Linear-size Universal Point Sets for One-Bend Drawings

Maarten Löffler Utrecht University Utrecht, The Netherlands **Csaba D. Tóth** Cal State Northridge Los Angeles, CA, USA

Def.: A point set $S \subset \mathbb{R}^2$ is *n*-universal if every *n*-vertex planar graph has a straight-line embedding such that the vertices map into S.

n-2

De Fraysseix, Pach, & Pollack (1990) and Schnyder (1990): An $(n-1) \times (n-1)$ section of the integer lattice is *n*-universal.

Def.: A point set $S \subset \mathbb{R}^2$ is *n*-universal if every *n*-vertex planar graph has a straight-line embedding such that the vertices map into S.

n-2

De Fraysseix, Pach, & Pollack (1990) and Schnyder (1990): An $(n-1) \times (n-1)$ section of the integer lattice is *n*-universal.

Brandenburg (2008): A $\frac{4}{3}n \times \frac{2}{3}n$ section of the integer lattice is also *n*-universal.

Def.: A point set $S \subset \mathbb{R}^2$ is *n*-universal if every *n*-vertex planar graph has a straight-line embedding such that the vertices map into S.

n-2

De Fraysseix, Pach, & Pollack (1990) and Schnyder (1990): An $(n-1) \times (n-1)$ section of the integer lattice is *n*-universal.

Brandenburg (2008): A $\frac{4}{3}n \times \frac{2}{3}n$ section of the integer lattice is also *n*-universal.

Frati & Patrignani (2008): If a rectangular section of the integer lattice is *n*-universal, it must contain at least $n^2/9$ points.

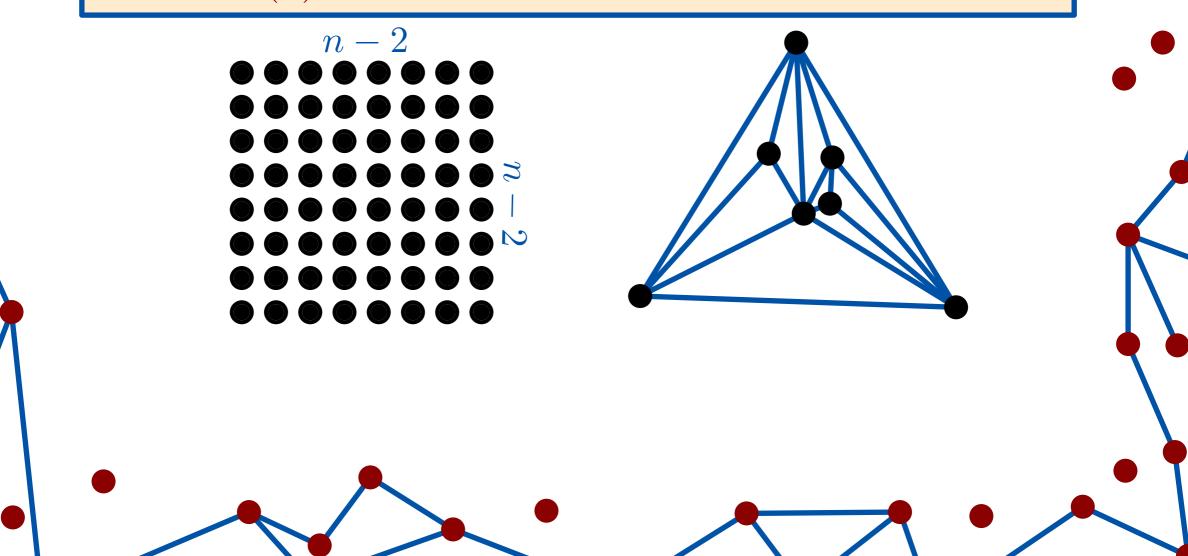
Bannister et al. (2013) there is an *n*-universal point set of size $n^2/4 + \Theta(n)$ for all $n \in \mathbb{N}$. (not a lattice section)

Bannister et al. (2013) there is an *n*-universal point set of size $n^2/4 + \Theta(n)$ for all $n \in \mathbb{N}$. (not a lattice section)

Kurowski (2004): The size of an *n*-univeral set is at least 1.235n - o(n).

Bannister et al. (2013) there is an *n*-universal point set of size $n^2/4 + \Theta(n)$ for all $n \in \mathbb{N}$. (not a lattice section)

Kurowski (2004): The size of an *n*-univeral set is at least 1.235n - o(n).



n-2

Bannister et al. (2013) there is an *n*-universal point set of size $n^2/4 + \Theta(n)$ for all $n \in \mathbb{N}$. (not a lattice section)

Kurowski (2004): The size of an *n*-univeral set is at least 1.235n - o(n).

k-Bend Universal Point Sets

k-Bend Universal Point Sets

Def.: A point set $S \subset \mathbb{R}^2$ is *k-bend n-universal* if every *n*-vertex planar graph admits an embedding such that every edge is a polyline with at most k bends (i.e., interior vertices), and all vertices **and** all bend points map into S.

k-Bend Universal Point Sets

Def.: A point set $S \subset \mathbb{R}^2$ is *k-bend n-universal* if every *n*-vertex planar graph admits an embedding such that every edge is a polyline with at most k bends (i.e., interior vertices), and all vertices **and** all bend points map into S.

For example, every set of 4 points in the plane is 1-bend 4-universal, because K_4 embeds on every 4-element point set with 1-bend edges.

Everett et al. (2010): $\forall n \in \mathbb{N} \exists S_n \subseteq \mathbb{R}^2$ such that $|S_n| = n$, every *n*-vertex planar graph has a 1-bend embedding in which **all vertices** are mapped into S_n . (Bends not in S_n .)

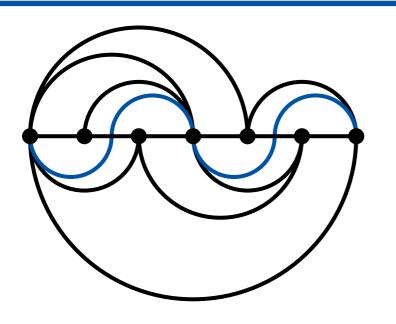
Everett et al. (2010): $\forall n \in \mathbb{N} \exists S_n \subseteq \mathbb{R}^2$ such that $|S_n| = n$, every *n*-vertex planar graph has a 1-bend embedding in which **all vertices** are mapped into S_n . (Bends not in S_n .)

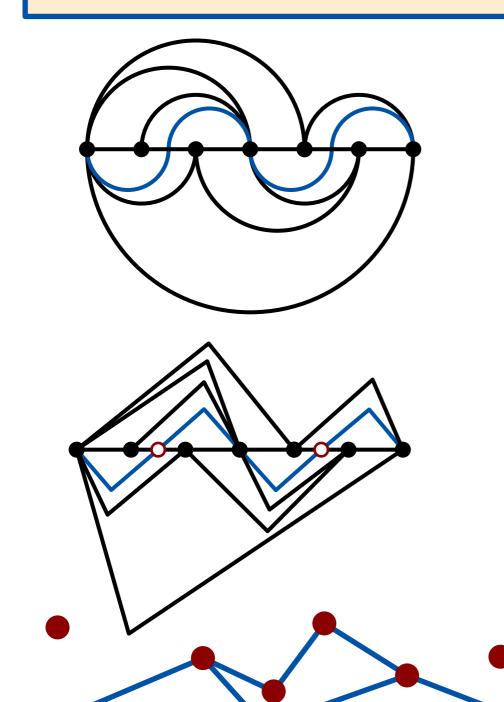
Dujmović et al. (2013): $\forall n \in \mathbb{N} \exists S_n \subseteq \mathbb{R}^2 : |S_n| = O(n^2/\log n)$ such that every *n*-vertex planar graph has a 1-bend polyline embedding in which **all vertices and bend points** are mapped into S'_n .

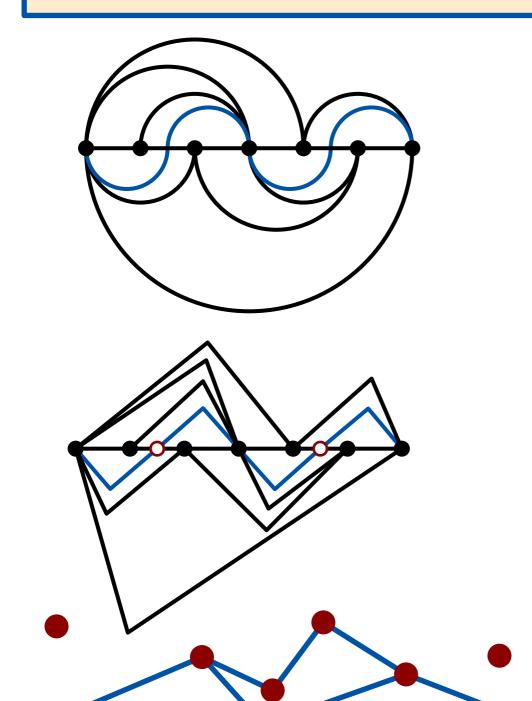
Everett et al. (2010): $\forall n \in \mathbb{N} \exists S_n \subseteq \mathbb{R}^2$ such that $|S_n| = n$, every *n*-vertex planar graph has a 1-bend embedding in which **all vertices** are mapped into S_n . (Bends not in S_n .)

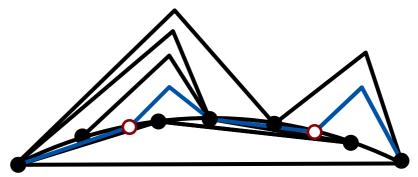
Dujmović et al. (2013): $\forall n \in \mathbb{N} \exists S_n \subseteq \mathbb{R}^2 : |S_n| = O(n^2/\log n)$ such that every *n*-vertex planar graph has a 1-bend polyline embedding in which **all vertices and bend points** are mapped into S'_n .

Theorem (GD 2015). $\forall n \in \mathbb{N} \exists S_n \subseteq \mathbb{R}^2 : |S_n| \leq 6n$ such that every *n*-vertex planar graph admits a 1-bend embedding in which all vertices and bend points are mapped into S_n .

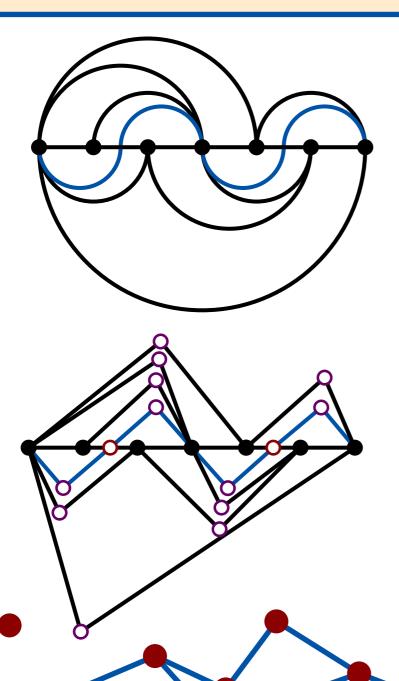


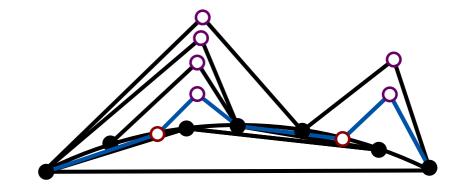






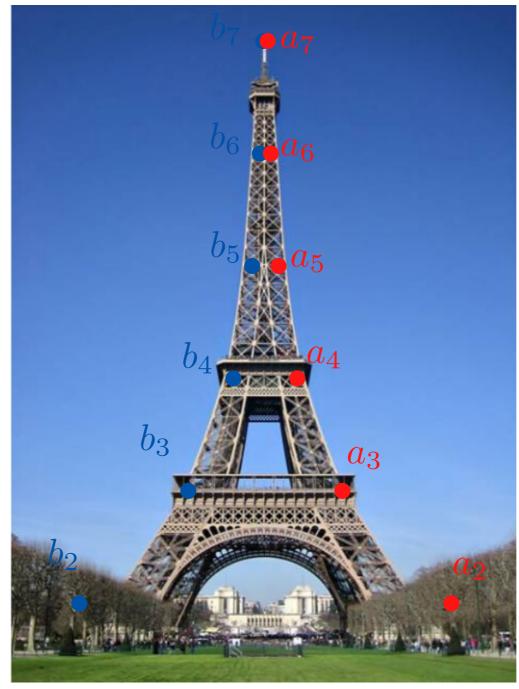
Di Giacomo, Didimo, Liotta, and Wismath (2005): "biarc diagram"





Cardinal et al (2015): Every n-vertex planar graph admits a biarc diagram with at most n - 4 biarcs for $n \ge 4$. \Rightarrow W.l.o.g. at least n - 1edges are below the spine.

 b_1



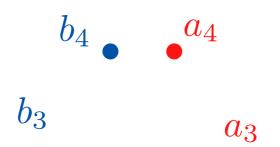
 a_1

 b_1

 $b_7 \bullet a_7$

 $b_6 \bullet a_6$

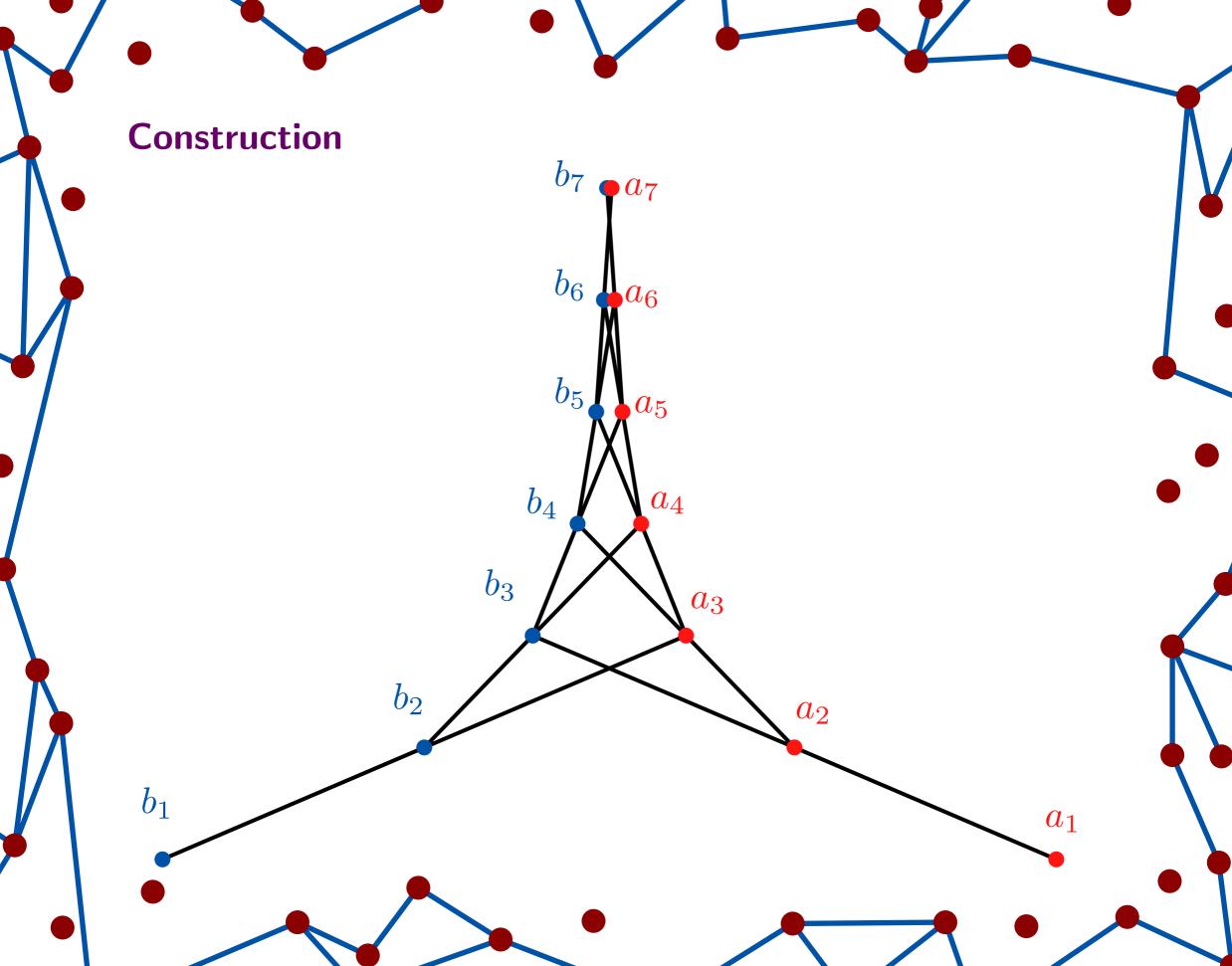
 b_5 a_5

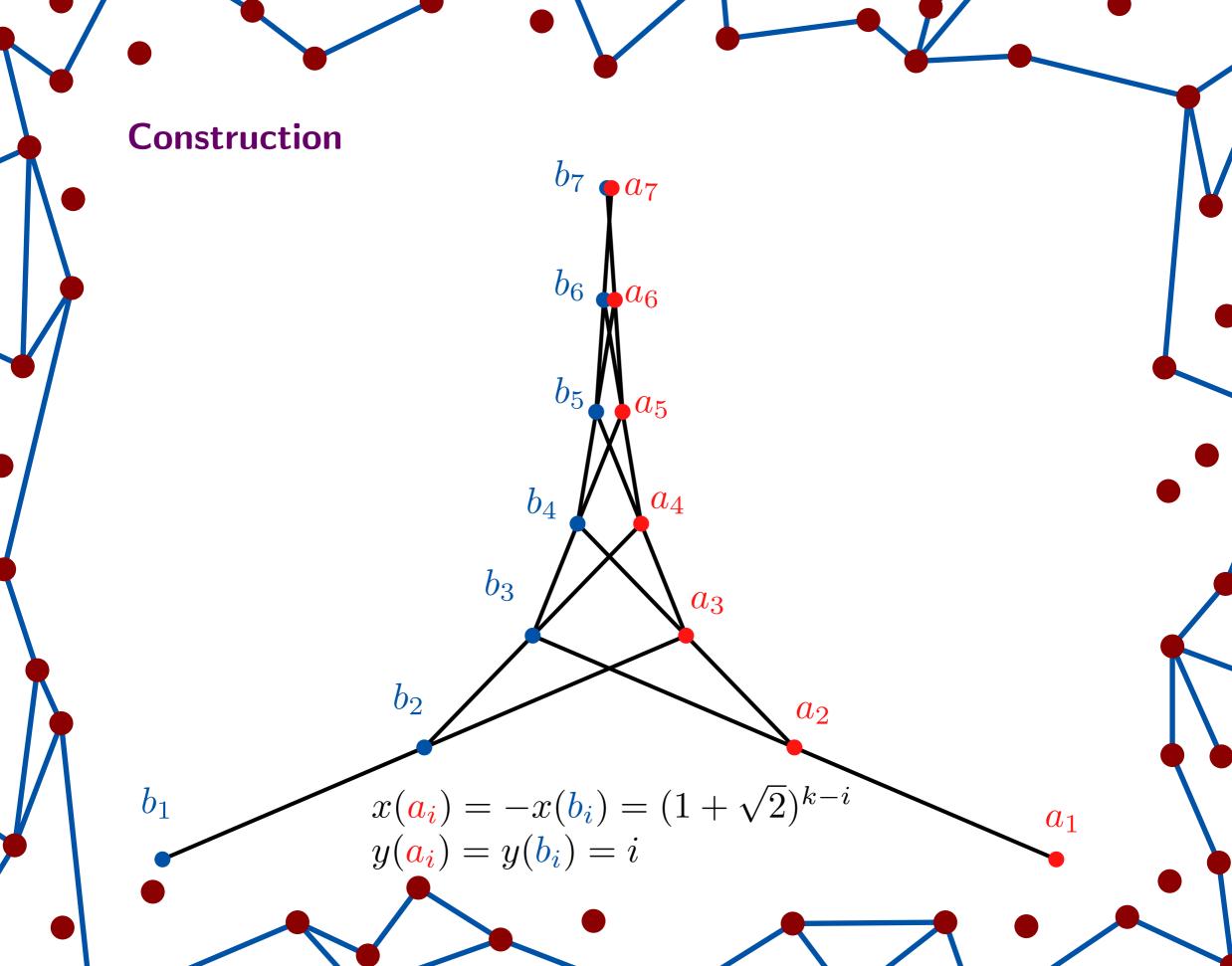


 b_2



 a_1

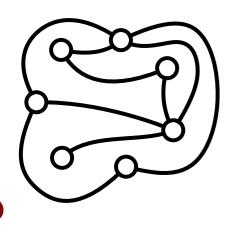




Embedding Algorithm

Input: a planar graph with $n \ge 4$ vertices.

Input: a planar graph with $n \ge 4$ vertices.



Input: a planar graph with $n \ge 4$ vertices.

Compute a 2-page book embedding with at least n-1 proper arcs below the spine using Cardinal et al. (2015).

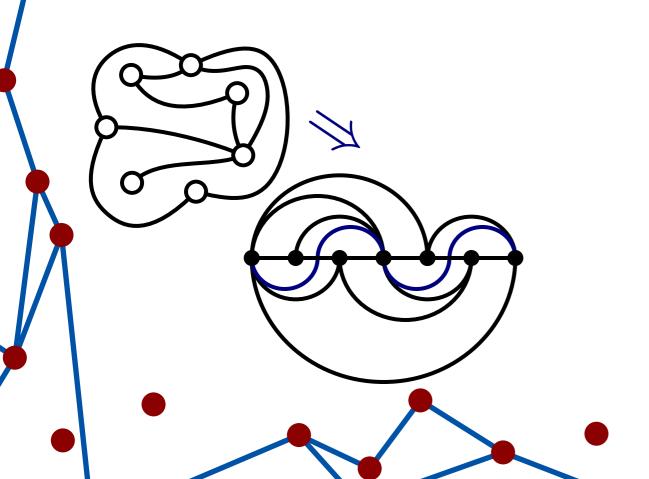
Input: a planar graph with $n \ge 4$ vertices.

Compute a 2-page book embedding with at least n-1 proper arcs below the spine using Cardinal et al. (2015).

Input: a planar graph with $n \ge 4$ vertices.

Compute a 2-page book embedding with at least n-1 proper arcs below the spine using Cardinal et al. (2015).

Deform every proper arc above the spine into a biarc.



Input: a planar graph with $n \ge 4$ vertices.

Compute a 2-page book embedding with at least n-1 proper arcs below the spine using Cardinal et al. (2015).

Deform every proper arc above the spine into a biarc.

Input: a planar graph with $n \ge 4$ vertices.

Compute a 2-page book embedding with at least n-1 proper arcs below the spine using Cardinal et al. (2015).

Deform every proper arc above the spine into a biarc.

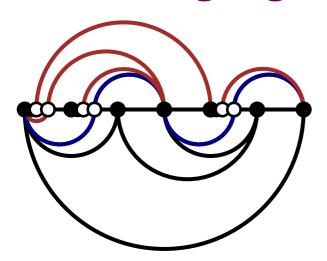
Subdivide each biarc with a new vertex on the spine.

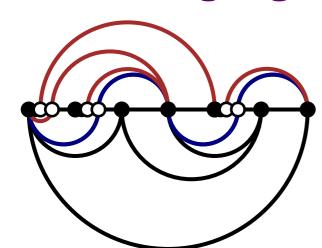
Input: a planar graph with $n \ge 4$ vertices.

Compute a 2-page book embedding with at least n-1 proper arcs below the spine using Cardinal et al. (2015).

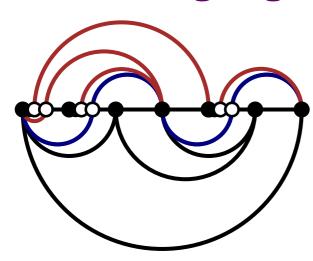
Deform every proper arc above the spine into a biarc.

Subdivide each biarc with a new vertex on the spine.



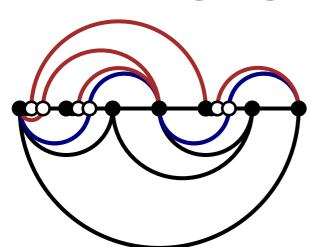


Label the vertices along the spine by p_1, \ldots, p_m , where $m \leq 3n-5$.



Label the vertices along the spine by p_1, \ldots, p_m , where $m \leq 3n-5$.

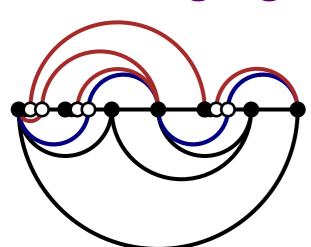
Embed each proper vertex p_i at point a_i ; and each bend point p_j at b_j .



Label the vertices along the spine by p_1, \ldots, p_m , where $m \leq 3n - 5$.

Embed each proper vertex p_i at point a_i ; and each bend point p_j at b_j .

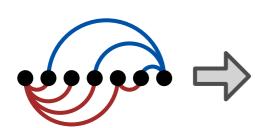
Example:



Label the vertices along the spine by p_1, \ldots, p_m , where $m \leq 3n - 5$.

Embed each proper vertex p_i at point a_i ; and each bend point p_j at b_j .

Example:



Proper arcs below the spine become straight-line edges. Biarcs become 1-bend edges. No edge crossings.

OPEN: Does a linear-size universal point set for one-bend drawings exist on a subexponential resolution?

OPEN: Does a linear-size universal point set for one-bend drawings exist on a subexponential resolution?

New variants

OPEN: Does a linear-size universal point set for one-bend drawings exist on a subexponential resolution?

New variants

Def.: A point set $S \subset \mathbb{R}^2$ is (n, ϱ) -bend universal if every *n*-vertex planar graph G = (V, E) admits an embedding such that at least $\varrho |E|$ edges are straight-lines, any other edge has at most one bend (the bend point may be required to be in S).

OPEN: Does a linear-size universal point set for one-bend drawings exist on a subexponential resolution?

New variants

Def.: A point set $S \subset \mathbb{R}^2$ is (n, ϱ) -bend universal if every *n*-vertex planar graph G = (V, E) admits an embedding such that at least $\varrho |E|$ edges are straight-lines, any other edge has at most one bend (the bend point may be required to be in S).

The point set $\{a_1, \ldots, a_{5n-4}, b_1, \ldots, b_{5n-4}\}$ in our construction is $(n, \frac{1}{3})$ -bend universal, for every $n \ge 4$. (At least $\frac{1}{3} |E|$ edges are proper arcs below the spine.)

OPEN: Does a linear-size universal point set for one-bend drawings exist on a subexponential resolution?

New variants

Def.: A point set $S \subset \mathbb{R}^2$ is (n, ϱ) -bend universal if every *n*-vertex planar graph G = (V, E) admits an embedding such that at least $\varrho |E|$ edges are straight-lines, any other edge has at most one bend (the bend point may be required to be in S).

The point set $\{a_1, \ldots, a_{5n-4}, b_1, \ldots, b_{5n-4}\}$ in our construction is $(n, \frac{1}{3})$ -bend universal, for every $n \ge 4$. (At least $\frac{1}{3} |E|$ edges are proper arcs below the spine.)

OPEN: Are there (n, ϱ) -universal point set for $\varrho > \frac{1}{3}$?

