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MAARTEN LÖFFLER & WOLFGANG MULZER

: QUADTREES AND DELAUNAY TRIANGULATIONS ARE EQUIVALENT



6-2

RESEARCHER’S DILEMMA
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MAARTEN LÖFFLER & WOLFGANG MULZER

: QUADTREES AND DELAUNAY TRIANGULATIONS ARE EQUIVALENT

A BRIEF HISTORY
[Dirichlet, 1850]

Voronoi

Diagram

Nearest

Neighbour Graph

Deterministic linear time

[Clarkson, 1983]



7-8

Delaunay

Triangulation

Gabriel

Graph

Minimum

Spanning Tree

Compressed

Quadtree

[Delaunay, 1934]
[Gabriel, 1969]

[Matsui, 1995]

[Preparata & Shamos, 1985]

[Callahan & Kosaraju, 1995]
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MAARTEN LÖFFLER & WOLFGANG MULZER

: QUADTREES AND DELAUNAY TRIANGULATIONS ARE EQUIVALENT

A BRIEF HISTORY
[Dirichlet, 1850]

Voronoi

Diagram

Nearest

Neighbour Graph
Well-Separated

Pair

Decomposition

Eppstein & Gilbert, 1990]

Hurtado, Mora,
Sacristán & Teillaud, 2001]

Goodrich & Sun, 2005]
Deterministic linear time

Randomised linear time

[Chin & Wang, 1998]

[Clarkson, 1983]



7-14

Delaunay

Triangulation

Gabriel

Graph

Minimum

Spanning Tree

Compressed

Quadtree

DT

On Superset

QT Sequence

(Skip Quadtree)

[Delaunay, 1934]
[Gabriel, 1969]

[Matsui, 1995]

[Preparata & Shamos, 1985]

[Callahan & Kosaraju, 1995]

[Chazelle, 1991]

[Bern,

[Chazelle, Devillers,

[Eppstein,

WSPD

Sequence

NNG

Sequence
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MAARTEN LÖFFLER & WOLFGANG MULZER

: QUADTREES AND DELAUNAY TRIANGULATIONS ARE EQUIVALENT



9-2

DELAUNAY TRIANGULATION
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MAARTEN LÖFFLER & WOLFGANG MULZER

: QUADTREES AND DELAUNAY TRIANGULATIONS ARE EQUIVALENT

A quadtree T for

a set of points P
is a hierarchical

subdivision of

a square into

smaller squares that

separates P.



11-7

COMPRESSED QUADTREE
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MAARTEN LÖFFLER & WOLFGANG MULZER

: QUADTREES AND DELAUNAY TRIANGULATIONS ARE EQUIVALENT

A quadtree T for

a set of points P
is a hierarchical

subdivision of

a square into

smaller squares that

separates P.

For point sets

with large spread,

a quadtree can be

compressed.



11-9

COMPRESSED QUADTREE
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MAARTEN LÖFFLER & WOLFGANG MULZER

: QUADTREES AND DELAUNAY TRIANGULATIONS ARE EQUIVALENT

A c-cluster in a

point set P is a

subset C ⊂ P whose

distance to the rest

of P is at least c
its diameter.

The c-clusters on P
form a hierarchy.



12-11

c-CLUSTER QUADTREE
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A c-cluster in a

point set P is a

subset C ⊂ P whose

distance to the rest

of P is at least c
its diameter.

The c-clusters on P
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can have linear

degree.
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MAARTEN LÖFFLER & WOLFGANG MULZER

: QUADTREES AND DELAUNAY TRIANGULATIONS ARE EQUIVALENT



13-2

WELL-SEPARATED PAIRS
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: QUADTREES AND DELAUNAY TRIANGULATIONS ARE EQUIVALENT

A WSPD with O(|P |)
pairs always exists.

One way to construct

one is from a

hierarchical

subdivision (such

as a c-cluster
quadtree).
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Suppose we have a

WSPD P on P.

Let G be the graph

that contains the

shortest edge between

two points in any

pair of P.

Claim: G has linear

size and contains the

MST of P.
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p

P ′, the union of

P ′
φ over all φ, is

no longer a pair

decomposition of P.
But...

φ

Let P ′
φ be the

resulting pair set.
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p

Claim: P ′ has linear

weight.
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time. φ
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MAARTEN LÖFFLER & WOLFGANG MULZER

: QUADTREES AND DELAUNAY TRIANGULATIONS ARE EQUIVALENT

φ



18-2

TOPOLOGICAL SORT
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Claim: If a point

p is roughly in

direction φ + 1
2π as

seen from a point q,
then q comes before p
in Γ.
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Claim: We can sort

P conforming Γ in

linear time.
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EXTRACTING THE MST

Unfortunately, G
need not be planar.

Claim: any edge e
of G crosses at most

O(1) edges of length

Ω(|e|).

Problem: computing

a MST may take up to

O(nα(n)) time.

For planar graphs,

this is only O(n).
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MAARTEN LÖFFLER & WOLFGANG MULZER

: QUADTREES AND DELAUNAY TRIANGULATIONS ARE EQUIVALENT

Start with P and G.

Remember we have a

quadtree T on P.

We can process

the edges of G by

increasing length,
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Borůvka-style.

Ignore edges within

components.



21-17

EXTRACTING THE MST
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MAARTEN LÖFFLER & WOLFGANG MULZER

: QUADTREES AND DELAUNAY TRIANGULATIONS ARE EQUIVALENT

Start with P and G.

Remember we have a

quadtree T on P.

We can process

the edges of G by

increasing length,
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Borůvka-style.

Ignore edges within

components.
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Start with P and G.

Remember we have a

quadtree T on P.

We can process

the edges of G by

increasing length,

Borůvka-style.

Ignore edges within

components.
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Start with P and G.

Remember we have a

quadtree T on P.

We can process

the edges of G by

increasing length,

Borůvka-style.

Ignore edges within

components.
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Start with P and G.

Remember we have a

quadtree T on P.

We can process

the edges of G by

increasing length,

Borůvka-style.

Ignore edges within

components.

Done!
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CONCLUSION
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: QUADTREES AND DELAUNAY TRIANGULATIONS ARE EQUIVALENT

Given a quadtree on a

set of points P, we

can compute the MST

of P in linear time.
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CONCLUSION

MAARTEN LÖFFLER & WOLFGANG MULZER

: QUADTREES AND DELAUNAY TRIANGULATIONS ARE EQUIVALENT

Given a quadtree on a

set of points P, we

can compute the MST

of P in linear time.

Many major proximity

structures on planar

point sets can be

derived from each

other in linear

deterministic time.
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ANY QUESTIONS?

THANK YOU!

SQUARES ARE TRIANGLES


