Linear-size Universal Point Sets for One-Bend Drawings

Maarten Löffler
Utrecht University
Utrecht, The Netherlands

Csaba D. Tóth
Cal State Northridge Los Angeles, CA, USA

Universal point sets

Universal point sets

Def.: A point set $S \subset \mathbb{R}^{2}$ is n-universal if every n-vertex planar graph has a straight-line embedding such that the vertices map into S.

Universal point sets

Def.: A point set $S \subset \mathbb{R}^{2}$ is n-universal if every n-vertex planar graph has a straight-line embedding such that the vertices map into S.

Universal point sets

Def.: A point set $S \subset \mathbb{R}^{2}$ is n-universal if every n-vertex planar graph has a straight-line embedding such that the vertices map into S.

O

Universal point sets

Def.: A point set $S \subset \mathbb{R}^{2}$ is n-universal if every n-vertex planar graph has a straight-line embedding such that the vertices map into S.

$\stackrel{\square}{2}$
-

Universal point sets

Def.: A point set $S \subset \mathbb{R}^{2}$ is n-universal if every n-vertex planar graph has a straight-line embedding such that the vertices map into S.

\Rightarrow

Universal point sets

Def.: A point set $S \subset \mathbb{R}^{2}$ is n-universal if every n-vertex planar graph has a straight-line embedding such that the vertices map into S.

De Fraysseix, Pach, \& Pollack (1990) and Schnyder (1990):
An $(n-1) \times(n-1)$ section of the integer lattice is n-universal.

Universal point sets

Def.: A point set $S \subset \mathbb{R}^{2}$ is n-universal if every n-vertex planar graph has a straight-line embedding such that the vertices map into S.

De Fraysseix, Pach, \& Pollack (1990) and Schnyder (1990):
An $(n-1) \times(n-1)$ section of the integer lattice is n-universal.

Brandenburg (2008): A $\frac{4}{3} n \times \frac{2}{3} n$ section of the integer lattice is also n-universal.

Universal point sets

Def.: A point set $S \subset \mathbb{R}^{2}$ is n-universal if every n-vertex planar graph has a straight-line embedding such that the vertices map into S.

De Fraysseix, Pach, \& Pollack (1990) and Schnyder (1990):
An $(n-1) \times(n-1)$ section of the integer lattice is n-universal.

Brandenburg (2008): A $\frac{4}{3} n \times \frac{2}{3} n$ section of the integer lattice is also n-universal.

Frati \& Patrignani (2008): If a rectangular section of the integer lattice is n-universal, it must contain at least $n^{2} / 9$ points.

Universal point sets

Universal point sets
Bannister et al. (2013) there is an n-universal point set of size $n^{2} / 4+\Theta(n)$ for all $n \in \mathbb{N}$. (not a lattice section)

Universal point sets
Bannister et al. (2013) there is an n-universal point set of size $n^{2} / 4+\Theta(n)$ for all $n \in \mathbb{N}$. (not a lattice section)

Kurowski (2004): The size of an n-univeral set is at least $1.235 n-o(n)$.

Universal point sets

Bannister et al. (2013) there is an n-universal point set of size $n^{2} / 4+\Theta(n)$ for all $n \in \mathbb{N}$. (not a lattice section)

Kurowski (2004): The size of an n-univeral set is at least $1.235 n-o(n)$.

$n-2$

Universal point sets

Bannister et al. (2013) there is an n-universal point set of size $n^{2} / 4+\Theta(n)$ for all $n \in \mathbb{N}$. (not a lattice section)

Kurowski (2004): The size of an n-univeral set is at least $1.235 n-o(n)$.
$n-2$

Open Problem: Find n-universal point sets of size $o\left(n^{2}\right)$.
k-Bend Universal Point Sets

k-Bend Universal Point Sets

Def.: A point set $S \subset \mathbb{R}^{2}$ is k-bend n-universal if every n-vertex planar graph admits an embedding such that every edge is a polyline with at most k bends (i.e., interior verrtices), and all vertices and all bend points map into S.

k-Bend Universal Point Sets

Def.: A point set $S \subset \mathbb{R}^{2}$ is k-bend n-universal if every n-vertex planar graph admits an embedding such that every edge is a polyline with at most k bends (i.e., interior verrtices), and all vertices and all bend points map into S.

For example, every set of 4 points in the plane is 1-bend 4-universal, because K_{4} embeds on every 4-element point set with 1-bend edges.

Previous Results vs New Results

Previous Results vs New Results

Everett et al. (2010): $\forall n \in \mathbb{N} \exists S_{n} \subseteq \mathbb{R}^{2}$ such that $\left|S_{n}\right|=n$, every n-vertex planar graph has a 1-bend embedding in which all vertices are mapped into S_{n}. (Bends not in S_{n}.)

Previous Results vs New Results

Everett et al. (2010): $\forall n \in \mathbb{N} \exists S_{n} \subseteq \mathbb{R}^{2}$ such that $\left|S_{n}\right|=n$, every n-vertex planar graph has a 1-bend embedding in which all vertices are mapped into S_{n}. (Bends not in S_{n}.)

Dujmović et al. (2013): $\forall n \in \mathbb{N} \exists S_{n} \subseteq \mathbb{R}^{2}:\left|S_{n}\right|=O\left(n^{2} / \log n\right)$ such that every n-vertex planar graph has a 1 -bend polyline embedding in which all vertices and bend points are mapped into S_{n}^{\prime}.

Previous Results vs New Results

> Everett et al. (2010): $\forall n \in \mathbb{N} \exists S_{n} \subseteq \mathbb{R}^{2}$ such that $\left|S_{n}\right|=n$, every n-vertex planar graph has a 1-bend embedding in which all vertices are mapped into S_{n}. (Bends not in S_{n}.)

Dujmović et al. (2013): $\forall n \in \mathbb{N} \exists S_{n} \subseteq \mathbb{R}^{2}:\left|S_{n}\right|=O\left(n^{2} / \log n\right)$ such that every n-vertex planar graph has a 1 -bend polyline embedding in which all vertices and bend points are mapped into S_{n}^{\prime}.

Theorem (GD 2015). $\forall n \in \mathbb{N} \exists S_{n} \subseteq \mathbb{R}^{2}:\left|S_{n}\right| \leq 6 n$ such that every n-vertex planar graph admits a 1-bend embedding in which all vertices and bend points are mapped into S_{n}.

Topological book embedding on 2 pages

Topological book embedding on 2 pages
Di Giacomo, Didimo, Liotta, and Wismath (2005):
"biarc diagram"

Topological book embedding on 2 pages
Di Giacomo, Didimo, Liotta, and Wismath (2005):
"biarc diagram"

Topological book embedding on 2 pages
Di Giacomo, Didimo, Liotta, and Wismath (2005):
"biarc diagram"

Topological book embedding on 2 pages
Di Giacomo, Didimo, Liotta, and Wismath (2005):
"biarc diagram"

Topological book embedding on 2 pages

Di Giacomo, Didimo, Liotta, and Wismath (2005):
"biarc diagram"

Cardinal et al (2015): Every n-vertex planar graph admits a biarc diagram with at most $n-4$ biarcs for $n \geq 4$.
\Rightarrow W.I.o.g. at least $n-1$ edges are below the spine.

Construction

Construction

Construction

Construction

$$
\begin{aligned}
& b_{7} \bullet a_{7} \\
& b_{6} \bullet a_{6} \\
b_{5} \bullet \bullet & a_{5} \\
b_{4} & \bullet{ }^{a_{4}} \\
b_{3} &
\end{aligned}
$$

$$
b_{2}
$$

$$
a_{2}
$$

$$
\begin{aligned}
& b_{1} \\
& \bullet
\end{aligned}
$$

Construction

Embedding Algorithm

Embedding Algorithm

Input: a planar graph with $n \geq 4$ vertices.

Embedding Algorithm

Input: a planar graph with $n \geq 4$ vertices.

Embedding Algorithm

Input: a planar graph with $n \geq 4$ vertices.
Compute a 2-page book embedding with at least $n-1$ proper arcs below the spine using Cardinal et al. (2015).

-
O

Embedding Algorithm

Input: a planar graph with $n \geq 4$ vertices.
Compute a 2-page book embedding with at least $n-1$ proper arcs below the spine using Cardinal et al. (2015).

Embedding Algorithm

Input: a planar graph with $n \geq 4$ vertices.
Compute a 2-page book embedding with at least $n-1$ proper arcs below the spine using Cardinal et al. (2015).

Deform every proper arc above the spine into a biarc.

Embedding Algorithm

Input: a planar graph with $n \geq 4$ vertices.
Compute a 2-page book embedding with at least $n-1$ proper arcs below the spine using Cardinal et al. (2015).

Deform every proper arc above the spine into a biarc.

Embedding Algorithm

Input: a planar graph with $n \geq 4$ vertices.
Compute a 2-page book embedding with at least $n-1$ proper arcs below the spine using Cardinal et al. (2015).

Deform every proper arc above the spine into a biarc.
Subdivide each biarc with a new vertex on the spine.

Embedding Algorithm

Input: a planar graph with $n \geq 4$ vertices.
Compute a 2-page book embedding with at least $n-1$ proper arcs below the spine using Cardinal et al. (2015).

Deform every proper arc above the spine into a biarc.
Subdivide each biarc with a new vertex on the spine.

Embedding Algorithm

Embedding Algorithm

Label the vertices along the spine by p_{1}, \ldots, p_{m}, where $m \leq 3 n-5$.

Embedding Algorithm

Label the vertices along the spine by p_{1}, \ldots, p_{m}, where $m \leq 3 n-5$.

Embed each proper vertex p_{i} at point a_{i}; and each bend point p_{j} at b_{j}.

Embedding Algorithm

Label the vertices along the spine by p_{1}, \ldots, p_{m}, where $m \leq 3 n-5$.

Embed each proper vertex p_{i} at point a_{i}; and each bend point p_{j} at b_{j}.

Example:

Embedding Algorithm

Label the vertices along the spine by p_{1}, \ldots, p_{m}, where $m \leq 3 n-5$.

Embed each proper vertex p_{i} at point a_{i}; and each bend point p_{j} at b_{j}.

Example:

Proper arcs below the spine become straight-line edges. Biarcs become 1-bend edges. No edge crossings.

Open problems \& Future work

Open problems \& Future work

OPEN: Does a linear-size universal point set for one-bend drawings exist on a subexponential resolution?

Open problems \& Future work

OPEN: Does a linear-size universal point set for one-bend drawings exist on a subexponential resolution?

New variants

Open problems \& Future work

OPEN: Does a linear-size universal point set for one-bend drawings exist on a subexponential resolution?

New variants

Def.: A point set $S \subset \mathbb{R}^{2}$ is (n, ϱ)-bend universal if every n-vertex planar graph $G=(V, E)$ admits an embedding such that at least $\varrho|E|$ edges are straight-lines, any other edge has at most one bend (the bend point may be required to be in S).

Open problems \& Future work

OPEN: Does a linear-size universal point set for one-bend drawings exist on a subexponential resolution?

New variants

Def.: A point set $S \subset \mathbb{R}^{2}$ is (n, ϱ)-bend universal if every n-vertex planar graph $G=(V, E)$ admits an embedding such that at least $\varrho|E|$ edges are straight-lines, any other edge has at most one bend (the bend point may be required to be in S).

The point set $\left\{a_{1}, \ldots, a_{5 n-4}, b_{1}, \ldots, b_{5 n-4}\right\}$ in our construction is $\left(n, \frac{1}{3}\right)$-bend universal, for every $n \geq 4$. (At least $\frac{1}{3}|E|$ edges are proper arcs below the spine.)

Open problems \& Future work

OPEN: Does a linear-size universal point set for one-bend drawings exist on a subexponential resolution?

New variants

Def.: A point set $S \subset \mathbb{R}^{2}$ is (n, ϱ)-bend universal if every n-vertex planar graph $G=(V, E)$ admits an embedding such that at least $\varrho|E|$ edges are straight-lines, any other edge has at most one bend (the bend point may be required to be in S).

The point set $\left\{a_{1}, \ldots, a_{5 n-4}, b_{1}, \ldots, b_{5 n-4}\right\}$ in our construction is ($n, \frac{1}{3}$)-bend universal, for every $n \geq 4$. (At least $\frac{1}{3}|E|$ edges are proper arcs below the spine.)

OPEN: Are there (n, ϱ)-universal point set for $\varrho>\frac{1}{3}$?

Merci!

