
1

UNIONS OF ONIONS

Maarten Löffler Wolfgang Mulzer
Freie Universität BerlinUniversiteit Utrecht



2

CHAPTER I

THE PROBLEM



3

PREPROCESSING PARADIGM



3

PREPROCESSING PARADIGM

Once upon a time, we were given R.



3

PREPROCESSING PARADIGM

Once upon a time, we were given R.

R



3

PREPROCESSING PARADIGM

Once upon a time, we were given R.

R

Soon, we get P: one point per region of R.



3

PREPROCESSING PARADIGM

Once upon a time, we were given R.

R

Soon, we get P: one point per region of R.

P



3

PREPROCESSING PARADIGM

Once upon a time, we were given R.

R

Soon, we get P: one point per region of R.

P

What we really want is some structure S(P ).



3

PREPROCESSING PARADIGM

Once upon a time, we were given R.

R

Soon, we get P: one point per region of R.

P

What we really want is some structure S(P ).

S(P )



3

PREPROCESSING PARADIGM

Once upon a time, we were given R.

R

Soon, we get P: one point per region of R.

P

What we really want is some structure S(P ).

S(P )

But time is precious!



3

PREPROCESSING PARADIGM

R P

S(P )

QUESTION: Can we do some of the computation of

S(P ) before we know P?



3

PREPROCESSING PARADIGM

R P

S(P )

QUESTION: Can we do some of the computation of

S(P ) before we know P?

First, compute an intermediary structure H(R).



3

PREPROCESSING PARADIGM

R P

S(P )

QUESTION: Can we do some of the computation of

S(P ) before we know P?

First, compute an intermediary structure H(R).

H(R)



3

PREPROCESSING PARADIGM

R P

S(P )

QUESTION: Can we do some of the computation of

S(P ) before we know P?

First, compute an intermediary structure H(R).

H(R)

Then, once we get P, compute S(P ) using H(R).



3

PREPROCESSING PARADIGM

R P

S(P )

QUESTION: Can we do some of the computation of

S(P ) before we know P?

First, compute an intermediary structure H(R).

H(R)

Then, once we get P, compute S(P ) using H(R).



3

PREPROCESSING PARADIGM

R P

S(P )
H(R)

Linear time algorithms are known for:

[Held & Mitchell]

[L & Snoeyink]

[Ezra & Mulzer]

• Triangulations

• Delaunay triangulations

Superlinear, but o(n logn):

• Convex hull (lines)



4

ONIONS



4

ONIONS

Let P be a set of n points in the plane.



4

ONIONS

Let P be a set of n points in the plane.

P



4

ONIONS

Let P be a set of n points in the plane.

DEFINITION: The onion of P is the convex hull

of P, plus the onion of the rest of the points.

P



4

ONIONS

Let P be a set of n points in the plane.

DEFINITION: The onion of P is the convex hull

of P, plus the onion of the rest of the points.

P



4

ONIONS

Let P be a set of n points in the plane.

DEFINITION: The onion of P is the convex hull

of P, plus the onion of the rest of the points.

P



4

ONIONS

Let P be a set of n points in the plane.

DEFINITION: The onion of P is the convex hull

of P, plus the onion of the rest of the points.

P



4

ONIONS

Let P be a set of n points in the plane.

DEFINITION: The onion of P is the convex hull

of P, plus the onion of the rest of the points.

P

Onions have many useful and tasty applications.



5

THE ONION PREPROCESSING PROBLEM



5

THE ONION PREPROCESSING PROBLEM

Let R be a set of n disjoint unit disks.



5

THE ONION PREPROCESSING PROBLEM

Let R be a set of n disjoint unit disks.



5

THE ONION PREPROCESSING PROBLEM

Let R be a set of n disjoint unit disks.

Preprocessing algorithm: compute some magical

structure H(R).



5

THE ONION PREPROCESSING PROBLEM

Let R be a set of n disjoint unit disks.

Preprocessing algorithm: compute some magical

structure H(R).



5

THE ONION PREPROCESSING PROBLEM

Let R be a set of n disjoint unit disks.

Preprocessing algorithm: compute some magical

structure H(R).
Reconstruction algorithm: given P and H(R),
compute the onion of P.



5

THE ONION PREPROCESSING PROBLEM

Let R be a set of n disjoint unit disks.

Preprocessing algorithm: compute some magical

structure H(R).
Reconstruction algorithm: given P and H(R),
compute the onion of P.



5

THE ONION PREPROCESSING PROBLEM

Let R be a set of n disjoint unit disks.

Preprocessing algorithm: compute some magical

structure H(R).
Reconstruction algorithm: given P and H(R),
compute the onion of P.



5

THE ONION PREPROCESSING PROBLEM

Let R be a set of n disjoint unit disks.

Preprocessing algorithm: compute some magical

structure H(R).
Reconstruction algorithm: given P and H(R),
compute the onion of P.



6

CHAPTER II

THE SOLUTION



7

PREPROCESSING ALGORITHM



7

PREPROCESSING ALGORITHM

Consider a set R of n disjoint unit disks.



7

PREPROCESSING ALGORITHM

Consider a set R of n disjoint unit disks.

R



7

PREPROCESSING ALGORITHM

Consider a set R of n disjoint unit disks.

LEMMA: There exists a line that intersects at

most
√
n logn disks and has at most half of the

disks completely on each side.

R



7

PREPROCESSING ALGORITHM

Consider a set R of n disjoint unit disks.

LEMMA: There exists a line that intersects at

most
√
n logn disks and has at most half of the

disks completely on each side.

R



7

PREPROCESSING ALGORITHM

Consider a set R of n disjoint unit disks.

LEMMA: There exists a line that intersects at

most
√
n logn disks and has at most half of the

disks completely on each side.

R

[Alon et al.]



7

PREPROCESSING ALGORITHM

Consider a set R of n disjoint unit disks.

We apply the lemma recursively, and get a

binary space partition tree T.

R



7

PREPROCESSING ALGORITHM

Consider a set R of n disjoint unit disks.

We apply the lemma recursively, and get a

binary space partition tree T.

R



7

PREPROCESSING ALGORITHM

Consider a set R of n disjoint unit disks.

We apply the lemma recursively, and get a

binary space partition tree T.

R



7

PREPROCESSING ALGORITHM

Consider a set R of n disjoint unit disks.

We apply the lemma recursively, and get a

binary space partition tree T.

R



7

PREPROCESSING ALGORITHM

Consider a set R of n disjoint unit disks.

We apply the lemma recursively, and get a

binary space partition tree T.

R



7

PREPROCESSING ALGORITHM

Consider a set R of n disjoint unit disks.

We apply the lemma recursively, and get a

binary space partition tree T.

R



7

PREPROCESSING ALGORITHM

Consider a set R of n disjoint unit disks.

We apply the lemma recursively, and get a

binary space partition tree T.

R



7

PREPROCESSING ALGORITHM

Consider a set R of n disjoint unit disks.

We apply the lemma recursively, and get a

binary space partition tree T.

R



7

PREPROCESSING ALGORITHM

Consider a set R of n disjoint unit disks.

We apply the lemma recursively, and get a

binary space partition tree T.

R



7

PREPROCESSING ALGORITHM

Consider a set R of n disjoint unit disks.

We apply the lemma recursively, and get a

binary space partition tree T.

R

T



7

PREPROCESSING ALGORITHM

Consider a set R of n disjoint unit disks.

We apply the lemma recursively, and get a

binary space partition tree T.

R

T

LEMMA: T has height logn+O(1).



7

PREPROCESSING ALGORITHM

R

T

HINT: T = H(R) is our magical structure!



8

RECONSTRUCTION ALGORITHM

R

T



8

RECONSTRUCTION ALGORITHM

First, locate P in R and T.

R

T



8

RECONSTRUCTION ALGORITHM

First, locate P in R and T.

R

P

T



8

RECONSTRUCTION ALGORITHM

First, locate P in R and T.

P

T



8

RECONSTRUCTION ALGORITHM

First, locate P in R and T.

Remove any empty leaves of T.

P

T



8

RECONSTRUCTION ALGORITHM

First, locate P in R and T.

Remove any empty leaves of T.

T

P



8

RECONSTRUCTION ALGORITHM

First, locate P in R and T.

Then, recursively unite the onions.

Remove any empty leaves of T.

T

P



8

RECONSTRUCTION ALGORITHM

First, locate P in R and T.

Then, recursively unite the onions.

Remove any empty leaves of T.

T

P



8

RECONSTRUCTION ALGORITHM

First, locate P in R and T.

Then, recursively unite the onions.

Remove any empty leaves of T.

T

P



8

RECONSTRUCTION ALGORITHM

First, locate P in R and T.

Then, recursively unite the onions.

Remove any empty leaves of T.

T

P



8

RECONSTRUCTION ALGORITHM

First, locate P in R and T.

Then, recursively unite the onions.

Remove any empty leaves of T.

T

P



8

RECONSTRUCTION ALGORITHM

First, locate P in R and T.

Then, recursively unite the onions.

Remove any empty leaves of T.

T

P



8

RECONSTRUCTION ALGORITHM

First, locate P in R and T.

Then, recursively unite the onions.

Remove any empty leaves of T.

T

P



8

RECONSTRUCTION ALGORITHM

First, locate P in R and T.

Then, recursively unite the onions.

Remove any empty leaves of T.

T

P



8

RECONSTRUCTION ALGORITHM

First, locate P in R and T.

Then, recursively unite the onions.

Remove any empty leaves of T.

T

P



8

RECONSTRUCTION ALGORITHM

First, locate P in R and T.

Then, recursively unite the onions.

Remove any empty leaves of T.

T

P



8

RECONSTRUCTION ALGORITHM

First, locate P in R and T.

Then, recursively unite the onions.

Remove any empty leaves of T.

T

P



8

RECONSTRUCTION ALGORITHM

First, locate P in R and T.

Then, recursively unite the onions.

Remove any empty leaves of T.

P



8

RECONSTRUCTION ALGORITHM

First, locate P in R and T.

Then, recursively unite the onions.

Remove any empty leaves of T.

P



8

RECONSTRUCTION ALGORITHM

First, locate P in R and T.

Then, recursively unite the onions.

Remove any empty leaves of T.

P

Done!



9

BUT!



9

BUT! ...how do you unite two onions?



9

BUT! ...how do you unite two onions?



9

BUT! ...how do you unite two onions?

OBSERVATION: We can find the convex hull of two

onions in O(logn) time.



9

BUT! ...how do you unite two onions?

OBSERVATION: We can find the convex hull of two

onions in O(logn) time.



9

BUT! ...how do you unite two onions?

OBSERVATION: We can find the convex hull of two

onions in O(logn) time.

Let’s remove it and recurse.



9

BUT! ...how do you unite two onions?

OBSERVATION: We can find the convex hull of two

onions in O(logn) time.

Let’s remove it and recurse.



9

BUT! ...how do you unite two onions?

OBSERVATION: We can find the convex hull of two

onions in O(logn) time.

Let’s remove it and recurse.

Unfortunately, what is left are no longer

proper onions...



10

ONION RESTAURATION & UNIFICATION



10

ONION RESTAURATION & UNIFICATION

Compute convex hulls of the individual onions.



10

ONION RESTAURATION & UNIFICATION

Compute convex hulls of the individual onions.



10

ONION RESTAURATION & UNIFICATION

Compute convex hulls of the individual onions.



10

ONION RESTAURATION & UNIFICATION

Compute convex hulls of the individual onions.

Recurse once again.



10

ONION RESTAURATION & UNIFICATION

Compute convex hulls of the individual onions.

Recurse once again.



10

ONION RESTAURATION & UNIFICATION

Compute convex hulls of the individual onions.

Recurse once again.



10

ONION RESTAURATION & UNIFICATION

Compute convex hulls of the individual onions.

Recurse once again.



10

ONION RESTAURATION & UNIFICATION

Compute convex hulls of the individual onions.

Recurse once again.



11

ONION RESTAURATION & UNIFICATION

Compute convex hulls of the individual onions.

Recurse once again.

Etc...



11

ONION RESTAURATION & UNIFICATION

Compute convex hulls of the individual onions.

Recurse once again.

Etc...



11

ONION RESTAURATION & UNIFICATION

Compute convex hulls of the individual onions.

Recurse once again.

Etc...



11

ONION RESTAURATION & UNIFICATION

Compute convex hulls of the individual onions.

Recurse once again.

Etc...



11

ONION RESTAURATION & UNIFICATION

Compute convex hulls of the individual onions.

Recurse once again.

Etc...



11

ONION RESTAURATION & UNIFICATION

Compute convex hulls of the individual onions.

Recurse once again.

Etc...



11

ONION RESTAURATION & UNIFICATION

Compute convex hulls of the individual onions.

Recurse once again.

Etc...



11

ONION RESTAURATION & UNIFICATION

Compute convex hulls of the individual onions.

Recurse once again.

Etc...



11

ONION RESTAURATION & UNIFICATION

Compute convex hulls of the individual onions.

Recurse once again.

Etc...



11

ONION RESTAURATION & UNIFICATION

Compute convex hulls of the individual onions.

Recurse once again.

Etc...



11

ONION RESTAURATION & UNIFICATION

Compute convex hulls of the individual onions.

Recurse once again.

Etc...



11

ONION RESTAURATION & UNIFICATION

Compute convex hulls of the individual onions.

Recurse once again.

Etc...



11

ONION RESTAURATION & UNIFICATION

Compute convex hulls of the individual onions.

Recurse once again.

Etc...



11

ONION RESTAURATION & UNIFICATION

Compute convex hulls of the individual onions.

Recurse once again.

Etc...



11

ONION RESTAURATION & UNIFICATION

Compute convex hulls of the individual onions.

Recurse once again.

Etc...



11

ONION RESTAURATION & UNIFICATION

Compute convex hulls of the individual onions.

Recurse once again.

Etc...



11

ONION RESTAURATION & UNIFICATION

Compute convex hulls of the individual onions.

Recurse once again.

Etc...



11

ONION RESTAURATION & UNIFICATION

Compute convex hulls of the individual onions.

Recurse once again.

Etc...



11

ONION RESTAURATION & UNIFICATION

Compute convex hulls of the individual onions.

Recurse once again.

Etc...



11

ONION RESTAURATION & UNIFICATION

Compute convex hulls of the individual onions.

Recurse once again.

Etc...



11

ONION RESTAURATION & UNIFICATION

Compute convex hulls of the individual onions.

Recurse once again.

Etc...



11

ONION RESTAURATION & UNIFICATION

Compute convex hulls of the individual onions.

Recurse once again.

Etc...



11

ONION RESTAURATION & UNIFICATION

Compute convex hulls of the individual onions.

Recurse once again.

Etc...

That took O(k2 logn) time to compute k layers.



12

THE FINAL RESULT



12

THE FINAL RESULT

We can split a set of n unit disks in O(n) time.



12

THE FINAL RESULT

We can split a set of n unit disks in O(n) time.

So, we can compute H(R) in (n logn) time.



12

THE FINAL RESULT

We can split a set of n unit disks in O(n) time.

So, we can compute H(R) in (n logn) time.

We can unite a pair of onions in O(k2 logn) time.



12

THE FINAL RESULT

We can split a set of n unit disks in O(n) time.

So, we can compute H(R) in (n logn) time.

We can unite a pair of onions in O(k2 logn) time.

So, we can reconstruct an onion in O(n log k) time.



13

THANK YOU!

any questions?


