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Schnyder (1990):
An (n− 1)× (n− 1) section of the integer
lattice is n-universal.

Universal point sets

Def.: A point set S ⊂ R2 is n-universal if every n-vertex planar
graph has a straight-line embedding such that the vertices map
into S.

Brandenburg (2008): A 4
3n ×

2
3n section of

the integer lattice is also n-universal.

Frati & Patrignani (2008): If a rectangular section of the integer
lattice is n-universal, it must contain at least n2/9 points.
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Bannister et al. (2013) there is an n-universal point set of size
n2/4 + Θ(n) for all n ∈ N. (not a lattice section)
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Open Problem: Find n-universal point sets of size o(n2).
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For example, every set of 4 points in the plane is 1-bend
4-universal, because K4 embeds on every 4-element point set
with 1-bend edges.
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Previous Results vs New Results

Everett et al. (2010): ∀n ∈ N ∃Sn ⊆ R2 such that |Sn| = n,
every n-vertex planar graph has a 1-bend embedding in which
all vertices are mapped into Sn. (Bends not in Sn.)

Dujmović et al. (2013): ∀n ∈ N ∃Sn ⊆ R2 : |Sn| = O(n2/ log n)
such that every n-vertex planar graph has a 1-bend polyline
embedding in which all vertices and bend points are mapped
into S′n.

Theorem (GD 2015). ∀n ∈ N ∃Sn ⊆ R2 : |Sn| ≤ 6n
such that every n-vertex planar graph admits a 1-bend
embedding in which all vertices and bend points are
mapped into Sn.
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Topological book embedding on 2 pages

Di Giacomo, Didimo, Liotta, and Wismath (2005):
“biarc diagram”

Cardinal et al (2015): Every
n-vertex planar graph admits a
biarc diagram with at most
n− 4 biarcs for n ≥ 4.
⇒ W.l.o.g. at least n− 1
edges are below the spine.
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Embedding Algorithm

Example:

No edge crossings.

Label the vertices along the spine by
p1, . . . , pm, where m ≤ 3n− 5.

Embed each proper vertex pi at point ai;
and each bend point pj at bj .

Proper arcs below the spine become straight-line edges.
Biarcs become 1-bend edges.
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Open problems & Future work

OPEN: Does a linear-size universal point set for one-bend
drawings exist on a subexponential resolution?

OPEN: Are there (n, %)-universal point set for % > 1
3?

New variants

Def.: A point set S ⊂ R2 is (n, %)-bend universal if every
n-vertex planar graph G = (V,E) admits an embedding such
that at least %|E| edges are straight-lines, any other edge has
at most one bend (the bend point may be required to be in S).

The point set {a1, . . . , a5n−4, b1, . . . , b5n−4} in our
construction is (n, 1
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(At least 1

3 |E| edges are proper arcs below the spine.)



Merci!


