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TRAJECTORIES
• Let P be n points in the plane
• Now suppose your points run away
• P traces a set of n trajectories

A trajectory is a polyline defined by a
sequence of points, each with a location in Rd
and a time stamp in R.

DEFINITION.
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TRAJECTORIES
• Trajectories are ubiquitous
• GPS technology
• Cyclists
• Hurricanes

• Trajectories are interesting
• Many different analysis tasks

• Deer

• Complex geometry
• Lots of fun!
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REPRESENTATIVE TRAJECTORY

• Suppose we have lots of trajectories
• Problem

• Suppose we want to extract significant
patterns

• Solution
• Cluster the trajectories
• Pick a good representative for each cluster

• But what is a good representative?

• Keep only the representatives
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• Particularly problematic in higher
dimensions

• Allow output trajectory to “jump”
between input trajectories?
• Only when sufficiently close

• What if input trajectories do not
cross?

USE INPUT TRAJECTORY?

• Basically, require output trajectory to
always be close to an input trajectory
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WE DON’T CARE ABOUT TIME
• Trajectories are just curves
• In R2, we do not need jumps
• Arrangement of curves forms a graph
• Edges are directed

• Output is a path in this graph
• What makes a good representative?
• It should have sensible topology
• But we cannot ignore the geometry
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PROBLEM STATEMENT

• consists of segments of input trajectories
• uses each segment in the correct direction

Given a set of ‘similar’ trajectories,
Find a representative trajectory:

• all segments appear in the correct order
• minimizes homotopy area
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HOMOTOPY AREA*

• start in s and end in t
• are simple

Trajectories:

• are homotopic

* As defined in [Chambers, Wang ’13]

∫
p∈R2

|ω(p, γ)| ds(p)



PROBLEM STATEMENT

• consists of segments of input trajectories
• uses each segment in the correct direction

Given a set of simple ‘similar’ trajectories, that all
start in the same point and all end in the same
point,
Find a representative trajectory:

• all segments appear in the correct order

• minimizes max/avg homotopy area
• is simple



MIN MAX IS NP-HARD

Partition a set of integers S = {a1, a2, . . . , an}
into two subsets S1 and S2 with equal total sums:∑

a∈S1

a =
∑
a∈S2

a

Reduction from PARTITION:

a1 a2 a3 an
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FUTURE WORK

Non-DAG:
• define ‘corridor’
• ‘lift’ to non-DAG space
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CONCLUSIONS
• When time is not relevant

• “simple median” optimises homotopy area
• acyclic trajectory intersection graph
• open problem: find appropriate space

• based on geometry and topology
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• Globally, C should minimize

D(T ) =

∫ tτ

t0

D(T , t) dt.

CENTRAL TRAJECTORIES

time
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• “Straighten” I

time

C
I

• We now have n trajectories, with O(τn)
vertices each
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UPPER BOUND

C

t

THEOREM.
Given a set of n trajectories in R1, each with
vertices at times t0, .., tτ , a central trajectory
C has worst case complexity O(τn2).
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ALGORITHM

Pe

THEOREM.
Given a set of n trajectories in R1, each with
vertices at times t0, .., tτ , computing a central
trajectory C takes O(τn2 logn) time.
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ENTITIES MOVING IN Rd

• Minimizing D and D′ not the same.
• Use the distance D(σ, ·) to the entity

furthest from σ directly.
• Same observations hold, and allow to show

that C has complexity O(τn2√n).

• Computing C takes O(τn3) time.

I (t)

C(t)



ENTITIES MOVING IN Rd

∫
L({D(σ, ·) | σ ∈ Xe})(t) dt

L(Fe) = L(Fa ∪ Fb)
L(Fa)

L(Fb)

OPEN PROBLEM.
How to compute lower envelopes for all edges
of R efficiently?

• The weight of edge e is
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CONCLUSIONS
• When time is not relevant

• “simple median” optimises homotopy area
• acyclic trajectory intersection graph
• open problem: find appropriate space

• based on geometry and topology

• When time is relevant
• time dimension is special
• based on any point set representative
• polynomial time for many measures
• open problem: improve running time



THANK YOU!


