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Maarten Löffler Wolfgang Mulzer
Freie Universität BerlinUniversiteit Utrecht



2

CHAPTER I

THE PROBLEM



3

PREPROCESSING PARADIGM



3

PREPROCESSING PARADIGM

Once upon a time, we were given R.



3

PREPROCESSING PARADIGM

Once upon a time, we were given R.

R



3

PREPROCESSING PARADIGM

Once upon a time, we were given R.

R

Soon, we get P: one point per region of R.



3

PREPROCESSING PARADIGM

Once upon a time, we were given R.

R

Soon, we get P: one point per region of R.

P



3

PREPROCESSING PARADIGM

Once upon a time, we were given R.

R

Soon, we get P: one point per region of R.

P

What we really want is some structure S(P ).



3

PREPROCESSING PARADIGM

Once upon a time, we were given R.

R

Soon, we get P: one point per region of R.

P

What we really want is some structure S(P ).

S(P )



3

PREPROCESSING PARADIGM

Once upon a time, we were given R.

R

Soon, we get P: one point per region of R.

P

What we really want is some structure S(P ).

S(P )

But time is precious!
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PREPROCESSING PARADIGM

R P

S(P )
H(R)

Linear time algorithms are known for:

[Held & Mitchell]

[L & Snoeyink]

[Ezra & Mulzer]

• Triangulations

• Delaunay triangulations

Superlinear, but o(n logn):

• Convex hull (lines)
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ONIONS

Let P be a set of n points in the plane.

DEFINITION: The onion of P is the convex hull

of P, plus the onion of the rest of the points.

P

Onions have many useful and tasty applications.
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CHAPTER II

THE SOLUTION
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Consider a set R of n disjoint unit disks.

LEMMA: There exists a line that intersects at

most
√
n logn disks and has at most half of the

disks completely on each side.

R

[Alon et al.]
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PREPROCESSING ALGORITHM

Consider a set R of n disjoint unit disks.

We apply the lemma recursively, and get a

binary space partition tree T.

R

T

LEMMA: T has height logn+O(1).
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PREPROCESSING ALGORITHM

R

T

HINT: T = H(R) is our magical structure!
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RECONSTRUCTION ALGORITHM

First, locate P in R and T.

Then, recursively unite the onions.

Remove any empty leaves of T.

P

Done!



9

BUT!



9

BUT! ...how do you unite two onions?



9

BUT! ...how do you unite two onions?



9

BUT! ...how do you unite two onions?

OBSERVATION: We can find the convex hull of two

onions in O(logn) time.



9

BUT! ...how do you unite two onions?

OBSERVATION: We can find the convex hull of two

onions in O(logn) time.



9

BUT! ...how do you unite two onions?

OBSERVATION: We can find the convex hull of two

onions in O(logn) time.

Let’s remove it and recurse.



9

BUT! ...how do you unite two onions?

OBSERVATION: We can find the convex hull of two

onions in O(logn) time.

Let’s remove it and recurse.



9

BUT! ...how do you unite two onions?

OBSERVATION: We can find the convex hull of two

onions in O(logn) time.

Let’s remove it and recurse.

Unfortunately, what is left are no longer

proper onions...
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ONION RESTAURATION & UNIFICATION

Compute convex hulls of the individual onions.

Recurse once again.

Etc...

That took O(k2 logn) time to compute k layers.
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THE FINAL RESULT

We can split a set of n unit disks in O(n) time.

So, we can compute H(R) in (n logn) time.

We can unite a pair of onions in O(k2 logn) time.

So, we can reconstruct an onion in O(n log k) time.
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THANK YOU!

any questions?


