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PREPROCESSING PARADIGM

Once upon a time, we were given R.
Soon, we get P: one point per region of R.
What we really want is some structure S(P).

But time 1is precious!
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PREPROCESSING PARADIGM

Linear time algorithms are known for:

e Triangulations [Held & Mitchell!
e Delaunay triangulations [L & Snoeyink.

Superlinear, but o(nlogn):
e Convex hull (lines) [Ezra & Mulzer]

.
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Let P be a set of n points in the plane.

DEFINITION: The onion of P is the convex hull
of P, plus the onion of the rest of the points.

Onions have many useful and tasty applications.
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Consider a set R of n disjoint unit disks.

We apply the lemma recursively, and get a
binary space partition tree 1.

LEMMA: T has height logn + O(1).




PREPROCESSING ALGORITHM
HINT: T = H(R) <s our magical structure!

°/0Qg




RECONSTRUCTION ALGORITHM




RECONSTRUCTION ALGORITHM
First, locate P in R and 7.




RECONSTRUCTION ALGORITHM
First, locate P in R and 7.




RECONSTRUCTION ALGORITHM
First, locate P in R and 7T'.




RECONSTRUCTION ALGORITHM
First, locate P in R and 7T'.

Remove any empty leaves of 1.




RECONSTRUCTION ALGORITHM

First, locate P in R and T'.

Remove any empty leaves of 1.

T

/'

-/



RECONSTRUCTION ALGORITHM
First, locate P in R and T'.

Remove any empty leaves of 1.

Then, recursively unite the onions.

T

/'

-/



RECONSTRUCTION ALGORITHM
First, locate P in R and T'.

Remove any empty leaves of 1.

Then, recursively unite the onions.




RECONSTRUCTION ALGORITHM
First, locate P in R and T'.

Remove any empty leaves of 1.

Then, recursively unite the onions.

\// S/
N L N




RECONSTRUCTION ALGORITHM
First, locate P in R and T'.

Remove any empty leaves of 1.

Then, recursively unite the onions.

) AR !
//\

Pt A A S




RECONSTRUCTION ALGORITHM
First, locate P in R and T'.

Remove any empty leaves of 1.

Then, recursively unite the onions.

>

AN/

VANYS




RECONSTRUCTION ALGORITHM
First, locate P in R and T'.

Remove any empty leaves of 1.

Then, recursively unite the onions.

YRR




RECONSTRUCTION ALGORITHM
First, locate P in R and T'.

Remove any empty leaves of 1.

Then, recursively unite the onions.

T

,x . Q
LT ATS




RECONSTRUCTION ALGORITHM
First, locate P in R and T'.

Remove any empty leaves of 1.

Then, recursively unite the onions.

[\ @/
<Y DD




RECONSTRUCTION ALGORITHM
First, locate P in R and T'.

Remove any empty leaves of 1.

Then, recursively unite the onions.




RECONSTRUCTION ALGORITHM
First, locate P in R and T'.

Remove any empty leaves of 1.

Then, recursively unite the onions.




RECONSTRUCTION ALGORITHM
First, locate P in R and T'.

Remove any empty leaves of 1.

Then, recursively unite the onions.




RECONSTRUCTION ALGORITHM
First, locate P in R and T'.

Remove any empty leaves of 1.

Then, recursively unite the onions.




RECONSTRUCTION ALGORITHM
First, locate P in R and T'.

Remove any empty leaves of 1.

Then, recursively unite the onions.




RECONSTRUCTION ALGORITHM
First, locate P in R and T'.

Remove any empty leaves of 1.

Then, recursively unite the onions.

Done'!
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BUT! ...how do you unite two onions?

OBSERVATION: We can find the convexr hull of two
ontons in O(logn) time.

Let’s remove 1t and recurse.

Unfortunately, what is left are no longer
proper onions...
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Compute convex hulls of the individual onions.

Recurse once again.

Etc...

That took O(k®logn) time to compute k layers.







THE FINAL RESULT

We can split a set of nm unit disks in O(n) time.



THE FINAL RESULT

We can split a set of nm unit disks in O(n) time.

So, we can compute H(R) in (nlogn) time.



THE FINAL RESULT

We can split a set of n unit disks in O(n) time.
So, we can compute H(R) in (nlogn) time.

We can unite a pair of onions in O(k°logn) time.



12

THE FINAL RESULT

We can split a set of n unit disks in O(n) time.
So, we can compute H(R) in (nlogn) time.

We can unite a pair of onions in O(k°logn) time.

So, we can reconstruct an onion in O(nlogk) time.






