THANK YOU!

NEW APPROACHES FOR REPRESENTATIVE TRAJECTORIES

THANK YOU!

Homotopy Measures
for Representative

Trajectories
10:50-11:10
Erin Chambers
Irina Kostitsyna
Maarten Löffler

Central Trajectories

11:10-11:30
Marc van Kreveld Maarten Löffler Frank Staals Frank Staals

TRAJECTORIES

TRAJECTORIES

- Let P be n points in the plane

TRAJECTORIES

- Let P be n points in the plane

3

3

TRAJECTORIES

- Let P be n points in the plane
- Now suppose your points run away

3

TRAJECTORIES

- Let P be n points in the plane
- Now suppose your points run away

TRAJECTORIES

- Let P be n points in the plane
- Now suppose your points run away

TRAJECTORIES

- Let P be n points in the plane
- Now suppose your points run away

TRAJECTORIES

- Let P be n points in the plane
- Now suppose your points run away

TRAJECTORIES

- Let P be n points in the plane
- Now suppose your points run away

TRAJECTORIES

- Let P be n points in the plane
- Now suppose your points run away
- P traces a set of n trajectories

TRAJECTORIES

- Let P be n points in the plane
- Now suppose your points run away
- P traces a set of n trajectories

DEFINITION.

A trajectory is a polyline defined by a sequence of points, each with a location in \mathbb{R}^{d} and a time stamp in \mathbb{R}.

TRAJECTORIES

TRAJECTORIES

- Trajectories are ubiquitous

TRAJECTORIES

- Trajectories are ubiquitous
- GPS technology

TRAJECTORIES

- Trajectories are ubiquitous
- GPS technology
- Cyclists

TRAJECTORIES

- Trajectories are ubiquitous
- GPS technology
- Cyclists

TRAJECTORIES

- Trajectories are ubiquitous
- GPS technology
- Cyclists

TRAJECTORIES

- Trajectories are ubiquitous
- GPS technology
- Cyclists

TRAJECTORIES

- Trajectories are ubiquitous
- GPS technology
- Cyclists

TRAJECTORIES

- Trajectories are ubiquitous
- GPS technology
- Cyclists
- Hurricanes

TRAJECTORIES

- Trajectories are ubiquitous
- GPS technology
- Cyclists
- Hurricanes

TRAJECTORIES

- Trajectories are ubiquitous
- GPS technology
- Cyclists
- Hurricanes

TRAJECTORIES

- Trajectories are ubiquitous
- GPS technology
- Cyclists
- Hurricanes

TRAJECTORIES

- Trajectories are ubiquitous
- GPS technology
- Cyclists
- Hurricanes

TRAJECTORIES

- Trajectories are ubiquitous
- GPS technology
- Cyclists
- Hurricanes

TRAJECTORIES

- Trajectories are ubiquitous
- GPS technology
- Cyclists
- Hurricanes

TRAJECTORIES

- Trajectories are ubiquitous
- GPS technology
- Cyclists
- Hurricanes
- Deer

TRAJECTORIES

- Trajectories are ubiquitous
- GPS technology
- Cyclists
- Hurricanes
- Deer

TRAJECTORIES

- Trajectories are ubiquitous
- GPS technology
- Cyclists
- Hurricanes
- Deer

TRAJECTORIES

- Trajectories are ubiquitous
- GPS technology
- Cyclists
- Hurricanes
- Deer

TRAJECTORIES

- Trajectories are ubiquitous
- GPS technology
- Cyclists
- Hurricanes
- Deer

TRAJECTORIES

- Trajectories are ubiquitous
- GPS technology
- Cyclists
- Hurricanes
- Deer

TRAJECTORIES

- Trajectories are ubiquitous
- GPS technology
- Cyclists
- Hurricanes
- Deer

TRAJECTORIES

- Trajectories are ubiquitous
- GPS technology
- Cyclists
- Hurricanes
- Deer

TRAJECTORIES

- Trajectories are ubiquitous
- GPS technology
- Cyclists
- Hurricanes
- Deer

TRAJECTORIES

- Trajectories are ubiquitous
- GPS technology
- Cyclists
- Hurricanes
- Deer

TRAJECTORIES

- Trajectories are ubiquitous
- GPS technology
- Cyclists
- Hurricanes
- Deer
- Trajectories are interesting

TRAJECTORIES

- Trajectories are ubiquitous
- GPS technology
- Cyclists
- Hurricanes
- Deer
- Trajectories are interesting
- Many different analysis tasks

TRAJECTORIES

- Trajectories are ubiquitous
- GPS technology
- Cyclists
- Hurricanes
- Deer
- Trajectories are interesting
- Many different analysis tasks
- Complex geometry

TRAJECTORIES

- Trajectories are ubiquitous
- GPS technology
- Cyclists
- Hurricanes
- Deer
- Trajectories are interesting
- Many different analysis tasks
- Complex geometry
- Lots of fun!

REPRESENTATIVE TRAJECTORY

REPRESENTATIVE TRAJECTORY

- Problem

REPRESENTATIVE TRAJECTORY

- Problem
- Suppose we have lots of trajectories

REPRESENTATIVE TRAJECTORY

- Problem
- Suppose we have lots of trajectories

REPRESENTATIVE TRAJECTORY

- Problem
- Suppose we have lots of trajectories
- Suppose we want to extract significant patterns

REPRESENTATIVE TRAJECTORY

- Problem
- Suppose we have lots of trajectories
- Suppose we want to extract significant patterns

REPRESENTATIVE TRAJECTORY

- Problem
- Suppose we have lots of trajectories
- Suppose we want to extract significant patterns

REPRESENTATIVE TRAJECTORY

- Problem
- Suppose we have lots of trajectories
- Suppose we want to extract significant patterns
- Solution

REPRESENTATIVE TRAJECTORY

- Problem
- Suppose we have lots of trajectories
- Suppose we want to extract significant patterns
- Solution
- Cluster the trajectories

REPRESENTATIVE TRAJECTORY

- Problem
- Suppose we have lots of trajectories
- Suppose we want to extract significant patterns
- Solution
- Cluster the trajectories

REPRESENTATIVE TRAJECTORY

- Problem
- Suppose we have lots of trajectories
- Suppose we want to extract significant patterns
- Solution
- Cluster the trajectories
- Pick a good representative for each cluster

REPRESENTATIVE TRAJECTORY

- Problem
- Suppose we have lots of trajectories
- Suppose we want to extract significant patterns
- Solution
- Cluster the trajectories
- Pick a good representative for each cluster

REPRESENTATIVE TRAJECTORY

- Problem
- Suppose we have lots of trajectories
- Suppose we want to extract significant patterns
- Solution
- Cluster the trajectories
- Pick a good representative for each cluster
- Keep only the representatives

REPRESENTATIVE TRAJECTORY

- Problem
- Suppose we have lots of trajectories
- Suppose we want to extract significant patterns
- Solution
- Cluster the trajectories
- Pick a good representative for each cluster
- Keep only the representatives

REPRESENTATIVE TRAJECTORY

- Problem
- Suppose we have lots of trajectories
- Suppose we want to extract significant patterns
- Solution
- Cluster the trajectories
- Pick a good representative for each cluster
- Keep only the representatives
- But what is a good representative?

REPRESENTATIVE TRAJECTORY

REPRESENTATIVE TRAJECTORY

- Input: a set of 'similar' trajectories

REPRESENTATIVE TRAJECTORY

- Input: a set of 'similar' trajectories
- Sort of the same start and end points

REPRESENTATIVE TRAJECTORY

- Input: a set of 'similar' trajectories
- Sort of the same start and end points
- Sort of the same shape

REPRESENTATIVE TRAJECTORY

- Input: a set of 'similar' trajectories
- Sort of the same start and end points
- Sort of the same shape

REPRESENTATIVE TRAJECTORY

- Input: a set of 'similar' trajectories
- Sort of the same start and end points
- Sort of the same shape
- Output: a representative trajectory

REPRESENTATIVE TRAJECTORY

- Input: a set of 'similar' trajectories
- Sort of the same start and end points
- Sort of the same shape
- Output: a representative trajectory
- Should also have sort of the same shape

REPRESENTATIVE TRAJECTORY

- Input: a set of 'similar' trajectories
- Sort of the same start and end points
- Sort of the same shape
- Output: a representative trajectory
- Should also have sort of the same shape
- Shape should represent the whole set of input trajectories

REPRESENTATIVE TRAJECTORY

- Input: a set of 'similar' trajectories
- Sort of the same start and end points
- Sort of the same shape
- Output: a representative trajectory
- Should also have sort of the same shape
- Shape should represent the whole set of input trajectories

USE INPUT TRAJECTORY?

USE INPUT TRAJECTORY?

USE INPUT TRAJECTORY?

- No?

USE INPUT TRAJECTORY?

- No?
- Parameterised mean trajectory

USE INPUT TRAJECTORY?

- No?
- Parameterised mean trajectory

USE INPUT TRAJECTORY?

- No?
- Parameterised mean trajectory
- May interfere with environment!

USE INPUT TRAJECTORY?

- No?
- Parameterised mean trajectory
- May interfere with environment!

USE INPUT TRAJECTORY?

- No?
- Parameterised mean trajectory
- May interfere with environment!
- Yes?

USE INPUT TRAJECTORY?

- No?
- Parameterised mean trajectory
- May interfere with environment!
- Yes?

USE INPUT TRAJECTORY?

- No?
- Parameterised mean trajectory
- May interfere with environment!
- Yes?
- Which trajectory do we pick?

USE INPUT TRAJECTORY?

- No?
- Parameterised mean trajectory
- May interfere with environment!
- Yes?
- Which trajectory do we pick?

USE INPUT TRAJECTORY?

- No?
- Parameterised mean trajectory
- May interfere with environment!
- Yes?
- Which trajectory do we pick?
- There may not be any single good representative!

USE INPUT TRAJECTORY?

- No?
- Parameterised mean trajectory
- May interfere with environment!
- Yes?
- Which trajectory do we pick?
- There may not be any single good representative!
- Use pieces of different trajectories?

USE INPUT TRAJECTORY?

- No?
- Parameterised mean trajectory
- May interfere with environment!
- Yes?
- Which trajectory do we pick?
- There may not be any single good representative!
- Use pieces of different trajectories?

USE INPUT TRAJECTORY?

- What if input trajectories do not cross?

USE INPUT TRAJECTORY?

- What if input trajectories do not cross?

USE INPUT TRAJECTORY?

- What if input trajectories do not cross?

USE INPUT TRAJECTORY?

- What if input trajectories do not cross?
- Particularly problematic in higher dimensions

USE INPUT TRAJECTORY?

- What if input trajectories do not cross?
- Partic larly problematic in higher dímensions

USE INPUT TRAJECTORY?

- What if input trajectories do not cross?
- Partic, (arly problematic in higher dímensions
- Allow vutipu iraiectoro jump" between inplit trajectores?

USE INPUT TRAJECTORY?

- What if input trajectories do not cross?
- Partic (arly problematic in higher dímensions
- Allow vitimi ralectorry jump" between iniput trajectones?

USE INPUT TRAJECTORY?

- What if input trajectories do not cross?
- Partic (arly problematic in higher dímensions
- Allow vuipui ralectorry jump" between inplit trajectones?
- Only whers sufficiently cose

USE INPUT TRAJECTORY?

- What if input trajectories do not cross?
- Partic (arly problematic in higher dímensions
- Allow vuipu rialectorer jump" between inplit trajectones?
- Only when sufficiantly ose
- Basicaily, require output trajectory to alvays be close to an input trajectory

DO YOU HAVE TIME TO CARE?

DO YOU HAVE TIME TO CARE?

- Trajectories have time-stamped locations

DO YOU HAVE TIME TO CARE?

- Trajectories have time-stamped locations

DO YOU HAVE TIME TO CARE?

- Trajectories have time-stamped locations

DO YOU HAVE TIME TO CARE?

- Trajectories have time-stamped locations

DO YOU HAVE TIME TO CARE?

- Trajectories have time-stamped locations

DO YOU HAVE TIME TO CARE?

- Trajectories have time-stamped locations

DO YOU HAVE TIME TO CARE?

- Trajectories have time-stamped locations

DO YOU HAVE TIME TO CARE?

- Trajectories have time-stamped locations

DO YOU HAVE TIME TO CARE?

- Trajectories have time-stamped locations
- Depending on the application, time may be relevant or not

DO YOU HAVE TIME TO CARE?

- Trajectories have time-stamped locations
- Depending on the application, time may be relevant or not
- These curves are quite similar

DO YOU HAVE TIME TO CARE?

- Trajectories have time-stamped locations
- Depending on the application, time may be relevant or not
- These curves are quite similar
- But at $t=3$, the points were spread

DO YOU HAVE TIME TO CARE?

- Trajectories have time-stamped locations
- Depending on the application, time may be relevant or not
- These curves are quite similar
- But at $t=3$, the points were spread
- See time as another dimension?

DO YOU HAVE TIME TO CARE?

- Trajectories have time-stamped locations
- Depending on the application, time may be relevant or not
- These curves are quite similar
- But at $t=3$, the points were spread
- See time as another dimension?

DO YOU HAVE TIME TO CARE?

- Trajectories have time-stamped locations
- Depending on the application, time may be relevant or not
- These curves are quite similar
- But at $t=3$, the points were spread
- See time as another dimension?

DO YOU HAVE TIME TO CARE?

- Trajectories have time-stamped locations
- Depending on the application, time may be relevant or not
- These curves are quite similar
- But at $t=3$, the points were spread
- See time as another dimension?

DO YOU HAVE TIME TO CARE?

- Trajectories have time-stamped locations
- Depending on the application, time may be relevant or not
- These curves are quite similar
- But at $t=3$, the points were spread

DO YOU HAVE TIME TO CARE?

- Trajectories have time-stamped locations
- Depending on the application, time may be relevant or not
- These curves are quite similar But at $l=3$, the points were spread

See time as another dimension?

DO YOU HAVE TIME TO CARE?

- Trajectories have time-stamped locations
- Depending on the application, time may be relevant or not
- These curves are quite similar But at $t=3$, the points were spread

DO YOU HAVE TIME TO CARE?

- Trajectories have time-stamped locations
- Depending on the application, time may be relevant or not

These curves are quite similar But at $t=3$, the points were spread

DO YOU HAVE TIME TO CARE?

- Trajectories have time-stamped locations
- Depending on the application, time may be relevant or not
- These curves are quite similar
- But at $t=3$, the points were spread
- Sectime as another dimension?

WE DON'T CARE ABOUT TIME

WE DON'T CARE ABOUT TIME

- Trajectories are just curves

WE DON'T CARE ABOUT TIME

- Trajectories are just curves

WE DON'T CARE ABOUT TIME

- Trajectories are just curves
- In \mathbb{R}^{2}, we do not need jumps

WE DON'T CARE ABOUT TIME

- Trajectories are just curves
- In \mathbb{R}^{2}, we do not need jumps
- Arrangement of curves forms a graph

WE DON'T CARE ABOUT TIME

- Trajectories are just curves
- In \mathbb{R}^{2}, we do not need jumps
- Arrangement of curves forms a graph

WE DON'T CARE ABOUT TIME

- Trajectories are just curves
- In \mathbb{R}^{2}, we do not need jumps
- Arrangement of curves forms a graph
- Edges are directed

WE DON'T CARE ABOUT TIME

- Trajectories are just curves
- In \mathbb{R}^{2}, we do not need jumps
- Arrangement of curves forms a graph
- Edges are directed

WE DON'T CARE ABOUT TIME

- Trajectories are just curves
- In \mathbb{R}^{2}, we do not need jumps
- Arrangement of curves forms a graph
- Edges are directed
- Output is a path in this graph

WE DON'T CARE ABOUT TIME

- Trajectories are just curves
- In \mathbb{R}^{2}, we do not need jumps
- Arrangement of curves forms a graph
- Edges are directed
- Output is a path in this graph

WE DON'T CARE ABOUT TIME

- Trajectories are just curves
- In \mathbb{R}^{2}, we do not need jumps
- Arrangement of curves forms a graph
- Edges are directed
- Output is a path in this graph
- What makes a good representative?

WE DON'T CARE ABOUT TIME

- Trajectories are just curves
- In \mathbb{R}^{2}, we do not need jumps
- Arrangement of curves forms a graph
- Edges are directed
- Output is a path in this graph
- What makes a good representative?
- It should have sensible topology

WE DON'T CARE ABOUT TIME

- Trajectories are just curves
- In \mathbb{R}^{2}, we do not need jumps
- Arrangement of curves forms a graph
- Edges are directed
- Output is a path in this graph
- What makes a good representative?
- It should have sensible topology
- But we cannot ignore the geometry

PROBLEM STATEMENT

PROBLEM STATEMENT

Given a set of 'similar' trajectories, Find a representative trajectory:

PROBLEM STATEMENT

Given a set of 'similar' trajectories, Find a representative trajectory:

- consists of segments of input trajectories

PROBLEM STATEMENT

Given a set of 'similar' trajectories, Find a representative trajectory:

- consists of segments of input trajectories
- uses each segment in the correct direction

PROBLEM STATEMENT

Given a set of 'similar' trajectories, Find a representative trajectory:

- consists of segments of input trajectories
- uses each segment in the correct direction
- all segments appear in the correct order

PROBLEM STATEMENT

Given a set of 'similar' trajectories, Find a representative trajectory:

- consists of segments of input trajectories
- uses each segment in the correct direction
- all segments appear in the correct order
- represents trajectories 'well'

PROBLEM STATEMENT

Given a set of 'similar' trajectories, Find a representative trajectory:

- consists of segments of input trajectories
- uses each segment in the correct direction
- all segments appear in the correct order
- minimizes homotopy area

HOMOTOPY AREA*

$$
\int_{p \in \mathbb{R}^{2}}|\omega(p, \gamma)| \mathrm{d} s(p)
$$

* As defined in [Chambers, Wang '13]

HOMOTOPY AREA*

$$
\int_{p \in \mathbb{R}^{2}}|\omega(p, \gamma)| \mathrm{d} s(p)
$$

Trajectories:

* As defined in [Chambers, Wang '13]

HOMOTOPY AREA*

$$
\int_{p \in \mathbb{R}^{2}}|\omega(p, \gamma)| \mathrm{d} s(p)
$$

Trajectories:

- start in s and end in t
* As defined in [Chambers, Wang '13]

HOMOTOPY AREA*

$$
\int_{p \in \mathbb{R}^{2}}|\omega(p, \gamma)| \mathrm{d} s(p)
$$

Trajectories:

- start in s and end in t
- are simple
* As defined in [Chambers, Wang '13]

HOMOTOPY AREA*

$$
\int_{p \in \mathbb{R}^{2}}|\omega(p, \gamma)| \mathrm{d} s(p)
$$

Trajectories:

- start in s and end in t
- are simple
- are homotopic
* As defined in [Chambers, Wang '13]

PROBLEM STATEMENT

Given a set of simple 'similar' trajectories, that all start in the same point and all end in the same point,
Find a representative trajectory:

- consists of segments of input trajectories
- uses each segment in the correct direction
- all segments appear in the correct order
- is simple
- minimizes max/avg homotopy area

MIN MAX IS NP-HARD

Reduction from PARTITION:

Partition a set of integers $S=\left\{a_{1}, a_{2}, \ldots, a_{n}\right\}$ into two subsets S_{1} and S_{2} with equal total sums:

$$
\sum_{a \in S_{1}} a=\sum_{a \in S_{2}} a
$$

MIN AVG IS EQUIVALENT TO MEDIAN*

* As defined in [Buchin et al. '13]

under certain conditions
 MIN AVG IS EQUIVALENT TO MEDIAN*

- x-monotone case
* As defined in [Buchin et al. '13]

under certain conditions,
 MIN AVG IS EQUIVALENT TO MEDIAN*

- x-monotone case
* As defined in [Buchin et al. '13]

under certain conditions,
 MIN AVG IS EQUIVALENT ${ }^{\top}$ TO MEDIAN*

- x-monotone case
* As defined in [Buchin et al. '13]

under certain conditions, MIN AVG IS EQUIVALENT TO MEDIAN*

- x-monotone case
- DAG
* As defined in [Buchin et al. '13]

under certain conditions, MIN AVG IS EQUIVALENT TO MEDIAN*

- x-monotone case
- DAG
* As defined in [Buchin et al. '13]

FUTURE WORK

Non-DAG:

FUTURE WORK

Non-DAG:

FUTURE WORK

Non-DAG:

- define 'corridor'

FUTURE WORK
Non-DAG:

- define 'corridor'
- 'lift' to non-DAG space

CONCLUSIONS

CONCLUSIONS

- When time is not relevant

CONCLUSIONS

- When time is not relevant
- based on geometry and topology

CONCLUSIONS

- When time is not relevant
- based on geometry and topology
- "simple median" optimises homotopy area

CONCLUSIONS

- When time is not relevant
- based on geometry and topology
- "simple median" optimises homotopy area
- acyclic trajectory intersection graph

CONCLUSIONS

- When time is not relevant
- based on geometry and topology
- "simple median" optimises homotopy area
- acyclic trajectory intersection graph
- open problem: find appropriate space

INTERMISSION

We do care about time

WE DO CARE ABOUT TIME

- Simply increase the dimension?

WE DO CARE ABOUT TIME

- Simply increase the dimension?
- Distance in space is not comparable to distance in time

WE DO CARE ABOUT TIME

- Simply increase the dimension?
- Distance in space is not comparable to distance in time
- Representative trajectory should summarise P at every time

WE DO CARE ABOUT TIME

- Simply increase the dimension?
- Distance in space is not comparable to distance in time
- Representative trajectory should summarise P at every time
- Existing representative points

WE DO CARE ABOUT TIME

- Simply increase the dimension?
- Distance in space is not comparable to distance in time
- Representative trajectory should summarise P at every time
- Existing representative points - Average/mean of x - and y-coordinates

WE DO CARE ABOUT TIME

- Simply increase the dimension?
- Distance in space is not comparable to distance in time
- Representative trajectory should summarise P at every time
- Existing representative points
- Average/mean of x - and y-coordinates
- Median of x - and y-coordinates

WE DO CARE ABOUT TIME

- Simply increase the dimension?
- Distance in space is not comparable to distance in time
- Representative trajectory should summarise P at every time
- Existing representative points
- Average/mean of x - and y-coordinates
- Median of x - and y-coordinates
- Centre of smallest enclosing circle

WE DO CARE ABOUT TIME

- Simply increase the dimension?
- Distance in space is not comparable to distance in time
- Representative trajectory should summarise P at every time
- Existing representative points
- Average/mean of x - and y-coordinates
- Median of x - and y-coordinates
- Centre of smallest enclosing circle
- We want to be close all the time!

WE DO CARE ABOUT TIME

- Simply increase the dimension?
- Distance in space is not comparable to distance in time
- Representative trajectory should summarise P at every time
- Existing representative points
- Average/mean of x - and y-coordinates
- Median of x - and y-coordinates
- Centre of smallest enclosing circle
- We want to be close all the time!

CENTRAL TRAJECTORIES

CENTRAL TRAJECTORIES

- At any time t, a central trajectory C should
- be on an input trajectory, i.e. $\mathcal{C}(t)=\sigma(t)$ for some entity σ, and
- be as central as possible.

CENTRAL TRAJECTORIES

- At any time t, a central trajectory C should
- be on an input trajectory, i.e. $C(t)=\sigma(t)$ for some entity σ, and
- be as central as possible i.e. minimize $D(\sigma, t)=\max _{\psi \in P}\|\sigma(t) \psi(t)\|$

CENTRAL TRAJECTORIES

- At any time t, a central trajectory C should
- be on an input trajectory, i.e. $\mathcal{C}(t)=\sigma(t)$ for some entity σ, and
- be as central as possible.i.e. minimize

$$
D(\sigma, t)=\max _{\psi \in P}\|\sigma(t) \psi(t)\|
$$

- jump over a distance at most ε.

CENTRAL TRAJECTORIES

- At any time t, a central trajectory C should
- be on an input trajectory, i.e. $\mathcal{C}(t)=\sigma(t)$ for some entity σ, and
- be as central as possible.i.e. minimize

$$
D(\sigma, t)=\max _{\psi \in P}\|\sigma(t) \psi(t)\|
$$

- jump over a distance at most ε.
- jumps may be chained.

CENTRAL TRAJECTORIES

- At any time t, a central trajectory C should
- be on an input trajectory, i.e. $\mathcal{C}(t)=\sigma(t)$ for some entity σ, and
- be as central as possible.i.e. minimize

$$
D(\sigma, t)=\max _{\psi \in P}\|\sigma(t) \psi(t)\|
$$

- jump over a distance at most ε.
- jumps may be chained.

CENTRAL TRAJECTORIES

- Globally, C should minimize

$$
\mathcal{D}(\mathcal{T})=\int_{t_{0}}^{t_{\tau}} D(\mathcal{T}, t) \mathrm{d} t
$$

ttime

RESULTS

	Complexity C		Algorithm
	Lower	Upper	
	bound	bound	
\mathbb{R}^{1}	$\Omega\left(\tau n^{2}\right)$	$O\left(\tau n^{2}\right)$	$O\left(\tau n^{2} \log n\right)$
\mathbb{R}^{d}	$\Omega\left(\tau n^{2}\right)$	$O\left(\tau n^{2} \sqrt{n}\right)$	$O\left(\tau n^{3}\right)$

- $n=$ \#trajectories
- $\tau=\#$ vertices in each trajectory

RESULTS

	Complexity C Lower bound		Upper bound
\mathbb{R}^{1}	$\Omega\left(\tau n^{2}\right)$	$O\left(\tau n^{2}\right)$	$O\left(\tau n^{2} \log n\right)$
\mathbb{R}^{d}	$\Omega\left(\tau n^{2}\right)$	$O\left(\tau n^{2} \sqrt{n}\right)$	$O\left(\tau n^{3}\right)$

- $n=$ \#trajectories
- $\tau=\#$ vertices in each trajectory

RESULTS

	Complexity C Lower bound		Upper bound
\mathbb{R}^{1}	$\Omega\left(\tau n^{2}\right)$	$O\left(\tau n^{2}\right)$	$O\left(\tau n^{2} \log n\right)$
\mathbb{R}^{d}	$\Omega\left(\tau n^{2}\right)$	$O\left(\tau n^{2} \sqrt{n}\right)$	$O\left(\tau n^{3}\right)$

- $n=\#$ trajectories
- $\tau=\#$ vertices in each trajectory

THE IDEAL TRAJECTORY

- Let I be the ideal trajectory: the trajectory that minimizes \mathcal{D}.
time

THE IDEAL TRAJECTORY

- Let I be the ideal trajectory: the trajectory that minimizes \mathcal{D}.
time

THE IDEAL TRAJECTORY

- Let I be the ideal trajectory: the trajectory that minimizes \mathcal{D}.

LEMMA.

A central trajectory C minimizes

$$
\mathcal{D}^{\prime}(\mathcal{T})=\int|\mathcal{T}(t)-I(t)| \mathrm{d} t
$$

time

THE IDEAL TRAJECTORY

- Let I be the ideal trajectory: the trajectory that minimizes \mathcal{D}.

LEMMA.

A central trajectory C minimizes

$$
\mathcal{D}^{\prime}(\mathcal{T})=\int|\mathcal{T}(t)-I(t)| \mathrm{d} t
$$

LOWER BOUND

LEMMA.

A central trajectory C in \mathbb{R}^{1} may have complexity $\Omega\left(\tau n^{2}\right)$.

LOWER BOUND

LEMMA.

A central trajectory C in \mathbb{R}^{1} may have complexity $\Omega\left(\tau n^{2}\right)$.

LOWER BOUND

LEMMA.

A central trajectory C in \mathbb{R}^{1} may have complexity $\Omega\left(\tau n^{2}\right)$.

LOWER BOUND

LEMMA.

A central trajectory C in \mathbb{R}^{1} may have complexity $\Omega\left(\tau n^{2}\right)$.

LOWER BOUND

LEMMA.

A central trajectory C in \mathbb{R}^{1} may have complexity $\Omega\left(\tau n^{2}\right)$.

LOWER BOUND

LEMMA.

A central trajectory C in \mathbb{R}^{1} may have complexity $\Omega\left(\tau n^{2}\right)$.

UPPER BOUND

- "Straighten"

UPPER BOUND

- "Straighten"
- We now have n trajectories, with $O(\tau n)$ vertices each

UPPER BOUND

```
OBSERVATION.
C can jump from }\sigma\mathrm{ to }\psi\mathrm{ at time }
\Leftrightarrow
\sigma \text { and } \psi \text { are } \varepsilon \text { -connected at time t.}
```


UPPER BOUND

OBSERVATION.
 C can jump from σ to ψ at time t
 \Leftrightarrow
 σ and ψ are ε-connected at time t.

UPPER BOUND

- Let $P^{\prime} \ni \sigma$ be a maximal set of entities that is ε-connected during interval J, and s.t. $C \in P^{\prime}$ during J.

UPPER BOUND

- Let $P^{\prime} \ni \sigma$ be a maximal set of entities that is ε-connected during interval J, and s.t. $C \in P^{\prime}$ during J.

OBSERVATION.

For any time $t \in J, C(t)=\sigma(t)$
\Leftrightarrow
f_{σ} is on the lower envelope of $\left\{f_{\psi} \mid \psi \in \mathcal{X}^{\prime}\right\}$ at time t, where $f_{\sigma}(t)=|\sigma(t)|$.

UPPER BOUND

- Let $P^{\prime} \ni \sigma$ be a maximal set of entities that is ε-connected during interval J, and s.t. $C \in P^{\prime}$ during J.

OBSERVATION.

For any time $t \in J, C(t)=\sigma(t)$
\Leftrightarrow
f_{σ} is on the lower envelope of $\left\{f_{\psi} \mid \psi \in \mathcal{X}^{\prime}\right\}$ at time t, where $f_{\sigma}(t)=|\sigma(t)|$.

UPPER BOUND

- Let $P^{\prime} \ni \sigma$ be a maximal set of entities that is ε-connected during interval J, and s.t. $C \in P^{\prime}$ during J.

OBSERVATION.

For any time $t \in J, C(t)=\sigma(t)$
\Leftrightarrow
f_{σ} is on the lower envelope of $\left\{f_{\psi} \mid \psi \in \mathcal{X}^{\prime}\right\}$ at time t, where $f_{\sigma}(t)=|\sigma(t)|$.

UPPER BOUND

- Let $P^{\prime} \ni \sigma$ be a maximal set of entities that is ε-connected during interval J, and s.t. $C \in P^{\prime}$ during J.

OBSERVATION.

For any time $t \in J, C(t)=\sigma(t)$
\Leftrightarrow
f_{σ} is on the lower envelope of $\left\{f_{\psi} \mid \psi \in \mathcal{X}^{\prime}\right\}$ at time t, where $f_{\sigma}(t)=|\sigma(t)|$.

UPPER BOUND

- C may have a vertex at time t if:
- Partition into ε-connected sets changes at time t, or

UPPER BOUND

- C may have a vertex at time t if:
- Partition into ε-connected sets changes at time t, or

UPPER BOUND

- C may have a vertex at time t if:
- Partition into ε-connected sets changes at time t, or
- Lower envelope L^{\prime} of a maximal ε-connected set P^{\prime} has a break point at t.

UPPER BOUND

- C may have a vertex at time t if:
- Partition into ε-connected sets changes at time t, or
- Lower envelope \mathcal{L}^{\prime} of a maximal ε-connected set P^{\prime} has a break point at t.
- Intersection of the trajectories

UPPER BOUND

- C may have a vertex at time t if:
- Partition into ε-connected sets changes at time t, or
- Lower envelope L^{\prime} of a maximal ε-connected set P^{\prime} has a break point at t.
- Intersection of the trajectories
- Jump crossing I

UPPER BOUND

- C may have a vertex at time t if:
- Partition into ε-connected sets changes at time t, or

$$
O\left(\tau n^{2}\right)
$$

- Lower envelope \mathcal{L}^{\prime} of a maximal ε-connected set P^{\prime} has a break point at t.
- Intersection of the trajectories

$$
\begin{aligned}
& O\left(\tau n^{2}\right) \\
& O\left(\tau n^{2}\right)
\end{aligned}
$$

- Jump crossing I

UPPER BOUND

THEOREM.

Given a set of n trajectories in \mathbb{R}^{1}, each with vertices at times $t_{0}, . ., t_{\tau}$, a central trajectory C has worst case complexity $O\left(\tau n^{2}\right)$.

ALGORITHM

- Construct a weighted graph \mathcal{R} s.t. \mathcal{C} corresponds to a shortest path in \mathcal{R}.

ALGORITHM

- Construct a weighted graph \mathcal{R} s.t. \mathcal{C} corresponds to a shortest path in \mathcal{R}.
- The Reeb graph \mathcal{R} captures which sets of entities are ε-connected.

ALGORITHM

- Construct a weighted graph \mathcal{R} s.t. \mathcal{C} corresponds to a shortest path in \mathcal{R}.
- The Reeb graph \mathcal{R} captures which sets of entities are ε-connected.

ALGORITHM

- Construct a weighted graph \mathcal{R} s.t. \mathcal{C} corresponds to a shortest path in \mathcal{R}.
- The Reeb graph \mathcal{R} captures which sets of entities are ε-connected.
- Each edge e corresponds to a maximal ε-connected set P_{e} and has weight

$$
\int \mathcal{L}\left(\left\{f_{\sigma} \mid \sigma \in P_{e}\right\}\right)(t) \mathrm{d} t
$$

ALGORITHM

- Construct a weighted graph \mathcal{R} s.t. \mathcal{C} corresponds to a shortest path in \mathcal{R}.
- The Reeb graph \mathcal{R} captures which sets of entities are ε-connected.
- Each edge e corresponds to a maximal ε-connected set P_{e} and has weight

$$
\int \mathcal{L}\left(\left\{f_{\sigma} \mid \sigma \in P_{e}\right\}\right)(t) \mathrm{d} t
$$

- Constructing \mathcal{R} takes $O\left(\tau n^{2} \log n\right)$ time.

ALGORITHM

THEOREM.

Given a set of n trajectories in \mathbb{R}^{1}, each with vertices at times $t_{0}, . ., t_{\tau}$, computing a central trajectory C takes $O\left(\tau n^{2} \log n\right)$ time.

ENTITIES MOVING IN \mathbb{R}^{d}

- Minimizing \mathcal{D} and \mathcal{D}^{\prime} not the same.

ENTITIES MOVING IN \mathbb{R}^{d}

- Minimizing \mathcal{D} and \mathcal{D}^{\prime} not the same.
- Use the distance $D(\sigma, \cdot)$ to the entity furthest from σ directly.

ENTITIES MOVING IN \mathbb{R}^{d}

- Minimizing \mathcal{D} and \mathcal{D}^{\prime} not the same.
- Use the distance $D(\sigma, \cdot)$ to the entity furthest from σ directly.
- Same observations hold, and allow to show that C has complexity $O\left(\tau n^{2} \sqrt{n}\right)$.
- Computing C takes $O\left(\tau n^{3}\right)$ time.

ENTITIES MOVING IN \mathbb{R}^{d}

OPEN PROBLEM.

How to compute lower envelopes for all edges of \mathcal{R} efficiently?

- The weight of edge e is

$$
\int \mathcal{L}\left(\left\{D(\sigma, \cdot) \mid \sigma \in \mathcal{\chi}_{e}\right\}\right)(t) \mathrm{d} t
$$

CONCLUSIONS

- When time is not relevant
- based on geometry and topology
- "simple median" optimises homotopy area
- acyclic trajectory intersection graph
- open problem: find appropriate space

CONCLUSIONS

- When time is not relevant
- based on geometry and topology
- "simple median" optimises homotopy area
- acyclic trajectory intersection graph
- open problem: find appropriate space
- When time is relevant

CONCLUSIONS

- When time is not relevant
- based on geometry and topology
- "simple median" optimises homotopy area
- acyclic trajectory intersection graph
- open problem: find appropriate space
- When time is relevant
- time dimension is special

CONCLUSIONS

- When time is not relevant
- based on geometry and topology
- "simple median" optimises homotopy area
- acyclic trajectory intersection graph
- open problem: find appropriate space
- When time is relevant
- time dimension is special
- based on any point set representative

CONCLUSIONS

- When time is not relevant
- based on geometry and topology
- "simple median" optimises homotopy area
- acyclic trajectory intersection graph
- open problem: find appropriate space
- When time is relevant
- time dimension is special
- based on any point set representative
- polynomial time for many measures

CONCLUSIONS

- When time is not relevant
- based on geometry and topology
- "simple median" optimises homotopy area
- acyclic trajectory intersection graph
- open problem: find appropriate space
- When time is relevant
- time dimension is special
- based on any point set representative
- polynomial time for many measures
- open problem: improve running time

THANK YOU!

