean trajectory
 - May interfere with environment!
- Yes?
 - Which trajectory do we pick?

- No?
 - Parameterised mean trajectory
 - May interfere with environment!
- Yes?
 - Which trajectory do we pick?

- No?
 - Parameterised mean trajectory
 - May interfere with environment!
- Yes?
 - Which trajectory do we pick?
 - There may not be any single good representative!

- No?
 - Parameterised mean trajectory
 - May interfere with environment!
- Yes?
 - Which trajectory do we pick?
 - There may not be any single good representative!
- Use pieces of different trajectories?

- No?
 - Parameterised mean trajectory
 - May interfere with environment!
- Yes?
 - Which trajectory do we pick?
 - There may not be any single good representative!
- Use pieces of different trajectories?

What if input trajectories do not cross?

• What if input trajectories do not cross?

• What if input trajectories do not cross?

- What if input trajectories do not cross?
- Particularly problematic in higher dimensions

- What if input trajectories do not cross?
- Particularly problematic in higher dimensions

- What if input trajectories do not cross?
- Particularly problematic in higher dimensions
- Allow output trajectory jump" between input trajectories?

- What if input trajectories do not cross?
- Particularly problematic in higher dimensions

 Allow output trajectory jump" between input trajectories?

- What if input trajectories do not cross?
- Particularly problematic in higher dimensions
- Allow output irajectory jump" between input trajectories?

• Only when sufficiently lose

- What if input trajectories do not cross?
- Particularly problematic in higher dimensions
- Allow output irajectory jump" between input trajectories?
 - Only when sufficiently lose
 - Basically, require output trajectory to always be close to an input trajectory

- Trajectories have time-stamped locations
- Depending on the application, time may be relevant or not

- Trajectories have time-stamped locations
- Depending on the application, time may be relevant or not
 - These curves are quite similar

- Trajectories have time-stamped locations
- Depending on the application, time may be relevant or not
 - These curves are quite similar
 - But at t = 3, the points were spread

- Trajectories have time-stamped locations
- Depending on the application, time may be relevant or not
 - These curves are quite similar
 - But at t = 3, the points were spread
- See time as another dimension?

- Trajectories have time-stamped locations
- Depending on the application, time may be relevant or not
 - These curves are quite similar
 - But at t = 3, the points were spread
- See time as another dimension?

- Trajectories have time-stamped locations
- Depending on the application, time may be relevant or not
 - These curves are quite similar
 - But at t = 3, the points were spread
- See time as another dimension?

- Trajectories have time-stamped locations
- Depending on the application, time may be relevant or not
 - These curves are quite similar
 - But at t = 3, the points were spread
- See time as another dimension?

- Trajectories have time-stamped locations
- Depending on the application, time may be relevant or not
 - These curves are quite similar
 - But at t = 3, the points were spread

See time as another dimension?

- Trajectories have time-stamped locations
- Depending on the application, time may be relevant or not
 - These curves are quite similar
 - But at t = 3, the points were spread

See time as another dimension?

DO YOU HAVE TIME TO CARE?

- Trajectories have time-stamped locations
- Depending on the application, time may be relevant or not
 - These curves are quite similar
 - But at t = 3, the points were spread

See time as another dimension?

DO YOU HAVE TIME TO CARE?

- Trajectories have time-stamped locations
- Depending on the application, time

may be relevant or not

- These curves are quite similar
 - But at t = 3, the points were spread
 - ime as another dimension

DO YOU HAVE TIME TO CARE?

- Trajectories have time-stamped locations
- Depending on the application, time may be relevant or not
 - These curves are quite similar
 - But at t = 3, the points were spread
 - Sectime as another dimension?

• Trajectories are just curves

• Trajectories are just curves

- Trajectories are just curves
 - In \mathbb{R}^2 , we do not need jumps

- Trajectories are just curves
 - In \mathbb{R}^2 , we do not need jumps
 - Arrangement of curves forms a graph

- Trajectories are just curves
 - In \mathbb{R}^2 , we do not need jumps
 - Arrangement of curves forms a graph

- Trajectories are just curves
 - In \mathbb{R}^2 , we do not need jumps
 - Arrangement of curves forms a graph
 - Edges are directed

- Trajectories are just curves
 - In \mathbb{R}^2 , we do not need jumps
 - Arrangement of curves forms a graph
 - Edges are directed

- Trajectories are just curves
 - In \mathbb{R}^2 , we do not need jumps
 - Arrangement of curves forms a graph
 - Edges are directed
- Output is a path in this graph

- Trajectories are just curves
 - In \mathbb{R}^2 , we do not need jumps
 - Arrangement of curves forms a graph
 - Edges are directed
- Output is a path in this graph

- Trajectories are just curves
 - In \mathbb{R}^2 , we do not need jumps
 - Arrangement of curves forms a graph
 - Edges are directed
- Output is a path in this graph
- What makes a good representative?

- Trajectories are just curves
 - In \mathbb{R}^2 , we do not need jumps
 - Arrangement of curves forms a graph
 - Edges are directed
- Output is a path in this graph
- What makes a good representative?
 - It should have sensible topology

- Trajectories are just curves
 - In \mathbb{R}^2 , we do not need jumps
 - Arrangement of curves forms a graph
 - Edges are directed
- Output is a path in this graph
- What makes a good representative?
 - It should have sensible topology
 - But we cannot ignore the geometry

Given a set of 'similar' trajectories, Find a representative trajectory:

Given a set of 'similar' trajectories,Find a representative trajectory:consists of segments of input trajectories

Given a set of 'similar' trajectories,
Find a representative trajectory:
consists of segments of input trajectories
uses each segment in the correct direction

Given a set of 'similar' trajectories,
Find a representative trajectory:
consists of segments of input trajectories
uses each segment in the correct direction
all segments appear in the correct order

Given a set of 'similar' trajectories,
Find a representative trajectory:
consists of segments of input trajectories
uses each segment in the correct direction
all segments appear in the correct order
represents trajectories 'well'

Given a set of 'similar' trajectories,
Find a representative trajectory:
consists of segments of input trajectories
uses each segment in the correct direction
all segments appear in the correct order
minimizes homotopy area

* As defined in [Chambers, Wang '13]

- Trajectories:
- start in s and end in t

* As defined in [Chambers, Wang '13]

HOMOTOPY AREA* $\int_{p\in\mathbb{R}^2}|\omega(p,\gamma)|\,\,\mathrm{d}s(p)$

- Trajectories:
- start in s and end in t
- are simple

* As defined in [Chambers, Wang '13]

HOMOTOPY AREA* $\int_{p \in \mathbb{R}^2} |\omega(p, \gamma)| \, \mathrm{d}s(p)$

Trajectories:

- start in s and end in t
- are simple
- are homotopic
- * As defined in [Chambers, Wang '13]

Given a set of simple 'similar' trajectories, that all start in the same point and all end in the same point,

Find a representative trajectory:

- consists of segments of input trajectories
- uses each segment in the correct direction
- all segments appear in the correct order
- is simple
- minimizes max/avg homotopy area

MIN MAX IS NP-HARD

Reduction from PARTITION:

Partition a set of integers $S = \{a_1, a_2, \ldots, a_n\}$ into two subsets S_1 and S_2 with equal total sums:

$$\sum_{a \in S_1} a = \sum_{a \in S_2} a$$

MIN AVG IS EQUIVALENT TO MEDIAN*

• *x*-monotone case

• *x*-monotone case

• *x*-monotone case

- *x*-monotone case
- DAG

- *x*-monotone case
- DAG

FUTURE WORK

Non-DAG:

FUTURE WORK

Non-DAG:

FUTURE WORK

Non-DAG:

• define 'corridor'

• When time is not relevant

- When time is not relevant
 - based on geometry and topology

- When time is not relevant
 - based on geometry and topology
 - "simple median" optimises homotopy area

- When time is not relevant
 - based on geometry and topology
 - "simple median" optimises homotopy area
 - acyclic trajectory intersection graph

- When time is not relevant
 - based on geometry and topology
 - "simple median" optimises homotopy area
 - acyclic trajectory intersection graph
 - open problem: find appropriate space

INTERMISSION

• Simply increase the dimension?

- Simply increase the dimension?
 - Distance in space is not comparable to distance in time

- Simply increase the dimension?
 - Distance in space is not comparable to distance in time
 - Representative trajectory should summarise ${\cal P}$ at every time

- Simply increase the dimension?
 - Distance in space is not comparable to distance in time
 - Representative trajectory should summarise ${\cal P}$ at every time
- Existing representative points

- Simply increase the dimension?
 - Distance in space is not comparable to distance in time
 - Representative trajectory should summarise P at every time
- Existing representative points
 Average/mean of x- and y-coordinates

- Simply increase the dimension?
 - Distance in space is not comparable to distance in time
 - Representative trajectory should summarise P at every time
- Existing representative points
 Average/mean of x- and y-coordinates

 - Median of x- and y-coordinates

- Simply increase the dimension?
 - Distance in space is not comparable to distance in time
 - Representative trajectory should summarise P at every time
- Existing representative points
 Average/mean of x- and y-coordinates

 - Median of x- and y-coordinates
 - Centre of smallest enclosing circle

- Simply increase the dimension?
 - Distance in space is not comparable to distance in time
 - Representative trajectory should summarise P at every time
- Existing representative points
 Average/mean of x- and y-coordinates

 - Median of x- and y-coordinates
 - Centre of smallest enclosing circle
- We want to be close all the time!

- Simply increase the dimension?
 - Distance in space is not comparable to distance in time
 - Representative trajectory should summarise P at every time
- Existing representative points
 Average/mean of x- and y-coordinates

 - Median of x- and y-coordinates
 - Centre of smallest enclosing circle
- We want to be close all the time!

- At any time t, a central trajectory \mathcal{C} should
 - be on an input trajectory, i.e. $\mathcal{C}(t) = \sigma(t)$ for some entity σ , and
 - be as central as possible.

time

- At any time t, a central trajectory \mathcal{C} should
 - be on an input trajectory, i.e. $C(t) = \sigma(t)$ for some entity σ , and
 - be as central as possible i.e. minimize

$$D(\sigma, t) = \max_{\psi \in P} \|\sigma(t)\psi(t)\|$$

- At any time t, a central trajectory \mathcal{C} should
 - be on an input trajectory, i.e. $\mathcal{C}(t)=\sigma(t)$ for some entity $\sigma,$ and
 - be as central as possible.i.e. minimize $D(\sigma,t) = \max_{\psi \in P} \|\sigma(t)\psi(t)\|$
 - jump over a distance at most ε .

- At any time t, a central trajectory \mathcal{C} should
 - be on an input trajectory, i.e. $\mathcal{C}(t)=\sigma(t)$ for some entity $\sigma,$ and
 - be as central as possible.i.e. minimize $D(\sigma,t) = \max_{\psi \in P} \|\sigma(t)\psi(t)\|$
 - jump over a distance at most ε .
 - jumps may be chained.

time

- At any time t, a central trajectory \mathcal{C} should
 - be on an input trajectory, i.e. $\mathcal{C}(t)=\sigma(t)$ for some entity $\sigma,$ and
 - be as central as possible.i.e. minimize $D(\sigma,t) = \max_{\psi \in P} \|\sigma(t)\psi(t)\|$
 - jump over a distance at most ε .
 - jumps may be chained.

time

RESULTS

•
$$n = \#$$
trajectories

•
$$\tau = \#$$
vertices in each trajectory

RESULTS

•
$$n = \#$$
trajectories

•
$$\tau = \#$$
vertices in each trajectory

RESULTS

•
$$n = \#$$
trajectories

•
$$\tau = \#$$
vertices in each trajectory

• Let I be the *ideal trajectory*: the trajectory that minimizes \mathcal{D} .

• Let I be the *ideal trajectory*: the trajectory that minimizes \mathcal{D} .

• Let I be the *ideal trajectory*: the trajectory that minimizes \mathcal{D} .

LEMMA.

A central trajectory \mathcal{C} minimizes

$$\mathcal{D}'(\mathcal{T}) = \int |\mathcal{T}(t) - I(t)| \,\mathrm{d}t$$

• Let I be the *ideal trajectory*: the trajectory that minimizes \mathcal{D} .

LEMMA.

A central trajectory \mathcal{C} minimizes

$$\mathcal{D}'(\mathcal{T}) = \int |\mathcal{T}(t) - I(t)| \,\mathrm{d}t$$

LOWER BOUND

LEMMA.

A central trajectory \mathcal{C} in \mathbb{R}^1 may have complexity $\Omega(\tau n^2)$.

LEMMA.

A central trajectory C in \mathbb{R}^1 may have complexity $\Omega(\tau n^2)$.

LEMMA.

 $\frac{n}{3}$

A central trajectory C in \mathbb{R}^1 may have complexity $\Omega(\tau n^2)$.

 $\Omega(n)$ "zigzags"

LEMMA.

A central trajectory \mathcal{C} in \mathbb{R}^1 may have complexity $\Omega(\tau n^2)$.

LEMMA.

A central trajectory C in \mathbb{R}^1 may have complexity $\Omega(\tau n^2)$.

LEMMA.

A central trajectory C in \mathbb{R}^1 may have complexity $\Omega(\tau n^2)$.

• "Straighten" I

- "Straighten" I
 - We now have n trajectories, with $O(\tau n)$ vertices each


```
OBSERVATION.

C can jump from \sigma to \psi at time t

\Leftrightarrow

\sigma and \psi are \varepsilon-connected at time t.
```



```
OBSERVATION.

C can jump from \sigma to \psi at time t

\Leftrightarrow

\sigma and \psi are \varepsilon-connected at time t.
```


- \mathcal{C} may have a vertex at time t if:
 - Partition into ε -connected sets changes at time t, or

- \mathcal{C} may have a vertex at time t if:
 - Partition into ε -connected sets changes at time t, or

- \mathcal{C} may have a vertex at time t if:
 - Partition into ε -connected sets changes at time t, or
 - Lower envelope \mathcal{L}' of a maximal ε -connected set P' has a break point at t.

- \mathcal{C} may have a vertex at time t if:
 - Partition into ε -connected sets changes at time t, or
 - Lower envelope \mathcal{L}' of a maximal ε -connected set P' has a break point at t.
 - Intersection of the trajectories

- \mathcal{C} may have a vertex at time t if:
 - Partition into ε -connected sets changes at time t, or
 - Lower envelope \mathcal{L}' of a maximal ε -connected set P' has a break point at t.
 - Intersection of the trajectories
 - Jump crossing *I*

- \mathcal{C} may have a vertex at time t if:
 - Partition into ε -connected sets changes at time t, or $O(\tau n^2)$
 - Lower envelope \mathcal{L}' of a maximal ε -connected set P' has a break point at t.
 - Intersection of the trajectories
 - Jump crossing *I*

 $O(\tau n^2) \\ O(\tau n^2)$

THEOREM.

Given a set of n trajectories in \mathbb{R}^1 , each with vertices at times $t_0, ..., t_{\tau}$, a central trajectory \mathcal{C} has worst case complexity $O(\tau n^2)$.

• Construct a weighted graph \mathcal{R} s.t. \mathcal{C} corresponds to a shortest path in \mathcal{R} .

- Construct a weighted graph \mathcal{R} s.t. \mathcal{C} corresponds to a shortest path in \mathcal{R} .
 - The Reeb graph \mathcal{R} captures which sets of entities are ε -connected.

- Construct a weighted graph \mathcal{R} s.t. \mathcal{C} corresponds to a shortest path in \mathcal{R} .
 - The Reeb graph \mathcal{R} captures which sets of entities are ε -connected.

- Construct a weighted graph \mathcal{R} s.t. \mathcal{C} corresponds to a shortest path in \mathcal{R} .
 - The Reeb graph \mathcal{R} captures which sets of entities are ε -connected.
 - Each edge e corresponds to a maximal ε -connected set P_e and has weight

$$\int \mathcal{L}(\{f_{\sigma} \mid \sigma \in \underline{P_e}\})(t) \, \mathrm{d}t$$

- Construct a weighted graph \mathcal{R} s.t. \mathcal{C} corresponds to a shortest path in \mathcal{R} .
 - The Reeb graph \mathcal{R} captures which sets of entities are ε -connected.
 - Each edge e corresponds to a maximal ε -connected set P_e and has weight

$$\int \mathcal{L}(\{f_{\sigma} \mid \sigma \in \underline{P_e}\})(t) \, \mathrm{d}t$$

• Constructing \mathcal{R} takes $O(\tau n^2 \log n)$ time.

THEOREM.

Given a set of n trajectories in \mathbb{R}^1 , each with vertices at times $t_0, ..., t_{\tau}$, computing a central trajectory C takes $O(\tau n^2 \log n)$ time.

• Minimizing ${\mathcal D}$ and ${\mathcal D}'$ not the same.

- Minimizing ${\mathcal D}$ and ${\mathcal D}'$ not the same.
 - Use the distance $D(\sigma, \cdot)$ to the entity furthest from σ directly.

- Minimizing ${\mathcal D}$ and ${\mathcal D}'$ not the same.
 - Use the distance $D(\sigma, \cdot)$ to the entity furthest from σ directly.
 - Same observations hold, and allow to show that \mathcal{C} has complexity $O(\tau n^2 \sqrt{n})$.
 - Computing C takes $O(\tau n^3)$ time.

OPEN PROBLEM.

How to compute lower envelopes for all edges of ${\mathcal R}$ efficiently?

• The weight of edge e is $\int \mathcal{L}(\{D(\sigma, \cdot) \mid \sigma \in \mathcal{X}_e\})(t) \, \mathrm{d}t$

- When time is not relevant
 - based on geometry and topology
 - "simple median" optimises homotopy area
 - acyclic trajectory intersection graph
 - open problem: find appropriate space

- When time is not relevant
 - based on geometry and topology
 - "simple median" optimises homotopy area
 - acyclic trajectory intersection graph
 - open problem: find appropriate space
- When time is relevant

- When time is not relevant
 - based on geometry and topology
 - "simple median" optimises homotopy area
 - acyclic trajectory intersection graph
 - open problem: find appropriate space
- When time is relevant
 - time dimension is special

- When time is not relevant
 - based on geometry and topology
 - "simple median" optimises homotopy area
 - acyclic trajectory intersection graph
 - open problem: find appropriate space
- When time is relevant
 - time dimension is special
 - based on any point set representative

- When time is not relevant
 - based on geometry and topology
 - "simple median" optimises homotopy area
 - acyclic trajectory intersection graph
 - open problem: find appropriate space
- When time is relevant
 - time dimension is special
 - based on any point set representative
 - polynomial time for many measures

- When time is not relevant
 - based on geometry and topology
 - "simple median" optimises homotopy area
 - acyclic trajectory intersection graph
 - open problem: find appropriate space
- When time is relevant
 - time dimension is special
 - based on any point set representative
 - polynomial time for many measures
 - open problem: improve running time

