UNIONS OF ONIONS

Maarten Loffler Wolfgang Mulzer

Universitert Utrecht Frete Universaitat Berlan



CHAPTER I




PREPROCESSING PARADIGM




PREPROCESSING PARADIGM

Once upon a time, we were given R.




PREPROCESSING PARADIGM

Once upon a time, we were given R.

a;e



PREPROCESSING PARADIGM

Once upon a time, we were given R.

Soon, we get P: one point per region of R.

a;e




PREPROCESSING PARADIGM

Once upon a time, we were given R.

Soon, we get P: one point per region of R.

ane—Tpe




PREPROCESSING PARADIGM

Once upon a time, we were given R.
Soon, we get P: one point per region of R.

What we really want is some structure S(P).

ane—Tpe




PREPROCESSING PARADIGM

Once upon a time, we were given R.
Soon, we get P: one point per region of R.

What we really want is some structure S(P).

T

S(P)

=N,




PREPROCESSING PARADIGM

Once upon a time, we were given R.
Soon, we get P: one point per region of R.
What we really want is some structure S(P).

But time 1is precious!

aRe —T;2




PREPROCESSING PARADIGM

QUESTION: Can we do some of the computation of
S(P) before we know P?

aRe —T;2




PREPROCESSING PARADIGM

QUESTION: Can we do some of the computation of
S(P) before we know P?

First, compute an intermediary structure H(R).

T

S(P)

=N,




PREPROCESSING PARADIGM

QUESTION: Can we do some of the computation of
S(P) before we know P?

First, compute an intermediary structure H(R).

\ | e
N




PREPROCESSING PARADIGM

QUESTION: Can we do some of the computation of
S(P) before we know P?

First, compute an intermediary structure H(R).

Then, once we get P, compute S(P) using H(R).

\ | e
N




PREPROCESSING PARADIGM

QUESTION: Can we do some of the computation of
S(P) before we know P?

First, compute an intermediary structure H(R).

Then, once we get P, compute S(P) using H(R).

\ | e
N




PREPROCESSING PARADIGM

Linear time algorithms are known for:

e Triangulations [Held & Mitchell!
e Delaunay triangulations [L & Snoeyink.

Superlinear, but o(nlogn):
e Convex hull (lines) [Ezra & Mulzer]

.







ONIONS
Let P be a set of n points in the plane.




ONIONS

Let P be a set of n points in the plane.



ONIONS

Let P be a set of n points in the plane.

DEFINITION: The onion of P is the convex hull
of P, plus the onion of the rest of the points.



ONIONS

Let P be a set of n points in the plane.

DEFINITION: The onion of P is the convex hull
of P, plus the onion of the rest of the points.




ONIONS

Let P be a set of n points in the plane.

DEFINITION: The onion of P is the convex hull
of P, plus the onion of the rest of the points.




ONIONS

Let P be a set of n points in the plane.

DEFINITION: The onion of P is the convex hull
of P, plus the onion of the rest of the points.




ONIONS

Let P be a set of n points in the plane.

DEFINITION: The onion of P is the convex hull
of P, plus the onion of the rest of the points.

Onions have many useful and tasty applications.




THE ONION PREPROCESSING PROBLEM



THE ONION PREPROCESSING PROBLEM
Let R be a set of n disjoint unit disks.



THE ONION PREPROCESSING PROBLEM
Let R be a set of n disjoint unit disks.




THE ONION PREPROCESSING PROBLEM
Let R be a set of n disjoint unit disks.

Preprocessing algorithm: compute some magical
structure H(R).




THE ONION PREPROCESSING PROBLEM
Let R be a set of n disjoint unit disks.

Preprocessing algorithm: compute some magical
structure H(R).




THE ONION PREPROCESSING PROBLEM

Let R be a set of n disjoint unit disks.

Preprocessing algorithm: compute some magical
structure H(R).

Reconstruction algorithm: given P and H(R),
compute the onion of P.




THE ONION PREPROCESSING PROBLEM

Let R be a set of n disjoint unit disks.

Preprocessing algorithm: compute some magical
structure H(R).

Reconstruction algorithm: given P and H(R),
compute the onion of P.




THE ONION PREPROCESSING PROBLEM

Let R be a set of n disjoint unit disks.

Preprocessing algorithm: compute some magical
structure H(R).

Reconstruction algorithm: given P and H(R),
compute the onion of P.




THE ONION PREPROCESSING PROBLEM
Let R be a set of n disjoint unit disks.

Preprocessing algorithm: compute some magical
structure H(R).

Reconstruction algorithm: given P and H(R),
compute the onion of P.




CHAPTER II




PREPROCESSING ALGORITHM




PREPROCESSING ALGORITHM

Consider a set R of n disjoint unit disks.




PREPROCESSING ALGORITHM

Consider a set R of n disjoint unit disks.




PREPROCESSING ALGORITHM

Consider a set R of n disjoint unit disks.

LEMMA: There exists a line that i1ntersects at

most v/nlogn disks and has at most half of the
disks completely on each stide.




PREPROCESSING ALGORITHM

Consider a set R of n disjoint unit disks.

LEMMA: There exists a line that i1ntersects at

most v/nlogn disks and has at most half of the
disks completely on each stide.




PREPROCESSING ALGORITHM

Consider a set R of n disjoint unit disks.

LEMMA: There exists a line that i1ntersects at

most v/nlogn disks and has at most half of the
disks completely on each side. [Alon et al.]




PREPROCESSING ALGORITHM

Consider a set R of n disjoint unit disks.

We apply the lemma recursively, and get a
binary space partition tree 1.




PREPROCESSING ALGORITHM

Consider a set R of n disjoint unit disks.

We apply the lemma recursively, and get a
binary space partition tree 1.




PREPROCESSING ALGORITHM

Consider a set R of n disjoint unit disks.

We apply the lemma recursively, and get a
binary space partition tree 1.




PREPROCESSING ALGORITHM

Consider a set R of n disjoint unit disks.

We apply the lemma recursively, and get a
binary space partition tree 1.




PREPROCESSING ALGORITHM

Consider a set R of n disjoint unit disks.

We apply the lemma recursively, and get a
binary space partition tree 1.




PREPROCESSING ALGORITHM

Consider a set R of n disjoint unit disks.

We apply the lemma recursively, and get a
binary space partition tree 1.




PREPROCESSING ALGORITHM

Consider a set R of n disjoint unit disks.

We apply the lemma recursively, and get a
binary space partition tree 1.




PREPROCESSING ALGORITHM

Consider a set R of n disjoint unit disks.

We apply the lemma recursively, and get a
binary space partition tree 1.

R

Ol
ool e

-y
© 0

S




PREPROCESSING ALGORITHM

Consider a set R of n disjoint unit disks.

We apply the lemma recursively, and get a
binary space partition tree 1.




PREPROCESSING ALGORITHM

Consider a set R of n disjoint unit disks.

We apply the lemma recursively, and get a
binary space partition tree 1.




PREPROCESSING ALGORITHM

Consider a set R of n disjoint unit disks.

We apply the lemma recursively, and get a
binary space partition tree 1.

LEMMA: T has height logn + O(1).




PREPROCESSING ALGORITHM
HINT: T = H(R) <s our magical structure!

°/0Qg




RECONSTRUCTION ALGORITHM




RECONSTRUCTION ALGORITHM
First, locate P in R and 7.




RECONSTRUCTION ALGORITHM
First, locate P in R and 7.




RECONSTRUCTION ALGORITHM
First, locate P in R and 7T'.




RECONSTRUCTION ALGORITHM
First, locate P in R and 7T'.

Remove any empty leaves of 1.




RECONSTRUCTION ALGORITHM

First, locate P in R and T'.

Remove any empty leaves of 1.

T

/'

-/



RECONSTRUCTION ALGORITHM
First, locate P in R and T'.

Remove any empty leaves of 1.

Then, recursively unite the onions.

T

/'

-/



RECONSTRUCTION ALGORITHM
First, locate P in R and T'.

Remove any empty leaves of 1.

Then, recursively unite the onions.




RECONSTRUCTION ALGORITHM
First, locate P in R and T'.

Remove any empty leaves of 1.

Then, recursively unite the onions.

\// S/
N L N




RECONSTRUCTION ALGORITHM
First, locate P in R and T'.

Remove any empty leaves of 1.

Then, recursively unite the onions.

) AR !
//\

Pt A A S




RECONSTRUCTION ALGORITHM
First, locate P in R and T'.

Remove any empty leaves of 1.

Then, recursively unite the onions.

>

AN/

VANYS




RECONSTRUCTION ALGORITHM
First, locate P in R and T'.

Remove any empty leaves of 1.

Then, recursively unite the onions.

YRR




RECONSTRUCTION ALGORITHM
First, locate P in R and T'.

Remove any empty leaves of 1.

Then, recursively unite the onions.

T

,x . Q
LT ATS




RECONSTRUCTION ALGORITHM
First, locate P in R and T'.

Remove any empty leaves of 1.

Then, recursively unite the onions.

[\ @/
<Y DD




RECONSTRUCTION ALGORITHM
First, locate P in R and T'.

Remove any empty leaves of 1.

Then, recursively unite the onions.




RECONSTRUCTION ALGORITHM
First, locate P in R and T'.

Remove any empty leaves of 1.

Then, recursively unite the onions.




RECONSTRUCTION ALGORITHM
First, locate P in R and T'.

Remove any empty leaves of 1.

Then, recursively unite the onions.




RECONSTRUCTION ALGORITHM
First, locate P in R and T'.

Remove any empty leaves of 1.

Then, recursively unite the onions.




RECONSTRUCTION ALGORITHM
First, locate P in R and T'.

Remove any empty leaves of 1.

Then, recursively unite the onions.




RECONSTRUCTION ALGORITHM
First, locate P in R and T'.

Remove any empty leaves of 1.

Then, recursively unite the onions.

Done'!







BUT! ...how do you unite two onions?




BUT! ...how do you unite two onions?




BUT! ...how do you unite two onions?

OBSERVATION: We can find the convexr hull of two
ontons in O(logn) time.




BUT! ...how do you unite two onions?

OBSERVATION: We can find the convexr hull of two
ontons in O(logn) time.




BUT! ...how do you unite two onions?

OBSERVATION: We can find the convexr hull of two
ontons in O(logn) time.

Let’s remove 1t and recurse.




BUT! ...how do you unite two onions?

OBSERVATION: We can find the convexr hull of two
ontons in O(logn) time.

Let’s remove 1t and recurse.




BUT! ...how do you unite two onions?

OBSERVATION: We can find the convexr hull of two
ontons in O(logn) time.

Let’s remove 1t and recurse.

Unfortunately, what is left are no longer
proper onions...




ONION RESTAURATION & UNIFICATION




ONION RESTAURATION & UNIFICATION

Compute convex hulls of the individual onions.




ONION RESTAURATION & UNIFICATION

Compute convex hulls of the individual onions.




ONION RESTAURATION & UNIFICATION

Compute convex hulls of the individual onions.




ONION RESTAURATION & UNIFICATION

Compute convex hulls of the individual onions.

Recurse once again.




ONION RESTAURATION & UNIFICATION

Compute convex hulls of the individual onions.

Recurse once again.




ONION RESTAURATION & UNIFICATION

Compute convex hulls of the individual onions.

Recurse once again.




ONION RESTAURATION & UNIFICATION

Compute convex hulls of the individual onions.

Recurse once again.




ONION RESTAURATION & UNIFICATION

Compute convex hulls of the individual onions.

Recurse once again.




ONION RESTAURATION & UNIFICATION

Compute convex hulls of the individual onions.

Recurse once again.

Etc...




ONION RESTAURATION & UNIFICATION

Compute convex hulls of the individual onions.

Recurse once again.

Etc...




ONION RESTAURATION & UNIFICATION

Compute convex hulls of the individual onions.

Recurse once again.

Etc...




ONION RESTAURATION & UNIFICATION

Compute convex hulls of the individual onions.

Recurse once again.

Etc...




ONION RESTAURATION & UNIFICATION

Compute convex hulls of the individual onions.

Recurse once again.

Etc...




ONION RESTAURATION & UNIFICATION

Compute convex hulls of the individual onions.

Recurse once again.

Etc...

T =




ONION RESTAURATION & UNIFICATION

Compute convex hulls of the individual onions.

Recurse once again.

Etc...

g =




ONION RESTAURATION & UNIFICATION

Compute convex hulls of the individual onions.

Recurse once again.

Etc...

L L



ONION RESTAURATION & UNIFICATION

Compute convex hulls of the individual onions.

Recurse once again.

Etc...

(e



ONION RESTAURATION & UNIFICATION

Compute convex hulls of the individual onions.

Recurse once again.

Etc...



ONION RESTAURATION & UNIFICATION

Compute convex hulls of the individual onions.

Recurse once again.

Etc...



ONION RESTAURATION & UNIFICATION

Compute convex hulls of the individual onions.

Recurse once again.

Etc...



ONION RESTAURATION & UNIFICATION

Compute convex hulls of the individual onions.

Recurse once again.

Etc...



ONION RESTAURATION & UNIFICATION

Compute convex hulls of the individual onions.

Recurse once again.

Etc...



ONION RESTAURATION & UNIFICATION

Compute convex hulls of the individual onions.

Recurse once again.

Etc...



ONION RESTAURATION & UNIFICATION

Compute convex hulls of the individual onions.

Recurse once again.

Etc...



ONION RESTAURATION & UNIFICATION

Compute convex hulls of the individual onions.

Recurse once again.

Etc...



ONION RESTAURATION & UNIFICATION

Compute convex hulls of the individual onions.

Recurse once again.

Etc...



ONION RESTAURATION & UNIFICATION

Compute convex hulls of the individual onions.

Recurse once again.

Etc...

=




ONION RESTAURATION & UNIFICATION

Compute convex hulls of the individual onions.

Recurse once again.

Etc...




ONION RESTAURATION & UNIFICATION

Compute convex hulls of the individual onions.

Recurse once again.

Etc...




ONION RESTAURATION & UNIFICATION

Compute convex hulls of the individual onions.

Recurse once again.

Etc...




ONION RESTAURATION & UNIFICATION

Compute convex hulls of the individual onions.

Recurse once again.

Etc...

That took O(k®logn) time to compute k layers.







THE FINAL RESULT

We can split a set of nm unit disks in O(n) time.



THE FINAL RESULT

We can split a set of nm unit disks in O(n) time.

So, we can compute H(R) in (nlogn) time.



THE FINAL RESULT

We can split a set of n unit disks in O(n) time.
So, we can compute H(R) in (nlogn) time.

We can unite a pair of onions in O(k°logn) time.



12

THE FINAL RESULT

We can split a set of n unit disks in O(n) time.
So, we can compute H(R) in (nlogn) time.

We can unite a pair of onions in O(k°logn) time.

So, we can reconstruct an onion in O(nlogk) time.






