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PREFACE 3

Preface

These notes accompany my course Algebraic Geometry I. Every time I taught
that course, I revised the text and although I do not expect drastic changes any-
more, this is a process that will probably only stop when I cease teaching it. One
reason is that these notes are tailored to what I think are the needs of the course
and this changes with time. This makes me all the more aware of its deficiencies
(by sometimes not giving a topic the treatment it deserves) and omissions (by skip-
ping a nearby point of interest that would have merited discussion). Occasionally I
try to make up for this by including some remarks in a smaller font.

As I hope will become clear (and even more so in its sequel, Algebraic Geometry
II), much of commutative algebra owes its existence to algebraic geometry and
vice versa, and this is why there is no clear border between the two. This also
explains why some familiarity with commutative algebra is a prerequisite, but as a
service to students lacking such background, I occasionally recall basic facts from
that area and from Galois theory (all of it being standard fare in a first course on
these subjects), also in a smaller font. Otherwise these notes are essentially self-
contained.

On <www.staff.science.uu.nl/∼looij101/> I maintain a web page of this
course, where among other things, I briefly explain what this field is about and list
some books for further reading. To repeat a recommendation that is made there, I
strongly encourage you to buy a (preferably paper!) text book as a companion to
use with the course, for such a book generally covers more ground and also tends
to do so in a more balanced manner. And it may be consulted, even long after these
notes have perished. A good choice is Hartshorne’s book (though certainly not the
only one), which has the additional benefit that it can also serve you well for a
sequel to this course.

You may occasionally find in the text forwarding references to course notes of
Algebraic Geometry II. These indeed exist, but as they are in a much more tentative
and preliminary form, I have not included them here. They are intended to be part
of a sequel to this volume.

Some conventions. Rings are always supposed to be commutative and to possess
a unit and a ring homomorphism is required to take unit to unit. We allow that
1 = 0, but in that case we get of course the zero ring {0} and there cannot be
any ring homomorphism going from this ring to a nonzero ring, as it must take
unit to unit. Since a prime ideal of a ring is by definition not the whole ring,
the zero ring has no prime ideals and hence also no maximal ideals. When R
and R′ are two rings, then R × R′ is also one for componentwise addition and
multiplication, the unit being (1, 1). The projections onto its factors are admitted
as ring homomorphisms, but an inclusion obtained by putting one coordinate zero
is not, as this is not unital, unless in that coordinate we have the zero ring (in other
words, “×” defines a categorical product but not a categorical sum).

We say that a ring is a domain(1) if its zero ideal is a prime ideal, in other
words, if the ring is not the zero ring (1 6= 0) and has no zero divisors.

1Since we assume all our rings to be commutative and with unit, this is the same notion as integral
domain.
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Given a ring R, then an R-algebra is a ring A endowed with a ring homomor-
phism φ : R → A. When is φ is understood, then for every r ∈ R and a ∈ A, the
product φ(r)a is often denoted by ra. In case R is a field, φ will be injective so that
R may be regarded as a subring of A, but this need not be so in general. We say that
A is finitely generated as an R-algebra if we can find a1, . . . , an in A such that every
element of A can be written as a polynomial in these elements with coefficients in
R; in other words, if the R-algebra homomorphism R[x1, . . . , xn]→ A which sends
the variable xi to ai is onto. This is not to be confused with the notion of finite
generation of an R-module M which merely means the existence of a surjective
homomorphism of R-modules Rn →M for some n ≥ 0.

Similarly, a field L is said to be finitely generated as a field over a subfield K if
there exist b1, . . . , bn in L such that every element of L can be written as a fraction
of two polynomials in these elements (the denominator being nonzero of course)
with coefficients in K.

We denote the multiplicative group of the invertible elements (units) of a ring
R by R×.
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CHAPTER 1

Affine varieties

Throughout these notes k stands for an algebraically closed field, unless we
explicitly state otherwise. Recall that this means that every polynomial f ∈ k[x] of
positive degree has a root x1 ∈ k: f(x1) = 0. This is equivalent to f being divisible
by x − x1 with quotient a polynomial of degree one less than f . Continuing in
this manner we then find that f decomposes into a product of degree one factors
f(x) = c(x− x1) · · · (x− xd) with c ∈ k× = kr {0}, d = deg(f) and x1, . . . , xd ∈ k.
Since an algebraic extension of k is obtained by the adjunction of certain roots of
polynomials in k[x], this also shows that the property in question is equivalent to:
every algebraic extension of k is equal to k.

A first example you may think of is the field of complex numbers C, but as
we proceed you should become increasingly aware of the fact that there are many
others: it is shown in a standard algebra course that an algebraic closure of a field
F is obtained by adjoining to it the roots of every polynomial f ∈ F [x] (1). So we
could take for k an algebraic closure of the field of rational numbers Q, of the finite
field Fq, where q is a prime power, or even of the field of fractions of any domain
such as C[x1, . . . , xn].

1.1. The Zariski topology

Any f ∈ k[x1, . . . , xn] determines in an evident manner a function kn → k.
In such cases we prefer to think of kn not as vector space—its origin and vector
addition will be irrelevant to us—but as a set with a weaker structure. We shall
make this precise later, but it basically amounts to only remembering that elements
of k[x1, . . . , xn] can be understood as k-valued functions on it. For that reason
it is convenient to denote this set differently, namely as An (or as Ank , if we feel
that we should not forget about the field k). We refer to An as affine n-space
over k. A k-valued function on An is then said to be regular if it is defined by
some f ∈ k[x1, . . . , xn]. We denote the zero set of such a function by Z(f) and its
complement (the nonzero set) by Anf ⊆ An.

A principal subset of An is any subset of the form Anf and a hypersurface of An
is any subset of the form Z(f), where in the last case we ask that f be nonconstant
(that is, f /∈ k).

EXERCISE 1. Prove that f ∈ k[x1, . . . , xn] is completely determined by the reg-
ular function it defines. (Hint: do first the case n = 1.) So the ring k[x1, . . . , xn] can

1This cannot be done in one step: it is an infinite process which involves in general many choices.
This is reflected by the fact that the final result is not canonical, although it is unique up to a (in general
nonunique) isomorphism; whence the use of the indefinite article in ‘an algebraic closure’.

7



8 1. AFFINE VARIETIES

be regarded as a ring of functions on An under pointwise addition and multiplica-
tion. Show that this fails to be so for the finite field Fq (which is not algebraically
closed).

EXERCISE 2. Prove that a hypersurface is neither empty, nor all of An.

It is perhaps somewhat surprising that in this rather algebraic context, the lan-
guage of topology proves to be quite effective: algebraic subsets of An shall appear
as the closed sets of a topology, albeit a rather peculiar one.

Lemma-definition 1.1.1. The collection of principal subsets of An is a basis of
a topology on An, called the Zariski topology. A subset of An is closed for this
topology if and only if it is an intersection of zero sets of regular functions.

PROOF. Recall that a collection U of subsets of a set X may serve as a basis for
a topology on X (and thus determines this topology) if and only if the intersection
of any two its members is a union of members of U. As the collection of principal
subsets is even closed under finite intersection: Anf1∩A

n
f2

= Anf1f2 , the first assertion
follows. Since an open subset of An is by definition a union of subsets of the form
Anf , a closed subset must be an intersection of subsets of the form Z(f). �

EXAMPLE 1.1.2. The Zariski topology on A1 is the cofinite topology: its closed
subsets 6= A1 are the finite subsets.

EXERCISE 3. Show that the diagonal in A2 is closed for the Zariski topology,
but not for the product topology (where each factor A1 is equipped with the Zariski
topology). So A2 does not have the product topology.

We will explore the mutual relationship between the following two basic maps:

{subsets of An} I−−−−→ {ideals of k[x1, . . . , xn]}

∪ ∩

{closed subsets of An} Z←−−−− {subsets of k[x1, . . . , xn]}.
where for a subset X ⊆ An, I(X) is the ideal of f ∈ k[x1, . . . , xn] with f |X = 0 and
for a subset J ⊆ k[x1, . . . , xn], Z(J) is the closed subset of An defined by ∩f∈JZ(f).
Observe that

I(X1 ∪X2) = I(X1) ∩ I(X2) and Z(J1 ∪ J2) = Z(J1) ∩ Z(J2).

In particular, both I and Z are inclusion reversing. Furthermore, the restriction of I
to closed subsets defines a section of Z: if Y ⊆ An is closed, then Z(I(Y )) = Y . We
also note that by Exercise 1 I(An) = (0), and that any singleton {p} ⊆ An is closed,
as it is the common zero set of the degree one polynomials x1 − p1, . . . , xn − pn.

EXERCISE 4. Prove that I({p}) is equal to the ideal generated by these degree
one polynomials and that this ideal is maximal.

EXERCISE 5. Prove that the (Zariski) closure of a subset Y of An is equal to
Z(I(Y )).

Given Y ⊆ An, then f, g ∈ k[x1, . . . , xn] have the same restriction to Y if and
only if f − g ∈ I(Y ). So the quotient ring k[x1, . . . , xn]/I(Y ) (a k-algebra) can be
regarded as a ring of k-valued functions on Y . Notice that this k-algebra does not
change if we replace Y by its Zariski closure.
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DEFINITION 1.1.3. Let Y ⊆ An be closed. The k-algebra k[x1, . . . , xn]/I(Y ) is
called the coordinate ring of Y and we denote it by k[Y ]. A k-valued function on Y
is said to be regular if it lies in this ring.

So k[An] = k[x1, . . . , xn]. Given a closed subset Y ⊆ An, then for every
subset X ⊆ An we have X ⊆ Y if and only if I(X) ⊇ I(Y ), and in that case
IY (X) := I(X)/I(Y ) is an ideal of k[Y ]: it is the ideal of regular functions on Y
that vanish on X. Conversely, an ideal of k[Y ] is of the form J/I(Y ), with J an
ideal of k[x1, . . . , xn] that contains I(Y ), and such an ideal defines a closed subset
Z(J) contained in Y . So the two basic maps above give rise to such a pair on Y :

{subsets of Y } IY−−−−→ {ideals of k[Y ]}

∪ ∩

{closed subsets of Y } ZY←−−−− {subsets of k[Y ]}.
Exercise 5 tells us what Z ◦ I does. We now ask this question for I ◦ Z. In

particular, which ideals of k[x1, . . . , xn] are of the form I(Y ) for some Y ? Clearly, if
f ∈ k[x1, . . . , xn] is such that some positive power vanishes on Y , then f vanishes
on Y . In other words: if fm ∈ I(Y ) for some m > 0, then f ∈ I(Y ). This suggests:

Proposition-definition 1.1.4. Let R be a ring (as always commutative and with 1)
and let J ⊆ R be an ideal. Then the set of a ∈ R with the property that am ∈ J for
some m > 0 is an ideal of R, called the radical of J and denoted

√
J .

We say that J is a radical ideal if
√
J = J .

We say that the ring R is reduced if the zero ideal (0) is a radical ideal (in other
words, R has no nonzero nilpotents: if a ∈ R is such that am = 0, then a = 0).

PROOF. We show that
√
J is an ideal. Let a, b ∈

√
J so that am, bn ∈ J for

certain positive integers m,n. Then for every r ∈ R, ra ∈
√
J , since (ra)m =

rmam ∈ J . Similarly a − b ∈
√
J , for (a − b)m+n is an R-linear combination of

monomials that are multiples of am or bn and hence lie in J . �

EXERCISE 6. Show that a prime ideal is a radical ideal.

Notice that J is a radical ideal if and only if R/J is reduced. The preceding
shows that for every Y ⊆ An, I(Y ) is a radical ideal, so that k[Y ] is reduced. The
dictionary between algebra and geometry begins in a more substantial manner with

Theorem 1.1.5 (Hilbert’s Nullstellensatz). For every ideal J ⊆ k[x1, . . . , xn] we
have I(Z(J)) =

√
J .

The inclusion ⊇ is clear; the hard part is the opposite inclusion (which says
that if f ∈ k[x1, . . . , xn] vanishes on Z(J), then fm ∈ J for some positive integer
m). We postpone its proof and first discuss some of the consequences.

Our assumption that k is algebraically closed is here already essential, for The-
orem 1.1.5 fails for instance for k = R: if we take for J the ideal generated by x2+1
in R[x], then its zero set in the real line is empty (but not in the complex line!) and
so I(Z(J)) = I(∅) = R[x], which is clearly 6=

√
J (which is in fact J itself).

Corollary 1.1.6. Let Y ⊆ An be closed. Then the maps IY and ZY define inclusion
reversing bijections that are each others inverse

{closed subsets of Y } ↔ {radical ideals of k[Y ]}.
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Via this bijection ∅ ↔ k[Y ], Y ↔
√

(0) and

{points of Y } ↔ {maximal ideals of k[Y ]},

where IY ({p}) = mp/I(Y ), with mp := (x1 − p1, . . . , xn − pn).

PROOF. We first prove this for Y = An. We already observed that for every
closed subset X of An we have Z(I(X)) = X. The Nullstellensatz says that for a
radical ideal J ⊆ k[x1, . . . , xn], we have I(Z(J)) = J . This establishes the bijection.
It is clear that via this bijection, ∅ ↔ k[Y ] and Y ↔

√
(0). It then also follows that

the smallest nonempty closed subsets of Y must correspond to the biggest proper
radical ideals of k[x1, . . . , xn]. Since a singleton is closed and a maximal ideal is a
radical ideal (as it is a prime ideal), we thus obtain a bijection between the points
of An and the maximal ideals of k[x1, . . . , xn]. We already noticed that for a given
p ∈ An, (x1 − p1, . . . , xn − pn) is a maximal ideal whose zero set is {p}.

The general case now also follows, because an ideal of k[Y ] is of the form
J/I(Y ) with J ⊇ (Y ) and this is a radical ideal if and only if J is one; a maximal
ideal of k[Y ] corresponds to a maximal ideal of An which contains I(Y ). �

Via this (or a very similar) correspondence, algebraic geometry seeks to express
geometric properties of Y in terms of algebraic properties of k[Y ] and vice versa.
Eventually we want to rid ourselves of the ambient affine space An, for essentially
the same reason as in differential topology one wants to study manifolds in their
own right and not as embedded in some Rn.

1.2. Irreducibility and decomposition

We introduce a property which for most topological spaces is of little interest,
but as we will see, is useful and natural for the Zariski topology.

Proposition-definition 1.2.1. Let Y be a topological space. We say that Y is irre-
ducible if (i) it is nonempty and (ii) Y is not the union of two closed proper subsets
(or equivalently, any nonempty open subset of Y is dense in Y ).

We call a maximal irreducible subset of Y an irreducible component of Y .

The proof that the two characterizations of irreducible are indeed equivalent
is left as an exercise. It follows from the definition that if A1 ⊆ A2 ⊆ A3 ⊆
· · · ⊆ Y is a nested sequence of irreducible subsets of the space Y , then ∪∞i=1Ai
is irreducible(2). It follows that every irreducible subset of Y is contained in an
irreducible component of Y and that the irreducible components of Y cover Y .
Clearly two distinct irreducible components of Y cannot obey an inclusion relation.

EXERCISE 7. Prove that an irreducible Hausdorff space must consist of a single
point. Prove also that an infinite set with the cofinite topology is irreducible.

EXERCISE 8. Let Y1, . . . , Ys be closed subsets of a topological space Y whose
union is Y . Prove that every irreducible subset of Y is contained in some Yi. Deduce
that {Yi}si=1 is the collection of irreducible components of Y if each Yi is irreducible
and Yi ⊆ Yj implies Yi = Yj .

2This is more generally true for a directed system of irreducible subsets.
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Lemma 1.2.2. Let Y be a topological space. If Y is irreducible, then every nonempty
open subset of Y irreducible. Conversely, if C ⊆ Y is an irreducible subspace, then
C is also irreducible. In particular, an irreducible component of Y is always closed
in Y .

PROOF. Suppose Y is irreducible and let U ⊆ Y be open and nonempty. A
nonempty open subset of U is dense in Y and hence also dense in U . So U is
irreducible.

Let now C ⊆ Y be irreducible (and hence nonempty). Let V ⊆ C be nonempty
and open in C. Then V ∩C is nonempty. It is also open in C and hence dense in C.
But then V ∩ C is also dense in C and so V is dense in C. So C is irreducible. �

Here is what irreducibility means in the Zariski topology.

Proposition 1.2.3. A closed subset Y ⊆ An is irreducible if and only if I(Y ) is
a prime ideal (which we recall is equivalent to: k[Y ] = k[x1, . . . , xn]/I(Y ) is a
domain).

PROOF. Suppose Y is irreducible and f, g ∈ k[x1, . . . , xn] are such that fg ∈
I(Y ). Then Y ⊆ Z(fg) = Z(f) ∪ Z(g). Since Y is irreducible, Y is contained in
Z(f) or in Z(g). So f ∈ I(Y ) or g ∈ I(Y ), proving that I(Y ) is a prime ideal.

Suppose that Y is the union of two closed subsets Y1 and Y2 that are both 6= Y .
Then I(Y ) is not a prime ideal: since Yi 6= Y implies that there exist fi ∈ I(Yi) r
I(Y ) (i = 1, 2) and then f1f2 vanishes on Y1 ∪ Y2 = Y , so that f1f2 ∈ I(Y ). �

One of our first aims is to prove that the irreducible components of any closed
subset Y ⊆ An are finite in number and have Y as their union. This may not
sound very surprising, but we will see that this reflects some nonobvious algebraic
properties. Let us first consider the case of a hypersurface. Since we are going
to use the fact that k[x1, . . . , xn] is a unique factorization domain, we begin with
recalling that notion.

Unique factorization domains (review). Let us first note that in a ring R without zero
divisors two nonzero elements a, b generate the same ideal if and only if b is a unit times a.

DEFINITION 1.2.4. A ring R is called a unique factorization domain (often abbreviated
as UFD) if it has no zero divisors and every principal ideal (a) := Ra in R which is neither
the zero ideal nor all of R is in unique manner an (unordered) product of principal prime
ideals: (a) = (p1)(p2) · · · (ps) (so the ideals (p1), . . . , (ps) are unique up to order).

Note that last property amounts to the statement that every a ∈ Rr {0} is a unit or can
be written as a product a = p1p2 · · · ps such that each pi generates a prime ideal and this
is unique up to order and multiplication by units: if a = q1q2 · · · qt is another such way of
writing a, then t = s and qi = uipσ(i), where σ ∈ Sn is a permutation and u1u2 · · ·us = 1.

For a field (which has no proper principal ideals distinct from (0)) the imposed condition
is empty and hence a field is automatically a unique factorization domain. A more substantial
example (that motivated this notion in the first place) is Z: a principal prime ideal of Z is of
the form (p), with p a prime number. Every integer n ≥ 2 has a unique prime decomposition
and so Z is a unique factorization domain.

A basic theorem in the theory of rings asserts that if R is a unique factorization domain,
then so is its polynomial ring R[x]. This implies (with induction on n) that R[x1, . . . , xn] is
one. For a field F , the units of F [x1, . . . , xn] are those of F and a nonzero principal ideal
of this ring is prime precisely when it is generated by an irreducible polynomial of positive
degree. So then every f ∈ F [x1, . . . , xn] of positive degree then can be written as a product
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of irreducible polynomials: f = f1f2 · · · fs, a factorization that is unique up to order and
multiplication of each fi by a nonzero element of F .

The following proposition connects two notions of irreducibility.

Proposition 1.2.5. Let f ∈ k[x1, . . . , xn] have positive degree. Then f is irreducible
if and only if Z(f) is. More generally, if f = f1f2 · · · fs is a factoring of f into
irreducible polynomials, then Z(f1), . . . , Z(fs) are the irreducible components of
Z(f) and their union equals Z(f) (3). In particular, a hypersurface is the union
of its irreducible components; these irreducible components are hypersurfaces and
finite in number.

PROOF. For the first assertion, note f ∈ k[x1, . . . , xn] is irreducible if and only
if f generates a prime ideal. By Proposition 1.2.3 this is equivalent to Z(f) being
an irreducible hypersurface.

It follows that if f = f1f2 · · · fs is as in the proposition, then Z(f) = Z(f1) ∪
· · · ∪ Z(fs) with each Z(fi) irreducible. To see that {Z(fi)}si=1 is the collection of
irreducible components of Z(f), it suffices, in view of Exercise 8, to prove that any
inclusion relation Z(fi) ⊆ Z(fj) is necessarily an identity. The inclusion Z(fi) ⊆
Z(fj) implies fj ∈

√
(fi). Since fi is irreducible it generates a prime ideal and

hence a radical ideal, so that fj ∈ (fi). But fj is irreducible also and so fj is a unit
times fi. This proves that Z(fj) = Z(fi). �

We continue the discussion of irreducibility with the somewhat formal

Lemma 1.2.6. For a partially ordered set (A,≤) the following are equivalent:

(i) (A,≤) satisfies the ascending chain condition: every ascending chain a1 ≤
a2 ≤ a3 ≤ · · · becomes stationary: an = an+1 = · · · for n sufficiently
large.

(ii) Every nonempty subsetB ⊆ A has a maximal element, that is, an element
b0 ∈ B such that there is no b ∈ B with b > b0.

PROOF. (i)⇒(ii). Suppose (A,≤) satisfies the ascending chain condition and
let B ⊆ A be nonempty. Choose b1 ∈ B. If b1 is maximal, we are done. If not, then
there exists a b2 ∈ B with b2 > b1. We repeat the same argument for b2. We cannot
indefinitely continue in this manner because of the ascending chain condition.

(ii)⇒(i). If (A,≤) satisfies (ii), then the set of members of any ascending chain
has a maximal element, in other words, the chain becomes stationary. �

If we replace ≤ by ≥, then we obtain the notion of the descending chain condi-
tion and we find that this property is equivalent to: every nonempty subset B ⊆ A
has a minimal element. These properties appear in the following pair of definitions.

DEFINITIONS 1.2.7. We say that a ring R is noetherian if its collection of ideals
satisfies the ascending chain condition.

We say that a topological space Y is noetherian if its collection of closed subsets
satisfies the descending chain condition.

EXERCISE 9. Prove that a subspace of a noetherian space is noetherian. Prove
also that a ring quotient of a noetherian ring is noetherian.

3But we are not claiming that the Z(fi)’s are pairwise distinct.
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The interest of the noetherian property is that it is one which is possessed by
almost all the rings we encounter and that it implies many finiteness properties
without which we are often unable to go very far.

But let us give a nonexample first. The ring H(D) of holomorphic functions
on the unit disk D ⊆ C is not noetherian: choose f ∈ H(D) such that f has
simple zeroes in a sequence (zi ∈ D)i≥1 whose terms are pairwise distinct (e.g.,
sin(π/(1− z))). Put fn := f(z)(z − z1)−1 · · · (z − zn)−1. Then fn = (z − zn+1)fn+1

and so the ideal inH(D) generated by fn is strictly contained in the ideal generated
by fn+1. We thus obtain a strictly ascending chain of ideals in H(D).

On the other hand, the ring of convergent power series C{z} is noetherian
(we leave this as a little exercise). Obviously, a field is noetherian. The ring Z is
noetherian: if I1 ⊆ I2 ⊆ · · · is an ascending chain of ideals in Z, then ∪∞s=1Is is
an ideal of Z, hence of the form (n) for some n ∈ Z. But if s is such that n ∈ Is,
then clearly the chain is stationary as of index s. (This argument only used the
fact that any ideal in Z is generated by a single element, i.e., that Z is a principal
ideal domain.) That most rings we encounter are noetherian is a consequence of
the following theorem.

Theorem 1.2.8 (Hilbert’s basis theorem). If R is a noetherian ring, then so is R[x].

As with the Nullstellensatz, we postpone the proof and discuss some of its
consequences first.

Corollary 1.2.9. If R is a noetherian ring (for example, a field) then so is every
finitely generated R-algebra. Also, every closed subset of An is noetherian.

PROOF. The Hilbert basis theorem implies (with induction on n) that the ring
R[x1, . . . , xn] is noetherian. By Exercise 9, every quotient ring R[x1, . . . , xn]/I is
then also noetherian. But a finitely generated R-algebra is (by definition) isomor-
phic to some such quotient and so the first statement follows.

Suppose An ⊇ Y1 ⊇ Y2 ⊇ · · · is a descending chain of closed subsets. Then
(0) ⊆ I(Y1) ⊆ I(Y2) ⊆ · · · is an ascending chain of ideals. As the latter becomes
stationary, so will become the former. �

Proposition 1.2.10. Let Y be a noetherian space. Then its irreducible components
are finite in number and their union equals Y .

PROOF. We first show that every closed subset can be written as a finite union
of closed irreducible subsets. First note that the empty set has this property (despite
the fact that an irreducible set is nonempty by definition), for a union with empty
index set is empty. Let B be the collection of closed subspaces of Y for which this
is not possible, i.e., that can not be written as a finite union of closed irreducible
subsets. Suppose that B is nonempty. According to 1.2.6 this collection has a
minimal element, Z, say. This Z must be nonempty and cannot be irreducible. So
Z is the union of two proper closed subsets Z ′ and Z ′′. The minimality of Z implies
that neither Z ′ nor Z ′′ is in B and so both Z ′ and Z ′′ can be written as a finite
union of closed irreducible subsets. But then so can Z and we get a contradiction.

In particular, there exist closed irreducible subsets Y1, . . . , Ys of Y whose union
is Y (if Y = ∅, take s = 0). We may of course assume that no Yi is contained
in some Yj with j 6= i. An application Exercise 8 then shows that the Yi’s are the
irreducible components of Y . �
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If we apply this to An (endowed as always with its Zariski topology), then
we find that every subset Y ⊆ An has a finite number of irreducible components,
the union of which is all of Y . If Y is closed in An, then so is every irreducible
component of Y and according to Proposition 1.2.3 such an irreducible component
is defined by a prime ideal. This allows us to recover the irreducible components of
a closed subset Y ⊆ An from its coordinate ring:

Corollary 1.2.11. Let Y ⊆ An be a closed subset. If C is an irreducible component
of Y , then the image IY (C) of I(C) in k[Y ] is a minimal prime ideal of k[Y ] and any
minimal prime ideal of k[Y ] is so obtained: we thus get a bijective correspondence
between the irreducible components of Y and the minimal prime ideals of k[Y ].

PROOF. Let C be a closed subset of Y and let IY (C) be the corresponding ideal
of k[Y ]. Now C is irreducible if and only if I(C) is a prime ideal of k[x1, . . . , xn],
or what amounts to the same, if and only if IY (C) is a prime ideal of k[Y ]. It is
an irreducible component if C is maximal for this property, or what amounts to the
same, if IY (C) is minimal for the property of being a prime ideal of k[Y ]. �

EXAMPLE 1.2.12. First consider the set C := {(t, t2, t3) ∈ A3 | t ∈ k}. This is a
closed subset of A3: if we use (x, y, z) instead of (x1, x2, x3), then C is the common
zero set of y−x2 and z−x3. Now the inclusion k[x] ⊂ k[x, y, z] composed with the
ring quotient k[x, y, z]→ k[x, y, z]/(y− x2, z− x3) is clearly an isomorphism. Since
k[x] has no zero divisors, (y− x2, z− x3) must be a prime ideal. So C is irreducible
and I(C) = (y − x2, z − x3).

We now turn to the closed subset Y ⊆ A3 defined by xy−z = 0 and y3−z2 = 0.
Let p = (x, y, z) ∈ Y . If y 6= 0, then we put t := z/y; from y3 = x2, it follows that
y = t2 and z = t3 and xy = z implies that x = t. In other words, p ∈ C in that
case. If y = 0, then z = 0, in other words p lies on the x-axis. Conversely, any point
on the x-axis lies in Y . So Y is the union of C and the x-axis and these are the
irreducible components of Y .

We begin with recalling the notion of localization and we do this in the gener-
ality that is needed later.

Localization (review). Let R be a ring and let S be a multiplicative subset of R: 1 ∈ S
and S closed under multiplication. Then a ring S−1R, together with a ring homomorphism
R → S−1R is defined as follows. An element of S−1R is by definition written as a formal
fraction r/s, with r ∈ R and s ∈ S, with the understanding that r/s = r′/s′ if and only if
s′′(s′r − sr′) = 0 for some s′′ ∈ S. This is a ring indeed: multiplication and subtraction is
defined as for ordinary fractions: r/s.r′/s′ = (rr′)/(ss′) and r/s− r′/s′ = (s′r− sr′)/(ss′);
it has 0/1 as zero and 1/1 as unit element and the ring homomorphism R→ S−1R is simply
r 7→ r/1. Observe that the definition shows that 0/1 = 1/1 if and only if 0 ∈ S, in which
case S−1R is reduced to the zero ring. We also note that any s ∈ S maps to an invertible
element of S−1R, the inverse of s/1 being 1/s (this is also true when 0 ∈ S, for 0 is its own
inverse in the zero ring). In a sense (made precise in part (b) of Exercise 10 below) the ring
homomorphism R → S−1R is universal for that property. This construction is called the
localization away from S.

Of special interest is when S = {sn |n ≥ 0} for some s ∈ R. We then usually write
R[1/s] for S−1R. Notice that the image of s in R[1/s] is invertible and that R[1/s] is the
zero ring if and only if s is nilpotent.

It is clear that if S does not contain zero divisors, then r/s = r′/s′ if and only if
s′r − sr′ = 0; in particular, r/1 = r′/1 if and only if r = r′, so that R → S−1R is then
injective. If we take S maximal for this property, namely take it to be the set S(R) of nonzero
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divisors of R (which is indeed multiplicative), then S(R)−1R is called the total fraction ring
Frac(R) of R. When R is a domain, S(R) = R r {0} and so Frac(R) is a field, the field
of fractions of R. This gives the following corollary, which hints to the importance of prime
ideals in the subject.

Corollary 1.2.13. An ideal p of a ring R is a prime ideal if and only if it is the kernel of a
ring homomorphism from R to a field.

PROOF. It is clear that the kernel of a ring homomorphism from R to a field is always
a prime ideal. Conversely, if p is a prime ideal, then it is the kernel of the composite R →
R/p ↪→ Frac(R/p). �

EXERCISE 10. Let R be a ring and let S be a multiplicative subset of R.
(a) What is the the kernel of R→ S−1R?
(b) Prove that a ring homomorphism φ : R→ R′ with the property that φ(s) is

invertible for every s ∈ S factors in a unique manner through S−1R.
(c) Consider the polynomial ring R[xs : s ∈ S] and the homomorphism of

R-algebras R[xs : s ∈ S] → S−1R that sends xs to 1/s. Prove that this homo-
morphism is surjective and that its kernel consists of the f ∈ R[xs : s ∈ S] which
after multiplication by an element of S lie in the ideal generated the degree one
polynomials sxs − 1, s ∈ S.

EXERCISE 11. Let R be a ring and let p be a prime ideal of R.
(a) Prove that the complement R r p is a multiplicative system. The resulting

localization (Rr p)−1R is called the localization at p and is usually denoted Rp.
(b) Prove by assigning in ideal of Rp its preimage in R under the ring homo-

morphism R → Rp yields a bijection between the ideals of Rp and the ideals of R
contained in p. Conclude that pRp is a maximal ideal of Rp and that it is the only
maximal ideal of Rp. (A ring with a unique maximal ideal is called a local ring.)

(c) Prove that the localization map R→ Rp drops to an isomorphism of fields
Frac(R/p)→ Rp/pRp.

(d) Work this out for R = Z and p = (p), where p is a prime number.
(e) Same for R = k[x, y] and p = (x).

Lemma 1.2.14. Let I be an ideal of a ring R. Then the intersection of all the prime
ideals of R containing I equals

√
I. In particular, for every nonnilpotent a ∈ R,

there exists a ring homomorphism from R to a field that is nonzero on a.

PROOF. By passing to R/I we are reduced to the case when I = (0): we must
then show that the intersection of all the prime ideals of R is the ideal of nilpotent
elements. It is easy to see that a nilpotent element lies in every prime ideal. Now
for a nonnilpotent a ∈ R consider the homomorphism R→ R[1/a]. The ring R[1/a]

is nonzero, hence has a maximal ideal(4) m so that F := R[1/a]/m is a field. Then
the kernel of the composite φ : R → R[1/a] → F is a prime ideal and a is not in
this kernel (for φ(a) ∈ F is invertible with inverse the image of 1/a). �

EXERCISE 12. Let R be a ring. Prove that the intersection of all the maximal
ideals of a ring R consists of the a ∈ R for which 1 + aR ⊆ R× (i.e., 1 + ax is
invertible for every x ∈ R). You may use the fact that every proper ideal of R is
contained in a maximal ideal.

4Every nonzero ring has a maximal ideal. For noetherian rings, which are our main concern, this
is obvious, but in general this follows with transfinite induction, the adoption of which is equivalent to
the adoption of the axiom of choice.
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We can do better if R is noetherian. The following proposition is the algebraic
counterpart of Proposition 1.2.10. Note the similarity between the proofs.

Proposition 1.2.15. Let R be a noetherian ring. Then for every ideal I ⊆ R, the
minimal elements of the collection of prime ideals containing I are finite in number
(with every prime ideal containing I containing one of these) and their intersection
is
√
I. In particular, the minimal prime ideals of R are finite in number and their

intersection is the ideal of nilpotents
√

(0).

PROOF. We first make the rather formal observation that R is a radical ideal
and indeed appears as a finite (namely empty) intersection of prime ideals. So the
collection B of the radical ideals I ⊆ R that can not be written as an intersection of
finitely many prime ideals does not contain R. We prove that B is empty. Suppose
otherwise. Since R is noetherian, B will have a maximal member I0 6= R, say. We
then derive a contradiction as follows.

Since I0 is not a prime ideal, there exist a1, a2 ∈ RrI0 with a1a2 ∈ I0. Consider
the radical ideal Ji :=

√
I0 +Rai. The ideal Ji strictly contains I0 and so cannot

belong to B. In other words, Ji is an intersection of finitely many prime ideals. We
next show that J1 ∩ J2 = I0, so that I0 is an intersection of finitely many prime
ideals also, thus arriving contradiction. The inclusion ⊇ is obvious and ⊆ is seen
as follows: if a ∈ J1 ∩ J2, then for i = 1, 2, there exists an ni > 0 such that
ani ∈ I0 +Rai. Hence an1+n2 ∈ (I0 +Ra1)(I0 +Ra2) ⊆ I0, so that a ∈ I0.

In particular, for an arbitrary ideal I,
√
I = p1 ∩ · · · ∩ ps for certain prime ideals

pi. We may of course assume that no pi contains some pj with j 6= i (otherwise,
omit pi). It now remains to prove that every prime ideal p ⊃ I of R contains
some pi. If that is not the case, then choose ai ∈ pi r p (i = 1, . . . , s). But then
a1a2 · · · as ∈ p1 ∩ · · · ∩ ps =

√
I ⊆ p and since p is a prime ideal, some factor ai lies

in p. This is clearly a contradiction. �

EXERCISE 13. Let R be a ring, S ⊆ R be a multiplicative system and denote by
φ : R → S−1R the natural homomorphism. Prove that the map which assigns to
every prime ideal of S−1R its preimage in R under φ defines a bijection between
the prime ideals of S−1R and the prime ideals of R disjoint with S. Prove also that
if S has no zero divisors, then the preimage of the ideal of nilpotents of S−1R is
the ideal of nilpotents of R.

1.3. Finiteness properties and the Hilbert theorems

The noetherian property in commutative algebra is best discussed in the context
of modules, even if one’s interest is only in rings. We fix a ring R. We recall the
notion of an R-module below.

Modules (review). The notion of an R-module is the natural generalization of a K-
vector space (where K is some field). Let us observe that if M is an (additively written)
abelian group, then the set End(M) of group homomorphisms M → M is a ring for which
subtraction is pointwise defined and multiplication is composition (so if f, g ∈ End(M),
then f −g : m ∈M 7→ f(m)−g(m) and fg : m 7→ f(g(m))); clearly the zero element is the
zero homomorphism and the unit element is the identity. It only fails to obey our convention
in the sense that this ring is usually noncommutative. We only introduced it in order to be
able state succinctly:

DEFINITION 1.3.1. An R-module is an abelian group M , equipped with a ring homo-
morphism R→ End(M).
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So any r ∈ R defines a homomorphism M → M ; we usually denote the image of
m ∈ M under this homomorphism simply by rm. If we write out the properties of an R-
module structure in these terms, we get: r(m1−m2) = rm1−rm2, (r1−r2)m = r1m−r2m,
1.m = m, r1(r2m) = (r1r2)m. If R happens to be field, then we see that an R-module is the
same thing as an R-vector space.

The notion of an R-module is quite ubiquitous, once you are aware of it. A simple
example is an ideal I ⊆ R. Any abelian group M is in a natural manner a Z-module. And a
R[x]-module can be understood as an real linear space V (an R-module) endowed with an
endomorphism (the image of x in End(V )). A more involved example is the following: if
X is a manifold, f is a C∞-function on X and ω a C∞-differential p-form on X, then fω is
also a C∞ differential p-form on X. Thus the linear space of C∞-differential forms on X of
a fixed degree p is naturally a module over the ring of C∞-functions on X.

Here are a few companion notions, followed by a brief discussion.
A map f : M → N from anR-moduleM to anR-moduleN is called aR-homomorphism

if it is a group homomorphism with the property that f(rm) = rf(m) for all r ∈ R and
m ∈M . If f is also bijective, then we call it an R-isomorphism; in that case its inverse is also
a homomorphism of R-modules.

For instance, given a ring homomorphism f : R → R′, then R′ becomes an R-module
by rr′ := f(r)r′ and this makes f a homomorphism of R-modules.

A subset N of an R-module M is called an R-submodule of M if it is a subgroup and
rn ∈ N for all r ∈ R and n ∈ N . Then the group quotient M/N is in a unique manner a
R-module in such a way that the quotient map M → M/N is a R-homomorphism: we let
r(m + N) := rm + N for r ∈ R and m ∈ M . Notice that a R-submodule of R (here we
regard R as a R-module) is the same thing as an ideal of R.

Given a subset S of an R-module M , then the set of elements m ∈ M that can be
written as r1s1 + · · · + rksk with ri ∈ R and si ∈ S is a R-submodule of M . We call it the
R-submodule of M generated by S and we shall denote it by RS. If there exists a finite set
S ⊆M such that M = RS, then we say that M is finitely generated as an R-module.

DEFINITION 1.3.2. We say that an R-module M is noetherian if the collection of
R-submodules of M satisfies the ascending chain condition: any ascending chain
of R-submodules N1 ⊆ N2 ⊆ · · · becomes stationary.

It is clear that then every quotient module of a noetherian module is also noe-
therian. The noetherian property of R as a ring (as previously defined) coincides
with this property of R as an R-module.

The following two propositions provide the passage from the noetherian prop-
erty to finite generation:

Proposition 1.3.3. An R-module M is noetherian if and only if every R-submodule
of M is finitely generated as an R-module.

PROOF. Suppose that M is a noetherian R-module and let N ⊆ M be a R-
submodule. The collection of finitely generated R-submodules of M contained in
N is nonempty. Hence it has a maximal element N0. If N0 = N , then N is finitely
generated. If not, we run into a contradiction: just choose x ∈ NrN0 and consider
N0 + Rx. This is a R-submodule of N . It is finitely generated (for N0 is), which
contradicts the maximal character of N0.

Suppose now that every R-submodule of M is finitely generated. If N1 ⊆
N2 ⊆ · · · is an ascending chain of R-modules, then the union N := ∪∞i=1Ni is a
R-submodule. Let {s1, . . . , sk} be a finite set of generators of N . If sκ ∈ Niκ , and
j := max{i1, . . . , ik}, then it is clear that Nj = N . So the chain becomes stationary
as of index j. �



18 1. AFFINE VARIETIES

Proposition 1.3.4. Suppose that R is a noetherian ring. Then every finitely gener-
ated R-module M is noetherian.

PROOF. By assumption M = RS for a finite set S ⊆ M . We prove the propo-
sition by induction on the number of elements of S. If S = ∅, then M = {0} and
there is nothing to prove. Suppose now S 6= ∅ and choose s ∈ S, so that our induc-
tion hypothesis applies to M ′ := RS′ with S′ = S r {s}: M ′ is noetherian. But so
is M/M ′, for it is a quotient of the noetherian ring R via the surjective R-module
homomorphism R→M/M ′, r 7→ rs+M ′.

Let now N1 ⊆ N2 ⊆ · · · be an ascending chain of R-submodules of M . Then
N1 ∩M ′ ⊆ N2 ∩M ′ ⊆ · · · becomes stationary, say as of index j1. Hence we only
need to be concerned for k ≥ j1 with the stabilization of (Nk/(Nj1 ∩M ′))k≥j1 . But
for k ≥ j1, Nk/(Nj1 ∩M ′ = Nk/(Nk ∩M ′) ∼= (Nk + M ′)/M ′, so that this can be
regarded as an ascending chain in M/M ′. Since M/M ′ is noetherian, this chain
stabilizes (say as of index j2). So the original chain stabilizes as of index j2. �

We are now sufficiently prepared for the proofs of the Hilbert theorems. They
are gems of elegance and efficiency.

We will use the notion of initial coefficient of a polynomial, which we re-
call. Given a ring R, then every nonzero f ∈ R[x] is uniquely written as rdxd +
rd−1x

d−1 + · · · + r0 with rd 6= 0. We call rd ∈ R the initial coefficient of f and
denote it by in(f). For the zero polynomial, we simply define this to be 0 ∈ R.
Notice that when in(f) in(g) nonzero, then it is equal to in(fg).

PROOF OF THEOREM 1.2.8. The assumption is here that R is a noetherian ring.
In view of Proposition 1.3.3 we must show that every ideal I of R[x] is finitely
generated. Consider the subset in(I) := {in(f) : f ∈ I} of R. We first show that
this is an ideal of R. If r ∈ R, f ∈ I, then r in(f) equals in(rf) or is zero and
since rf ∈ I, it follows that r in(f) ∈ I. If f, g ∈ I, then in(f) − in(g) equals
in(xdeg gf − xdeg fg) or is zero. So in(I) is an ideal as asserted.

Since R is noetherian, in(I) is finitely generated: there exist f1, . . . , fk ∈ I
such that in(I) = R in(f1) + · · · + R in(fk). Let d0 := max{deg(f1), . . . ,deg(fk)}
and R[x]<d0 the set of polynomials of degree < d0. So R[x]<d0 is the R-submodule
of R[x] generated by 1, x, . . . , xd0−1. We claim that

I = R[x]f1 + · · ·+R[x]fk + (I ∩R[x]<d0),

in other words, that every f ∈ I is modulo R[x]f1 + · · · + R[x]fk a polynomial of
degree < d0. We prove this with induction on the degree d of f . Since for d < d0

there is nothing to prove, assume that d ≥ d0. We have in(f) = r1 in(f1) + · · · +
rk in(fk) for certain r1, . . . rk ∈ R, where we may of course assume that every term
ri in(fi) is nonzero and hence equal to in(rifi). Since in(f) is nonzero, it then
equals

∑
i in(rifi) = in(

∑
i rifix

d−deg(fi)). So f −
∑
i rifix

d−deg(fi) is an element
of I of degree < d and hence lies in R[x]f1 + · · · + R[x]fk + (I ∩ R[x]<d0) by our
induction hypothesis. Hence so does f .

Our claim implies the theorem: R[x]<d0 is a finitely generatedR-module and so
a noetherian R-module by Proposition 1.3.4. Hence the R-submodule I ∩ R[x]<d0
is a finitely generated R-module by Proposition 1.3.3. If {fk+1, . . . , fk+l} is a set of
R-generators of I ∩R[x]<d0 , then {f1, . . . , fk+l} is a set of R[x]-generators of I. �

For the Nullstellensatz we need another finiteness result.
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Proposition 1.3.5 (Artin-Tate). Let R be a noetherian ring, B an R-algebra and
A ⊆ B an R-subalgebra. Assume that B is finitely generated as an A-module. Then
A is finitely generated as an R-algebra if and only if B is so.

PROOF. By assumption there exist b1, . . . , bm ∈ B such that B =
∑m
i=1Abi.

If there exist a1, . . . , an ∈ A which generate A as an R-algebra (which means
that A = R[a1, . . . , an]), then a1, . . . , an, b1, . . . , bm generate B as an R-algebra.

Suppose, conversely, that there exists a finite subset of B which generates B
as a R-algebra. By adding this subset to b1, . . . , bm, we may assume that b1, . . . , bm
also generate B as an R-algebra. Then every product bibj can be written as an
A-linear combination of b1, . . . , bm:

bibj =
∑m
k=1 a

k
ijbk, akij ∈ A.

Let A0 ⊆ A be the R-subalgebra of A generated by all the (finitely many) coef-
ficients akij . This is a noetherian ring by Corollary 1.2.9. It is clear that bibj ∈∑
k A0bk and so

∑
k A0bk is an R-subalgebra of B. Since the b1, . . . , bm generate

B as an R-algebra, it then follows this is all of B: B =
∑
k A0bk. So B is finitely

generated as an A0-module. Since A is an A0-submodule of B, A is also finitely
generated as an A0-module by Proposition 1.3.3. It follows that A is a finitely
generated R-algebra. �

This has a consequence for field extensions:

Corollary 1.3.6. A field extension L/K is finite if and only if L is finitely generated
as a K-algebra.

PROOF. It is clear that if L is a finite dimensional K-vector space, then L is
finitely generated as a K-algebra.

Suppose now b1, . . . , bm ∈ L generate L as a K-algebra. It suffices to show
that every bi is algebraic over K. Suppose that this is not the case. After renum-
bering we can and will assume that (for some 1 ≤ r ≤ m) b1, . . . , br are al-
gebraically independent over K and br+1, . . . , bm are algebraic over the quotient
field K(b1, . . . , br) of K[b1, . . . , br]. So L is a finite extension of K(b1, . . . , br). We
apply Proposition 1.3.5 to R := K, A := K(b1, . . . , br) and B := L and find
that K(b1, . . . , br) is as a K-algebra generated by a finite subset of K(b1, . . . , br).
If g ∈ K[b1, . . . , br] is a common denominator for the elements of this subset,
then clearly K(b1, . . . , br) = K[b1, . . . , br][1/g]. Since K(b1, . . . , br) strictly con-
tains K[b1, . . . , br], g must have positive degree. In particular, g 6= 1, so that
1/(1 − g) ∈ K(b1, . . . , br) can be written as f/gN , with f ∈ K[b1, . . . , br]. Here
we may of course assume that f is not divisible in K[b1, . . . , br] by g. From the
identity f(1 − g) = gN we see that N ≥ 1 (for the left hand side has positive de-
gree). But then f = g(f + gN−1) shows that f is divisible by g. We thus get a
contradiction. �

Corollary 1.3.7. Let A be a finitely generated k-algebra. Then for every maximal
ideal m ⊆ A, the natural map k → A→ A/m is an isomorphism of fields.

PROOF. Since m is maximal, A/m is a field that is also finitely generated as a
k-algebra. By corollary 1.3.6, k → A/m is then a finite extension of k. Since k is
algebraically closed, this extension will be the identity. �

EXERCISE 14. Prove that a field which is finite generated as a ring (i.e., is
isomorphic to a quotient of Z[x1, . . . , xn] for some n) is finite.
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We deduce from the preceding corollary the Nullstellensatz.

PROOF OF THE NULLSTELLENSATZ 1.1.5. Let J ⊆ k[x1, . . . , xn] be an ideal. We
must show that I(Z(J)) ⊆

√
J . This amounts to: for every f ∈ k[x1, . . . , xn] r

√
J

there exists a p ∈ Z(J) for which f(p) 6= 0. Consider k[x1, . . . , xn]/J and denote by
f̄ ∈ k[x1, . . . , xn]/J the image of f . Since f̄ is not nilpotent,

A := (k[x1, . . . , xn]/J)[1/f̄ ].

is not the zero ring and so has a maximal ideal m ⊆ A. Observe that A is a finitely
generated k-algebra (we can take the images of x1, . . . , xn and 1/f̄ as generators)
and so the map k → A/m is by Corollary 1.3.7 an isomorphism. Denote by φ :
k[x1, . . . , xn] → A → A/m ∼= k the corresponding surjection and put pi := φ(xi)
and p := (p1, . . . , pn) ∈ An. So if we view xi as a function on An, then φ(xi) is the
value of xi at p. The fact that φ is a homomorphism of k-algebras implies that it is
then given as ‘evaluation in p’: for any g ∈ k[x1, . . . , xn] we have φ(g) = g(p). Since
the kernel of φ contains J , every g ∈ J will be zero in p, in other words, p ∈ Z(J).
On the other hand, f(p) = φ(f) is invertible, for it has the image of 1/f̄ in A/m ∼= k
as its inverse. In other words, f(p) 6= 0. �

1.4. The affine category

We begin with specifying the maps between closed subsets of affine spaces that
we wish to consider.

DEFINITION 1.4.1. Let X ⊆ Am and Y ⊆ An be closed subsets. We say that a
map f : X → Y is regular if the components f1, . . . , fn of f are regular functions
on X (i.e., are given by the restrictions of polynomial functions to X).

Composition of a regular function on Y with f yields a regular function on X
(for if we substitute in a polynomial of n variables g(y1, . . . , yn) for every variable
yi a polynomial fi(x1, . . . , xm) of m variables, we get a polynomial of m variables).
So f then induces a k-algebra homomorphism f∗ : k[Y ] → k[X]. This property is
clearly equivalent to f being regular. The same argument shows that if f : X → Y
and g : Y → Z are regular maps, then so is their composite gf : X → Z. So
we have a category (with objects the closed subsets of some affine space An and
regular maps as defined above). In particular, we have a notion of isomorphism: a
regular map f : X → Y is an isomorphism if is has a two-sided inverse g : Y → X
which is also a regular map. This implies that f∗ : k[Y ] → k[X] has a two-sided
inverse g∗ : k[X]→ k[Y ] which is also an homomorphism of k-algebras, and hence
is an isomorphism of k-algebras.

There is also a converse:

Proposition 1.4.2. Let be given closed subsets X ⊆ Am and Y ⊆ An and a k-
algebra homomorphism φ : k[Y ] → k[X]. Then there is a unique regular map
f : X → Y such that f∗ = φ.

PROOF. The inclusion j : Y ⊆ An defines a k-algebra homomorphism j∗ :
k[y1, . . . , yn] → k[Y ] with kernel I(Y ). Put fi := φj∗(yi) ∈ k[X] (i = 1, . . . , n)
and define f = (f1, . . . , fn) : X → An, so that f∗yi = fi = φj∗yi. Since the k-
algebra homomorphisms f∗, φj∗ : k[y1, . . . , yn] → k[X] coincide on the generators
yi, they must be equal: f∗ = φj∗. It follows that f∗ is zero on the kernel I(Y ) of
j∗, which means that f takes its values in Z(I(Y )) = Y , and that the resulting map
k[Y ]→ k[X] equals φ. The proof of uniqueness is left to you. �
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In particular, an isomorphism of k-algebras k[Y ] → k[X] comes from a unique
isomorphism X → Y . In the special case of an inclusion of a closed subset Z ⊆ Y ,
the induced map k[Y ] → k[Z] is of course the formation of the quotient algebra
k[Z] = k[Y ]/IY (Z). So f : X → Y is an isomorphism of X onto a closed subset of
Y (we then say that f is a closed immersion ) if and only if f∗ : k[Y ] → k[X] is a
surjection of k-algebras (with ker(f∗) being the ideal defining the image of f).

We complete the picture by showing that any finitely generated reduced k-
algebra A is isomorphic to some k[Y ]; the preceding then shows that Y is unique
up to isomorphism. Since A is finitely generated as a k-algebra, there exists a sur-
jective k-algebra homomorphism φ : k[x1, . . . , xn] → A. If we put I := Ker(φ),
then φ induces an isomorphism k[x1, . . . , xn]/I ∼= A. Put Y := Z(I) ⊆ An. Since
A is reduced, I is a radical ideal and hence equal to I(Y ) by the Nullstellensatz. It
follows that φ factors through a k-algebra isomorphism k[Y ] ∼= A.

We may sum up this discussion in categorical language as follows.

Proposition 1.4.3. The map which assigns to a closed subset of some An its coor-
dinate ring defines an anti-equivalence between the category of closed subsets of
affine spaces (whose morphisms are the regular maps) and the category of reduced
finitely generated k-algebras (whose morphisms are k-algebra homomorphisms). It
makes closed immersions correspond to epimorphisms of such k-algebras.

EXAMPLE 1.4.4. Consider the regular map f : A1 → A2, f(t) = (t2, t3). The
maps A1 bijectively onto the hypersurface (curve) C defined by x3 − y2 = 0: the
image is clearly contained in C and the inverse sends (0, 0) to 0 and is on Cr{(0, 0)}
given by (x, y) 7→ y/x. The Zariski topology on A1 and C is the cofinite topology
and so this is even a homeomorphism. In order to determine whether the inverse
is regular, we consider f∗. We have k[C] = k[x, y]/(x3 − y2), k[A1] = k[t] and
f∗ : k[C] → k[t] is given by x 7→ t2, y 7→ t3. This algebra homomorphism is not
surjective for its image misses t ∈ k[t]. In fact, f identifies k[C] with the subalgebra
k + t2k[t] of k[t]. So f is not an isomorphism.

EXAMPLE 1.4.5. An affine-linear transformation of kn is of the form x ∈ kn 7→
g(x) + a, where a ∈ kn and g ∈ GL(n, k) is a linear transformation. Its inverse is
y 7→ g−1(y−a) = g−1(y)−g−1(a) and so of the same type. When we regard such an
affine linear transformation as a map from An to itself, then it is regular: its coordi-
nates (g1, . . . , gn) are polynomials of degree one. So an affine-linear transformation
is also an isomorphism of An onto itself. When n ≥ 2, there exist automorphisms of
An not of this form. For instance σ : (x, y) 7→ (x, y + x2) defines an automorphism
of A2 with inverse (x, y) 7→ (x, y − x2) (see also Exercise 16). This also shows that
the group of affine-linear translations in An is not a normal subgroup, for conjuga-
tion by σ takes the transformation (x, y) 7→ (x + y, y) to an automorphism that is
not affine-linear (check this). Hence the group of affine-linear transformations of
An is not a “natural” subgroup of the automorphism group of An (this makes that
the name affine n-space for An is a bit unfortunate).

EXERCISE 15. Let C ⊆ A2 be the ‘circle’, defined by x2 + y2 = 1 and let p0 :=
(−1, 0) ∈ C. For every p = (x, y) ∈ C r {p0}, the line through p0 and p has slope
f(p) = y/(x+ 1). Denote by

√
−1 ∈ k a root of the equation t2 + 1 = 0.
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(a) Prove that when char(k) 6= 2, f defines an isomorphism(5) onto A1 r
{±
√
−1}.

(b) Consider the map g : C → A1, g(x, y) := x +
√
−1y. Prove that when

char(k) 6= 2, g defines an isomorphism of C onto A1 r {0}.
(c) Prove that when char(k) = 2, the defining polynomial x2 + y2 − 1 for C is

the square of a degree one polynomial so that C is a line.

EXERCISE 16. Let f1, . . . , fn ∈ k[x1, . . . , xn] be such that f1 = x1 and fi − xi ∈
k[x1, . . . , xi−1] for i = 2, . . . , xn. Prove that f defines an isomorphism An → An.

EXAMPLE 1.4.6. QUADRATIC HYPERSURFACES WHEN char(k) 6= 2. Let H ⊆ An
be a hypersurface defined by a polynomial of degree two:

f(x1, . . . , xn) =
∑

1≤i≤j≤n aijxixj +
∑n
i=1 aixi + a0.

By means of a linear transformation the quadratic form
∑

1≤i≤j≤n aijxixj can be
brought in diagonal form (this involves splitting off squares, hence requires that
2 ∈ k×). This means that we can make all the coefficients aij with i 6= j vanish.
Another diagonal transformation (which replaces xi by

√
aiixi when aii 6= 0) takes

every nonzero coefficient aii to 1 and then renumbering the coordinates (which
is also a linear transformation) brings f into the form f(x1, . . . , xn) =

∑r
i=1 x

2
i +∑n

i=1 aixi + a0 for some r ≥ 1. Splitting off squares once more enables us to get
rid of

∑r
i=1 aixi so that we get

f(x1, . . . , xn) =
∑r
i=1 x

2
i +

∑n
i=r+1 aixi + a0.

We now have the following cases.
If the nonsquare part is identically zero, then we end up with the equation∑r

i=1 x
2
i = 0 for H.

If the linear part
∑n
i=r+1 aixi is nonzero (so that we must have r < n), then an

affine-linear transformation which does not affect x1, . . . , xr and takes
∑n
i=r+1 aixi+

a0 to xn yields the equation xn = −
∑r
i=1 x

2
i . This is the graph of the function

−
∑r
i=1 x

2
i on An−1 and so H is then isomorphic to An−1.

If the linear part
∑n
i=r+1 aixi is zero, but the constant term a0 is nonzero, then

we can make another diagonal transformation which replaces xi by
√
−a0xi) and

divide f by a0: then H gets the equation
∑r
i=1 x

2
i = 1.

In particular, there are only a finite number of quadratic hypersurfaces up to
isomorphism. (This is also true in characteristic two, but the discussion is a bit
more delicate.)

The previous discussion (and in particular Proposition 1.4.3) suggests to asso-
ciate to any ring R in a direct manner a space, called the maximal ideal spectrum
of R (and denoted here by Spm(R); this notation not so standard). The points of
Spm(R) are the maximal ideals of R; for x ∈ Spm(R), we shall denote the cor-
responding maximal ideal of R by mx. Every ideal I ⊆ R determines a subset
Z(I) ⊆ Spm(R), namely the set of x ∈ Spm(R) with I ⊆ mx. When s ∈ R, we
write Z(s) for Z(Rs); so this is the set of x ∈ Spm(R) with s ∈ mx. Note that
Z(0) = Spm(R), Z(R) = ∅ and that for arbitrary ideals I, J, {Iα}α of R, we have

5We have not really defined yet what is an isomorphism between two nonclosed subsets of an affine
space. Interpret this here as: f∗ maps k[x, y][1/(x+ 1)]/(x2 + y2− 1) (the algebra of regular functions
on C r {p0}) isomorphically onto k[t][1/(t2 + 1)] (the algebra of regular functions on A1 r {±

√
−1}).

This will be justified by Proposition 1.4.8.
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Z(I) ∪ Z(J) = Z(I ∩ J) and ∩αZ(Iα) = Z(
∑
α Iα). So the collection of such

subsets are the closed sets of a topology on Spm(R), the Zariski topology. Since
I =

∑
s∈I Rs, we have Z(I) = ∩s∈IZ(s) and so a basis for this topology consists of

the principal open subsets Spm(R)s := Spm(R) r Z(s).
We observe for later reference:

Lemma 1.4.7. The maximal ideal spectrum Spm(R) of any ringR is quasi-compact:
every open covering of Spm(R) admits a finite subcovering(6).

PROOF. It suffices to verify this for an open covering by principal open subsets.
So let S ⊆ R be such that Spm(R) = ∪s∈S Spm(R)s. This means that ∩s∈SZ(s) = ∅.
So the ideal generated by S is not contained in any maximal ideal and hence must
be all of R. In particular, 1 =

∑n
i=1 risi for certain ri ∈ R and si ∈ S. It follows

that {si}ni=1 generates R, so that Spm(R) = ∪ni=1 Spm(R)si . �

Now let A be a finitely generated k-algebra. Then for every x ∈ Spm(A), A/mx
can be identified with k by Corollary 1.3.7. We denote the resulting k-algebra
homomorphism A→ k by ρx. It is clear that any k-algebra homomorphism A→ k
has a maximal ideal of A as its kernel and so we may then also think of Spm(A) as
the set of k-algebra homomorphisms A→ k.

Any f ∈ A defines defines a ‘regular function’ f̄ : Spm(A) → k which takes
in x ∈ Spm(A) the value ρx(f) ∈ k. So its zero set is the set of x ∈ Spm(R) with
f ∈ mx: this is just the basic closed subset Z(f) ⊆ Spm(A). By assigning to f ∈ A
the k-valued function f̄ : Spm(A)→ k, we obtain a k-algebra homomorphism from
A to the algebra of k-valued functions on Spm(A). The kernel is just

√
(0) (this is

Exercise 18) so that the image can be identified with A := A/
√

(0). It is then log-
ical that we denote that image by k[Spm(A)]. Indeed, when A = k[x1, . . . , xn]/I,
Corollary 1.1.6 and the above discussion show that Spm(A) can be identified with
Z(I) ⊆ An as a topological space and that under this identification, A becomes
the ring of regular functions on Z(I). We thus recover the closed subsets of affine
spaces as topological spaces endowed with an algebra of (regular, k-valued) func-
tions in an intrinsic manner, that is, without any reference to an embedding in
some affine space(7), or what amounts to the same, without first specifying a set of
generators of our algebra.

We can also take care of the regular morphisms (it here becomes essential that
we are dealing with k-algebras, rather than with general rings, see Exercise 17).
A homomorphism φ : A → B of finitely generated k-algebras gives rise to a map
Spm(φ) : Spm(B) → Spm(A): if y ∈ Spm(B), then the composite homomorphism
ρyφ : A → k is the identity map when restricted to k so that φ−1my is a maximal
ideal of A with residue field k. We thus get a map

Spm(φ) : Spm(B)→ Spm(A).

6This terminology is a testimony to the influence of Bourbaki through Dieudonné-Grothendieck.
Most topologists call this property compact, but Bourbaki reserves this notion for Hausdorff spaces.

7I. Gelfand was presumably the first to consider this, albeit in the context of functional analysis:
he characterized the Banach algebras that appear as the algebras of continuous C-valued functions on
compact Hausdorff spaces. So it might be appropriate to call this the Gelfand spectrum.
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characterized by the property that if x := Spm(φ)(y), then mx = φ−1my and hence
ρx = ρyφ. Note that for f ∈ A, φ(f) is the composite

Spm(B)
Spm(φ)−−−−−→ Spm(A)

f−→ k.

In particular, the preimage of Z(f) under Spm(φ) is Z(φ(f)) and hence the preim-
age of Spm(A)f is Spm(B)φ(f). This shows that Spm(φ) is continuous. We shall
refer to the pair (Spm(φ), φ) as a morphism. Since such a morphism is completely
determined by φ, this is merely a way of remembering that the algebra homomor-
phism φ carries some geometric content.

Proposition 1.4.8. Let A be a finitely generated k-algebra. Then for every g ∈ A,
A[1/g] is a finitely generated k-algebra, which is reduced whenA is, and the natural
k-algebra homomorphism A → A[1/g] induces a homeomorphism of Spm(A[1/g])
onto Spm(A)g = Spm(A) r Z(g). Moreover, for g, g′ ∈ A the following are equiva-
lent:

(i) Spm(A)g ⊆ Spm(A)g′ ,
(ii) g′ divides some positive power of g,

(iii) there exists a A-homomorphism A[1/g′] → A[1/g] (which must then be
unique).

PROOF. It is clear that A[1/g] is a k-algebra and is as such finitely generated
(just add to a generating set for A the generator 1/g). We show that if A is reduced,
then so isA[1/g]. For this we suppose that g is nonzero (otherwiseA[1/g] is the zero
ring). Suppose that f/gr ∈ A[1/g] is nilpotent: (f/gr)m = 0/1 for some m ≥ 1.
This means that there exists an n ≥ 0 such that fmgn = 0. Then (fgn)m = 0 and
since A is reduced it follows that fgn = 0. So f/gr = fgn/gr+n = 0 in A[1/g].

An element of Spm(A[1/g]) is given by a k-algebra homomorphism A[1/g]→ k.
This is the same thing as to give a k-algebra homomorphism A→ k that is nonzero
on g, in other words, an element of Spm(A)g. So the map A → A[1/g] induces an
injection of Spm(A[1/g]) in Spm(A) with image Spm(A)g. The map Spm(A[1/g])→
Spm(A) is a morphism and hence continuous. To see that it is also open, note that a
principal open subset of Spm(A[1/g]) is of the form Spm(A[1/g])φ with φ ∈ A[1/g].
Let us assume this subset is nonempty, so that when we write φ = f/gn, both f
and g are not nilpotent. Then A[1/g][1/φ] = A[1/g][gn/f ] = A[1/(fg)], and so
Spm(A[1/g])φ is identified with the principal open subset Spm(A)fg of Spm(A).

We check the equivalence of the three conditions.
(i) ⇒ (ii) If Spm(A)g ⊆ Spm(A)g′ , then Z(g) ⊇ Z(g′) and so by the Nullstel-

lensatz, g ∈
√

(g′). This implies that we can write gn = fg′ for some f ∈ A and
some n ≥ 1 and (ii) follows.

(ii) ⇒ (iii) If gn = fg′ for some f ∈ A, then we have an A-homomorphism
A[1/g′] → A[1/(fg′)] = A[1/gn] = A[1/g] that is easily checked to be independent
of the choices made for n and f ′ and so (iii) follows.

(iii) ⇒ (i) If we have an A-homomorphism A[1/g′] → A[1/g], then we get a
morphism Spm(A[1/g])→ Spm(A[1/g′]) whose composition with the identification
of Spm(A[1/g′]) with the open subset Spm(A)g′ ⊆ Spm(A) yields the identifica-
tion of Spm(A[1/g]) with the open subset Spm(A)g ⊆ Spm(A). This means that
Spm(A)g ⊆ Spm(A)g′ and shows at the same time that such an A-homomorphism
is unique. �

From now on we identify the principal open subset Spm(A)g with Spm(A[1/g]).
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EXERCISE 17. Give an example of ring homomorphism φ : S → R and a maxi-
mal ideal m ⊆ R, such that φ−1m is not a maximal ideal of S. (Hint: take a look at
Exercise 11.)

EXERCISE 18. Let A and B be finitely generated k-algebras.
(a) Prove that f ∈ A 7→ f̄ defines a k-algebra homomorphism from A onto the

algebra of k-valued regular functions on Spm(A) with kernel
√

(0).
(b) Show that for every subset X ⊆ Spm(A), the set I(X) of f ∈ A with

f̄ |X = 0 is a radical ideal of A.
(c) The product A×B is a k-algebra componentwise addition an multiplication.

Prove that Spm(A × B) can be identified with the disjoint union of Spm(A) and
Spm(B).

We often run into nonreduced k-algebras when we consider the fibers of a
morphism f : X → Y . Since f is continuous, a fiber f−1(y), or more generally, the
preimage f−1Z of a closed subset Z ⊆ Y , will be closed in X. It is the zero set of
the ideal in k[X] generated by f∗I(Z). In fact, any ideal I ⊆ k[X] can arise this way,
for if (f1, . . . , fr) ∈ k[X] generate I, then take f = (f1, . . . , fr) : X → Ar = Y and
y = 0. We will later see that the failure of f∗I(Z) to be a radical ideal is sometimes
a welcome property, as it can be exploited to define a notion of multiplicity. Here is
a very simple example.

EXAMPLE 1.4.9. Let f : X = A1 → A1 = Y be defined by f(a) = a2. Then
f∗ : k[y] → k[x] is given by f∗y = x2. If we assume k not to be of characteristic 2,
and we take a ∈ Y r {0}, then the fiber f−1(a) is defined by the ideal generated by
f∗(y−a) = x2−a. It consists of two distinct points that are the two roots of x2 = a,
denoted ±

√
a and the pair of evaluation maps (ρ√a, ρ−

√
a) identifies the coordinate

ring k[x]/(x2 − a) with the product of fields k × k (as a k-algebra). However, the
fiber over 0 ∈ Y = A1 is the singleton {0} ⊂ X = A1 and the ideal generated
by f∗y = x2 is not a radical ideal. This example indicates that there might good
reason to accept nilpotent elements in the coordinate ring of f−1(0) by endowing
f−1(0) with the ring of functions k[f−1(0)] := k[x]/(x2). Since this is a k-vector
space of dimension 2 (a k-basis is defined by the pair {1, x}), we thus retain the
information that two points have come together. The fiber should be thought of as
a point with multiplicity 2.

Example 1.4.4 shows us a morphism (Spm(φ), φ) for which Spm(φ) is a contin-
uous bijection (it is even a homeomorphism), which fails to be an isomorphism. We
next discuss other examples of this phenomenon. These are of an entirely different
nature and involve a notion that plays a central role in algebraic geometry when
the base field k has positive characteristic.

EXAMPLE 1.4.10 (THE FROBENIUS MORPHISM). Assume that k has positive char-
acteristic p and consider the morphism Φp : A1 → A1, a 7→ ap. If we remember
that A1 can be identified with k, then we observe that under this identification, Φp
is a field automorphism: Φp(a − b) = (a − b)p = ap − bp = Φp(a) − Φp(b) (and
of course Φp(ab) = (ab)p = Φp(a)Φp(b)). Since Φp(a − b) = 0 implies a = b, this
shows that Φp is injective. It is also surjective, because k is algebraically closed
(every element of k has a pth root). But the endomorphism Φ∗p of k[x] induced by
Φp sends

∑n
i=0 cix

i to
∑n
i=0 cix

pi and has therefore image k[xp]. Clearly, Φ∗p is not
surjective.
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The fixed point set of Φp (the set of a ∈ A1 with ap = a) is via the identification
of A1 with k just the prime subfield Fp ⊂ k and therefore denoted by A1(Fp) ⊂ A1.
Likewise, the fixed point set A1(Fpr ) of Φrp is the subfield of k with pr elements.
Since the algebraic closure Fp of Fp in k is the union of the finite subfields of k,
the affine line over Fp equals ∪r≥1A1(Fpr ). In other words, every Φp-orbit in A1

is finite. This generalizes in a straightforward manner to higher dimensions: by
letting Φp act coordinatewise on An, we get a morphism An → An (which we still
denote by Φp) that is also a bijection. The fixed point set of Φrp is An(Fpr ) and every
Φp-orbit in An is finite.

EXERCISE 19. Assume that k has positive characteristic p. Let q = pr be a power
of p with r > 0 and denote by Fq ⊂ k the subfield of a ∈ k satisfying aq = a. We
write Φq for Φrp : a ∈ An 7→ aq ∈ An.

(a) Prove that f ∈ k[x1, . . . , xn] is in Fq[x1, . . . , xn] if and only if Φqf = fq.
(b) Prove that an affine-linear transformation of An with coefficients in Fq

commutes with Φq.
(c) Let Y ⊆ An be the common zero set of a subset of Fq[x1, . . . , xn] ⊂

k[x1, . . . , xn]. Prove that Φq restricts to a bijection ΦY,q : Y → Y and that the
fixed point set of ΦmY,q is Y (Fqm) := Y ∩ An(Fqm).

(d) Suppose that k is an algebraic closure of Fp. Prove that every closed subset
Y ⊆ An is defined over some finite subfield of k and hence is invariant under some
positive power of Φp.

REMARK 1.4.11. After this exercise we cannot resist to mention the Weil zeta
function. This function and its relatives—among them the Riemann zeta function—
codify arithmetic properties of algebro-geometric objects in a very intricate manner.
In the situation of Exercise 19, we can use the numbers |Y (Fqm)| (= the number of
fixed points of Φm in Y ) to define a generating series

∑
m≥1 |Y (Fqm)|tm. It appears

to be more convenient to work with the Weil zeta function:

ZY (t) := exp
(∑∞

m=1 |Y (Fqm)| t
m

m

)
,

which has the property that t ddt logZY yields the generating series above. This
series has remarkable properties. For instance, a deep theorem due to Bernard
Dwork (1960) asserts that it represents a rational function of t. Another deep
theorem, due to Pierre Deligne (1974), states that the roots of the numerator and
denominator have for absolute value a nonpositive half-integral power of q and
that these have an interpretation in terms of an ‘algebraic topology for algebraic
geometry’, as was predicted by André Weil in 1949. (This can be put in a broader
context by making the change of variable t = q−s. Indeed, now numerator and
denominator have their zeroes when the real part of s is a nonnegative half-integer
and this makes Deligne’s result reminiscent of the famous conjectured property of
the Riemann zeta function.)

EXERCISE 20. Compute the Weil zeta function of affine n-space relative to the
field of q elements.

REMARK 1.4.12. The Frobenius morphism as defined above should not be con-
fused with pth power map FrA : a ∈ A 7→ ap ∈ A that we have on any commutative
Fp-algebra A and that is sometimes referred to as the absolute Frobenius. This is
an Fp-algebra endomorphism, but in case A is in fact a k-algebra (where k is an
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algebraic closure of Fp) not a k-algebra endomorphism, for it is on k also the pth
power map (the usual Frobenius Frk) and so not the identity.

But if we are given a finitely generated Fq-algebra Ao (with q = pr), then
A := k ⊗Fq Ao is a finitely generated k-algebra and the map λ⊗Fq a 7→ λ⊗Fq a

q is
k-linear: it is a homomorphism k-algebras (why?). The associated morphism Φq :
Spm(A)→ Spm(A) is the Frobenius morphism that we encountered in Exercise 19.

1.5. The sheaf of regular functions

In any topology or analysis course you learn that the notion of continuity is
local: there exists a notion of continuity at a point so that a function is continuous
if and only if it is so at every point of its domain. We shall see that in algebraic
geometry the property for a function to be regular is also local in nature.

DEFINITION 1.5.1. We say that a k-valued function φ defined on an open subset
U of X is regular at x ∈ U if its restriction to some principal neighborhood of x in
X is so. We denote by O(U) the set of k-valued functions U → k that are regular
at every point of U .

Note that is O(U) is in fact a k-algebra. We would like to call an element of
O(U) a regular function on U , but we have that notion already defined in case
U = X, or more generally, when U is a principal open subset. Fortunately, there is
no conflict here:

Proposition 1.5.2. Let X = Spm(A) the maximal ideal spectrum of finitely gener-
ated reduced k-algebra. Then for every principal open subset Xg ⊆ X, the natural
k-algebra homomorphism A[1/g]→ O(Xg) is an isomorphism.

If we are also given Y = Spm(B) withB a finitely generated reduced k-algebra,
then a map F : X → Y is regular (i.e., is defined by a k-algebra homomorphism
B → A) if and only if F is continuous and for any φ ∈ O(V ) (with V ⊆ Y open)
we have F ∗φ = φF ∈ O(F−1V ).

PROOF. We have seen in Proposition 1.4.8 that Xg = Spm(A[1/g]). So for the
proof of the first statement we may without loss of generality assume that Xg = X.
The map A → O(X) is injective: an element of A in the kernel must be zero as a
function on X, and since A is reduced, it is then zero in A.

To prove surjectivity, let φ ∈ O(X). We must show that φ is representable by
some f ∈ A. By assumption there exist for every x ∈ X, a gx ∈ A r mx, a fx ∈ A
and an integer rx ≥ 0 such that φ|Xgx is representable as fx/grxx .

Since X is quasi-compact (Lemma 1.4.7), the covering {Xgx}x∈X of X has a
finite subcovering {Xgxi

}Ni=1. Let us write fi for fxi and gi for grxxi . Then fi/gi and
fj/gj define the same regular function on Xgi ∩ Xgj = Xgigj and so gifj − gjfi
is annihilated by (gigj)

mij for some mij ≥ 0. Let m be the maximum of these
exponents mij , so that gm+1

i gmj fj = gm+1
j gmi fi for all i, j. Upon replacing fi by

fig
m
i and gi by gm+1

i , we may then assume that in fact gifj = gjfi for all i, j.
Since ∪iXgi = X, we have ∩iZ(gi) = ∅. In other words, the ideal (g1, . . . , gN ) ⊆

A is not contained in a maximal ideal and so must be all of A: 1 =
∑N
i=1 higi for

certain hi ∈ A. Now consider f :=
∑N
i=1 hifi ∈ A. We have for every j,

fgj =
∑N
i=1 hifigj =

∑N
i=1 higifj = fj
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and so the restriction of f to Xgj is equal to fj/gj . As this is also the restriction of
φ to Xgj and ∪jXgj = X, it follows that φ is represented by f .

The last statement is left as an exercise. �

Let us denote by OX the collection of the k-algebras O(U), where U runs over
all open subsets ofX. The preceding proposition says thatOX is a sheaf of k-valued
functions on X, by which we mean the following:

DEFINITION 1.5.3. Let X be a topological space and R a ring. A sheaf O of
R-valued functions (8) on X assigns to every open subset U of X an R-subalgebra
O(U) of the R-algebra of R-valued functions on U with the property that

(i) for every inclusion U ⊆ U ′ of open subsets of X, ‘restriction to U ’ maps
O(U ′) in O(U) and

(ii) given a collection {Ui}i∈I of open subsets of X, then a function f :
∪i∈IUi → R lies in O(∪iUi) if and only if f |Ui ∈ O(Ui) for all i.

If (X,OX) and (Y,OY ) are topological spaces endowed with a sheaf of R-
valued functions, then a continuous map f : X → Y is called a morphism if for
every open V ⊆ Y , composition with f takes OY (V ) to OX(f−1V ).

This definition simply expresses the fact that the functions we are consider-
ing are characterized by a local property—just as we have a sheaf of continuous
R-valued functions on a topological space, a sheaf of differentiable R-valued func-
tions on a manifold and a sheaf of holomorphic C-valued functions on a complex
manifold. With the notion of a morphism, we have a category of topological spaces
endowed with a sheaf of R-valued functions. In particular, we have the notion of
isomorphism: this is a homeomorphism f : X → Y which for every open V ⊆ Y
maps OY (V ) onto OX(f−1V ). Note that a sheaf O of R-valued functions on X
restricts to a sheaf O|U for every open U ⊆ X.

For every x ∈ X, we can form what is called the stalk OX,x of OX at x: an
element of OX,x is represented by a pair (U, φ), where U is a neighborhood of x in
X and φ ∈ O(U), with the understanding that an other such pair (U ′, φ′) defines
the same element if and only if there exists a neighborhood of x in U ∩ U ′ to
which φ and φ′ have the same restriction (this is indeed an equivalence relation).
We may of course restrict ourselves here to neighborhoods U belonging to a given
neighborhood basis of x. So an element of OX,x has a well-defined value in x, but
not in general in any other point of X. Note that OX,x is an k-algebra.

We are now ready to introduce the notion of an affine variety. We take our cue
from the definition of a manifold.

DEFINITION 1.5.4. A topological spaceX endowed with a sheafOX of k-valued
functions is called an affine variety when it is isomorphic to a pair (Spm(A),OSpm(A))
as above. We refer to OX(X) as its coordinate ring and usually denote it by k[X].

We call (X,OX) a prevariety if X can be covered by finitely many open subsets
U such that (U,OX |U) is an affine variety.

Given prevarieties (X,OX) and (Y,OY ), then a morphism of prevarieties f :
(X,OX) → (Y,OY ) is simply a morphism in the category of spaces endowed with
a sheaf OX of k-valued functions: f is continuous and for every open V ⊆ Y ,
composition with f takes OY (V ) to OX(f−1V ).

8We give the general definition of a sheaf later. This will do for now. A defect of this definition is
that a sheaf of R-valued functions on a space X need not restrict to one on a subspace of X.
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We often designate a prevariety and its underlying topological space by the
same symbol, a habit which rarely leads to confusion.

Thus a reduced finitely generated k-algebra defines an affine variety and con-
versely, an affine variety determines a reduced finitely generated k-algebra. These
two assignments are inverses of each other. It follows from Proposition 1.5.2 that
a map F : X → Y between affine varieties is regular in the old sense if and only if
is one as a morphism between spaces endowed with a sheaf of k-valued functions.
This exhibits the category of affine varieties as a full subcategory of the category of
spaces endowed with a sheaf of k-valued functions.

The composite of two morphisms is evidently a morphism so that we have
a category. The prefix ‘pre’ in prevariety refers to the fact that we have not im-
posed a separation requirement which takes the place of the Hausdorff property
that one normally imposes on a manifold (we discuss this in Section 1.6). But the
reader be warned that we have to wait till Chapter 3 before we encounter genuine
(pre)varieties. Our justification for introducing this notion here is that many of the
results we are going to obtain as of now, can be stated in that context and admit a
proof that is hardly more complicated than in the affine case.

Let us at least observe that we can describe a prevariety (like a smooth man-
ifold) in terms of an atlas and transition maps. Concretely, a prevariety X is by
assumption X is covered by finitely many affine open subvarieties {Ui}i∈I (so I is
a finite index set), meaning that there exists an isomorphism κi of Ui onto an affine
variety Xi which is given as a closed subset in some Ani . Then Xi,j := κi(Ui ∩ Uj)
is an open subset of Xi and κi,j := κjκ

−1
i is an isomorphism of Xi,j onto Xj,i ⊆ Xj .

We can recover X from the disjoint union
∐
i∈I Xi by means of a gluing process,

for if we use κi,j to identify Xi,j with Xj,i for all i, j we get back X. The collection
{(Ui, κi)}i∈I is called an affine atlas for X and κi,j is called a transition map.

A stalk of a prevariety is a familiar algebraic object:

Lemma 1.5.5. Let X be a prevariety and x ∈ X. If U = Spm(A) is an affine
neighborhood of x, then the stalk OX,x = OU,x is equal to the local ring Amx =
(Armx)−1A with mX,x = (Armx)−1mx.

PROOF. A germ of a regular function at x by a pair (Xg, φ), where g ∈ Armx.
Then φ ∈ A[1/g], and (Xg, φ) ∼ (Xg′ , φ

′) precisely when there exists a principal
neighborhood Xg′′ of x in Xg ∩ Xg′ such that φ|Xg′′ = φ′|Xg′′ . By Proposition
1.4.8, we then have A-algebra homomorphisms A[1/g] → A[1/g′′] resp. A[1/g′] →
A[1/g′′] so that φ and φ′ map to the same φ′′ ∈ A[1/g′′]. In particular, φ and φ′ have
the same image in Amx . The equality OX,x = Amx then follows, once we observe
that any element of Amx is represented by a fraction f/g with f ∈ A and that this
defines a regular function on the affine neighborhood Ug of x. It is then also clear
that mX,x = (Armx)−1mx. �

EXAMPLE 1.5.6. Here is an example an affine open subset of an affine variety that is
not principal. Take the cuspidal plane cubic curve C ⊂ A2 of Example 1.4.4 defined by
y2 = x3 and assume that k is of characteristic zero. As we have seen, the parametrization
f : t ∈ A1 7→ (t2, t3) ∈ C identifies k[C] with the subalgebra k + t2k[t] of k[t]. Now let
a ∈ A1 r {0}. So U := C r {f(a)} is quasi-affine. But U is not a principal open subset: it is
not of the form Cg for some g ∈ k[x, y]. For then f∗(g) would have a as its only zero, so that
f∗g is a nonzero constant times (t−a)n. But the coefficient of t in (t−a)n is n(−a)n−1, and
hence nonzero. This contradicts the fact that f∗g ∈ k + t2k[t].
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We claim however that U is affine, with k[U ] via f∗ identified with k[t2, t3, t2/(t − a)].
Clearly, k[t2, t3, t2/(t − a)] is a finitely generated k-algebra. Since it is contained in the
reduced k-algebra k[t][1/(t− a)], it is also reduced and so it defines an affine variety Ũ . The
inclusion k[t2, t3] ⊆ k[t2, t3, t2/(t − a)] defines a morphism j : Ũ → C. We prove that j is
an isomorphism of Ũ onto U in the sense of Definition 1.5.4 by checking this over two open
subsets U0 and Ua of C that cover C: it will then follow that U is affine.

We let Ua := Cx|C . The ideal generated by f∗(x|C) = t2 in k[A1] defines {0} and so
Ua = C r {f(0)}. We note that k[Ua] = k[C][1/t2] = k[t2, t3, t−2] = k[t, t−1] and hence
k[Ua r {f(a)}] = k[Ua][1/(t− a)]. On the other hand,

k[j−1Ua] = k[t2, t3, t2/(t− a)][t−2] =

= k[t, t−1, 1/(t− a)] = k[Ua][1/(t− a)] = k[Ua r {f(a)}].

This proves that j−1Ua maps isomorphically onto Ua r {f(0)}. It remains to show that
there is neighborhood U0 of (0, 0) ∈ C r {f(a)} such that j maps j−1U0 isomorphically
onto U0. Take for U0 the principal open subset Cx|C−a2 . Then k[U0] = k[t2, t3][1/(t2 − a2)]

and k[j−1U0] = k[t2, t3, t2/(t− a)][1/(t2 − a2)]. But these k-algebras are the same, because
t2/(t− a) = (t3 + at2)/(t2 − a2)] ∈ k[t2, t3][1/(t2 − a2)], and so j : j−1U0

∼= U0.
Other such examples (among them smooth plane cubic curves) that are also valid in

positive characteristic are best understood after we have discussed the Picard group.

EXERCISE 21. Let X be a prevariety.
(a) Prove that X is a noetherian space and hence quasi-compact.
(b) Prove that X contains an open-dense subset U ⊂ X which is affine and

has the property that each of its connected components is contained in exactly one
irreducible component of X (and hence is itself irreducible).

(c) Show that if U and U ′ are as in (b), then so is U ∩ U ′, and the inclusions
U ⊇ U ∩ U ′ ⊆ U ′ induce bijections on connected components.

EXERCISE 22. Let X be a prevariety and Y ⊆ X be locally closed (i.e., the
intersection of a closed subset with an open subset). Prove that Y is in natural
manner a prevariety in such a manner that the inclusion Y ⊆ X is a morphism of
prevarieties.

In particular, an open subset of an affine variety makes up a prevariety. We
call any prevariety isomorphic to an open subset of an affine variety a quasi-affine
variety. We shall see that such a prevariety need not be affine.

1.6. The product

Let m and n be nonnegative integers and let π1 : Am+n → Am resp. π2 :
Am+n → An be the projections on the firstm resp. last n coordinates. For f ∈ k[Am]
and g ∈ k[An], we put f ∗g := π∗1f.π

∗
2g (in coordinates: f ∗g(x1, . . . , xm, y1, . . . , yn)

= f(x1, . . . , xm)g(y1, . . . , yn)). It is clear that Am+n
f∗g = Amf × Ang , which shows that

the Zariski topology on Am+n refines the product topology on Am × An. Equiva-
lently, if X ⊆ Am and Y ⊆ An are closed, then X × Y is closed in Am+n. We give
X×Y the topology it inherits from Am+n (which is finer than the product topology
when m > 0 and n > 0). For the coordinate rings we have defined a map:

k[X]× k[Y ]→ k[X × Y ], (f, g) 7→ f ∗ g = π∗Xf.π
∗
Y g

which is evidently k-bilinear (i.e., k-linear in either variable). We want to prove that
the ideal I(X × Y ) defining X × Y in Am+n is generated by I(X) ∪ I(Y ) (viewed
as a subset of k[x1, . . . , xm, y1, . . . yn]) and that X ×Y is irreducible when X and Y
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are. This requires that we translate the formation of the product into algebra. The
translation centers around the notion of the tensor product, the definition of which
we recall. (Although we here only need tensor products over k, we shall define this
notion for modules over a ring, as this is its natural habitat and is the setting that
is needed later anyhow.)

Tensor product (review). If R is a ring and M and N are R-modules, then we can
form their tensor product over R, M ⊗R N : as an abelian group M ⊗R N is generated by
the expressions a⊗R b, a ∈ M , b ∈ N and subject to the conditions (ra)⊗R b = a⊗R (rb),
(a+ a′)⊗R b = a⊗R b+ a′⊗R b and a⊗R (b+ b′) = a⊗R b+ a⊗R b′. So a general element
of M ⊗R N can be written like this:

∑N
i=1 ai ⊗R bi, with ai ∈ M and bi ∈ N . We make

M ⊗R N an R-module if we stipulate that r(a⊗R b) := (ra)⊗R b (which is then also equal
to a⊗R (rb)). Notice that the map

⊗R : M ×N →M ⊗R N, (a, b) 7→ a⊗R b,

is R-bilinear (if we fix one of the variables, then it becomes an R-linear map in the other
variable).

In case R = k we shall often omit the suffix k in ⊗k and so write ⊗ instead.

EXERCISE 23. Prove that ⊗R is universal for this property in the sense that every R-
bilinear mapM×N → P ofR-modules is the composite of⊗R and a uniqueR-homomorphism
M ⊗R N → P . In other words, the map

HomR(M ⊗R N,P )→ BilR(M,N ;P )), f 7→ f ◦ ⊗R

is an isomorphism of R-modules.

EXERCISE 24. Let m and n be nonnegative integers. Prove that Z/(n)⊗Z Z/(m) can be
identified with Z/(m,n).

If A is an R-algebra and N is an R-module, then A ⊗R N acquires the structure of an
A-module which is characterized by

a.(a′ ⊗R b) := (aa′)⊗R b.

For instance, if N is an R-vector space, then C⊗RN is a complex vector space, the complexi-
fication of N . If A and B are R-algebras, then A⊗RB acquires the structure of an R-algebra
characterized by

(a⊗R b).(a′ ⊗R b′) := (aa′)⊗R (bb′).

Notice that A→ A⊗R B, a 7→ a⊗R 1 and B → A⊗R B, b 7→ 1⊗R b are R-algebra homo-
morphisms. For example, A⊗RR[x] = A[x] as A-algebras (and hence A⊗RR[x1, . . . , xn] =
A[x1, . . . , xn] with induction).

EXERCISE 25. Prove that C⊗R C is as a C-algebra isomorphic to C⊕C with componen-
twise multiplication.

Proposition 1.6.1 (Product of affine varieties). For closed subsets X ⊆ Am and
Y ⊆ An the bilinear map k[X] × k[Y ] → k[X × Y ], (f, g) 7→ f ∗ g induces an
isomorphism µ : k[X]⊗k[Y ]→ k[X×Y ] of k-algebras (so that in particular k[X]⊗
k[Y ] is reduced). In more abstract terms: if A and B reduced finitely generated
k-algebras, then so is A ⊗ B and we have Spm(A ⊗ B) = Spm(A) × Spm(B) as
affine varieties.

If X and Y are irreducible, then so is X × Y , or equivalently, if k[X] and k[Y ]
are domains, then so is k[X]⊗ k[Y ].
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PROOF. Since the obvious map

k[x1, . . . , xm]⊗ k[y1, . . . , yn]→ k[x1, . . . , xm, y1, . . . , yn]

is an isomorphism, it follows that µ is onto. In order to prove that µ is injective, let
us first observe that every φ ∈ k[X] ⊗ k[Y ] can be written φ =

∑N
i=1 fi ⊗ gi such

that g1, . . . , gN are k-linearly independent. Given p ∈ X, then the restriction of
µ(φ) =

∑N
i=1 fi∗gi to {p}×Y ∼= Y is the regular function φp :=

∑N
i=1 fi(p)gi ∈ k[Y ].

Since the gi’s are linearly independent, we have φp = 0 if and only if fi(p) = 0 for
all i. In particular, the subset X(φ) ⊆ X of p ∈ X for which φp = 0, is equal to
∩Ni=1Z(fi) and hence closed.

If µ(φ) = 0, then φp = 0 for all p ∈ X and hence fi = 0 for all i. So φ = 0. This
proves that µ is injective.

Suppose now X and Y irreducible. We prove that k[X] ⊗ k[Y ] is a domain so
that X × Y is irreducible. Let φ, ψ ∈ k[X] ⊗ k[Y ] be such that φψ = 0. Since the
restriction of φψ = 0 to {p} × Y ∼= Y is φpψp and k[Y ] is a domain, it follows that
φp = 0 or ψp = 0. SoX is the union of its closed subsetsX(φ) andX(ψ). SinceX is
irreducible we have X = X(φ) or X = X(ψ). This means that φ = 0 or ψ = 0. �

REMARK 1.6.2. It is clear that the projections πX : X × Y → X and πY :
X × Y → Y are regular. We have observed that the space underlying X × Y is
usually not the topological product of its factors. Still it is the ‘right’ product in
the sense of category theory: it has the following universal property, which almost
seems too obvious to mention: if Z is a closed subset of some affine space, then
any pair of regular maps f : Z → X, g : Z → Y defines a regular map Z → X × Y
characterized by the property that its composite with πX resp. πY yields f resp. g
(this is of course (f, g)).

EXERCISE 26. Let X and Y be closed subsets of affine spaces. Prove that each
irreducible component of X × Y is the product of an irreducible component of X
and one of Y .

1.7. The notion of a variety

Our discussion of the product of closed subsets of affine spaces dictates how
we should define the product of two prevarieties X and Y : we give the topology
on X × Y by specifying a basis of open subsets, namely the collection (U × V )h,
where U ⊆ X and V ⊆ Y are affine open and h ∈ O(U)⊗O(V ). The sheaf OX×Y
is then determined by requiring that OX×Y ((U × V )h) = (O(U) ⊗ O(V ))[1/h], so
that such a basis element is affine. It is clear that if let U resp. V run over a finite
covering of X resp. Y , then the affine open subsets U×V run over a finite covering
of X × Y .

EXERCISE 27. Prove that this product has the usual categorical characteriza-
tion: the two projections X × Y → X and X × Y → Y are morphisms and if
Z is a prevariety, then a pair of maps (f : Z → X, g : Z → Y ) defines a mor-
phism (f, g) : Z → X × Y if and only both f and g are morphisms. (If we take
X = Y = Z and let f and g be the identity map, we obtain the diagonal morphism
∆X : X → X ×X.)

The Hausdorff property is not of a local nature: a non-Hausdorff space can very
well be locally Hausdorff. The standard example is the space X obtained from two
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copies of R by identifying the complement of {0} in either copy by means of the
identity map. Then X is locally like R, but the images of the two origins cannot be
separated. A topological spaceX is Hausdorff precisely when the diagonal ofX×X
is a closed subset relative to the product topology. As we know, the Zariski topology
is almost never Hausdorff. But on the other hand, the selfproduct of the underlying
space has not the product topology either and so requiring that the diagonal is
closed is not totally unreasonable a priori. In fact, imposing this condition turns
out to be the appropriate way of avoiding the pathologies that can result from an
unfortunate choice of gluing data. This is illustrated by looking at the algebraic
version of the standard example:

EXAMPLE 1.7.1. Let X be obtained from two copies A1
+ and A1

− of A1 by iden-
tifying A1

+ r {o} with A1
− r {o} by means of the identity map. Then A1

+ ×A1
− is an

affine open subset of X × X which can be identified with A2. Under this identifi-
cation, A1

+ × A1
− intersects the diagonal of X ×X in A2 r {(o, o)} (we are missing

(o+, o−) ∈ A1
+ × A1

−). So (o+, o−) ∈ X ×X lies in the closure of the diagonal, but
is not contained in the diagonal.

DEFINITION 1.7.2. A prevariety X is called a variety if the diagonal is closed in
X×X (where the latter has the Zariski topology as defined above), or equivalently,
when the diagonal morphism ∆X : X → X ×X is closed as a map.

Proposition-definition 1.7.3. A locally closed subset of a variety is a variety (which
is then called a subvariety ) and so is the product of two varieties.

PROOF. Let X be variety. The first assertion follows from the observation that
for any Z ⊂ X, the diagonal of Z in Z × Z is the intersection of Z × Z with the
diagonal of X and hence is closed in Z × Z. For the second, note that under the
obvious isomorphism (X × Y )2 ∼= X2 × Y 2, the diagonal of (X × Y )2 becomes the
product of the diagonals of X and Y . �

We say that a morphism of varieties f : (X,OX) → (Y,OY ) is an immersion if
it defines an isomorphism onto a subvariety of Y , that is, is the composite of such
an isomorphism and an inclusion.

EXAMPLE 1.7.4. The diagonal in An × An is closed, so An is a variety. This
implies that the same is true for any quasi-affine subset of An. Hence a quasi-affine
prevariety is in fact a variety.

EXAMPLE 1.7.5. Let f : X → Y be a morphism of varieties. Consider the graph
of f , Γf := {(x, f(x)) ∈ X × Y : x ∈ X}. This is a subvariety of X × Y : if V ⊂ Y is
affine open, then f−1V is open in X and hence covered by affine open subvararities

U of X. Then (U ×V )∩Γf is the graph of the restriction fU,V : U
f−→ V . It is closed

in U × V , because it is defined by the ideal in k[U × V ] ∼= k[U ] ⊗ k[V ] generated
by the elements π∗V g − π∗Uf∗U,V (g) ∼= 1 ⊗ g − f∗U,V (g) ⊗ 1. This proves that Γf is
locally closed in X × Y , for such U × V cover Γf . The projection Γf → X is an
isomorphism which has the morphism x ∈ X 7→ (x, f(x)) ∈ Γf as its inverse. Note
that via this isomorphism f appears as a projection mapping: (x, y) ∈ Γf 7→ y ∈ Y .

EXERCISE 28. It is clear that U := A2 r {(o, o)} is quasi-affine. The goal of this
exercise is to show that it is not affine. Let Ux ⊆ U resp. Uy ⊆ U be the complement
of the x-axis resp. y-axis so that U = Ux ∪ Uy.
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(a) Prove that Ux is affine and that O(Ux) = k[x, y][1/x].
(b) Prove that every regular function on U extends to A2 so thatO(U) = k[x, y].
(c) Show that U is not affine.

This exercise also leads to an interesting example. Let X be obtained as the
obvious generalization of Example 1.7.1 where A1 is replaced by A2 so that X is
covered by two copies of A2 (appearing as open affine subsets) whose intersection is
a copy of A2r{(o, o)} (which is not affine). Hence, on a prevariety the intersection
of two affine subsets need not be affine. This cannot happen on a variety and that
is one of the reasons why we like them:

Proposition 1.7.6. LetX be a variety. Then for any pair U,U ′ of affine open subsets
of X, U ∩ U ′ is also an affine open subset of X and OX(U ∩ U ′) is as a k-algebra
generated by OX(U)|U ∩ U ′ and OX(U ′)|U ∩ U ′.

PROOF. First note that U × U ′ is an affine open subset of X × X. Since the
diagonal ∆(X) of X ×X is closed, its intersection with U ×U ′ is a closed subset of
U × U ′ and hence affine. But the diagonal map sends U ∩ U ′ isomorphically onto
this intersection (the inverse being given by one of the projections) and so U ∩U ′ is
affine. The diagonal defines a closed embedding U ∩U ′ → U×U ′ of affine varieties
and so the map k[U ] ⊗ k[U ′] ∼= k[U × U ′] → k[U ∩ U ′] is onto. Since the image of
f ⊗ f ′ ∈ k[U ]⊗ k[U ′] equals f|U∩U ′ · f ′|U∩U ′ , the last assertion follows. �

1.8. Function fields and rational maps

Among other things, we interpret in this section the total fraction ring of an
algebra of regular functions of an affine variety.

Assume first that X is irreducible and affine, so that k[X] is a domain. Then
Frac(k[X]) is a field, called the function field of X and denoted by k(X). Any
φ ∈ k(X) is by definition represented by a fraction f/g with f, g ∈ k[X] and g
not a zero divisor in k[X] and so defines a regular function on the open-dense
subset Xg. For a nonempty affine open subset U of X, k[U ] has the same field of
fractions (in the sense that we may identify k(U) with k(X)): choose h ∈ k[X],
such that the principal open subset Xh is nonempty and contained in U . Then
k[X][1/h] ⊇ k[U ] ⊇ k[X] and as the fraction fields of k[X] and k[X][1/h] are the
same, both must be equal to the fraction field of k[U ]. It is clear that k(X) is finitely
generated as a field extension of k. Note that

k(X) = lim−→
g nonzero divisor in k[X]

k[X][1/g] = lim−→
U affine open-dense in X

OX(U).

Now drop the assumption that X is affine, but still assume X irreducible. If U ⊂
X is affine and open, then an element of k(U) defines a regular function on an
open-dense subset of U and this subset is then also open-dense in X. Conversely,
a regular function on an open-dense subset of X restricts to a regular function
on an open-dense subset of U and hence defines an element of k(U). It follows
that k(U) is independent of U (so that we can denote it by k(X)): an element is
simply represented by a regular function on an open-dense subset of X, with the
understanding that two such regular functions represent the same element if they
coincide on an open-dense subset of X on which both are defined. In other words,

k(X) := lim−→
U affine open-dense in X

OX(U).
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We will also use this as a definition in the general case (where we also drop the
assumption that X is irreducible). The right hand side, which no longer has to
be a field, is then called the function ring of X (it is in fact a k-algebra). Exercise
29 below then provides the interpretation of k(X) in terms of the irreducible com-
ponents of X. An element of k(X) is called a rational function on X. This is the
algebro-geometric analogue of a meromorphic function in complex function theory.

EXERCISE 29. Let X be a variety, and let X1, . . . , Xr be its distinct irreducible
components.

(a) Show that the set of points contained in exactly one Xi is open-dense in X.
Prove that this subset contains an affine subvariety U which is open-dense in X (so
that Ui := Xi ∩ U is an irreducible component of U which is open-dense in Xi).

(b) Show that k[U ] = k[U1]×· · ·×k[Ur] (a product of domains) and Frac([U ]) =
k(U1)× · · · × k(Ur) (a product of fields).

(c) Prove that the k-algebra k(X) as defined above (whose elements are rep-
resented by regular functions defined on an open-dense subset) can be identified
with Frac([U ]).

We shall now give a geometric interpretation of finitely generated field exten-
sions of k and the k-linear field homomorphisms between them.

DEFINITION 1.8.1. Let X and Y be varieties. A rational map from X to Y
(denoted as X 99K Y ) is given by a pair (U,F ), where U is an open-dense subset
of X and F : U → Y is a morphism, with the understanding that a pair (U ′, F ′)
defines the same rational map if F and F ′ coincide on an open-dense subset of
U ∩ U ′ (9); we shall call U a domain for f .

We say that a rational map X 99K Y is dominant if for some (or equivalently,
any) representative pair (U,F ), F (U) is dense in Y .

So a rational map X 99K A1 is the same thing as a rational function on X.

Proposition 1.8.2. Every finitely generated field extension of k is k-isomorphic to
the function field of an irreducible affine variety.

Given irreducible varieties X and Y , then a rational map f : X 99K Y is
dominant if and only if it determines a k-linear field embedding f∗ : k(Y ) ↪→ k(X).

Every k-linear field embedding k(Y )→ k(X) is induced by a unique dominant
rational map X 99K Y .

PROOF. Let K/k be a finitely generated field extension of k. This means that
there exist a1, . . . , an ∈ K such that every element of K can be written as a fraction
of polynomials in a1, . . . , an with coefficients in k. So the k-subalgebra of K gen-
erated by a1, . . . , an is a domain A ⊆ K (since K is a field) that has K as its field
of fractions. Since A is the coordinate ring of a closed irreducible subset X ⊆ An
(defined by the kernel of the obvious ring homomorphism k[x1, . . . , xn] → A), it
follows that K can be identified with k(X).

Suppose we are given an affine open-dense subset U ⊆ X and a morphism
F : U → Y . Let V ⊂ Y be affine open and meet F (U). Upon replacing U by a
nonempty affine open subset of U ∩ f−1V , we may then assume that F (U) ⊆ V so
that F ∗ defines a k-homomorphism k[V ]→ k[U ]. Observe that a nonzero g ∈ k[V ]

9Then they coincide on all of U ∩ U ′ by continuity, but by formulating it in this way we easier
check that we are dealing with an equivalence relation
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is in the kernel of F ∗ if and only if F (X) ⊆ Z(g). Since V r Z(g) is a nonempty
open subset of the irreducible Y , its complement Z(g)∪ (Y r V ) is a closed subset.
It follows that f will map any nonempty open subset of X on which it is defined to
Z(g) ∪ (Y r V ) and hence will not be dominant. So F ∗ is injective if and only if f
is dominant. When F ∗ is injective, then its composite with k[U ] ↪→ k(U) = k(X)
is an injective homomorphism from a domain to a field and therefore extends to
a field embedding k(Y ) ↪→ k(X). It is easy to check that this field embedding is
independent of the choice of U and hence only depends on f .

It remains to show that every k-linear field homomorphism Φ : k(Y )→ k(X) is
so obtained. For this, we may assume that X and Y are affine. Choose generators
b1, . . . , bm of k[Y ] as a k-algebra. Let h ∈ k[X] r {0} be a common denominator
for the elements Φ(b1), . . . ,Φ(bm) of k(X), so that they all lie in the subalgebra
k[X][1/h] = k[Xh] of k(X). Then Φ maps k[Y ] to k[Xh] and hence defines a mor-
phism F : Xh → Y such that F ∗ = Φ|k[Y ]. Since Φ is injective, so is F ∗ and hence
F (Xh) is dense in Y . It is clear that Φ is the extension of F ∗ to the function fields.

As to the uniqueness: if (Xg′ , F
′) is another solution, then F and F ′ both

define morphisms Xgg′ → Y . These must be equal since the associated k-algebra
homomorphisms k[Y ]→ k[X][1/(gg′)] coincide (namely the restriction of Φ). �

The following exercise explains the focus on irreducible varieties when consid-
ering rational maps.

EXERCISE 30. Let X and Y be an affine varieties with distinct irreducible com-
ponents X1, . . . , Xr resp. Y1, . . . , Ys. Prove that to give a rational map f : X 99K Y
is equivalent to giving for each i = 1, . . . , r a rational map fi : Xi 99K Y . Show that
f is dominant if and only if for each j ∈ {1, . . . , s}, there exists an ij ∈ {1, . . . , r}
such that f maps Xij to Yj as a dominant map.

EXERCISE 31. Let f ∈ k[x1, . . . , xn+1] be irreducible of positive degree. Its zero
set X ⊆ An+1 is then closed and irreducible. Assume that the degree d of f in xn+1

is positive.
(a) Prove that the projection π : X → An induces an injective k-algebra homo-

morphism π∗ : k[x1, . . . , xn]→ k[X] = k[x1, . . . , xn]/(f).
(b) Prove that π is dominant and that the field extension k(X)/k(x1, . . . , xn) is

finite of degree d.

Corollary 1.8.3. Two dominant maps f : X 99K Y and g : Y 99K Z between irre-
ducible varieties can be composed to yield a dominant map gf : X 99K Z so that we
have a category with the irreducible varieties as objects and the rational dominant
maps as morphisms. By assigning to an irreducible variety its function field, we
establish an anti-equivalence between this category and the category whose objects
are the finitely generated field extensions of the base field k and morphisms are
k-linear field embeddings.

PROOF. The dominant maps yield k-linear field extensions f∗ : k(Y ) ↪→ k(X)
and g∗ : k(Z) ↪→ k(Y ) and these can be composed to give a k-linear field extension
f∗g∗ : k(Z) ↪→ k(X). Proposition 1.8.2 says that this is induced by a unique rational
map X 99K Z. This we define to be gf . The rest of the corollary now follows. �

The composite gf can of course also be defined in a direct geometric manner:
if (U,F ) represents f and (V,G) represents g, then F−1V is nonempty. Since F−1V
is also open and hence dense in X, (F−1V,GF ) will represent gf .
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Proposition-definition 1.8.4. A rational map f : X 99K Y between irreducible
varieties is an isomorphism in the above category (that is, induces a k-linear iso-
morphism of function fields) if and only if there exists a representative pair (U,F )
of f such that F maps U isomorphically onto an open subset of Y . If these two
equivalent conditions are satisfied, then f is called a birational map.

If a birational map X 99K Y merely exists (in other words, if there exists a
k-linear field isomorphism between k(X) and k(Y )), then we say that X and Y
are birationally equivalent. We say that an irreducible variety X is rational if X is
birationally equivalent to An for some n. This is equivalent to: X contains an open
subset isomorphic to a nonempty principal open subset of An and also to k(X)
being a purely transcendental extension of k.

PROOF. If f identifies a nonempty open subset of X with one of Y , then f∗ :
k(Y )→ k(X) is clearly a k-algebra isomorphism.

Suppose conversely we are given a k-linear isomorphism k(Y ) ∼= k(X). We
represent this isomorphism and its inverse by (U,F ) and (V,G) respectively. Since
F−1V is a nonempty open subset of the affine U , it contains a nonempty principal
open subset Ug. Now Ug

GF−−→ X is morphism between varieties which induces the
identity on k(Ug) = k(X). Hence it is the identity on k[Ug] ⊆ k(X). This means
that GF is the identity on Ug. Since Ug is dense in F−1V , and GF is continuous, it
follows that GF is the inclusion F−1V ⊆ X. In particular, F maps F−1V injectively
toG−1U . For the same reason, GmapsG−1U injectively to F−1V . Both composites
are the identity and so F defines an isomorphism F : F−1V ∼= G−1U .

The equivalence of the characterizations of rationality is clear. �

REMARK 1.8.5. The property of an irreducible variety X being rational has (at least)
interesting versions that are a priori weaker: we say that X is stably rational if X × Ar is
rational for some r (equivalently: some purely transcendental extension of k(X) is a purely
transcendental extension of k) and we say that X is unirational if there exists a dominant
map An 99K X for some n (equivalently: k(X) can be realized as a subfield of a purely
transcendental extension of k).

It is clear that rational ⇒ stably rational ⇒ unirational. None of the two opposite
implications holds, but examples which illustrate this are difficult to describe.

EXERCISE 32. Prove that the curve in A2 defined by x2
1 + x2

2 = 1 is birationally
equivalent to the affine line A1 when char(k) 6= 2 (hint: take a look at Exercise 15).
What happens when char(k) = 2? Same questions for the quadrics in An+1 defined
by x2

1 + x2
2 + · · ·+ x2

n+1 = 1 and x1x2 + x2
3 + · · ·+ x2

n+1 = 1.

In case k(X)/k(Y ) is a finite extension, one may wonder what the geometric
meaning is of the degree d of that extension, perhaps hoping that this is just the
number of elements of a general fiber of the associated rational map X 99K Y . We
will see that this is often true (namely when the characteristic of k is zero, or more
generally, when this characteristic does not divide d), but not always, witness the
following example.

EXAMPLE 1.8.6. Suppose k has characteristic p > 0. We take X = A1 = Y
and take for f the Frobenius morphism: Φp : a ∈ X 7→ ap ∈ Y . We have seen in
Example 1.4.10 that Φp is homeomorphism, but that Φ∗p : k[Y ] = k[y] → k[x] =
k[X] is given by y 7→ xp and so induces the field extension k(y) = k(xp) ⊂ k(x),
which is of degree p. From the perspective of Y , we have enlarged its algebra
of regular functions by introducing a formal pth root of its coordinate y (which
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yields another copy of A1, namely X). From the perspective of X, k[Y ] is just the
subalgebra k[xp] ⊂ k[x].

This is in fact the basic example of a purely inseparable field extension, i.e.,
an algebraic field extension L/K with the property that every element of L has a
minimal polynomial in K[T ] that has precisely one root in L. If L 6= K, then the
characteristic p of K must be positive and such a polynomial must have the form
T p

r − c, with c ∈ K and r > 0. For the polynomial to be minimal, c cannot be
a p-th power of an element of K (for if c = ap, then T p

r − c = (T p
r−1 − a)p);

in particular, the field K cannot be perfect (which means that the Frobenius map
a ∈ K 7→ ap ∈ K is not surjective). Purely inseparable extensions have trivial
Galois group (as there is only one root to move around) and hence are not detected
by Galois theory.

EXERCISE 33. Let f : X 99K Y be a dominant rational map of irreducible
varieties which induces a purely inseparable field extension k(X)/k(Y ). Prove
that there is an open-dense subset V ⊆ Y such that f defines a homeomorphism
f−1V → V . (Hint: first do the basic case when k(X) is obtained from k(Y ) by
adjoining the pth root of an element of k(Y ).)

Much of the algebraic geometry in the 19th century and early 20th century was
of a birational nature: birationally equivalent varieties were regarded as not really
different. Drastic as this may seem, it turns out that many interesting properties of
varieties are an invariant of their birational equivalence class. We shall see that for
curves there is no difference at all.

Here is an observation which not only illustrates how affine varieties over
algebraically nonclosed fields can arise when dealing with affine k-varieties, but
one that also suggests that we ought to enlarge the maximal ideal spectrum. Let
f : X → Y be a dominant morphism of irreducible affine varieties. This implies
that f∗ : k[Y ] → k[X] is injective and that f(X) contains an open-dense subset of
Y . Then we may ask whether there exists something like a general fiber: is there
an open-dense subset V ⊆ Y such that the fibers f−1(y), y ∈ V all “look the same”?
The question is too vague for a clear answer and for most naive ways of making
this precise, the answer will be no. For instance, we could simply refuse to specify
one such V by allowing it to be arbitrarily small, but if we then want to imple-
ment this idea by taking the (projective) limit lim←−V open-dense in Y

f−1V , then we end
up with the empty set unless Y is a singleton. However, its algebraic counterpart,
which amounts to making all the nonzero elements of k[Y ] in k[X] invertible, is
nontrivial. To be precise, we have an isomorphism

lim−→
V open-dense in Y

k[f−1V ] = lim−→
g 6=0

k[X][1/f∗g] ∼= k(Y )⊗k[Y ] k[X]

The latter is in fact a reduced finitely generated k(Y )-algebra and this is a hint
that an adequate geometric description requires that we include more points. First
of all, we would like to regard the maximal ideal spectrum of k(Y ) ⊗k[Y ] k[X] as
an affine variety over the (algebraically nonclosed) field k(Y ) so that every regular
function onX which comes from Y is now treated as a scalar (and will be invertible
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when nonzero) (10). And secondly, in order to give this a geometric content, we
would like that every irreducible variety Z defines a point ηZ (its generic point) with
‘residue field’ k(Z), which for a singleton must give us back its unique element with
the field k. For we then can extend f to the points defined by closed irreducible
subsets Z ⊆ X by putting f(ηZ) := η

f(Z)
. Then as a set, the generic fiber of f is

the fiber of this extension over ηY , i.e., the set of ηZ for which f |Z : Z → Y is
dominant. Such considerations directly lead to the notion of a scheme.

1.9. Finite morphisms

In this section A is a ring and B is a A-algebra. In other words, we are given a
ring homomorphism A→ B (that is sometimes denoted by B/A).

Although we do not assume that A → B is injective, we usually make no
notational distinction between an element of A and its image in B. When A→ B is
injective (so that we may regard A as subring of B), we say that B is an extension of
A. For example, we say that B is finite over A if B is a finitely generated A-module
and we say that B is a finite extension of A if in addition A→ B is injective.

Proposition-definition 1.9.1. We say that b ∈ B is integrally dependent on A if one
the following equivalent properties is satisfied.

(i) b is a root of a monic polynomial in A[x],
(ii) A[b] is finitely generated as an A-module,

(iii) b is contained in a A-subalgebra C ⊆ B which is finite over A.

PROOF. (i)⇒ (ii). If bn + a1b
n−1 + · · ·+ an ∈ A[x] for some n ≥ 1 and certain

ai ∈ A, then clearly A[b] is generated as a A-module by 1, b, b2, . . . , bn−1.
(ii)⇒ (iii) is obvious.
(iii) ⇒ (i). Suppose that C is as in (iii). Choose an epimorphism π : An → C

of A-modules and denote the standard basis of An by (e1, . . . , en). We may (and
will) assume that π(e1) = 1B . By assumption, bπ(ei) =

∑n
j=1 aijπ(ej) for certain

aij ∈ A. We regard the n × n-matrix σ := (bδij − aij)i,j with entries in A[b] as an
A[b]-endomorphism of A[b]n. Note that det(σ) is a monic polynomial in b of degree
n with coefficients in A. So it suffices to show that det(σ) = 0.

Since b ∈ C, π extends to an epimorphism π̃ : A[b]n → C ofA[b]-modules. Then
π̃σ(ei) = π̃(bei−

∑n
j=1 aijej) = bπ(ei)−

∑n
j=1 aijπ(ej) = 0 for all i, in other words,

π̃σ = 0. Now Cramer’s rule can be understood as stating that if σ′ : A[b]n → A[b]n

is defined by the matrix of cofactors of σ, then σσ′ is scalar multiplication with
det(σ). Since 1 = π(e1) = π̃(e1), we find that in B,

det(σ) = det(σ)π̃(e1) = π̃(det(σ)e1) = π̃(σσ′(e1)) = (π̃σ)(σ′(e1)) = 0. �

Corollary-definition 1.9.2. The elements of B that are integrally dependent on A
make up an A-subalgebra of B; we call this subalgebra the integral closure of A in
B (and denote it by AB).

We say that B is integral over A if every element of B is integral over A; if in
addition the given ring homomorphism A → B is injective, then we say that B is

10Our notion of affine variety demanded that it be defined over an algebraically closed field. This
is of course arranged by choosing an algebraic closure L of k(Y ). The maximal ideal spectrum of
L⊗k[Y ] k[X] is then an affine L-variety, and yields a notion of a general fiber that is even closer to our
geometric intuition.
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an integral extension of A. This is the case, when B is finite over A (resp. is a finite
extension of A).

PROOF. For the first assertion it is enough to prove that if b, b′ ∈ B are integrally
dependent over A, then so is every element of A[b, b′]. Or what amounts to the
same: if A[b] and A[b′] are finitely generated A-modules, then so is A[b, b′]. This is
clear: if {bk}n−1

k=0 generatesA[b] and {b′k}n
′−1
k=0 generatesA[b′], then the nn′ elements

{bkb′k′}n,n
′

k=0,k′=0 generate A[b, b′].
The second assertion follows from part (iii) of Proposition 1.9.1. �

An important class of example appears in algebraic number theory: if L is an
algebraic number field, that is, a finite field extension of Q, then the integral closure
of Z ⊂ Q defines a subring of L, called the ring of integers of L. This ring is often
denoted by OL.

EXERCISE 34 (Being an integral extension is a transitive property). Prove that
if B is an A-algebra integral over A, then any B-algebra that is integral over B is
integral over A.

EXERCISE 35 (Local inheritance of being integrally closed). Let B be an A-
algebra in which A is integrally closed and let S ⊆ A a multiplicative subset. Prove
that S−1A is integrally closed in S−1B.

Proposition 1.9.3. Let A ⊆ B be an integral extension and suppose B is a domain.
Then Frac(A)B = Frac(B) and (hence) Frac(B) is an algebraic field extension of
Frac(A). This extension is finite whenever B is a finite extension of A.

PROOF. To prove that Frac(B) = Frac(A)B, it is enough to show that 1/b ∈
Frac(A)B for any b ∈ B r {0}. By assumption, such a b satisfies an equation
bn+a1b

n−1 + · · ·+an−1b+an = 0 with ai ∈ A and an 6= 0. So 1/b = −1/an.(b
n−1 +

a1b
n−2 + · · ·+ an−1) ∈ Frac(A)B.
Let now c ∈ Frac(B). According to the preceding, we can then write c = b/a

with b ∈ B and a ∈ Frac(A)r{0}. If bn+a1b
n−1 + · · ·+an−1b+an = 0 with ai ∈ A,

then the identity cn +
∑n
i=1(aiai)c

n−i = 0 shows that c is algebraic over Frac(A).
This proves that Frac(B)/Frac(A) is algebraic.

For the last assertion, just observe that when a finite set S ⊂ B generates B as
an A-module, then it generates Frac(A)B = Frac(B) as a Frac(A)-vector space. �

There are two simple ways of producing new integral extensions out of a given
one, namely localization (as we saw by doing Exercise 35) and reduction: if A ⊆
B is integral, then for every ideal J ⊆ B, J ∩ A is (clearly) an ideal of A and
A/J ∩A ⊆ B/J is an integral extension. Both appear in the proof of the ‘Going up
theorem’ below. For this we need:

Lemma 1.9.4 (Nakayama’s Lemma). Let R be a ring and I ⊂ R an ideal with the
property that 1 + I ⊆ R× (for example, R is a local ring and I is its maximal ideal).
Let M be a finitely generated R-module. If IM = M , then M = 0. More generally,
a finite subset S ⊆ M generates M as a R-module if (and only if) the image of S
in M/IM generates the latter as a R/I-module.

PROOF. First assume that IM = M . Let π : Rn → M be an epimorphism
of R-modules and denote the standard basis of Rn by (e1, . . . , en). By assumption
there exist rij ∈ I such that π(ei) =

∑s
j=1 rijπ(ej). So if σ ∈ EndR(Rn) has
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matrix (δij − rij)i,j , then πσ = 0. If σ′ ∈ EndR(Rn) is defined by the matrix of
(n − 1) × (n − 1) minors of σ, then σ′σ is scalar multiplication by det(σ) and so
det(σ)π = π det(σ) = πσσ′ = 0. Since π is onto, this shows that multiplication by
det(σ) ∈ R annihilates M . It is clear that det(σ) ∈ 1 + I and so det(σ) is invertible
by assumption. It follows that M = 0.

For the second assertion, we apply the preceding to N := M/RS. It tells us
that if IN = N (which is equivalent to M = IM + RS, which in turn amounts to:
S generates M/IM), then N = 0 (which amounts to: S generates M). �

Proposition 1.9.5 (Going up). Let A ⊆ B be an integral extension and let p ⊆ A
be a prime ideal of A. Then the going up property holds: p is of the form q ∩ A,
where q is a prime ideal of B. If also is given is a prime ideal q′ of B with the
property that p ⊇ q′ ∩ A, then we can take q ⊇ q′. Moreover the incomparability
property holds: two distinct prime ideals of B having the same intersection with A
cannot obey an inclusion relation.

REMARK 1.9.6. In the situation of Proposition 1.9.5 one often says that the
prime ideal q lies over the prime ideal p. Let us agree to call a prime chain (of
length n) in a ring R a strictly ascending sequence p0 ( p1 ( · · · ( pn of prime
ideals in R. The going up property may then be restated as saying that given an
integral extension A ⊆ B, then over any prime chain in A lies a prime chain in
B, where we even may prescribe the first member of the latter in advance (this
is indeed what ‘going up’ refers to). The incomparability property says that the
intersection a prime chain in B with A is a prime chain in A.

PROOF OF PROPOSITION 1.9.5. The localization A → Ap yields a local ring
with maximal ideal pAp and the prime ideals of Ap correspond (by taking the
preimage in A) to the prime ideals of A contained in p (see Exercise 11). The
localization ApB = (A r p)−1B of B as a A-module is, by Exercise 35 above, an
integral extension of Ap. If we find a prime ideal q̃ of ApB with q̃∩Ap = pAp, then
the preimage q of q̃ in B is a prime ideal of B with the property that q ∩ A is the
preimage of pAp in A and so this is just p. So for proving the first assertion there is
no loss in generality in assuming that A is a local ring and p is its unique maximal
ideal mA.

We claim that mAB 6= B. Suppose this is not so: mAB = B. Then write 1 ∈ B
as an mA-linear combination of a finite set elements of B and denote by B′ the
A-subalgebra of B generated by this finite set. Since B is an integral extension of
A, B′ is finite over A. By construction, we still have 1 ∈ mAB

′, so that B′ = mAB
′.

It then follows from Nakayama’s Lemma 1.9.4 that B′ = 0. Hence 1 = 0, i.e., A is
the zero ring. This contradicts our assumption that A has a maximal ideal.

Since mAB 6= B, we can take for q any maximal ideal of B which contains the
ideal mAB: then qB ∩A is a maximal ideal of A, hence equals mA.

For the refinement we can, simply by passing to A/(q′ ∩ A) ⊆ B/q′ (which
is still an integral extension by the observation above), assume that q′ = 0. This
reduces the refinement to the case already treated.

For the incomparability property we must show that if q′ ⊆ q and q′∩A = q∩A,
then q′ = q. By passing to A/(q′ ∩ A) ⊆ B/q′ we reduce to the case when B is a
domain and q ∩A = (0).

We must then show that q = 0. So let b ∈ q. Then bn+a1b
n−1+· · ·+an−1b+an =

0 for some n ≥ 1 and certain ai ∈ A. We prove with induction on n that b = 0.
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Clearly, an ∈ Bb ∩ A ⊆ q ∩ A = (0) and so an = 0. When n = 1, we get that b = 0.
For n ≥ 2, since B is a domain, we find that b = 0 or bn−1 +a1b

n−2 + · · ·+an−1 = 0,
in which case, b = 0 by induction. �

DEFINITION 1.9.7. We say that a morphism of affine varieties f : X → Y is
finite if the k-algebra homomorphism f∗ : k[Y ] → k[X] is finite, i.e., makes k[X] a
finitely generated k[Y ]-module (so k[X] is then integral over k[Y ]).

More generally, a morphism of varieties f : X → Y is called finite if it is locally
so over Y , that is, if we can cover Y by open affine subsets V with the property that

f−1V is affine and the restriction f−1V
f−→ V is finite.

So a morphism f : X → Y of affine varieties is finite and dominant if and only
if f∗ : k[Y ]→ k[X] is a finite extension.

EXERCISE 36. Prove that if Y is a variety, then the disjoint union of its irre-
ducible components is finite over Y .

Propositions 1.9.3 and 1.9.5 give in the algebro-geometric setting:

Corollary 1.9.8. Let f : X → Y be a finite, dominant morphism of varieties.
Then for every closed irreducible subset P ⊆ Y , the collection of closed irre-

ducible subsets Q ⊆ X with f(Q) = P is nonempty with no two members satisfying
an inclusion relation. In particular, f is closed and surjective.

If in addition X is irreducible, then so is Y and f∗ : k(Y ) → k(X) is a finite
algebraic extension of fields.

PROOF. By assumption, we can cover Y by affine open subsets U such that

f−1U is affine and f−1U
f−→ U is finite. It suffices to prove the corollary for such U

and so there is no loss in generality in assuming that X and Y are affine.
We apply Proposition 1.9.5 to f∗ : k[Y ] → k[X] and the prime ideal p := I(P )

and find that p = (f∗)−1q for some prime ideal q ⊂ k[X]. Then Q := Z(q) is
irreducible and f∗ induces an injective morphism k[P ] = k[Y ]/p→ k[X]/q = k[Q].
This tells us that f restricts to a dominant morphism f ′ : Q → P . If we apply the
preceding to f ′ (instead of f), and take for P a singleton {p} ⊆ P , then we find
that f ′−1(p) is nonempty, so that f(Q) = P . The incomparability property implies
that no two such Q can satisfy an inclusion relation.

Had we started with an arbitrary irreducible closed subset Q ⊆ X and taken
for P the closure of f(Q), then the preceding (again applied to the restriction
f ′ : Q→ P of f) shows that f(Q) = P . This proves that f is closed.

The last assertion follows from Proposition 1.9.3. �

EXAMPLE 1.9.9. This simple example shows that in the situation of Corollary
1.9.8, not every irreducible component of f−1P need to dominate P . Consider the
morphism f : A2 → A4 defined by f(x, y) = (x(x − 1), x2(x − 1), xy, y). Then
f is finite and identifies the two basis vectors e1 = (1, 0) and e2 = (0, 1), but
nothing else. Since f is a finite morphism, its image X ⊂ A4 is closed (by the
above exercise). We regard f now as mapping to X so that it is then a dominant
morphism between irreducible varieties. Let P ⊂ X to be the image of the y-axis
(this the just the last coordinate axis of A4). Then f−1P is the union of the y-axis
and the singleton {e1}.
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EXERCISE 37. Let f : Y → X be a finite morphism of varieties. Prove that f is
closed and that every fiber f−1(x) is finite (possibly empty). Prove that if W ⊆ X
is locally closed, then the restriction f : f−1W →W is also a finite morphism.

Theorem 1.9.10. Let f : X → Y be a dominant morphism of irreducible varieties.
Then f(X) contains a nonempty affine open subset of Y .

PROOF. We first do the rather special (but, as it will turn out, essential) case
for which Y is affine and X is a locally closed subset of A1 × Y (which means that
X is open in its closure X in A1 × Y ) such that f is the projection.

In case X = A1 × Y (so that X is open in A1 × Y ), we choose a nonzero
g ∈ k[A1 × Y ] = k[Y ][t] such that the principal open set (A1 × Y )g is contained in
X. Let h ∈ k[Y ] denote the initial coefficient of g. If p ∈ Yh, then g(t, p) ∈ k[t]r{0}
and hence there exists a t0 ∈ A1 such that g(t0, p) 6= 0. Then (t0, p) ∈ X and so this
shows that f(X) contains the nonempty principal open subset Yh of Y .

When X 6= A1 × Y , let g1, . . . , gr ∈ k[Y ][t] generate the ideal defining X.
Denote by hi the initial coefficient of gi and put h := h1 · · ·hr ∈ k[Y ]. Now gi/hi
can be regarded as a monic polynomial in k[Yh][t]. The ideal generated by these
fractions is still a prime ideal and defines Xh in A1 × Yh. This proves that k[Xh] =
k[X][1/h] is a finite k[Y ][1/h] = k[Yh]-module so that the projection Xh → Yh is
finite. Since f : X → Y is dominant, Corollary 1.9.8 implies thatXh → Yh is closed
and surjective. Now XhrXh is a (proper) closed subset of Xh, and so its image in
Yh will be closed subset Z ⊆ Yh. By the incomparibility property, we cannot have
Z = Yh, and so Yh r Z is a nonempty open subset of Y contained in f(X).

We now prove the theorem in general. Since Y contains a nonempty affine
open subset V , there is no loss in generality is assuming that Y is affine (replace
f : X → Y by its restriction f−1V → V ). Upon replacing X by a nonempty affine
open subset of X, we may then also assume that X is affine. We can then arrange
that X is a locally closed subset of An × Y and f = πY |X: first identify X with a
closed subset of An and then identify X with the graph of f in An × Y . For n = 0,
the assertion is trivial, and the case n = 1 falls under the case treated above. We
then proceed with induction on n and assume n > 1. Factor f as

f : X
f ′−→ Y ′

f ′′−−→ Y,

where Y ′ is the closure of image of X ⊆ An×Y → A1×Y (we retain the last factor
of An), and the two maps are the projections. The induction hypothesis applied to
f ′ : X → Y ′ produces a nonempty open affine X ′ ⊂ Y ′ which is contained in
f ′(X). By the case treated above there exists a nonempty open subset of Y which
is contained in f ′′(X ′). This open subset then also contains f(X). �

An interesting application is given in the following exercise.

EXERCISE 38. Let f : X → Y be a dominant morphism of irreducible varieties
for which k(X) is a finite extension of k(Y ). Let d be the degree of the separable
closure of k(Y ) in k(X). Prove that there exists a principal nonempty open subset
V ⊆ Y such that f−1V → V is a finite morphism, all of whose fibers have d points
(so that this restriction is like a topological covering of degree d). (Hint: revisit the
proof of Theorem 1.9.10.)
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Before we discuss another application, let us take a look at the following simple
example. It shows that the image of a morphism of affine varieties need not be
locally closed.

EXAMPLE 1.9.11. Consider the morphism f : A2 → A2, (x1, x2) 7→ (x1, x1x2).
A point (y1, y2) ∈ A2 is of the form (x1, x1x2) if and only if y2 is a multiple of y1.
This is the case precisely when y1 6= 0 or when y1 = y2 = 0. So the image of f is
the union of the open subset y1 6= 0 and the singleton {(0, 0)}. This is not a locally
closed subset, but the union of two such. This turns out to represent the general
situation and the following definition will help us to express this fact.

DEFINITION 1.9.12. A subset of a topological space X is called constructible if
it can be written as the union of finitely many locally closed subsets of X.

An exercise in set theory shows that we then can always take this union to be
disjoint. But the resulting decomposition need not be unique.

Proposition 1.9.13. Let f : X → Y be a morphism of varieties. Then f takes
constructible subsets of X to constructible subsets of Y . In particular, f(X) is
constructible.

PROOF. A constructible subset is a finite union of subvarieties and so it is clearly
enough to prove that the image of each of these is constructible. In other words, we
only need to show that f(X) is constructible. SinceX is a finite union of irreducible
subsets, there is then no restriction in assuming that X is irreducible.

It then suffices to show that X contains a proper closed subset X1 ( X such
that f(X r X1) is locally closed in Y , for if X1 6= ∅, then the same argument
applied to f |X1 shows that there exists a proper closed subset X2 ( X1 such that
f(X1 r X2) is locally closed in Y and since X is a noetherian space, this process
will terminate and so f(X) = ∪i≥0f(Xi rXi+1) (we put X0 := X) is then written
as a finite union of locally closed subsets.

Theorem 1.9.10 applied toX → f(X) shows that there exists a nonempty open
subset V of f(X) which is contained in f(X). Then X1 := f−1(Y rV ) will do. �

1.10. Normalization

The following theorem has important geometric consequences. We recall that
a field κ is called perfect if in case it has characteristic p > 0, every element of κ
has a pth root (so if κ has characteristic zero, then it is perfect by definition). Note
that every finite field is perfect. On the other hand, if F is any field of characteristic
p > 0, then F (t) is not perfect.

When κ has characteristic p > 0 and g =
∑
I aIx

I ∈ κ[x1, . . . , xm], then gp =∑
I a

p
Ix
pI (the pth power map is a ring endomorphism). So if κ is perfect, then

f ∈ κ[x1, . . . , xm] has a pth root in κ[x1, . . . , xm] if and only if each monomial
appearing in f with nonzero coefficient is a pth power.

Theorem 1.10.1 (Noether normalization). Let κ be a field. Then every finitely
generated κ-algebra A is a finite (hence integral) extension of a polynomial κ-
algebra: there exist an integer r ≥ 0 and an injection κ[x1, . . . , xr] ↪→ A of κ-
algebras such that A is finite over κ[x1, . . . , xr] (so if A is a domain, then r the
transcendence degree of Frac(A)/κ).

If moreover κ is perfect and A is a domain, then we can arrange that in addition
Frac(A) is a separable finite extension of κ(x1, . . . , xr).
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The proof will be with induction and uses the following lemma.

Lemma 1.10.2. Let f ∈ κ[x1, . . . , xm] be nonzero. Then there exists a κ-algebra
automorphism σ of κ[x1, . . . , xm] such that for µ = 1, . . . ,m, the initial coefficient
of fσ, when regarded an element of κ[x1, . . . , x̂µ, . . . , xm][xµ], lies in κ× (in other
words, fσ is a nonzero scalar times a monic polynomial in xµ).

PROOF. Suppose that f has already this property in at least r indeterminates
xµ, say in x1, . . . , xr. When r = 0, this assumption is empty and for r = m it is
what we want. So let us proceed with induction on r and assume that r < m and
prove that there exists an automorphism σ of κ[x1, . . . , xm] such that fσ has this
property with respect to x1, . . . , xr, xm.

For every positive integer s, a κ-algebra automorphism σs of κ[x1, . . . , xm] is
defined by σs(xµ) := xµ +xs

m−µ

m when µ ≤ m− 1 and σs(xm) = xm. This is indeed
an automorphism, for its inverse is given by σ−1

s (xµ) = xµ − xs
m−i

m for µ < m − 1
and σs(xm) = xm. Note that if I = (i1, . . . , im) ∈ Zm≥0, then

σs(x
I) = σs(x

i1
1 · · ·ximm ) = (x1 + xs

m−1

m )i1 · · · (xm−1 + xsm)im−1ximm .

When viewed as an element of κ[x1, . . . , xm−1][xm], this is a monic polynomial in
xm of degree pI(s) := i1s

m−1 + i2s
m−2 + · · ·+ im. It also clear that for µ 6= m, the

degree in xµ does not change and that σ(xNµ ) is monic in xµ, so that for µ ≤ r the
initial coefficient of σs(f) as an element of κ[x1, . . . , x̂µ, . . . , xn][xµ] lies in κ×.

Now give Zm≥0 the lexicographic ordering. Then I > J implies pI(s) > pJ(s)
for s large enough. If I ∈ Zm≥0 is the largest multi-exponent of a monomial
which appears in f with nonzero coefficient, then for s large enough, σs(f) is a
nonzero constant times a monic polynomial in xm of degree pI(s) with coefficients
in κ[x1, . . . , xm−1]. �

PROOF OF NOETHER NORMALIZATION. By assumption there exists an epimor-
phism φ : κ[x1, . . . , xm] → A of κ-algebras. We prove the theorem with induction
on m. When φ is an isomorphism, there is nothing to show. Otherwise, Ker(φ)
contains a nonzero f ∈ κ[x1, . . . , xm]. By Lemma 1.10.2 there exists an automor-
phism σ of κ[x1, . . . , xm] such that fσ is in each variable monic up to a scalar. So by
replacing φ by φσ−1, we can assume that f has this property. In particular, φ(xm)
is integral over A′ := φ(κ[x1, . . . , xm−1]). By our induction hypothesis, A′ is a finite
extension of some polynomial algebra κ[x1, . . . , xr]. Hence so is A.

Now assume that A is a domain and κ is perfect. If the characteristic of κ is zero
then the separability property is empty and so let us assume that it is p > 0. Since A
is a domain, we can take our f above to be irreducible. This implies that there exists
an µ ∈ {1, . . . ,m} and a monomial appearing in f in which xµ has an exponent not
divisible by p: otherwise, as κ is perfect, f would be a pth power, contradicting the
irreducibility of f . Then renumber the variables such that µ = m. Then f doesn’t
lie in κ[x1, . . . , xm−1][xpm]. Since f is also irreducible, it must be separable in xm.
So then the finite extension A′ ⊆ A has the additional property that Frac(A) is a
finite separable field extension of Frac(A′). But by our induction assumption A′ is a
finite κ-extension of a polynomial κ-algebra such that the associated field extension
is finite and separable. Hence the same is true for A. �
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Corollary 1.10.3. For every irreducible affine variety X there exists an integer
r ≥ 0 and a finite surjective morphism f : X → Ar such that k(X) is a finite and
separable extension of k(Ar). �

This corollary gives us a better grasp on the geometry of such anX, for it shows
that X can then be ‘spread’ in a finite-to-one manner over affine r-space: one might
call this a ramified covering, since it is like a covering over a nonempty open subset
of Ar (which according to Exercise 38 will have degree [k(X) : k(Ar)]).

Here is another interesting application of Theorem 1.10.1.

Corollary 1.10.4. Every irreducible variety is birationally equivalent to a hypersur-
face in an affine space.

PROOF. Upon replacing irreducible variety by an affine open subset, we may
assume that it is affine. So let X be affine and irreducible. Choose f : X → Ar
as in Corollary 1.10.3. Then k(X) is a finite separable extension of k(x1, . . . , kr)
and hence, by the theorem of the primitive element, k(X) is then generated over
k(x1, . . . , kr) by a single element g. If G ∈ k(x1, . . . , kr)[xr+1] is its minimal polyno-
mial, then let G̃ ∈ k[x1, . . . , kr][xr+1] be obtained by multiplying G with a nonzero
element of k(x1, . . . , xr), making sure however that the coefficients of G̃ have no
common denominator in k[x1, . . . , kr]. Then G̃ is irreducible as an element of
k[x1, . . . , xr+1] and hence defines an irreducible hypersurface Z(G̃) ⊂ Ar+1. It
is clear that k(Z(G̃)) = k(X). �

Proposition 1.9.3 has a kind of converse, Theorem 1.10.9 below, which is also
due to Noether. We first make a definition.

DEFINITION 1.10.5. Let A be a domain. The normalization of A is the integral
closure (denoted Â) in its field of fractions. We say thatA is normal ifA is integrally
closed in Frac(A) (i.e., A = Â). A variety is normal if it can be covered by affine
open subsets whose ring of regular functions is normal.

We first note:

Lemma 1.10.6. Any unique factorization domain is normal and hence An is a
normal variety.

PROOF. Let A be a UFD. Any b ∈ Frac(A) integral over A obeys an equation
bd + a1b

d + · · · + ad = 0 with ai ∈ A. Write b = r/s with r, s ∈ A such that r and
s are relatively prime. The identity rd + a1rs

d−1 + · · · + ads
d = 0 shows that any

prime divisor which divides s must divide rd and hence also r. As there is no such
prime, it follows that s is a unit so that b ∈ A. �

The following proposition shows that normality is local in nature.

Proposition 1.10.7 (Local nature of normality). An irreducible variety X is normal
if and only if every local ring OX,x (x ∈ X) is normal and in that case, k[U ] is
normal for every affine open subset of X.

PROOF. Assume X is normal. Then every x ∈ X has an open affine neigh-
borhood U with k[U ] integrally closed in k(U) = k(X). Hence OX,x, being a
localization of k[X], is also normal by Exercise 35.

Now assume that every OX,p is normal and let U be an affine open subset of
X. Let f ∈ k(X) = k(U) satisfy an equation of integral dependence over k[U ].
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For every p ∈ U this gives an equation of integral dependence over OX,p and so
by assumption f ∈ OX,p. This proves that f is a regular function on U so that
f ∈ k[U ]. �

REMARK 1.10.8. The property of a variety being normal has some geometric
content (nonsingularity in codimension one), about which we will say a bit more
later. For k = C, normality is related to the Riemann extension property. Recall
that the Riemann extension theorem asserts that a meromorphic function on an
open subset U ⊂ C which is locally bounded on U is in fact holomorphic on U .
We may understand the normality of an irreducible affine variety X as an algebraic
formulation of this property. For let f, g ∈ k[X] be such that g 6= 0 and φ := f/g is
integral over k[X], i.e., φn+a1φ

n−1 + · · ·+an = 0 for certain n and ai ∈ k[X]. Now
assume that k = C and let U ⊂ X be an open, relatively compact (=bounded)
subset for the Hausdorff topology. Since the ai’s are continuous functions on X
for the Hausdorff topology, they are bounded on U . It then follows that φ is also
bounded on U (11). But φ is also univalued on U ∩ Xg. It can be shown that
every Hausdorff open subset of X meets Xg. So although φ may not be everywhere
defined on X, it is (for the Hausdorff topology) locally bounded on X. One can
also verify the converse: if a rational function on X is locally bounded on X for the
Hausdorff topology, then it is integral over C[X]. So X is normal if and only if the
Riemann extension theorem holds on X: every locally bounded rational function φ
on X is in fact regular on X.

A central result of the theory is:

Theorem 1.10.9. Let κ be a perfect field and A a finitely generated κ-domain.
Then for any finite field extension L/Frac(A), the integral closure of A in L is
finite over A. In particular, the normalization Â of A is finite over A.

PROOF. The proof is beautiful, but also somewhat tricky. For example, we first
reduce to the situation where L = Frac(A), and then use this to reduce to the case
where A is normal and L is separable over (but not necessarily equal to) Frac(A).

We put K := Frac(A) and write B ⊂ L for the integral closure of A in L. By
Proposition 1.9.3, L = KB and so L admits a K-basis (b1, . . . , br) contained in B.
Since each bi is integral over A, the A-subalgebra B′ := A[b1, . . . , br] ⊆ L is finite
over A (so that in particular, B′ is a finitely generated κ-algebra). We note that
Frac(B′) = L and that, since B′ is finite over A, its integral closure in L is that of
A, i.e., B. So it suffices to show that B is finite over B′.

By Theorem 1.10.1, B′ contains a polynomial κ-subalgebra A′ such that B′ is
finite over A′ and L = Frac(B′) is separable over K ′ := Frac(A′). Since B′ is finite
over A′, the integral closure of A′ in L is also B. So this reduces the theorem to
be proved to the special case where A = A′. Note that now A, being a polynomial
κ-subalgebra, is a UFD, and hence normal by Lemma 1.10.6, so that we must have
B ∩K = Â = A. In addition, L/K is separable.

We now assume that L/K is separable and B∩K = A. Recall that if b ∈ L, then
its K-trace, TrL/K(b) ∈ K, is defined to be the trace of the multiplication operator

11The roots of a polynomial can be bounded in terms of its coefficients. For if (t−z1) · · · (t−zn) =
tn + a1(z)tn−1 + · · ·+ an(z) with zi ∈ C, then z ∈ Cn 7→ maxi |ai(z)| is a continuous function which
is never zero on the compact set maxi |zi| = 1 and so has there a minimum c > 0. Since ai is
homogeneous of degree i, this implies that maxi |zi| ≤ c−1 maxi |ai|1/i.
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µb : y ∈ L 7→ by ∈ L, where L is viewed as a K-vector space. It is computed as
follows: if f = xn + c1x

n−1 + · · ·+ cn ∈ K[x] is the minimum polynomial of b, then
the trace of µx acting in K[x]/(f) is −c1 (use the K-basis {1, x, . . . , xn−1}). Since
x 7→ b identifies K[x]/(f) with the subfield K(b) ⊂ L, we have TrK(b)/K(b) = −c1.
The action of µb on L is that of scalar multiplication by b if we regard L as a K(b)-
vector space and so TrL/K(b) = −[L : K(b)]c1.

We claim that TrL/K(b) ∈ A when b ∈ B. For then f must divide an equation
of integral dependence for b (f is the minimal polynomial of b). So if we write
f(x) =

∏n
i=1(x− bi), with bi in an algebraic closure of L, then each root bi satisfies

that integral dependence equation and hence is integral over A. It follows that c1 =

−
∑
i bi is integral over A. But we also have c1 ∈ K and so c1 ∈ K ∩ B = Â = A.

This proves that TrL/K(b) ∈ A.
The trace form

(x, y) ∈ L× L→ TrL/F (xy) ∈ K
is clearly symmetric and K-bilinear. Since L/K is separable, it is nondegenerate as
a K-bilinear form (this well-known fact is left as an exercise). We already observed
that there exists a K-basis (e1, . . . , ed) of L contained in B. Let (e′1, . . . , e

′
d) be

the K-basis of L that is dual to (e1, . . . , ed) with respect to the trace form, i.e.,
is characterized by TrL/F (eie

′
j) = δij . We prove that B is contained in the A-

submodule generated by (e′1, . . . , e
′
d). This will suffice, for since A is noetherian, it

then follows that B is also a finitely generated A-module.
To see this, let b ∈ B and write b =

∑d
j=1 aje

′
j with ai ∈ K. Then TrL/F (eib) =∑

j aj Tr(eie
′
j) = ai, and since eib ∈ B, it follows that ai ∈ A. �

Corollary 1.10.10. Let Y be an irreducible variety and let L/k(Y ) be a finite field
extension. Then there exists a normal irreducible variety Y L and a finite dominant
morphism π : Y L → Y such that k(Y L) is k(Y )-isomorphic to L and for every affine
open U ⊂ Y , π−1U is affine and k[π−1U ] is the integral closure of k[U ] in k(Y L).
The π : Y L → Y is unique up to a unique isomorphism.

PROOF. Suppose first Y is affine. Theorem 1.10.9 then tells us that the integral
closure B of k[Y ] in L is a finitely generated k-algebra that is also a finite k[Y ]-
module. So we have defined an affine variety Y L := Spm(B) (in other words,
k[Y L] = B) and the embedding k[Y ] ⊆ k[Y L] defines a finite morphism πY : Y L →
Y with the stated properties.

If U ⊂ Y is an affine open subset, then k[U ] is a localization of k[Y ] and then
the local nature of the formation of integral closure (Exercise 35) implies that πU is
naturally identified with the restriction πY over U . It follows that in the general
case, where Y is covered by finitely many affine open subsets Ui, the projections πUi
are naturally identified over the intersections Ui ∩ Uj and hence make a morphism
πY : Y L → Y as asserted. �

The following is a more geometric version of Corollary 1.10.10. It tells us that
a “ramified cover” over a dense open subset of an irreducible variety extends as
such over the whole variety.

Corollary 1.10.11 (Extension of finite morphisms). Let f : U → V be a finite mor-
phism between irreducible varieties with U normal. Assume that V is open-dense
in a variety Y . Then U embeds as an open-dense subset in a normal irreducible
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variety X such that f extends to a finite morphism f̃ : X → Y . This extension is
unique up to unique isomorphism.

PROOF. It is clear that f is dominant and so we can apply Corollary 1.10.10 to
L := k(U). Then take for f̃ : X → Y the morphism Y L → Y defined there. This
is as desired, for the uniqueness property shows that the restriction of Y L → Y
to V is isomorphic to f and that this extension is unique up to isomorphism. The
isomorphism is also unique, for two such isomorphisms must coincide on the open-
dense U . �

Corollary 1.10.10 also shows that for a given irreducible variety X, every fi-
nite field extension L/k(X) is canonically realized by a finite dominant morphism
XL → X of irreducible varieties. In case L = k(X), we write X̂ for XL and we
then call the associated morphism X̂ → X the normalization of X. Its formation
is functorial: if f : X → Y is a dominant morphism with X affine and irreducible,
then we may regard k(X) as an extension of k(Y ) and hence k̂[X] will contain k̂[Y ],
thus defining a morphism X̂ → Ŷ . The standard localization argument then shows
that this remains true if we drop the condition that X be affine.

The following example and the subsequent exercise illustrate an interesting
property of normalization, which, when phrased in terms that have not been de-
fined but still have some intuitive appeal, amounts to the removal of singularities
in codimension one and (in particular) the separation of local branches.

EXAMPLE 1.10.12 (Example 1.4.4 continued). We claim that the morphism f :
A1 → C in 1.4.4 is a normalization, in particular, that C is not normal. This
amounts to asserting that the integral closure k̂[C] of k[C] ∼= k[t2, t3] in k(C) ∼= k(t)
is k[A1] ∼= k[t]. Since k[t] is integrally closed in k(t) (it is a UFD), we must have
k̂[C] ⊆ k[t]. But k[t] is as a k[t2, t3]-module spanned by 1 and t and the latter is
integral over k[t2, t3] as its square lies in this subring. So we also have k̂[C] ⊇ k[t].

EXERCISE 39. Consider the curve in A2 defined by y2 = x3 + x2. Prove that
this curve is irreducible and determine its normalization. Show in particular that
the normalization is not a bijection. Draw the locus in R2 defined by this equation.

This also helps us to gain some geometric understanding of the algebraic closure of a
function field. Given an irreducible affine variety Y , then an algebraic closure k(Y )/k(Y )
of k(Y ) will not be a finite extension, unless Y is a singleton, but can at least be written as
a monotone union of finite field extensions: k(Y ) = ∪∞i=1Li with Li ⊆ Li+1 and Li+1/Li
finite. This yields a sequence of finite surjective morphisms

Y � Y L1 � Y L2 � Y L3 � · · ·

of which the projective limit Y k(Y ) can be understood as a “pro-affine variety” (a point of
this limit is given by a sequence (yi ∈ Y Li)∞i=0 (where L0 := k(Y )) such that yi+1 maps to
yi for all i). Its algebra of regular functions is ∪∞i=1k[Y ]Li = k[Y ] (which is usually not a
finitely generated k-algebra) and its function field is k(Y ).

Of special interest is when we have a finite normal(12) field extension of a func-
tion field. Let us first recall this notion.

12As the statement of Proposition 1.10.13 illustrates, this adjective is a bit overused in mathematics:
a normal field extension should not be confused with the normality of a ring.
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Normal extensions (review). We recall that an algebraic field extension L/K is normal
if the minimal polynomial inK[x] of an element of L has all its roots in L. A Galois extension
L/K is the same thing as a normal extension which is also separable (which means that in
addition that all these roots are distinct) so that this property can be used as a definition.
Note however that a purely inseparable extension L/K is also normal, for then such an f

of degree > 1 is of the form xp
r

− a (where p > 0 is the characteristic of K, r ≥ 1 and
a ∈ K not a pth power in K), which has just one root. Clearly an algebraic closure K of K
is normal.

Part of Galois theory still works for normal extensions. If L/K is normal, then all the
K-linear field embeddings L ↪→ K have the same image and so this image is invariant
under the full Galois group of K/K. The latter then restricts to the group of K-linear field
automorphisms of L (the Galois group of L/K) and this group permutes the roots of a
minimal polynomial in K[x] of any element of L transitively.

For an arbitrary algebraic field extension F/K, one defines its normal closure in K as
the smallest normal extension of K in K that admits a K-linear embedding of F into it. It
is obtained as the subfield of K generated by the roots of all the irreducible polynomials of
K[x] that have a root in F . When F is finite over K, then so is its normal closure in K.

We begin with the relevant result in commutative algebra, which has also im-
portant applications in algebraic number theory.

Proposition 1.10.13. Let A be a normal domain and L/Frac(A) a finite normal
extension with Galois group G. Then G leaves invariant the integral closure AL

of A in L and has the property that it permutes transitively the (nonempty) set of
prime ideals in AL that lie over a given prime ideal p of A. Moreover, every minimal
element of the set of prime ideals of B which contain p, lies over p.

For the proof we need:

Lemma 1.10.14 (The prime avoidance lemma). Any ideal of a ring that is con-
tained in a finite union of prime ideals is contained in one of them.

PROOF. Let R be a ring, q1, . . . , qn prime ideals in R and I ⊆ R an ideal con-
tained in ∪ni=1qi. We prove with induction on n that I ⊆ qi for some i. The case
n = 1 being trivial, we may assume that n > 1 and that for every i = 1, . . . , n, I
is not contained in ∪j 6=iqj . Choose ai ∈ I r ∪j 6=iqj . So then ai ∈ qi. Consider
a := a1a2 · · · an−1 + an. Then a ∈ I and hence a ∈ qi for some i. If i < n,
then an = a − a1a2 · · · an−1 ∈ qi and we get a contradiction. If i = n, then
a1a2 · · · an−1 = a − an ∈ qn and hence aj ∈ qn for some j ≤ n − 1. This is also a
contradiction. �

PROOF OF PROPOSITION 1.10.13. That any g ∈ G leaves AL invariant is clear,
for g fixes the coefficients of an equation of integral dependence over A.

By the Going-up theorem 1.9.5, there exists a prime ideal q of AL that lies over
p. Let q′ be another. We show that q′ ⊆ ∪σ∈Gσ(q). This suffices, for then the prime
avoidance lemma implies that q′ ⊆ σ(q) for some σ ∈ G. As both q′ and σ(q) lie
over p, we must have q′ = σ(q) by incomparability.

Let b ∈ q′ be nonzero and let f(x) = xn + c1x
n−1 + · · ·+ cn ∈ Frac(A)[x] be a

minimum polynomial for b. Since L/Frac(A) is a normal extension, f completely
factors in L with roots in the G-orbit of b: f(x) = (x − σ1(b)) · · · (x − σn(b)) for
certain σi ∈ G. Since σi(b) ∈ AL we have σ1(b) · · ·σn(b) ∈ AL. On the other
hand, σ1(b) · · ·σn(b) = (−1)ncn ∈ Frac(A) and since A is normal it follows that
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σ1(b) · · ·σn(b) ∈ A. One of the factors is b and so σ1(b) · · ·σn(b) ∈ A ∩ (b) ⊆
A ∩ q′ = p ⊆ q. Since q is a prime ideal, some factor σi(b) lies in q and hence
b ∈ ∪σ∈G σ(q).

To prove the last assertion, let q0 be a prime ideal in B such that q0 ∩ A ⊇ p.
We must show that q0 contains some σ(q). By the going up theorem, there exists a
prime ideal q1 ⊇ q of AL such that q1 ∩ A = q0 ∩ A. By applying the preceding to
the set prime ideals of B which lie over q0 ∩ A, we find that there exists a σ ∈ G
such that q0 = σ(q1). Then q0 ⊇ σ(q). �

Here is a geometric translation of Proposition 1.10.13.

Corollary 1.10.15. Let Y be an normal, irreducible variety. Given a normal finite
extension L/k(Y ), then the Galois group G of L/k(Y ) acts naturally on Y L. For
every closed irreducible subset P ⊆ Y , the preimage of P in Y L is nonempty and
G acts transitively on its set irreducible components. As a topological space, Y may
be identified with the G-orbit space of Y L.

PROOF. There is no loss in generality in assuming that Y is affine. Then we
can apply Proposition 1.10.13 to A := k[Y ] (so that Y L is affine and k[Y L] =

A
L

) and the prime ideal p which defines P . Everything is then follows except
the last assertion. The map π : Y L → Y is continuous and closed by Corollary
1.9.8. By Proposition 1.10.13, every fiber of π is a (nonempty) G-orbit and so π is
topologically the formation of the G-orbit space. �

Exercise 39 provides an example of an irreducible Y for which Y L = Ŷ → Y is
not a bijection and so we cannot drop in Proposition 1.10.13 the assumption that
Y be normal (here L = k(Y ) so that G is trivial).

The last property of Proposition 1.10.13 holds more generally. This neatly
supplements the going up property for normal domains:

Corollary 1.10.16 (Going down). Let A ⊆ B be a finite extension with B a domain
and A normal and let p be a prime ideal of A. Then every minimal element of the
set of prime ideals of B which contain p, lies over p (i.e., intersects A in p).

PROOF. Put K := Frac(A), Lo := Frac(B) and let L/Lo be the normal closure
of Lo/K in an algebraic closure of L (it is obtained by adjoining the roots of the
minimimal polynomials in K[x] of the elements of Lo). Then L is a finite normal
extension of K. Since B is integral over A, we have B ⊆ AL. By Theorem 1.10.9,
AL is then finite over A and finite over B.

Let q′ be a prime ideal in B such that p ⊆ q′ ∩ A. We must show that there
exists a prime ideal q of B over p which is contained in q′. By ‘going up’ (applied
to AL/B) we find a prime ideal r′ of AL which lies over q′. Then the last clause
of Proposition 1.10.13 applied to r′ tells us that there exists a prime ideal r of AL

contained in r′ which meets A in p. So q := r ∩B is as desired. �

REMARK 1.10.17. We can rephrase this in the spirit of Remark 1.9.6 by saying
that any prime chain in A is the intersection of prime chain in B for which the last
(biggest) member has been prescribed in advance (whence ‘going down’).

Corollary 1.10.18. Let f : X → Y be a finite dominant morphism between normal
irreducible varieties and let P ⊆ Y be a closed irreducible subset. Then each
irreducible component of f−1P dominates P and hence maps onto it.
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PROOF. The usual argument, based on the fact that we can cover Y by affine
open subsets, shows that there is no loss in generality in assuming that Y is affine.
Then X is also affine and the assertion is immediate from 1.10.16. �



CHAPTER 2

Local properties of varieties

The focus of this chapter—the title makes it clear—will be on local properties.
This explains why we will here mostly deal with affine varieties.

2.1. Dimension

One way to define the dimension of a topological space X is with induction:
agree that the empty set has dimension −1 and that X has dimension ≤ n if it
admits a basis of open subsets such that the boundary of every basis element has
dimension ≤ n − 1. This is close in spirit to the definition that we shall use here
(which is however adapted to the Zariski topology; as you will find in Exercise 40,
it is useless for Hausdorff spaces).

DEFINITION 2.1.1. Let X be a nonempty topological space. We say that the
Krull dimension of X is at least d if there exists an irreducible chain of length d in
X, that is, a strictly descending chain of closed irreducible subsets X0 ) X1 )
· · · ) Xd of X. The Krull dimension of X is the supremum of the d for which an
irreducible chain of length d exists and we then write dimX = d. We stipulate that
the Krull dimension of the empty set is −1.

We say that X is of pure dimension if all maximal irreducible chains in X (i.e.,
irreducible chains that cannot be extended to a longer one) have the same length.

Lemma 2.1.2. For every subspace Z of a topological space X we have dimZ ≤
dimX.

PROOF. Let Y be closed in Z. Then for the closure Y of Y in X we have
Y ∩ Z = Y . We also know that if Y ⊂ Z is irreducible, then so is Y . So if we have
an irreducible chain of length d in Z, then the closures of the members of this chain
yield an irreducible chain of length d in X. This proves that dimZ ≤ dimX. �

EXERCISE 40. What is the Krull dimension of a nonempty Hausdorff space?

EXERCISE 41. Let U be an open subset of the space X. Prove that for an
irreducible chain Y • in X of length d with U ∩ Y d 6= ∅, U ∩ Y • is an irreducible
chain of length d in U . Conclude that if U is an open covering of X, then dimX =
supU∈U dimU .

EXERCISE 42. Suppose that X is a noetherian space. Prove that the dimension
of X is the maximum of the dimensions of its irreducible components. Prove also
that if every one element subset of X is closed, then dim(X) = 0 if and only if X is
finite.

It is straightforward to translate this notion into algebra:

53
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DEFINITION 2.1.3. The Krull dimension dimR of a ring R is the supremum of
the integers d for which there exists an prime chain of length d in R, where we
stipulate that the zero ring (i.e., the ring which has no prime ideals) has Krull
dimension −1. We say that R is of pure dimension if all maximal prime chains of R
have the same length.

It is clear from Proposition 1.2.3 that for a closed subset X ⊂ An, dim k[X] =

dimX. Since any prime ideal of a ring R contains the ideal
√

(0) of nilpotents, R
and the associated reduced ring Rred := R/

√
(0) have the same Krull dimension.

So the Krull dimension of a finitely generated k-algebra A is that of the affine
variety Spm(A).

The first assertion follows from 1.9.6 shows immediately:

Lemma 2.1.4. The Krull dimension is invariant under integral extension: if B is
an integral extension of A, then A and B have the same Krull dimension. �

REMARK 2.1.5. For a domain A the zero ideal (0) is a prime ideal and so
dim(A) = 0 if and only if the ideal (0) is maximal, i.e., A is a field. We say that a
domain A is a Dedekind domain if it is noetherian, normal and of dimension ≤ 1, in
other words, if every nonzero prime ideal of A is maximal. For instance, a unique
factorization domain (such as Z and K[X] with K a field) is a Dedekind domain.
The importance of this notion comes from the fact that a converse holds on the
level of ideals: it can be shown that any ideal of a Dedekind domain is uniquely
written a product of prime ideals. Lemma 2.1.4 shows that the integral closure of
a Dedekind domain (such as Z or K[X]) in a finite extension of its field of fractions
is a Dedekind domain. Hence the ring of integers of an algebraic number field L
(this is by definition the integral closure of Z in L) is a Dedekind domain.

The Krull dimension was easy to define, but seems difficult to compute in con-
crete cases. How can we be certain that a given prime chain has maximal possible
length? It is not even clear how to tell whether the Krull dimension of a given ring
is finite. We will settle this in a satisfactory manner for a domain B containing a
field κ over which it is a finitely generated: we show that a length of a prime chain
in B is bounded by the transcendence degree Frac(B)/κ and that we have equality
when the prime chain is maximal (so that the length of any maximal prime chain
is the Krull dimension).

Theorem 2.1.6. Let κ be a field and B a finitely generated κ-domain. Then dimB
equals the transcendence degree of Frac(B)/κ and B is of pure dimension.

PROOF. By Noether normalization there exists an integer r ≥ 0 and a κ-algebra
monomorphism κ[x1, . . . , xr] ↪→ B such that B is finite over κ[x1, . . . , xr]. We put
A := κ[x1, . . . , xr]. Then Frac(B) is a finite extension of Frac(A) = κ(x1, . . . , xr)
and so the transcendence degree of Frac(B)/κ is r. In A we have the length r prime
chain (0) ( (x1) ( (x1, x2) ( · · · ( (x1, x2, . . . , xr). By Remark 1.9.6 this is the
intersection of A with a prime chain in B and so dimB ≥ r.

When r = 0, B is a domain that is finite over a field, hence itself a field. Then
both dimB and its transcendence degree over κ are zero. Assume therefore r > 0
and the theorem proved for lower values of r. Let q• := ((0) = q0 ( q1 ( · · · ( qm)
be a prime chain in B. We prove that m ≤ r with equality when q• is a maximal
prime chain.
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By the incomparability property of ‘going up’ (Proposition 1.9.5), p• := q• ∩ A
will be a prime chain in A, also of length m. The idea is to show that p1 defines
a closed subset of Arκ of dimension ≤ m − 1. Choose an irreducible f ∈ p1. After
renumbering the coordinates, we may assume that f does not lie in κ[x1, . . . , xr−1].
So if we write f =

∑N
i=0 gix

i
r with gi ∈ κ[x1, . . . , xr−1] and gN 6= 0, then N ≥ 1.

Since f is irreducible, A/(f) is a domain. The image of xr in the field Frac(A/(f))

is a root of the monic polynomial tN +
∑N−1
i=0 (gi/gN )ti ∈ κ(x1, . . . , xr−1)[t], and so

Frac(A/(f)) is a finite extension of κ(x1, . . . , xr−1). In particular, Frac(A/(f)) has
transcendence degree r − 1 over κ. Then by our induction induction hypothesis,
dimA/(f) = r − 1. Since the image of p1 ( · · · ( pm in A/(f) is a prime chain
of length m − 1 (it is strictly ascending, because it is so in A/p1), it follows that
m− 1 ≤ r − 1. Hence m ≤ r.

Now assume that q• is maximal. Since A is a normal domain, the ‘going down’
Corollary 1.10.16 applies and so there exists a prime ideal q ⊆ q1 such that q∩A =
(f). The maximality of q• then implies that q = q1 and hence that (f) = p1. Since
Frac(B/q1) is a finite extension of Frac(A/(f)) (which in turn is a finite extension
of κ(x1, . . . , xr−1)), it has transcendence degree r − 1 over κ. As q1 ( q2 · · · ( qm
defines a maximal prime chain in B/q1, it follows from our induction hypothesis
that m− 1 = r − 1 and so m = r. �

REMARK 2.1.7. At first sight the preceding theorem may look somewhat sur-
prising, as the definition of the Krull dimension of a ring does not mention a possi-
ble subfield (it is an ‘absolute notion’), whereas the transcendence degree of a field
extension clearly does. Corollary 1.3.6 explains why there is no contradiction here:
if κ is a field and a finitely generated κ-algebra L happens to be a field, then L is
finite over κ and has therefore the same transcendence degree over a subfield κ.

Corollary 2.1.8. In the situation of Theorem 2.1.6, let m be a maximal ideal of B
and S ⊆ Br{0} a multiplicative subset generated by a finite subset of B. Then the
Krull dimension of the localizations Bm = (B rm)−1B and S−1B are that of B.

PROOF. Any prime chain in Bm is a prime chain in B contained in m. So by
Theorem 2.1.6, the Krull dimension of Bm is finite. If such a chain is maximal for
this property, then it will end with m and will also be maximal in B (for there is no
prime ideal strictly containing m) and again by Theorem 2.1.6 its length is then the
Krull dimension of B.

If S is multiplicatively generated by s1, . . . , sn, then S−1B is the quotient of the
κ-algebra B[x1, . . . , xn] by the ideal (x1s1− 1, . . . , xnsn− 1). In particular, S−1B is
a finitely generated κ-algebra so that Theorem 2.1.6 applies to it: dim(S−1B) is the
transcendence degree of Frac(S−1B) = Frac(B) over κ. This is just dim(B). �

Corollary 2.1.9. Let X be an irreducible variety and let d be the transcendence
degree of k(X)/k. ThenX is of pure dimension d. Moreover, d is also the dimension
of every nonempty open U ⊆ X and of every local ring OX,p, p ∈ X.

PROOF. It is clear from the above that this holds whenX is affine. The corollary
then also follows in general, because a maximal irreducible chain in X will meet
some affine open subset of X. �

REMARK 2.1.10. If S ⊆ R is a multiplicative set, then the preimage of a prime
ideal q̃ of S−1R under the ring homomorphism R → S−1R is a prime ideal q of R



56 2. LOCAL PROPERTIES OF VARIETIES

which does not meet S and we have q̃ = S−1q. This sets up a bijection between
the prime ideals of S−1R and those of R not meeting S. If we take S = Rr p with
p a prime ideal, then this implies that dimRp is the supremum of the prime chains
in R which end with p. Since the prime chains in R which begin with p correspond
to prime chains in R/p, it follows that dimRp + dimR/p is the supremum of the
prime chains in R having p as a member. So when R is a domain which is finitely
generated over a subfield, then this is by Theorem 2.1.6 equal to dimR.

A variety C of pure dimension 1 is called a curve. When C is irreducible this
amounts to the property that k(C) is of transcendence degree one and is equivalent
to the property that every nonzero every prime ideal is a maximal ideal. By Remark
2.1.5, C is an irreducible normal affine curve if and only if k[C] is a Dedekind
domain 6= k. The fact coordinate rings of such curves and rings of integers of
number fields are both Dedekind domains explains why they have many properties
in common. We will see in the next section that for a curve, normality amounts to
the absence of ‘singular points’.

EXERCISE 43. Prove that a hypersurface in An has dimension n− 1.

EXERCISE 44. Let X be an irreducible affine variety and Y ⊆ X a closed irre-
ducible subset. Prove that the codimension of Y in X (= dimX − dimY ) is equal
to the Krull dimension of k[X]I(Y ).

Exercise Let X be an irreducible variety of dimension d and let f1, . . . , fr be
r ≤ d be elements of k[X]. Prove that codim(Z(f1, . . . , fr)) ≤ r and show that if
we have equality, then Z(f1, . . . , fr) is of pure dimension.

EXERCISE 45. Prove that when X and Y are irreducible affine varieties, then
dim(X×Y ) = dimX+dimY . (Hint: Embed each factor as a closed subset of some
affine space. You may also want to use the fact that the equality to be proven holds
in case X = Am and Y = An.)

2.2. Smooth and singular points

In this section we focus on another local property of an affine variety X =
Spm(A) (so A = k[X] is here a reduced finitely generated k-algebra), namely its
possible ‘smoothness’ at a given point p ∈ X. Therefore a central role will be played
by the local algebra OX,p = Amp whose maximal ideal is mX,p = (Armp)

−1mp.

If k = C and X ⊆ Cn is a closed subset of dimension d, then we hope that
there is a nonempty open subset of X where X is ‘smooth’, i.e., where X looks like
a complex submanifold of complex dimension d. Our goal is to define smoothness
in algebraic terms (so that it make sense for our field k) and then to show that the
set of smooth points of a variety is open and dense in X.

Our point of departure is the implicit function theorem. One version states that
if U ⊆ Rn is open, p ∈ Rn and f = (f1, . . . , fn−d) : U → Rn−d a differentiable map
such that the total differentials at p, df1(p), . . . , dfn−d(p) are linearly independent in
p (this is equivalent to: the Jacobian matrix of (∂fj/∂xi)(p))i,j has maximal rank
n − d), then f−1f(p) is a submanifold of dimension d at p whose tangent space
at p is the common zero set of df1(p), . . . , dfn−d(p). In fact, one shows that this
solution set is near p the graph of a map: we can parametrize this set by means
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of d coordinates out of (x1, . . . , xn), expressing the n− d remaining ones as differ-
entiable functions in terms of them. Conversely, any d-dimensional submanifold of
Rn through p is locally thus obtained.

We begin with the observation that for any ring R, partial differentiation of a
polynomial f ∈ R[x1, . . . , xn] (where the elements of R are treated as constants)
is well-defined and produces another polynomial. The same goes for a fraction
φ = f/g inR[x1, . . . , xn][g−1]: the familiar formula shows that the partial derivative
of φ also lies in R[x1, . . . , xn][g−1] (in this case with denominator g2). We then
define the total differential of a rational function φ ∈ R(x1, . . . , xn) as usual:

dφ :=
∑n
i=1

∂φ
∂xi

(x)dxi,

where for now, we do not worry about how to interpret the symbols dxi: we think
of dφ simply as a regular map from an open subset of An (where all the partial
derivatives are regular) to a k-vector space of dimension n with basis dx1, . . . , dxn,
leaving its intrinsic characterization for later. However, caution is called for when
R is a field of positive characteristic:

EXERCISE 46. Consider the map f ∈ k[x] 7→ df ∈ k[x]dx. Prove that when
char(k) = 0, this map is onto and has kernel k (the constants). Prove that when
char(k) = p > 0, this map is linear over the subalgebra k[xp] of k[x], has kernel
k[xp] and cokernel represented by k[xp]xp−1dx.

Generalize this to k[x1, . . . , xn].

We should also be aware of the failure of the inverse function theorem:

EXAMPLE 2.2.1. Let C ⊆ A2 be the curve defined by y2 = x3 + x. By any rea-
sonable definition of smoothness we should view the origin o := (0, 0) as a smooth
point of C. Indeed, when k = C, the projection f : C → A1, (x, y) 7→ y, would be
a local-analytic isomorphism at o. But the map is not locally invertible within our
category: the inverse requires us to find a rational function x = f(y)/g(y) which
solves the equation y2 = x3 + x. This is impossible: we may assume that f and g
are relatively prime and from y2g3 = f3 + fg2, we see that g divides f3. This can
only happen when g ∈ k× and so we may assume that g = 1: y2 = f3 +f . But then
f ∈ k[y] must divide y2, and hence be equal to a constant times y or y2 and neither
case provides a solution.

We can however solve for x formally: x = φ(y) = y2 + c3y
3 + c4y

4 + · · · , where
it is important to note that the coefficients are all integers so that this works for
every characteristic. By this we mean that if we put φn = y2 + c3y

3 + · · · + cny
n,

then yn+1 divides y2 − φn(y)3 − φn(y) for all n ≥ 2.

Somewhat related to this is an issue illustrated by the following example.

EXAMPLE 2.2.2. Consider the curve C ⊆ A2 defined by xy = x3 + y3. The
polynomial x3 +y3−xy is irreducible in k[x, y], so that k[C] is without zero divisors
andC ′ is irreducible. Hence the local ringOC,o ⊆ k(C) is also without zero divisors.
But C seems to have two branches at o which apparently can only be recognized
formally: there exists a formal power series φ(t) = t2 + c3t

3 + c4t
4 + · · · such

that one such branch is given by y = φ(x) and the other by interchanging the
roles of x and y: x = φ(y). To be precise, if for an integer n ≥ 2, we put φn :=
t2+c3t

3+c4t
4+· · ·+cntn, then (x−φn(y))(y−φn(x)) ≡ xy−x3−y3 mod (x, y)n+1,
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If we use ξ := x − φ(y) and η := y − φ(x) as new ‘formal coordinates’, then C is
simply given at 0 by the reducible equation ξη = 0.

These examples make it clear that for a local understanding of a variety X at
o, the local ring OX,o still carries too much global information. One way to get rid
of this overload is by passing formal to power series. This is accomplished by what
is known as formal completion(1).

Adic completion. Let R be a ring and I ⊆ R an ideal. For every R-module
M , the descending sequence of submodules M ⊇ IM ⊇ I2M ⊇ · · · ⊇ InM ⊇ · · ·
gives rise to a sequence of surjective R-homomorphisms

0 = M/M �M/IM �M/I2M �M/I3M � · · ·�M/InM ← · · ·

from which we can form the R-module M̂I := lim←−nM/InM , called the I-adic com-
pletion of M . So any â ∈ M̂I is uniquely given by a sequence (αn ∈ M/InM)n≥0

whose terms are compatible in the sense that αn is the reduction of αn+1 for all
n. In this way M̂I can be regarded as an R-submodule of

∏
n≥0(M/InM). The

natural R-homomorphisms M → M/InM combine to define a R-homomorphism
M → M̂I . Its kernel is ∩∞n=0I

nM and this turns out to be trivial in many cases of
interest:

Lemma 2.2.3. Let R be a noetherian ring and I ⊂ R an ideal such that 1 + I ⊂ R×
(e.g., R is local noetherian and I 6= R). Then for every finitely generated R-module
M , the intersection ∩n≥0I

nM equals {0}, so that M → M̂I is injective.

PROOF. Since M is noetherian, the submodule N := ∩n≥0I
nM is a finitely

generated R-module. It is clear that N = IN . Hence N = 0 by Lemma 1.9.4. �

If we do this for the ring R, we get a ring R̂I (for each R/In is one and the
reduction maps are ring homomorphisms) and R → R̂I is then a ring homomor-
phism. Since M/InM is naturally a R/In-module, the R-module structure on M̂I

factors through a R̂I -module structure: for any r̂ = (ρn ∈ R/In)∞n=0 ∈ R̂I , r̂â sim-
ply as given by the sequence (ρnαn)n≥0 (note that ρnαn is indeed the reduction of
ρn+1αn+1). Any R-homomorphism φ : M → N of R-modules sends InM to InN ,
and the resulting homomorphisms M/InM → N/InN are compatible in the sense
that they determine a R̂I -homomorphism φ̂I : M̂I → N̂I . Thus I-adic completion
is a functor from the category of R-modules to the category of R̂I -modules.

EXAMPLE 2.2.4. When A is a ring, then the (x1, . . . , xn)-adic completion of
A[x1, . . . , xn] is just the ring of formal power series A[[x1, . . . , xn]].

As a variation on this example, first observe that the natural homomorphism
k[x1, . . . , xn] → OAn,p/m

r
p is surjective with kernel (x1 − p1, . . . , xn − pn)r. This

implies that k[[x1 − p1, . . . , xn − pn]] can be identified with the mp-adic completion
of OAn,p. In the same spirit, we will find that for (C, o) in Example 2.2.1 resp. 2.2.2
the mC,o-adic completion of OC,o is isomorphic to k[[x]] resp. k[[x, y]]/(xy).

1Another approach would be to allow ‘algebraic’ functions of the type that we encountered in
the two examples above, but then we would have to address the question what the domain of such a
function should be. This can not be achieved by refining the Zariski topology. Rather, this forces us to
revisit the very notion of a topology, leading up to what is called the étale topos. Despite its somewhat
abstract nature this is closer to our geometric intuition than the Zariski topology.
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EXAMPLE 2.2.5. Take the ring Z. Its completion with respect to the ideal (n), n
an integer ≥ 2, yields the ring of n-adic integers Zn: an element of Zn is given by a
sequence (ρi ∈ Z/(ni))∞i=1 with the property that ρi is the image of ρi+1 under the
reduction Z/(ni+1)→ Z/(ni).

EXERCISE 47. Prove that if φ : M → N is a surjection of R-modules, then
φ̂I : M̂I → N̂I is surjection (of R̂I -modules). (This need not be true for injections,
but we will see that this is so in the noetherian setting.)

Adic completion as a topological completion. We can understand an I-adic
completion as a completion with regard to a topology. This often helps to clearify
its dependence on I (which is weaker than one might be inclined to think).

The I-adic topology on an R-module M has as a basis the collection of additive
translates of the submodules InM , i.e., the collection of subsets a + InM , a ∈ M ,
n ≥ 0. This is a topology indeed: given two basic open subsets a+ InM , a′+ In

′
M ,

then for any element b in their intersection, the basic open subset b+Imax{n,n′}M is
also in their intersection. So a sequence (an ∈M)n≥1 converges to a ∈M precisely
when for every integer s ≥ 0, we have an ∈ a + IsM for n large enough. This
makes R a topological ring and M a topological R-module: all the structural maps
(r, s) ∈ R×R 7→ r− s ∈ R, (r, s) ∈ R×R 7→ rs ∈ R, (a, b) ∈M ×M 7→ a− b ∈M
and (r, a) ∈ R ×M → ra ∈ M are continuous for the I-adic topology. (Here a
product has of course been given the product topology.) Note that for any positive
integer r, the Ir-adic topology is the same as the I-adic topology, for every power
of I is contained in some power of Ir. Let us also observe that any R-module
homomorphism is continuous for the I-adic topology.

The I-adic topology on M̂I is Hausdorff: if 0 6= a ∈ M̂I , then a has a nonzero
component in M/InM for some n and then InM̂I and a+ InM̂I are disjoint neigh-
borhoods of 0 and a. Since the topology on M comes from one on M̂I in the sense
that the open subsets of M are pre-images of open subsets of M̂I , we can regard
MI := M/(∩n≥0I

nM) as the Hausdorff quotient of M (as this may be identified
with the image of M in M̂I).

As the ideal I gets bigger, the topology it defines gets coarser: for an ideal J
of R which contains I or more generally, a positive power of I, the I-adic topology
clearly refines the J -adic topology. When

√
I is finitely generated (which is always

so when R is noetherian), then I contains (
√
I)r for some r, and so the I-adic

topology (and hence the associated completion) does not change when passing to√
I: the natural map R̂I → R̂√I resp. M̂I → M̂√I is then an isomorphism of

topological rings resp. modules. Also, for any n0 ≥ 0, the collection {In+n0M}n≥0

is a neighborhood basis of 0 in M and hence still defines the I-adic topology.
For instance, if in Example 2.2.5 above, the prime decomposition of n is n =

pk11 · · · pkss with each ki > 0, then Zn = Zp1p2···ps . By the Chinese remainder theo-
rem, the natural map Z/((p1p2 · · · ps)m) →

∏
i Z/(pmi ) is an isomorphism and via

these isomorphisms Zp1p2···ps is identified with
∏
i Zpi .

Adic completion as a metric completion. Define a map vI : M → {0, 1, 2, . . . ,+∞} as
follows. If for a given a ∈ M , there exists an n such that a ∈ InM r In+1M , then put
vI(a) := n and when no such n exists, i.e., when a ∈ ∩nInM , then set vI(a) = +∞.
This function satisfies vI(a+ b) ≥ min{vI(a), vI(rb)}. It is clear that vI factors through the
Hausdorff quotient MI = M/(∩nInM). Note that as a function on MI , it takes the value
+∞ in 0 only. Now choose a real number u > 1 and put ‖a‖u := u−vI (a), where this is
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to be read as zero when vI(a) = +∞. This evidently also factors through MI an induces
there a nonarchimedean norm, by which we mean that for x ∈ MI , ‖x‖u = 0 if and only if
x = 0 and satisfies a strong form of the triangle inequality: ‖x + y‖u ≤ max{‖x‖u, ‖y‖u}
(the triangle inequality says that ‖x+ y‖u ≤ ‖x‖u + ‖y‖u). Note that we also have that for
r ∈ R and a ∈ M , ‖ra‖u ≤ ‖r‖u.‖a‖u (this need not be an equality). This puts a metric
δ on MI defined by δ(x, y) := ‖x − y‖u whose underling topology is the I-adic topology.
This is in fact an ultrametric in the sense that δ(x, z) ≤ max{δ(x, y), δ(y, z)}. Note that a
sequence (an ∈ M)∞n=0 maps to a Cauchy sequence in MI if and only if for every integer
k ≥ 0 all but finitely many terms lie in the same coset of IkM in M ; in other words, there
exists an index nk ≥ 0 such that am− an ∈ IkM for all m,n ≥ nk. Such a Cauchy sequence
defines a compatible sequence of cosets (αn ∈ M/InM)n≥0 and hence an element of M̂I .
Now recall that a metric space is said to be complete if every Cauchy sequence in that space
converges and that a standard construction produces a completion of every metric space: its
points are represented by Cauchy sequences in that space, with the understanding that two
such sequences represent the same point if the distance between the two nth terms goes to
zero as n→∞. It is then clear that in the factorization M �MI ↪→ M̂I the first map is the
maximal Hausdorff quotient and the second the metric completion. In particular, M → M̂I

is a continuous injection with dense image.
When R contains Z as a subring and I is generated by a prime number p, then one often

takes u = p. So for n ∈ Z, ‖n‖p = p−k, where pk is the largest power of p that divides n.

If M is an R-module, then the inclusion M ′ ⊆ M of any submodule is contin-
uous for the I-adic topology. The Artin-Rees lemma says among other things that
in the noetherian setting this is in fact a closed embedding (so that M ′ has the
induced topology). It is based on the following lemma.

Lemma 2.2.6. Let R be a noetherian ring and I ⊆ R an ideal. Then the subring
R[It] :=

∑∞
n=0 I

ntn (where I0 := R) of R[t] is noetherian(2).
If M is a finitely generated R-module, then M [It] :=

∑∞
i=0 I

nMtn is a finitely
generated R[It]-module.

Any R[It]-submodule of M [It] has the form
∑∞
j=0Njt

j with {Nj}∞j=0 a se-
quence ofR-submodules ofM such that INj ⊆ Nj+1 for all j and becomes I-stable,
i.e., there exists a j0 such that this inclusion is an equality for j ≥ j0.

PROOF. Since R is noetherian, I has a finite set of generators, say r1, . . . , rn, as
an ideal. Then the ring homomorphism R[x1, . . . , xn]→ R[It], xi 7→ rit is onto and
it then follows that R[It] is noetherian. The proof that M [It] is finitely generated as
a R[It]-module is similar: if a1, . . . , as generate M as a R-module, then a1t, . . . , ast
generate M [It] as a R[It]-module.

It is clear that an R[It]-submodule of M [It] has the form
∑∞
j=0Njt

j , where Nj
is a R-submodule of M such that INj ⊆ Nj+1 for all n. Since M [It] is noetherian as
a R[It]-module, its submodule

∑∞
j=0Njt

j will have a finite set of R[It]-generators,
say a1t

j1 , . . . , alt
jl . Then j0 := maxi{ji} is as desired. �

The first assertion in the corollary below is the Artin-Rees lemma. The second
assertion amounts to saying that when R is noetherian, I-adic completion is an
exact functor on the category of finitely generated R-modules.

Corollary 2.2.7. Let R be a noetherian ring, I ⊆ R an ideal, M a finitely generated
R-module and M ′ ⊆M an R-submodule. Then

2This is sometimes called the blow-up of I in R for reasons made clear in Exercise ??.
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(i) The sequence {M ′ ∩ IjM}j≥0 of submodules of M ′ becomes I-stable:
there exists a j0 ≥ 0 such that M ′ ∩ Ij+1M = I(M ′ ∩ IjM) for j ≥ j0.

(ii) The homomorphism M̂ ′I → M̂I induced by the inclusion M ′ ⊆ M is a
closed embedding and M̂I/M̂

′
I can as a topological R̂I -module be identi-

fied with the I-adic completion of M/M ′.
(iii) If we also have 1 + I ⊆ R× (so that by Lemma 2.2.3 we may regard M

resp. M ′ as a submodule of M̂I resp. M̂ ′I), then M ∩ M̂ ′I = M ′.

PROOF. For the Artin-Rees part, we observe that
∑∞
j=0(M ′∩IjM)tj is an R[It]-

submodule of M [It]. Now apply Lemma 2.2.6.
So if j0 is as in (i), then for every n ≥ 0,M ′∩Ij0+nM = In(M ′∩Ij0M) ⊆ InM ′.

This shows that for the I-adic topology, the inclusion M ′ ⊆ M is also open, so
that the I-adic topology on M ′ is induced from the one on M . Hence M̂ ′I can be
identified with the closure of the image of M ′ ⊆ M → M̂I , so that M̂ ′I → M̂I is a
closed embedding. If we then take the projective limits of the exact sequences

0→M ′/M ′ ∩ InM →M/InM →M/(M ′ + InM)→ 0.

we get the exactness of 0→ M̂ ′I → M̂I → M̂/M ′I → 0 as topological modules.
The last identity follows from the fact that both sides are equal to the kernel of

M → M̂I/M̂
′
I = M̂/M ′I . �

Let R be a noetherian local ring with maximal ideal m and residue field κ. The
module m is finitely generated and since R acts on m/m2 via R/m = κ, m/m2 is a
finite dimensional vector space over κ.

DEFINITION 2.2.8. The Zariski cotangent space T ∗(R) of R is the κ-vector space
m/m2. The Zariski tangent space T (R) of R is its κ-dual, T (R) := Homκ(m/m2, κ)
(which is also equal to HomR(m, κ)). The embedding dimension embdim(R) is the
dimension of m/m2 as a vector space over κ.

If X is an affine variety and p ∈ X, then we define the Zariski cotangent space
T ∗pX, the Zariski tangent space TpX and the embedding dimension embdimpX of X
at p to be that of OX,p.

For instance, the embedding dimension of An at any point p ∈ An is n. This
follows from the fact that the map dp : f ∈ mAn,p 7→ df(p) ∈ kn defines an iso-
morphism of k-vector spaces mAn,p/m

2
An,p

∼= kn. We note in passing that we here
have a way of understanding the total differential at p ∈ An in more intrinsic terms
as the map dp : OAn,p → mAn,p/m

2
An,p which assigns to f ∈ OAn,p the image of

f − f(p) ∈ mAn,p in mAn,p/m
2
An,p. Thus, a differential of f at p can be understood

as a k-linear function df(p) : TpAn → k and (dp(xi) = dxi(p))
n
i=1 is a basis of

mAn,p/m
2
An,p = T ∗pAn whose dual basis (of TpAn) is represented by (∂/∂xi

∣∣
p
)ni=1.

Observe that embedding dimension and Zariski (co)tangent space of a local
ring R only depends on R/m2 (and hence only on R̂m).

EXERCISE 48. Let (R′,m′) and (R,m) be local rings with residue fields κ resp. κ′

and let φ : R′ → R be a ring homomorphism with the property that φ−1m = m′ (we
then say that φ is a local homomorphism). Prove that φ induces a field embedding
κ′ ↪→ κ and a linear map of κ-vector spaces T (φ) : T (R)→ κ⊗κ′ T (R′).

An application of Nakayama’s lemma to the R-module m yields:
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Corollary 2.2.9. The embedding dimension of a noetherian local ring R is the
smallest number of generators of its maximal ideal. This is zero if and only if R is
a field.

DEFINITION 2.2.10. A noetherian local ring R is said to be regular if its Krull
dimension equals its embedding dimension.

A point p of an affine variety X is called smooth if its local ring OX,p is regular;
otherwise it is called singular. The corresponding subsets ofX are called the smooth
locus resp. singular locus ofX and will be denotedXsm resp.Xsing. An affine variety
without singular points is said to be smooth (or nonsingular).

If R is a local ring of with the property that it contains a field κ which maps
isomorphically onto R/m, then one can show that R is regular if and only if R̂m

∼=
κ[[y1, . . . , yd]]. This justifies the definition above. We shall only prove this for the
local ring OX,p of a variety and thus see that its regularity indeed amounts to X
being ‘like a manifold’ at p. We begin with a formal version of the implicit function
theorem.

Lemma 2.2.11. Let p ∈ An and let f1, . . . , fn−d ∈ mAn,p be such that the differen-
tials df1(p), . . . , dfn−d(p) are linearly independent.

Then p := (f1, . . . , fn−d) ⊆ OAn,p is a prime ideal and OAn,p/p is a regular
local ring of dimension d whose completion with respect to its maximal ideal
is (as a complete local k-algebra) isomorphic to the formal power series alge-
bra in d variables and whose Zariski tangent space, regarded as a subspace of
the Zariski tangent space TpAn of p in An, is the kernel of the linear surjection
(df1(p), . . . , dfn−d(p)) : TpAn → kn−d.

There exists an affine neighborhood U of p in An on which f1, . . . , fn−d are
regular and generate in k[U ] a prime ideal with the property that its zero set is
smooth of dimension d.

PROOF. Let us abbreviate OAn,p by O and its maximal ideal mAn,p by m. Ex-
tend f1, . . . , fn−d to a system of regular functions f1, . . . , fn ∈ m such that the
df1(p), . . . , dfn(p) are linearly independent. This means that their images in m/m2

are linearly independent over k. In particular, fn−d+1, . . . , fn map to a k-basis of
m/(m2 +(f1, . . . , fn−d)) so that d is the embedding dimension of O/p. After a linear
transformation in An, we then may (and will) assume that fi ≡ xi − pi (mod m2).
Hence the monomials of degree r in f1, · · · , fn map to a k-basis of mr/mr+1. With
induction on r it then follows that the monomials of degree ≤ r in f1, · · · , fn make
up a k-basis of O/mr+1. This amounts to saying that the k-algebra homomorphism

k[y1, . . . , yn]→ O, yi 7→ fi

induces an isomorphism k[[y1, . . . , yn]] ∼= Ô of complete local rings (a ring iso-
morphism that is also a homeomorphism). The restriction of its inverse to O is
a topological embedding of O in k[[y1, . . . , yn]] (which sends fi to yi). Denote by
pi ⊂ O the ideal generated by f1, . . . , fi (so that pn−d = p). This inverse sends the
closure p̂i of pi in Ô to the ideal in k[[y1, . . . , yn]] generated by y1, . . . , yi. The latter
is a prime ideal, for the quotient ring k[[yi+1, . . . , yn]] is a domain. According to
Corollary 2.2.7, the preimage of p̂i in O is pi (so that pi is also a prime ideal) and
the embedding

O/pi ↪→ k[[y1, . . . , yn]]/(y1, . . . , yi) = k[[yi+1, . . . , yn]]
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realizes the m-adic completion of O/pi. Clearly, (0) = p0 ( p1 ( · · · ( pn is a prime
chain in O of length n. By Corollary 2.1.8, O has Krull dimension n, so that this
prime chain must be maximal. Theorem 2.1.6 then implies that O/p = O/pn−d has
Krull dimension d. As this is also the embedding dimension of O/p, it follows that
O/p is a regular local ring of dimension d.

Since the df1(p), . . . , dfn−d(p) are linearly independent, there exist n − d in-
dices 1 ≤ ν1 < ν2 < · · · < νn−d ≤ n such that δ := det((∂fi/∂xνj )i,j) is
nonzero in p. Choose g̃ ∈ k[x1, . . . , xn] such that g̃(p) 6= 0 and g̃/δ, g̃f1, . . . , g̃fn−d
all lie in k[x1, . . . , xn]. This ensures that 1/δ, f1, · · · fn−d are regular on Ang̃ , so
that df1, . . . , dfn−d are linearly independent everywhere on Ang̃ . The preimage
p̃ ⊆ k[x1, . . . , xn][1/g̃] of p under the localization map k[x1, . . . , xn][1/g̃] → O is
a prime ideal which contains (the images of) f1, . . . , fn−d and has the property that
its localization at p ∈ An is p.

It is however not clear whether p̃ is generated by f1, . . . , fn−d. This we can
accomplish by some further (finite) localization: Choose a finite set of generators
φ1, . . . , φr of p̃. Then in O we have φi =

∑n−d
j=1 uijfj for certain uij ∈ O. Let

g ∈ g̃k[x1, . . . , xn] with g(p) 6= 0 be a common denominator for the uij and put
U = Ang . Then p̃[1/g] is a prime ideal in k[U ]. It is generated by φ1|U, . . . , φr|U and
hence also by f1|U, . . . , fn−d|U . So U is as desired. �

Theorem 2.2.12. Let X ⊆ An be locally closed and let p ∈ X. Then X is smooth
of dimension d at p (i.e., the local ring OX,p is regular of dimension d) if and only
if there exist a set of generators f1, . . . , fn−d of IX,p such that df1(p), . . . , dfn−d(p)
are linearly independent.

The set of points of X for which these equivalent conditions hold is open in X;
in particular, the smooth locus Xsm of X is open in X.

PROOF. One direction is immediate from Lemma 2.2.11, for it tells us that if
f1, . . . , fn−d are elements of mAn,p such that df1(p), . . . , dfn−d(p) are linearly in-
dependent, then the ideal Ip ⊂ OAn,p generated by them is a prime ideal and
OAn,p/Ip is regular of dimension d.

For the converse, suppose thatOX,p is regular of dimension d. Let IX,p ⊆ OAn,p
be the kernel of OAn,p → OX,p, or equivalently, of mAn,p → mX,p. We have a short
exact sequence

0→ (IX,p + m2
An,p)/m

2
An,p → mAn,p/m

2
An,p → mX,p/m

2
X,p → 0.

Since the middle term has k-dimension n and dimk(mX,p/m
2
X,p) = d by assump-

tion, (IX,p + m2
An,p)/m

2
An,p

∼= IX,p/(IX,p ∩ m2
An,p) must have k-dimension n − d.

Let f1, . . . , fn−d ∈ IX,p map to k-basis of IX,p/(IX,p ∩ m2
An,p). This means that

df1(p), . . . , dfn−d(p) are linearly independent. It suffices to show that f1, . . . , fn−d
generate IX,p.

According to Lemma 2.2.11, the ideal pi ⊆ OAn,p generated by f1, . . . , fi is
prime and so we have a prime chain

(0) = p0 ( p1 ( · · · ( pn−d ⊆ IX,p.
Since dimOX,p = d, there also exists a prime chain of length d containing IX,p:

IX,p ⊆ q0 ( q1 ( · · · ( qd ⊆ OAn,p.

As OAn,p has dimension n, these two prime chains cannot make up a prime chain
of length n+ 1 and so pn−d = IX,p = q0. In particular, f1, . . . , fn−d generate IX,p.
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For the last assertion follows from the last clause of Lemma 2.2.11, since it
shows that if p is a smooth point ofX of dimension p, then p has inX a neigborhood
of such points. �

The criterion of Theorem 2.2.12 is easily amplified to a more abstract setting:

Corollary 2.2.13. Suppose that in the situation of Theorem 2.2.12, X is smooth at
p and that we are given a closed subset Y ⊆ X with p ∈ Y . Then Y is smooth of
dimension d′ at p if and only if there exist generators g1, . . . , gd−d′ of IX(Y )p whose
differentials define linearly independent forms on TpX. In that case TpY ⊆ TpX is
the common kernel of these linear forms.

PROOF. Choose a lift g̃i ∈ mAn,p of gi and apply Theorem 2.2.12 to Y and the
ideal generated by g̃1, . . . , g̃d−d′ , f1, . . . , fn−d. �

Proposition 2.2.14. The smooth locus Xsm of an affine variety X is open and
dense in X.

PROOF. Without loss of generality we may assume that X is irreducible. Since
we already know that Xsm is open, it remains to see that it is nonempty. It thus
becomes an issue which only depends on k(X). In view of Corollary 1.10.4 it then
suffices to treat the case of a hypersurface in Ar+1 so that I(X) is generated by
an irreducible polynomial f ∈ k[x1, . . . , xr+1]. By Lemma 2.2.11 it then suffices to
show that df is not identically zero on X. Suppose otherwise, i.e., that each partial
derivative ∂f/∂xi vanishes on X. Then each ∂f/∂xi must be multiple of f and
since the degree of ∂f/∂xi is less than that of f , this implies that it is identically
zero. But then we know from Exercise 46 that the characteristic p of k must then
be positive (so ≥ 2) and that f is of the form gp. This contradicts the fact that f is
irreducible. �

EXERCISE 49. Let X be a smooth variety. Prove that X is connected if and only
if it is irreducible.

REMARK 2.2.15. This enables us to find for an affine variety X of dimension
d (with downward induction) a descending chain of closed subsets X = Xd ⊇
Xd−1 ⊇ · · · ⊇ X0 such that dimXi ≤ i and all the (finitely many) connected
components of Xi rXi−1 are smooth subvarieties of dimension i: if Xi has been
defined, then take forXi−1 the union of the singular locus ofXi and the irreducible
components of dimension ≤ i − 1. Then dimXi−1 ≤ i − 1 and every connected
component of Xi rXi−1 is open in Xi

sm and hence smooth of dimension i.

EXERCISE 50. Prove that an affine variety X admits a partition S into locally
closed connected smooth subvarieties such that the closure of every S ∈ S is a
union of members of S (such a partition is called a stratification of X and its mem-
bers strata).

We now show that normalization converts an irreducible curve into a smooth
one. This will follow from:

Proposition-definition 2.2.16 (Characterizations of a discrete valuation ring). For
a local noetherian domain R with maximal ideal m the following are equivalent:

(i) R is normal and of dimension one,
(ii) R is regular and of dimension one,
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(iii) R is a not a field (equivalently, m is not the zero ideal) and every proper
ideal of R is of the form mn for some n > 0.

If these equivalent conditions are fulfilled, we say that R is a discrete valuation ring
(abbreviated as DVR). Such a ring is a principal ideal domain.

PROOF. In what follows we denote the residue field R/m by κ.
(i) ⇒ (ii). Assume R is normal and of dimension 1. We must show that

dimκm/m
2 = 1. Since dimR = 1, (0) ( m is a maximal prime chain. So R has no

other prime ideals than these two. Let a ∈ m r {0}. Then
√
Ra is an intersection

of prime ideals and hence must be equal to m. Let n ≥ 1 be minimal for the
property that mn ⊆ Ra, so that mn−1 6⊆ Ra. Choose b ∈ mn−1 r Ra and put
y := b/a ∈ Frac(R). Then my ⊆ R (for mb ⊆ Ra), but y /∈ R. We cannot have
my ⊆ m: otherwise y would preserve the (finitely generated) R-submodule m of
R and hence lie in R. By the maximality of m, it then follows that my = R. This
proves that π := y−1 is a generator of m. Multiplication by π defines a surjection
κ = R/m � Rπ/Rπ2 ∼= m/m2. This is in fact an isomorphism (so that R is
indeed regular and of dimension one): otherwise we would have m2 = m. But this
would imply m = 0 (by Nakayama’s lemma) and so R = κ, which contradicts the
assumption that R has dimension 1.

(ii) ⇒ (iii). Assume R is regular of dimension 1 so that dimκm/m
2 = 1. We

prove that every a ∈ m r {0} generates a power of m. This suffices, for if I ⊂ m
is a proper ideal of R, then each nonzero member of I will generate some positive
power of m, and so if r is the smallest such power which thus occurs, then I = mr.
By Lemma 2.2.3, ∩nmn = {0} and so there exists an n ≥ 0 such that a ∈ mnrmn+1.
The κ-vector space m/m2 is of dimension one and since the multiplication map

v1 ⊗κ v2 ⊗κ · · · ⊗κ vn ∈ m/m2 ⊗κ m/m2 ⊗κ · · · ⊗κ m/m2 7→ v1v2 · · · vn ∈ mn/mn+1

is onto, it follows that mn/mn+1 has κ-dimension ≤ 1 as well. So mn/mn+1 must
be generated by the image of a and Nakayama’s lemma then implies that Ra = mn.

(iii)⇒ (i). Assume R is as in (iii). Then (0) ( m is a maximal prime chain, so
that dimR = 1. Since every proper ideal of R is of the form mn for a unique n, R is
also a UFD and hence normal by Lemma 1.10.6. �

REMARK 2.2.17. If R is a DVR, then a generator π of m is called a uniformizer of
R. By (iii) every proper ideal is then equal to Rπn for a unique n ≥ 0. This implies
that every nonzero R-submodule of K := Frac(R) is of the form Rπn for a unique
n ∈ Z. We denote this submodule also by mn. Note that the map v : K× → Z
which takes the value n on mn r mn+1 is a surjective homomorphism with kernel
R× = R r m (so that the multiplicatively written K×/R× is identified with the
additively written Z). The obvious inequality v(r + r′) ≥ min{v(r), v(r′)} makes it
a nonarchimedean valuation.

A standard way of producing or encountering a DVR is to start with noetherian
ring A and a nonzero prime ideal p ⊂ A that is also principal. Then the localization
Ap is a DVR with maximal ideal pAp and residue field the fraction field of A/p. It
will have the image of a generator of p in Ap as a uniformizer. Thus Z(p) (p a prime)
and k[x1, . . . , xn](xn) are DVR’s with residue fields Fp resp. k(x1, . . . , xn−1).

Corollary 2.2.18. Let C be an irreducible curve. Then p ∈ C is a normal point of
C if and only if it is a smooth point of C. This is also equivalent to OC,p being a
discrete valuation ring. �
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So for an irreducible curve C, the normalization π : Ĉ → C is a ‘desingu-
larization’ in the sense that it provides us with a finite birational morphism whose
domain Ĉ is smooth. This also shows that a finitely generated field extension of k of
transcendence degree 1 is k-isomorphic to the function field of a smooth irreducible
curve.

REMARK 2.2.19. Recall that a Dedekind domain is a normal noetherian domain
of dimension one. Proposition-definition 2.2.16 implies that when R is a Dedekind
domainR and p ⊂ R is a nonzero prime ideal, then p is maximal andRp is a discrete
valuation ring. Using this, one can show that every nonzero ideal I ⊂ R has a
unique ‘prime decomposition’: there exists a unique map [p] ∈ Spm(R) 7→ np ∈ Z
with finite support such that I =

∏
[p]∈Spm(R) p

np . But beware that a maximal ideal
of a Dedekind domain need not be principal (and hence the domain need not be
an UFD). Examples occur in number theory (‘most’ rings of integers are not UFD’s)
and in algebraic geometry: for ‘most’ affine smooth curves C the set of p ∈ C such
that IC({p}) is not generated by a single element is dense in C.

EXERCISE 51. Let R be a DVR.
(a) Prove that the m-adic completion of R is still a DVR. What do we get for

R = Z(p) (p a prime) and R = k[t](t)?
(b) If R contains its residue field κ := R/m, then prove that its m-adic comple-

tion of R can be identified with formal power series ring κ[[t]].

EXERCISE 52. Prove that a noetherian ring is a DVR if and only if it has only
two prime ideals, one of which is the zero ideal (so that it is without zero divisors)
and the other principal.

EXERCISE 53. Let X be an irreducible variety of dimension n and let Y ⊆ X
be an irreducible subvariety of dimension n − 1 with the property that Y is not
contained in the singular part of X. Let kY (X) ⊆ k(X) be the subring of rational
functions that are regular on some open subset which meets Y . Prove that kY (X)
is a discrete valuation ring with fraction field k(X) and residue field k(Y ).

2.3. Differentials and derivations

The main goal of this section is to give what we did in the preceding section a
formulation that lends itself better to generalization and is at the same time more
intrinsic.

We first give the differential we defined earlier such a treatment. This begins
with the observation that the formation of the total differential of a polynomial,
φ ∈ k[x1, . . . , xn] 7→ dφ :=

∑n
i=1(∂φ/∂xi)(p)dxi is a k-linear map which satisfies

the Leibniz rule: d(φψ) = φdψ+ψdφ. This property is formalized with the following
definition. Fix a ring R (the base ring) and an R-algebra A.

DEFINITION 2.3.1. Let M be a A-module. An R-derivation of A with values in
M is an R-module homomorphism D : A → M which satisfies the Leibniz rule:
D(a1a2) = a1D(a2) + a2D(a2) for all a1, a2 ∈ A.

The last condition generally prevents D from being an A-module homomor-
phism. Let us observe that (by taking a1 = a2 = 1) we must have D(1) = 0. Since
D is R-linear, it then follows that for every r ∈ R, D(r) = rD(1) = 0. Note also that
if b ∈ A happens to be invertible in A, then 0 = D(1) = D(b/b) = D(b)/b+ bD(1/b)
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so that D(1/b) = −D(b)/b2 and hence D(a/b) =
(
D(a)b − aD(b)

)
/b2 for every

a ∈ A.
Given a1, . . . , an ∈ A, then the values ofD on a1, . . . , an determine its values on

the subalgebraA′ by the ai’s, for if φ : R[x1, . . . , xn]→ A denotes the corresponding
R-homomorphism and f ∈ R[x1, . . . , xn], then

Dφ(f) =
∑n
i=1 φ

(
∂f
∂xi

)
Dai.

If we combine this with the formula for D(1/b), we see that this not only deter-
mines D on the R-subalgebra A′ of A generated by the ai’s, but also on the biggest
localization of A′ contained in A. In particular, if we are given a field extension
L/K, then a K-derivation of L with values in some L-vector space is determined
by its values on a set of generators of L as a field extension of K.

The set of R-derivations of A in M form an R-module: if D1 and D2 are R-
derivations of A with values in M , and a1, a2 ∈ A, then a1D1 + a2D2 is also one.
We denote this module by DerR(A,M).

EXERCISE 54. Prove that if D1, D2 ∈ DerR(A,A), then [D1, D2] := D1D2 −
D2D1 ∈ DerR(A,A). What do we get for R = k and A = k[x1, . . . , xn]?

It is immediate from the definition that for every A-module homomorphism
φ : M → N the composition of a D as above with φ is an R-derivation of A with
values in N . We can now construct a universal R-derivation of A, d : A → ΩA/R
(where ΩA/R must of course be an R-module) with the property that every D as
above is obtained by composing d with a unique homomorphism of A-modules
D̄ : ΩA/R → N . The construction that is forced upon us starts with the free A-
module A(A) which has A itself as a generating set—let us denote the generator
associated to a ∈ A by d̃(a)—which we then divide out by the A-submodule of
A(A) generated by the expressions d̃(ra) − rd̃(a), d̃(a1 + a2) − d̃(a1) − d̃(a2) and
d̃(a1a2)−a1d̃(a2)−a2d̃(a2), with r ∈ R and a, a1, a2 ∈ A. The quotient A-module is
denoted ΩA/R and the composite of d̃ with the quotient map by d : A→ ΩA/R. The
latter is an R-derivation of A by construction. Given an R-derivation D : A → M ,
then the map which assigns to d̃(a) the value Da extends (obviously) as an A-
module homomorphism A(A) → M . It has the above submodule in its kernel and
hence determines an A-module homomorphism of D̄ : ΩA/R →M . This has clearly
the property that D = D̄d. In other words, composition with d defines an isomor-
phism of A-modules HomA(ΩA/R,M)

∼=−→ DerR(A,M). We call ΩA/R the module
of Kähler differentials. We shall see that the map d : A → ΩA/R can be thought of
as an algebraic version of the formation of the (total) differential.

The universal derivation of a finitely generated R-algebra A can be constructed
in a more direct manner as follows. We first do the case when A is a polynomial
algebra P := R[x1, . . . , xn]. For any R-derivation D : P → M we have Df =∑n
i=1(∂f/∂xi)Dxi and this yields (Dx1, . . . , Dxn) ∈ Mn. Conversely, for any n-

tuple (m1, . . . ,mn) ∈ Mn, we have an R-derivation D : P → M defined by Df =∑n
i=1(∂f/∂xi)mi. So Dxi can be prescribed arbitrarily as an element of M . But

to give an element of Mn amounts to giving a P -homomorphism Pn → M and
hence ΩP/R is the free P -module generated by dx1, . . . , dxn. Thus the universal
R-derivation dP/R = d : P → ΩP/R, which is given by f 7→

∑n
i=1(∂f/∂xi)dxi, may

be regarded as the intrinsic way of forming the total differential.
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Next consider a quotient A := P/I of P , where I ⊆ P is an ideal. If M is an A-
module and D′ : A→M is an R-derivation, then its composite with the projection
π : P → A, D = D′π : P → M , is an R-derivation of P with the property that
Df = 0 for every f ∈ I. Conversely, everyR-derivationD : P →M in anA-module
M which is zero on I factors through an an R-derivation D′ : A → M . Note that
for any R-derivation D : P → M , its restriction to I2 is zero, for if f, g ∈ I, then
D(fg) = fDg + gDf ∈ IM = {0}. Now I/I2 is a module over P/I = A and so we
obtain a short exact sequence of A-modules

I/I2 → ΩP/R/IΩP/R → ΩA/R → 0.

It follows from our computation of ΩP/R that the middle term is the free A-module
generated by dx1, . . . , dxn. So if I is generated by f1, . . . , fm, then ΩA/R can be
identified with the quotient of

∑n
i=1Adxi by the A-submodule generated by the

A-submodule generated by the dfj =
∑n
i=1(∂fj/∂xi)dxi, j = 1, . . . ,m.

Note that if R is a noetherian ring, then so is A (by the Hilbert basis theorem)
and since ΩA/R is a finitely generated A-module, it is noetherian as an A-module.
This applies for instance to the case when R = k and A = k[X] for some affine
variety X. We sometimes write Ω[X] for Ωk[X]/k and Ω(X) for Ωk(X)/k.

EXAMPLE 2.3.2 (Relative differentials of finitely generated field extensions). Let
L/K be an extension of fields. If L/K is purely transcendental: L = K(x1, . . . , xn),
then dx1, . . . , dxn is an L-basis of ΩL/K . If L/K is finite and separable, then by
the theorem of the primitive element, L is as a K-algebra isomorphic to K[x]/(f)
with f ∈ K[x] a separable irreducible polynomial. So ΩL/K is isomorphic to the
K[x]/(f)-vector space generated by dx, but subject to the relation f ′dx = 0. Since
f is separable, the ideal generated f ′ and f is all of K[x] and so f ′ maps to a unit
of K[x]/(f). This implies that ΩL/K = 0.

Any finitely generated separable field extension is always a finite separable ex-
tension of a purely transcendental one, and so it follows that for such an extension
L/K, dimL ΩL/K equals the transcendence degree of L/K.

On the other hand, if L/K is a purely inseparable extension defined by L =
K[x]/(xp−a) (so p is the characteristic of K and xp−a is irreducible in K[x]), then
no nontrivial relation is present and so ΩL/K = Ldx is of L-dimension 1.

EXERCISE 55. Prove that ΩA/R behaves well under localization: if S ⊆ A is
a multiplicative subset, then every R-derivation with values is some A-module M
extends naturally to an R-derivation of S−1A with values in S−1M . Prove that we
have a natural map S−1ΩA/R → ΩS−1A/R and that this map is a A-homomorphism.

We can now make the link with our notion of smoothness. For an affine variety
X and x ∈ X, we write ΩX,x for ΩOX,x/k. The preceding exercise implies that ΩX,x
is the localization of Ω[X] at p: ΩX,x = (k[X]rpx)−1Ω(X). The following theorem
sums up much of the previous section in these terms (the proof is therefore left as
an exercise).

Theorem 2.3.3. Let X be affine variety X, p ∈ X and denote by d be the Krull
dimension of OX,p. Then the following properties are equivalent:

(i) there exists an affine neighborhood U of p in X such that Ω[U ] is a free
k[U ]-module of rank d,

(ii) ΩX,p is a free OX,p-module of rank d,
(iii) the mX,p-adic completion of OX,x is isomorphic to k[[x1, . . . , xd]],



2.3. DIFFERENTIALS AND DERIVATIONS 69

(iv) dimk(mX,p/m
2
X,p) = d .

If one (and hence all) of these is satisfied, we say that X is smooth at p ∈ X (so
then the open U appearing in (i) consists of smooth points: it is an open property).

This also leads to a ‘relative version’ of smoothness. For a morphism of affine varieties
f : X → Y and x ∈ X, we define ΩX/Y,x as ΩOX,x/OY,f(x) . We say that f is smooth (of fiber
dimension n) at x if ΩX/Y,x is a free OX,x-module of rank n and f∗ : OY,f(x) → OX,x makes
OX,x a flat OY,f(x)-module. If at both sides we pass to the formal completion with respect
to the maximal ideals, then one can show that this means that ÔX,x is as a ÔY,f(y)-algebra
isomorphic to ÔY,f(y)[[t1, . . . , tn]]. So formally f is near x like the projection Y × An → Y

near (f(x), 0). The more precise geometric content is that there exists a morphism f̃ :

Ũ → Ṽ between smooth connected varieties of maximal rank with dim Ũ = n + dim Ṽ

(the algebraic analogue of a submersion with fiber dimension n) and an embedding of a
neighborhood V of f(x) in Ṽ such that f̃−1V can be identified with a neighborhood U of x

in X with f |U equaling U ∼= f−1V
f̃−→ V .

We must be careful with this construction when dealing with formal power
series rings. For instance, as we have seen, the completion of the local k-algebra
OA1,0 with respect to its maximal ideal is k[[x]] and the embedding ofOA1,0 ↪→ k[[x]]
is given by Taylor expansion. While a k-derivation of OA1,0 with values in some
OA1,0-module is determined by its value in x, this is not true for k[[x]]: for a k-
derivation D of k[[x]] with values in some k[[x]]-module, Dx only determines the
restriction of D to the k-subalgebra OA1,0 = k[x](x) (this is because k[[x]] contains
many elements that are algebraically independent over x). But if we also require
that D is continuous for the (x)-adic topology, then Dx determines D, for then

D(
∑∞
r=0 crx

r) = D( lim
n→∞

∑n
r=0 crx

r) = lim
n→∞

D(
∑n
r=0 crx

r) =
∑∞
r=0 crrx

r−1Dx.

We obtained ΩA/R as a quotient of A(A), but the final result made it clear that
ΩA/R is in fact a quotient of A⊗RA via a⊗R b 7→ adb. The following exercise shows
how this leads to an alternative construction of the universal derivation.

EXERCISE 56. Let R be a ring and A an R-algebra. The maps (a, b) ∈ A×A 7→
ab ∈ A, resp. (a, b) ∈ A × A 7→ a db ∈ ΩA/R are both R-bilinear and hence factor
uniquely through R-linear maps µ : A ⊗R A → A resp. δ : A ⊗R A → ΩA/R.
We regard A ⊗R A as an R-algebra and also as an A-module with A acting by
multiplication on the first factor. This makes both µ and δ A-homomorphisms.

(a) Denote by I ⊂ A ⊗R A the kernel of µ. Prove that I is as an A-submodule
and that it is as such generated by {a⊗R 1− 1⊗R a}a∈A

(b)Prove that δ maps I onto ΩA/R, but is zero on I2 so that we have a surjection
δ′ : I/I2 → ΩA/R of A-modules.

(c) Prove that D : a ∈ A 7→ a ⊗R 1 − 1 ⊗R a + I2 ∈ I/I2 is an R-derivation.
Denote by D̄ : ΩA/R → I/I2 the associated A-homomorphism that comes from the
universal property of d : A→ ΩA/R.

(d)Show that D̄δ′ is the identity of I/I2. Conclude that D is a universal deriva-
tion.

(e) Check that the other A-module structure on A⊗R A (obtained by letting A
act by multiplication on the second factor) yields the same A-module structure on
I/I2.
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Exercise 56 shows that for an affine variety X, Ω[X] can be identified with the
k[X]-module I(∆X)/I(∆X)2, where ∆X ⊆ X × X is the diagonal and I(∆X) ⊆
k[X × X] = k[X] ⊗ k[X] the ideal that defines it, and the k[X]-module structure
comes from (say) the first projection X ×X → X.

De Rham cohomology. Given a ring A and an A-module M , we can form the
exterior algebra ∧•AM . This is a graded anticommutative algebra defined as follows.
First consider the tensor algebra generated by the A-module M :

⊗•AM = A⊕M ⊕ (M ⊗AM)⊕ (M ⊗AM ⊗AM)⊕ · · ·

This is the associative (and in general noncommutative) graded A-algebra gener-
ated by the A-module M , the product being given by the tensor product. Then
∧•AM is obtained by dividing out this algebra by the two-sided ideal I generated by
the ‘squares’ e ⊗A e (e ∈ M), and we then write ∧A or simply ∧ for the product in
the quotient algebra. The fact that

e⊗A e′ + e′ ⊗A e = (e+ e′)⊗A (e+ e′)− e⊗A e− e′ ⊗A e′ ∈ I

implies that e ∧ e′ = −e′ ∧ e. It is then clear that if e1, . . . , ed generate M as an
A-module, the expressions ei1 ∧ · · · ∧ eir with 1 ≤ i1 < · · · < ir ≤ d generate ∧rAM
as an A-module.

EXERCISE 57. Let R be a ring and assume that A is an R-algebra. We write
Ω•A/R for ∧•ΩA/R.

(a) Prove that the universal R-derivation dA/R : A → ΩA/R extends to an
R-linear map (still denoted) dA/R : Ω•A/R → Ω•+1

A/R characterized by the property
that

dA/R(ω ∧ η) = (dA/Rω) ∧ η) + (−1)rω ∧ (dA/R(η),

when ω ∈ ΩrA/R and η ∈ Ω•A/R arbitrary(3). (Hint: first extend dA/R to the tensor
algebra generated by ΩA/R.

(b) Prove that dA/R increases the degree by 1 and satisfies dA/RdA/R = 0 so
that we can form the (so-called De Rham) cohomology modules

Hr
DR(A/R) := Hr(Ω•A/R, dA/R),

(When R = k and A = k[X], where X is an affine variety, then we denote these
k-vector spaces by Hr

DR(X).)
(c) Compute the De Rham cohomology spaces H•DR(Q[t, t−1]/Q).
(d) Let M be an A-module and let D : A → M be an R-derivation. Put

ΩrA/R(M) := ∧rΩA/R ⊗A M . Show that D extends to an R-homomorphism (still
denoted) D : Ω•A/R(M) → Ω•A/R(M) characterized by the property D(ω ⊗A e) =

dA/R(ω)⊗A e+(−1)rω∧AD(e) when ω ∈ ΩrA/R. Prove that D increases the degree
by 1 and satisfies DD = 0 so that we can form the De Rham cohomology groups
with values in M , Hr(Ω•A/R(M), D) (sometimes denoted Hr

DR(A/R,M)).

3This is summed up by saying that (Ω•
A/R

, dA/R) is a differential graded R-algebra. By definition

this is a graded R-module A• = A0 ⊕ A1 ⊕ A2 ⊕ · · · endowed with an R-bilinear product which is
graded-commutative in the sense that if a ∈ Ap and b ∈ Aq , then ab = (−1)pqba ∈ Ap+q (this makes it
a graded-commutative R-algebra) and comes with an R-linear map d : A• → A•+1 which increases the
degree by one and satisfies the Leibniz rule: d(ab) = adb + (−1)pbda. Its cohomology H•(A, d) is then
in a natural manner a graded-commutative R-algebra.
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EXERCISE 58. Let X be a variety, p ∈ X and let d := dimpX(= dimOX,p). We
write Ω•X,p for ∧•ΩX,p = Ω•OX,p/k.

(a) Prove that if X is smooth at p, then ΩdX,p is a free OX,p-module of rank one
and that ΩrX,p = 0 for r > d.

(b) Prove that if X is singular at p, then ∧d+1
k (T ∗pX) 6= 0 and Ωd+1

X,p 6= 0.

REMARK 2.3.4. Let X be a smooth affine variety over k = C. We then have an un-
derlying complex manifold Xan and Ω•k[X]/k becomes a subcomplex of the holomorphic De
Rham complex of Xan. This in turn is a subcomplex of the ordinary C∞ De Rham complex
of Xan (regarded as a C∞-manifold) with complex coefficients. A theorem due to the com-
bined effort of several people (among them Stein, H. Cartan, Serre, Grothendieck) states
that both inclusions induce an isomorphism on cohomology. So the algebraically defined De
Rham cohomology space Hr

DR(X) is then identified with Hr(Xan;C). Things are still subtle
though. If it so happens that X is defined over Q in the sense that we are given an Q-algebra
Q[X] and an identification C[X] ∼= C⊗Q Q[X], then Hr

DR(X) = C⊗Q Hr
DR(Q[X]/Q), which

means that the k-vector space Hr
DR(X) ∼= Hr(Xan;C) acquires a Q-structure. This is in gen-

eral not the Q-structure that comes from the universal coefficient theorem which says that
Hr(Xan;C) = Hom(Hr(X

an),C). For example, in the situation of Exercise 57-(c), where
X = A1

C r {0} = SpmC[t, t−1], we find that H1
DR(Q[t, t−1]/Q) is a Q-vector space of di-

mension one with generator represented by t−1dt. But this generator maps H1(Xan) ∼= Z
isomorphically onto 2π

√
−1Z.

2.4. Sheaves of rings and modules

Much of the preceding, in particular, where it involves local properties, is con-
veniently expressed in the language of sheaves. As the examples below will show,
the notion of a sheaf not only appears in algebraic geometry. This is why we in-
troduce it already here, although its use in the remaining chapters dealing with
varieties will be modest.

DEFINITION 2.4.1. Let X be a topological space. An abelian sheaf on a topo-
logical space X assigns to every open subset U ⊆ X an abelian group F(U) and
to every inclusion U ⊂ U ′ of open subsets a group homomorphism F(U ′)→ F(U)

(called restriction and denoted accordingly by s 7→ s|U ′U or simply s 7→ s|U , when U ′

is clear from the context) such that
Functoriality: for U ′ = U , s ∈ F(U) 7→ s|UU : F(U) is the identity map and

for nested open subsets U ⊆ U ′ ⊆ U ′′ and s ∈ F(U ′′), s|U = (s|U ′)|U .
Local nature: given an open subset U of X and an open covering U =
{Ui}i∈I of U , then every system {si ∈ F(Ui)}i∈I that is compatible in
the sense that for each pair (i, j) in I, si|Ui∩Uj = sj |Ui∩Uj , comes from a
unique s ∈ F(U) with the property that s|Ui = si for all i ∈ I.

An element of F(U) is often called a section of F over U .

REMARK 2.4.2. The first property is refered to as Functoriality, because if we
regard its collection of open subsets O(X) as the objects of a category whose mor-
phisms are the inclusions, then this amounts to F being a contravariant functor
from O(X) to the category of abelian groups. The second property (Local nature)
says that the map s ∈ F(U) 7→ (s|Ui)i∈I ∈ ui∈IF(Ui) identifies F(U) with the
‘equalizer’ of two homomorphisms ui∈IF(Ui)→ u(i,j)∈I2F(Ui ∩ Uj):

Eq(U ,F) := Ker
(

(si)i∈I ∈
∏
i∈I
F(Ui) 7→ (si|Ui∩Uj−sj |Ui∩Uj )ij ∈

∏
(i,j)∈I2

F(Ui∩Uj)
)



72 2. LOCAL PROPERTIES OF VARIETIES

We call this the Equalizer property. This somewhat formally implies that F(∅) =
{0}: take I = ∅ and note that the union of open sets with empty index set (our U)
is empty and that a product of abelian groups with empty index set is {0}.

Note that if U is covered by two open subsets U0, U1, the equalizer property
amounts to the exact sequence (the last arrow need not be onto):

(†) 0→ F(U)→ F(U0)⊕F(U1)→ F(U0 ∩ U1).

We shall be dealing with two important variations of the concept of an abelian
sheaf. If each F(U) comes with the structure of a commutative ring and the restric-
tion maps are ring homomorphisms, then F is called a sheaf of rings and (X,F)
is called a ringed space. Given a ringed space (X,F), then an F -module is an
abelian sheaf M on X with the property that each M(U) has the structure of an
F(U)-module and the restriction maps are compatible in the sense that if U ⊆ U ′,
s ∈M(U ′) and f ∈ F(U ′), then (fs)|U = f |U .s|U .

If we are given a ring R, then there is of course also the notion of a sheaf of
R-algebras.

We have an obvious notion of a subsheaf : an abelian sheaf F ′ is a subsheaf of
the abelian sheaf F if for every open U , F ′(U) is a subgroup of F(U). We can then
form a quotient sheaf F/F ′, but as this is less trivial, we discuss this later.

EXAMPLE 2.4.3 (The constant sheaf). For a topological space X and an abelian
group G, an abelian sheaf on X is defined by assigning to every open U ⊆ X the
set of locally constant maps U → G.

EXAMPLE 2.4.4 (The sheaf of continuous functions ). For a topological space
X, a sheaf CX of R-algebras on X is defined by assigning to every open U ⊆ X the
set of continuous functions U → R.

EXAMPLE 2.4.5. For a smooth manifold M , a sheaf EM of R-algebras is defined
which assigns to every open U ⊆ M the R-algebra of differentiable functions U →
R. To give the underlying topological space the structure of a manifold is in fact
equivalent to specifying EM as a subsheaf of CM .

EXAMPLE 2.4.6. On a complex manifoldM , a sheafOan
M of C-algebras is defined

which assigns to every nonempty open U ⊆ M the C-algebra Oan(U) of holomor-
phic functions U → C. The complex structure on the underlying smooth manifold
is fully specified by giving Oan

M as a subsheaf of the complexification of EM (which
assigns to an open U the C-algebra of differentiable functions U → C).

EXAMPLE 2.4.7. On a variety X, we have defined the sheaf of k-algebras OX .
For any open U ⊆ X, OX(U) is the k-algebra of regular (k-valued) functions. It
has the property that for affine U , OX(U) = k[U ].

The relation between the local rings OX,x and the sheaf OX makes sense in the
setting of sheaves:

DEFINITION 2.4.8. Given abelian sheaf F on X and a point p ∈ X, then a germ
of a section of F at p, is a section of F on an unspecified neighborhood of p, with the
understanding that two such sections represent the same germ if they coincide on a
neighborhood of p contained in their common domain of definition. To be precise,
it is an element of the inductive limit Fp = lim−→U3p F(U) (an abelian group). The
latter is called the stalk of F at p.
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We have of course the same notion in the refined settings (a commutative ring
for a ringed space and for a module over a ringed space, a module over a commu-
tative ring).

REMARK 2.4.9. The notation F(U) may at some point become a bit ambiguous;
for this and other reasons one often writes Γ(U,F) or H0(U,F) instead.

The following proposition is an analogue of Proposition 1.5.2 for modules.

Proposition-definition 2.4.10. Let X be an affine variety and let M be a k[X]-
module. Then M determines a sheafM of OX -modules with the property that for
every principal open subset Xf , M(Xf ) = M [1/f ] and an inclusion M(Xfg) ⊂
M(Xf ) induces the natural localization map M [1/f ] → M [1/(fg)]. In particular
(take f = 1 so that Xf = X),M(X) = M . It will have the property that for x ∈ X,
the germMX,x is the localization OX,x⊗k[X]M . An OX -module of this type is said
to be quasi-coherent; if in addition M = M(X) is finitely generated, then we say
thatM is coherent OX -module.

PROOF. Every open subset U is a (even finite) union of principal open subsets
Usi . Since Usi ∩ Usj = Usisj is also principal, the equalizer property 2.4.2 shows
thatM, if it exists, must be completely given by M and its localization maps. For
the existence we only need to show that the equalizer property holds if U happens
to be affine. Upon replacing X by U , we then may just as well assume that X = U
and our task is then to show that if we are given a covering of X by nonempty
principal open subsets {Xsi}i∈I , or equivalently, if the ideal in k[X] generated by
{si ∈ k[X]}i∈I is all of k[X], then the sequence

0→M →
∏
i∈I
M [1/si]→

∏
(i,j)∈I2

M [1/(sisj)]

is exact. Since the proof is essentially the same as that of Proposition 1.5.2, we
omit this. �

So if have a recipe which assigns to every finitely generated reduced k-algebra
A a module M(A) such that for every f ∈ A we are given a canonical way of iden-
tifying M(A[1/f ]) with M(A)[1/f ], then this determines for every prevariety X, a
quasi-coherent OX -moduleMX . Examples are the OX -module of differentials ΩX
(characterized by the property that for any affine open U ⊆ X, ΩX(U) = Ωk[U ]/k),
the OX -module of r-forms ΩrX and the OX -module of ÔX of normalizations (char-
acterized by the property that for any affine open U ⊆ X, ÔX(U) is the integral
closure of k[U ] in its fraction ring).

Note that since a finitely generated k[x1, . . . , xn]-module is noetherian, any
quasi-coherent submodule of a coherent OX -module is in fact coherent.

Direct image of a sheaf. Let f : X → Y be a continuous map between topo-
logical spaces, and F an abelian sheaf on X. Then V ∈ O(Y ) 7→ F(f−1V ) is clearly
a sheaf on Y . It is called the direct image of F under f and denoted f∗F .

Suppose now (X,F) and (Y,G) are ringed spaces. Then a morphism of ringed
spaces (X,F) → (Y,G) is by definition given be a continuous map f : X → Y
plus a sheaf homomorphism of rings φ : G → f∗F . It is clear that then a mor-
phism of varieties f : X → Y can be understood as such, as it determines a sheaf
homomorphism of OY -algebras OY → f∗OX which on V ∈ O(Y ) is given by
f∗ : OY (V )→ OX(f−1V ).
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Sheafification and quotient sheaf. A closed subvariety Y of a variety X de-
fines an ideal subsheaf (i.e., an OX -submodule of OX) IY ⊂ OX which assigns to
an open U ⊂ X the ideal IY (U) ⊂ OX(U) of functions vanishing on Y . This is
a coherent OX -module. We would like to say that OY can be regarded OX/IY ,
but some care and interpretation is required to make this a true statement. The
first objection is that one is a sheaf on Y , whereas the other ought to be one on
X. That is easily taken care of by replacing OY by its direct image on X under the
inclusion iY : Y ⊂ X, i∗OY , i.e., the OX -module which assigns to U ∈ O(X) the
OX(U)-module OY (U ∩ Y ). More important is that we have not yet defined the
quotient of an abelian sheaf by an abelian subsheaf and this is not so obvious for
the following reason.

Let X be any a space, F an abelian sheaf on X and F ′ an abelian subsheaf of
F . Then the map G : U ∈ O(X) 7→ F(U)/F ′(U) is only what is called a presheaf :
it satisfies the functorial property, but need not satisfy the equalizer property. This
is already seen when we have two open subsets {U0, U1} covering U : if for i = 0, 1,
si ∈ G(Ui) have the same image in G(U0 ∩U1), then the pair (s0, s1) need not come
from some s ∈ G(U). To be precise, we can represent si by some s̃i ∈ F(Ui) and
then we would like to arrange that s̃1|U0 ∩ U1 and s̃0|U0 ∩ U1 are equal. But all
we can say is that their difference will lie in F ′(U0 ∩ U1) and that other choices of
representatives s̃0, s̃1 will only change this difference within the coset of the image
of F ′(U0) ⊕ F ′(U1) → F ′(U0 ∩ U1). As this last map need not be onto, we cannot
be certain that such an s exists. The definition of F/F ′ must therefore be such that
this issue disappears.

This is accomplished by what is called the sheafification of a presheaf. This
produces for any abelian presheaf G on a space X a sheaf G+ (which returns G if G
happens to be a sheaf) as follows. Given an open subset U of X, then by definition
an element of G+(U) is represented by an open covering U = {Ui}i∈I of U and
an element of Eq(U ,G) (so that is collection {si ∈ G(Ui)}i∈I such that si and sj
have the same image in G(Ui ∩ Uj) for all i, j ∈ I). If U ′ is a covering of U which
refines U (meaning that every member of U ′ is contained in a member of U), then
restriction defines a natural map Eq(U ,G)→ Eq(U ′,G). We then define

G+(U) := lim−→
U

Eq(U ,G),

in other words, an element of Eq(U ,G) and an element of Eq(U ′′,G) represent the
same element of G+(U) if and only if they become equal in Eq(U ′,G), for some
common refinement U ′ of U and U ′′. This is simply the cheapest way of imposing
the equalizer property. If G happens to be a sheaf, then it is clear that G+ = G.

In the example above, OX/IY (which by definition is the sheafification of the
presheaf U 7→ OX(U)/IY (U)) can now be identified with the sheaf i∗OY .

EXERCISE 59. Let f : X → Y be a finite morphism of varieties. Prove that
f∗OX is a coherent OY -module. More generally, show that the direct image of a
coherent OX -module under f is a coherent OY -module.

EXERCISE 60. Let i be the inclusion of An r {0} in An. Determine the stalk of
i∗OAnr{0} at 0 for n = 1, 2, . . . .



CHAPTER 3

Projective varieties

In this chapter we finally get to encounter varieties that are not quasi-affine.
Its main subject are the projective varieties and open subsets thereof, a class of
varieties that has since long been at the center of algebraic geometry. Projective
varieties are very much like compact spaces.

3.1. Projective spaces

Two distinct lines in the plane intersect in a single point or are parallel. In
the last case one would like to say that the lines intersect at infinity so that the
statement becomes simply: two distinct lines in a plane meet in a single point.
There are many more examples of geometric configurations for which the special
cases disappear by the simple remedy of adding points at infinity. A satisfactory
approach to this which makes no a priori distinction between ordinary points and
points at infinity involves the notion of a projective space.

Given a finite dimensional k-vector space V , then we denote by P(V ) the col-
lection of its 1-dimensional linear subspaces. Observe that any linear injection
J : V → V ′ of vector spaces induces an injection P(J) : P(V ) → P(V ′) (in general
P(J) only makes sense on P(V ) r P(ker(J))). In particular, when J is an isomor-
phism, then P(J) is a bijection. The following definition makes this notion slightly
more abstract by suppressing the vector space as part of the data.

DEFINITION 3.1.1. A projective space of dimension n over k is a set P endowed
with an extra structure that can be given by a pair (V, `), where V is k-vector space
of dimension n + 1 and ` : P → P(V ) is a bijection, and where we agree that
another such pair (V ′, `′) defines the same structure if and only if there exists a
k-linear isomorphism J : V → V ′ such that `′ = P(J)`. (Note that thus is defined
an equivalence relation on the collection of such pairs; a projective structure on P
is simply given by an equivalence class.)

With this definition, P(V ), where V is a finite dimensional k-vector space, is in
a natural manner a projective space, the structure being represented by the identity
map of P(V ). It is called the projective space associated to V . When V = kn+1 we
write Pn or Pnk and call it simply projective n-space (over k). The difference between
a projectivized vector space and an abstract projective space is perhaps elucidated
by the following exercise.

EXERCISE 61. Prove that the linear isomorphism J in Definition 3.1.1 is unique
up to scalar multiplication. Conclude that a projective space P determines a vector
space up to scalar multiplication. Illustrate this by showing that for a 2-dimensional
vector space V we have a canonical isomorphism P(V ) ∼= P(V ∗), but that there is
no canonical isomorphism between V and V ∗.

75
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In Definition 3.1.1 we could have restricted ourselves to a fixed V , e.g., kn+1.
The projective structure is then given by a bijection ` : P ∼= Pn, agreeing that two
such give the same structure if and only if the two bijections differ by composition
with a linear transformation in Pn (1). Giving this structure on P by means of a
pair (kn+1, `) also has the advantage that it gives rise to a homogeneous coordinate
system on P as follows: if we denote the coordinates of kn+1 by (T0, . . . , Tn), then
every point p ∈ P is representable as a ratio [p0 : · · · : pn] of n + 1 elements of k
that are not all zero: choose a generator p̃ of the one-dimensional linear subspace
of kn+1 defined by `(p) and let pi = Ti(p̃). Any other generator is of the form λp̃
with λ ∈ k r {0} and indeed, [λp0 : · · · : λpn] = [p0 : · · · : pn]. This is why we call
(kn+1, `) (or rather the use of [T0 : · · · : Tn]) a homogeneous coordinate system on P .
Note that an individual Ti is not a function on P , but that the ratios ti/j := Ti/Tj
are, albeit that for i 6= j they are not everywhere defined. It is clear that any other
homogenenous coordinate system is of the form (

∑
j a0jT0, . . . ,

∑
j anjTn), where

(aij)i,j ∈ GL(n+ 1, k).

DEFINITION 3.1.2. Given a projective space P of dimension n over k, then a
subset Q of P is said to be linear subspace of dimension d if, for some (and hence
any) pair (V, `) as above, there exists a linear subspace VQ ⊆ V of dimension d+ 1
such that `(Q) is the collection of 1-dimensional linear subspaces of VQ.

A map j : P → P ′ between two projective spaces over k is said to be linear
morphism if it comes from a linear map of vector spaces, to be precise, if for struc-
tural data (V, `) for P and (V ′, `′) for P ′ there exists a linear injection J : V → V ′

such that `′ = P(J)`.

So a linear subspace has itself the structure of a projective space and its in-
clusion in the ambient projective space is a linear morphism. Conversely, a linear
morphism is injective and its image is a linear subspace.

A linear subspace of dimension one resp. two is often called a line resp. a plane
and a linear subspace of codimension one (= of dimension one less than the ambi-
ent projective space) is called a hyperplane. It is now clear that two distinct lines
in a plane intersect in a single point: this simply translates the fact that the inter-
section of two distinct linear subspaces of dimension two in a three dimensional
vector space is of dimension one.

We put on a projective space P the structure of a k-prevariety as follows. A
homogeneous coordinate system [T0 : · · · : Tn] for P defines a chart for every
i = 0, . . . , n: if PTi ⊆ P is the hyperplane complement defined by Ti 6= 0, then

κi : PTi
∼=−→ An, p 7→ (t0/i(p), . . . t̂i/i(p) . . . , tn/i(p)),

is a bijection (chart) with inverse

κ−1
i : (a1, . . . , an) ∈ An 7→ [a1 : · · · : ai : 1 : ai+1 : · · · : an] ∈ U.

1The structure of an m-dimensional k-vector space on a set W can analogously be given by a
bijection of W onto km given up to an element of GL(m, k), but the usual definition taught in a linear
algebra course is of course much more convenient (apart from the fact that this would only work for
finite dimensional vector spaces). Such a more intrinsic (synthetic is the word) definition exists also for a
projective space, but is not so simple and would for us not have any clear advantages. Yet the definition
given here goes one step towards such a formulation.
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Clearly, ∪ni=0PTi = P . We show that the collection of charts {PTi , κi}ni=0 can serve
as an affine atlas for P . The coordinate change for a pair of charts, say for κnκ−1

0 ,
is as follows: the image of PT0

∩PTn under κ0 resp. κn is the open subset Anxn resp.
Anx1

of An and the transition map is

κnκ
−1
0 : Anxn → Anx1

, (a1, a2, . . . , an) 7→ (1/an, a1/an, . . . , an−1/an),

and hence an isomorphism of affine varieties with inverse κ0κ
−1
n . An atlas thus

obtained from a homogeneous coordinate system will be called a standard atlas
for P ; it gives P the structure of a prevariety (P,OP ): U ⊆ P is open if and
only if for i = 0, . . . , n, κi(U ∩ PTi) is open in An and f ∈ OP (U) if and only if
fκ−1

i ∈ O(κi(U)). One can easily check that this structure is independent of the
coordinate system and that it is in fact that of a k-variety. We will not do this here
as we will give in Section 3.3 a more direct proof of these assertions.

Any hyperplane H ⊆ P can be given as T0 = 0, where [T0 : · · · : Tn] is a homo-
geneous coordinate system on P and so its complement U = P rH is isomorphic
to An. This can also (and more intrinsically) be seen without the help of such a
coordinate system. Let the projective structure on P be given by the pair (V, `).
Then the hyperplane H corresponds to a hyperplane VH ⊆ V and U corresponds
to the set of 1-dimensional linear subspaces of V not contained in H. If e ∈ V ∗ is a
linear form whose zero set is VH , then A = e−1(1) is an affine space for VH (it has
VH as its vector space of translations). Assigning to v ∈ A the 1-dimensional linear
subspace spanned by v defines a bijection A ∼= U that puts on U a structure of an
affine space. This structure is easily checked to be independent of (V, `, φ).

We could also proceed in the opposite direction and start with an affine space A and
realize it as the hyperplane complement of a projective space. For this consider the vector
space F (A) of affine-linear functions on A and denote by e ∈ F (A) the function on A that
is constant equal to 1. Then e−1(1) is an affine hyperplane in F (A)∗. Any a ∈ A defines a
linear form on F (A) by evaluation: f ∈ F (A) 7→ f(a) ∈ k. Note that this form takes the
value 1 on e so that we get in fact a map A → e−1(1). It is not hard to check that this is
an affine-linear isomorphism and so the projective space A := P(F (A)∗) can serve as the
projective completion of A. Following the Renaissance painters, we might say that A r A

consists of “points at infinity” of A; such a point can be given by an affine line in A with the
understanding that parallel lines define the same point at infinity.

3.2. The Zariski topology on a projective space

We begin with giving a simpler and more natural characterization of the Zariski
topology on a projective space. Let P be a projective space of dimension n over k
and let [T0 : · · · : Tn] be a homogeneous coordinate system for P . Suppose F ∈
k[X0, . . . , Xn] is homogeneous of degree d so that F (tT0, . . . , tTn) = tdF (T0, . . . , Tn)
for t ∈ k. The property of this being zero only depends on [T0 : · · · : Tn] and hence
the zero set of F defines a subset of P . We shall denote this subset by Z[F ] and its
complement P r Z[F ] by PF . We will show in the next section that PF is in fact
affine.

Proposition 3.2.1. The collection {PF }F , where F runs over the homogeneous
polynomials in k[X0, . . . , Xn], is a basis for the Zariski topology on P . This topology
is independent of the choice of our homogeneous coordinate system [T0, . . . , Tn]
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and (so) every linear chart is a homeomorphism onto An that identifies the sheaf
of regular functions on its domain with OAn . If G ∈ k[X0, . . . , Xn] is homogeneous
of the same degree as F and nonzero, then F/G defines a regular function on PG.

PROOF. We first observe that the obvious equality PF ∩PF ′ = PFF ′ implies that
the collection {PF }F is a basis of a topology T on P . This topology is independent
of the coordinate choice, because a linear substitution transforms a homogeneous
polynomial into another one.

Let us verify that this is the Zariski topology defined earlier. First note that
the domain of each member κi : PTi

∼= An of the standard atlas is also a ba-
sis element (hence open) for T. So we must show that κi defines a homeomor-
phism onto An when its domain is endowed with the topology induced by T. If
F ∈ k[T0, . . . , Tn] is homogeneous of degree d, then κi(PF ∩ PTi) = Anfi , where
fi(y1, . . . , yn) := F (y1, . . . , yi, 1, yi+1, . . . , yn) and so κi is open. Conversely, if
f ∈ k[y1, . . . , yn] is nonzero of degree d, then its homogenization of degree d,
F (T0, . . . , Tn) := T di f(T0/Ti, . . . T̂i/Ti . . . Tn/Ti), has the property that κ−1

i (Anf ) =

PF ∩ PTi . So κi is also continuous.
For the last statement first observe that F/G indeed defines a function on

PG (think of it as regular function on An+1
G that is constant under multiplication

with a nonzero scalar). Its pull-back under κi is fi(y1, . . . , yn)/gi(y1, . . . yn), where
gi(y1, . . . , yn) := G(y1, . . . , 1, . . . yn), which is indeed regular on Angi . So F/G is
regular on PG. �

EXERCISE 62. Let 0 6= G ∈ k[X0, . . . , Xn] be homogeneous of degree d. Prove
that every regular function PG → k has the form F/Gr, with r ≥ 0 and F homoge-
neous of the same degree as Gr.

In order to discuss the projective analogue of the (affine) I ↔ Z correspon-
dence, we shall need the following notions from commutative algebra.

DEFINITION 3.2.2. A (nonnegative) grading of a ring A is a direct sum decom-
position A = ⊕∞k=0Ad such that the product maps Ad×Ae in Ad+e, or equivalently,
such that

∑∞
d=0Adt

d is a subalgebra of A[t] (so that this makes A0 a subring of A).
We then call A a graded ring. If we are also given a ring homomorphism R → A0,
then we call A a graded R-algebra.

An ideal I of a graded ring A is said to be graded if it is the direct sum of its
homogeneous parts Id := I ∩Ad (so that

∑∞
d=0 Idt

d is an ideal of
∑∞
d=0Adt

d).
We shall say that a graded ideal I of A is proper(2) if it is graded and contained

in the ideal A+ := ⊕d≥1Ad.

If we feel that the presence of a graded structure on A must be expressed by
our notation, we shall write A• for A. Note that if I is a graded ideal of the graded
ring A, then A/I = ⊕∞d=0Ad/Id is again a graded algebra and that if I is also proper,
then A/I has A0 as its degree zero part. We will be mostly concerned with the case
when A0 = k; then A+ is a maximal ideal (and the only one that is graded).

Lemma 3.2.3. If I, J are (proper) graded ideals of a graded ring A, then so are
I ∩ J , IJ , I + J and

√
I. Moreover, if p ⊆ A is a prime ideal, then so is the graded

ideal ⊕n(p ∩An); in particular, a minimal prime ideal of R is graded.

2This is not a generally adopted terminology.
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PROOF. The proofs of the statements in the first sentence are not difficult and
so we omit them. As to the last, let us first agree to denote for any nonzero a ∈ A
by in(a) the top degree part of a and by deg(a) its degree and stipulate that when
a = 0, in(a) = 0 and deg(a) = 0.

Now put pn := p ∩ An let a, b ∈ A be such that ab ∈ ⊕npn. We prove with
induction on deg(a) + deg(b) that a or b is in ⊕npn. If in(a) in(b) 6= 0, then it
equals in(ab) ∈ pdeg(a)+deg(b) ⊆ p and since p is a prime ideal, we therefore have
in(a) ∈ pdeg(a) or in(b) ∈ pdeg(b). This is of course also true when in(a) in(b) = 0.
Say that in(a) ∈ pdeg(a). Then (a − in(a))b = ab − in(a)b ∈ p. We have either
deg(a − in(a)) < deg(a) or deg(a) = 0 (so that a − in(a) = 0). Hence by our
induction assumption (or trivially in the second case), a− in(a) or b is in ⊕npn. So
a or b is in ⊕npn. �

The main example of a graded k-algebra is furnished by a vector space V of
finite positive dimension (n + 1, say), which we consider as an affine variety, but
(in contrast to an affine space) one of which we remember that it comes with the
action of the multiplicative group of k by scalar multiplication. Let us say that
F ∈ k[V ] is homogeneous of degree d if we have F (tv) = tdF (v) for all v ∈ V
and t ∈ k. Such F make up a k-linear subspace k[V ]d of finite dimension and the
subspaces thus defined turn k[V ] into a graded k-algebra ⊕d≥0k[V ]d. (A choice
of basis (T0, . . . , Tn) of V ∗ identifies V with An+1 and then k[V ]d becomes the
space of homogeneous polynomials in (T0, . . . , Tn) of degree d.) We can understand
this decomposition as the one into eigenspaces with respect to the action of scalar
multiplication. Note that for any F ∈ k[V ]d the zero set Z(F ) ⊆ V is invariant
under scalar multiplication. This is still true for an intersection of such zero sets,
in other words, for a proper graded ideal I ⊆ k[V ]+, Z(I) ⊆ V is a closed subset
of V which is invariant under scalar multiplication and contains the origin of V . A
closed subset of V with this property is called an affine cone and the origin is then
referred to as the vertex of that cone. Since the vertex is defined by the maximal
ideal k[V ]+, we always have 0 ∈ Z(I). The intersection of the Z[F ], with F ∈
∪d≥1Id defines a closed subset Z[I] of P(V ) whose points correspond to the one-
dimensional subspaces of V that are contained in Z(I).

It is clear that every closed subset of P(V ) is thus obtained. In fact, given a
closed subset X ⊆ P(V ), let for d ≥ 1, IX,d be the set of F ∈ k[V ]d for which
X ⊆ Z[F ] and put IX,0 = 0. Then IX,d is a k-vector space and IX,d · k[V ]e ⊆ IX,d+e

so that IX := ⊕d≥1IX,d is a proper graded ideal of k[V ]. It is also a radical ideal
(exercise) and we haveX = Z[IX ]. So Z(IX) is the cone in V that as a set is just the
union of the 1-dimensional linear subspaces of V parameterized by X; we denote
this cone in V by Cone(X). Note that the degenerate cone {0} ⊆ V corresponds to
the empty subset of P(V ) and to the homogeneous maximal ideal k[V ]+.

Lemma 3.2.4. For an affine cone C ⊆ V , I(C) is a proper graded radical ideal of
k[V ] and hence defines a closed subset P(C) := Z[I(C)] of P(V ).

PROOF. Let F ∈ I(C). Write F =
∑
d≥0 Fd. We must show that each ho-

mogeneous component of Fd lies in I(C). As C is invariant under scalar mul-
tiplication, the polynomial F (tv) =

∑
d≥1 t

dFd(v) (as an element of k[A1 × V ])
vanishes on A1×C ⊆ A1×V , hence lies in I(A1×C). But under the identification
k[A1×V ] ∼= k[V ][t], I(A1×C) = k[t]⊗I(C) corresponds to I(C)[t] and so it follows
that Fd ∈ I(C) for all d. �
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Corollary 3.2.5. The maps C 7→ P(C) and X 7→ Cone(X); C 7→ I(C); X 7→ IX ;
I 7→ Z(I) and I 7→ Z[I] set up bijections between

(i) the collection of affine cones in V ,
(ii) the collection of closed subsets of Pn and

(iii) the collection of proper graded radical ideals contained in k[V ].
This restricts to bijections between (i) the collection of irreducible affine cones in
V strictly containing {0}, (ii) the collection of irreducible subsets of P(V ) and (iii)
the collection of graded prime ideals of k[V ] strictly contained in k[V ]+.

PROOF. This is clear from the preceding. Lemma 3.2.3 shows that for a closed
irreducible subset X ⊆ P(V ), IX is a prime ideal. �

DEFINITION 3.2.6. The homogeneous coordinate ring of a closed subset X of
P(V ) is the coordinate ring of the affine cone over X, k[Cone(X)] = k[V ]/IX ,
endowed with the grading inherited by k[V ]: k[Cone(X)]d = k[T0, . . . Tn]d/IX,d.

More generally, if Y is an affine variety, and Z is a closed subset of P(V ) × Y ,
then the homogeneous coordinate ring of Z relative to Y of a closed subset is the
coordinate ring of the corresponding closed cone in V × Y over Y , endowed with
the grading defined by the coordinates of V .

In the relative situation above, the homogeneous coordinate ring of Z is a k[Y ]-
algebra A• = ⊕∞d=1Ad with A0 = k[Y ] and A generated as a k[Y ]-algebra by A1.
This k[Y ]-algebra of course suffices to reconstruct Z up to Y -isomorphism: if we
choose a set a0, . . . , an ∈ A1 of k[Y ]-algebra generators, then a surjective k[Y ]-
algebra homomorphism k[Y ][T0, . . . , Tn]→ A is defined by Ti 7→ ai and the kernel
of this homomorphism is a graded ideal I• in k[Y ][T0, . . . , Tn] which defines a closed
subset Z[I•] of Pn × Y whose homogeneous coordinate ring can be identified with
A•. So Z[I•] is Y -isomorphic with Z.

EXERCISE 63. Let A be a graded ring.
(b) Prove that if I is a prime ideal in the homogeneous sense: if rs ∈ I for

some r ∈ Ak, s ∈ Al implies r ∈ I or s ∈ I, then I is a prime ideal.
(c) Prove that the intersection of all graded prime ideals of A is its ideal of

nilpotents.

EXERCISE 64. Let S be a graded k-algebra that is reduced, generated by S1 and
has S0 = k and dimk S1 finite.

(a) Prove that S is as a graded k-algebra isomorphic to the homogeneous
coordinate ring of a closed subset Y .

(b) Prove that under such an isomorphism, the graded radical ideals con-
tained in the maximal ideal S+ := ⊕d≥1Sd correspond to closed subsets
of Y under an inclusion reversing bijection: graded ideals strictly con-
tained in S+ and maximal for that property correspond to points of Y .

(c) Suppose S a domain. Show that a fraction F/G ∈ Frac(S) that is ho-
mogeneous of degree zero (F,G ∈ Sd for some d and G 6= 0 defines a
function on Ug.

EXERCISE 65. Let Y be an affine variety.
(a) Show that a homogeneous element of the graded ring k[Y ][T0, . . . , Tn]

defines a closed subset of Y × Pn as its zero set.
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(b) Prove that every closed subset of Y × Pn is an intersection of zero sets of
finitely many homogeneous elements of k[Y ][T0, . . . , Tn].

(c) Prove that we have a bijective correspondence between closed subsets of
Y × Pn and the homogeneous radical ideals in k[Y ][T0, . . . , Tn]+.

The next proposition is a first illustration of the power of projective methods.
Its proof makes interesting use of a homogeneous coordinate ring (and in particular,
of Exercise 65).

Proposition 3.2.7. Let X be a variety and let Z ⊆ An × X be closed in Pn × X
(we here identify An with the hyperplane complement PnT0

). Then the projection
πX |Z : Z → X is a finite morphism.

PROOF. Without loss of generality we may assume that X is affine. Let I ⊆
k[X][T0, . . . , Tn] be the graded ideal defining Z. Since Z does not meet the zero
set of T0, the ideal I + (T0) ⊆ k[X][T0, . . . , Tn] generated by I and T0 defines the
empty set in Pn × X, or equivalently, {0} × X in An+1 × X. So

√
I + (T0) =

(T0, . . . , Tn) by Hilbert’s Nullstellensatz. In particular, there exists an integer r > 0
such that T ri ∈ Ir + (T0)r for i ∈ {1, . . . , n}. Write T ri ≡ T0Gi (mod Ir) with
Gi ∈ k[X][T0, . . . , Tn]r−1. We pass to the affine coordinates of Am by substituting
1 for T0 and ti for Ti. Then Gi yields a gi ∈ k[X][t1, . . . , tn] = k[An ×X] of degree
≤ r − 1 in the t-variables and we have tri ≡ gi (mod IAn×X(Z)). So if we write
t̄i for the image t̄i of ti in k[Z], then for each i, t̄ri is a k[X]-linear combination of
the monomials t̄s11 · · · t̄snn with s1 + · · · + sn < r. Hence k[Z] is as a k[X]-module
generated by these (finitely many) monomials. This proves that πX |Z : Z → X is
a finite morphism. �

Note the special case when X is a singleton: the proposition then tells us that
if a closed subset of Am is also closed in Pm, then must be finite. In other words,
a closed subset Z of Am of positive dimension, must, when considered as a subset
Pm, have a point in the “hyperplane at infinity” T0 = 0 in its closure (in classical
language: Z must have an asymptote).

3.3. The Segre embeddings

First we show how a product of projective spaces can be realized as a closed
subset of a projective space. This will imply among other things that a projective
space is a variety. Consider the projective spaces Pm and Pn with their homoge-
neous coordinate systems [T0 : · · · : Tm] and [W0 : · · · : Wn]. We also consider a
projective space whose homogeneous coordinate system is the set of matrix coeffi-
cients of an (m+1)×(n+1)-matrix [Z00 : · · · : Zij : · · · : Zmn]; this is just Pmn+m+n

with an unusual indexing of its homogeneous coordinates.

Proposition 3.3.1 (The Segre embedding). The map f : Pm × Pn → Pmn+m+n

defined by Zij = TiWj , i = 0, . . . ,m; j = 0, . . . , n is an isomorphism onto a closed
subset of Pmn+m+n. If m = n, then the diagonal of Pm × Pm is the preimage of the
linear subspace of Pm2+2m defined by Zij = Zji and hence is closed in Pm × Pm.

PROOF. For the first part it is enough to show that for every chart domain
Pmn+m+n
Zij

of the standard atlas of Pmn+m+n, f−1Pmn+m+n
Zij

is open in Pm × Pn and
is mapped by f isomorphically onto a closed subset of Pmn+m+n

Zij
. For this purpose

we may (simply by renumbering) assume that i = j = 0. So then Pmn+m+n
Z00

⊆
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Pmn+m+n is defined by Z00 6= 0 and is parametrized by the coordinates zij :=
Zij/Z00, (i, j) 6= (0, 0). It is clear that f−1Pmn+m+n

Z00
is defined by T0W0 6= 0. This is

just PmT0
× PnW0

and hence is parametrized by (t1, . . . , tm) := (T1/T0, . . . , Tm/T0)
and (w1, . . . , wn) := (W1/W0, . . . ,Wn/W0). In terms of these coordinates, f :
f−1Pmn+m+n

Z00
→ Pmn+m+n

Z00
is given by zij = tiwj , where (i, j) 6= (0, 0) and where

we should read 1 for t0 and w0. So among these are zi0 = ti and z0j = wj and
since these generate k[Am × An] = k[t1, . . . , tm, w1, . . . , wn], f indeed restricts (by
Proposition 1.4.3) to a closed immersion f−1Pmn+m+n

Z00
→ Pmn+m+n

Z00
.

In case m = n, we must also show that the condition TiWj = TjWi for 0 ≤
i < j ≤ m implies that [T0 : · · · : Tm] = [W0 : · · · : Wm], assuming that not all Ti
resp. Wj are zero. Suppose Ti 6= 0. Since Wj = (Wi/Ti).Tj for all j, it follows that
Wi 6= 0 and so [W0 : · · · : Wm] = [T0 : · · · : Tm]. �

Corollary 3.3.2. A projective space over k is a variety. In particular, a locally closed
subset of a projective space is a variety.

PROOF. Proposition 3.3.1 shows that the diagonal of Pm × Pm is closed. �

DEFINITION 3.3.3. A variety is said to be projective if it is isomorphic to a closed
irreducible subset of some projective space. More generally, we say that a morphism
f : X → Y is projective if we can cover Y by affine open U such that f−1U →
U factors as a closed immersion f−1U ↪→ Pn × U (for some n) followed by the
projection onto U . A variety is called quasi-projective if is isomorphic to an open
subset of some projective variety.

Note that we have here required that the variety in question is irreducible.

EXERCISE 66. (a) Prove that the image of the Segre embedding is the common
zero set of the homogeneous polynomials ZijZkl − ZilZkj .

(b) Show that for every (p, q) ∈ Pm × Pn the image of {p} × Pn and Pm × {q}
in Pmn+m+n is a linear subspace.

(c) Prove that the map Pn → P(n2+3n)/2 defined by Zij = TiTj , 0 ≤ i ≤ j ≤ n
is an isomorphism on a closed subset defined by quadratic equations. Find these
equations for n = 1 (a conic in P2) and n = 2 (the Veronese surface in P5).

(d) As a special case we find that the quadric hypersurface in P3 defined by
Z0Z1 − Z2Z3 = 0 is isomorphic to P1 × P1. Identify in this case the two systems of
lines on this quadric.

EXERCISE 67 (Intrinsic Segre embedding). Let V and W be finite dimensional
k-vector spaces. Describe the Segre embedding for P(V ) × P(W ) intrinsically as a
morphism P(V )× P(W )→ P(V ⊗W ).

3.4. The proj construction and blowing up

Let A• = ⊕∞i=0Ai be a graded k-algebra and assume A is finitely generated,
and nonzero (i.e., k ⊆ A). By taking the homogeneous components of a finite set
of generators, we see that A• is also finitely generated as a graded algebra, that A0

is finitely generated graded k-subalgebra and that each Ai is a finitely generated
A0-module. We putX := Spm(A) andX0 := Spm(A0) so that the inclusion A0 ⊆ A
defines a morphism f : X → X0. On the other hand, A+ := ⊕d≥1Ad is a graded
ideal for which the obvious map A → A/A+ is an isomorphism of k-algebras and
this defines a section X0 ↪→ X of f .



3.4. THE PROJ CONSTRUCTION AND BLOWING UP 83

The grading on A puts on the affine variety X additional structure: the inclu-
sion A• = ⊕∞i=0Ai

∼=
∑∞
i=0Ait

i ⊆ A[t] defines a morphism A1 × X → X and this
morphism can be understood as an action of the multiplicative group of Gm := k×

which extends to an action of A1 = k, when regarded as a multiplicative monoid.
Indeed, λ ∈ A1 = k then defines a morphism X → X which on Ai is given by mul-
tiplication by λi. This morphism commutes with f , in other words, f is constant
on the Gm-orbits. The fixed point set of this action is X0 and so the multiplicative
group of k acts on X rX0 without fixed points. The variety Proj(A•) that we are
going to define is essentially the Gm-orbit space of this action, and will be such
that the map Proj(A•) → X0 through which f factors is projective. We will make
however the assumption that A• is reduced and generated by A1 as a A0-algebra.
This last condition will ensure that Gm acts freely on X rX0 and Proj(A•) → X0

will then be characterized by the property that its homogeneous coordinate ring is
the reduced graded A0-algebra A•.

We proceed in the obvious way: Let a0, . . . , an ∈ A1 be a set of A0-module
generators so that a surjective A0-algebra homomorphism A0[T0, . . . , Tn] → A• ∼=∑
d≥0Adt

d is defined by Ti 7→ ait. The kernel of this homomorphism is a graded
ideal I• in A0[T0, . . . , Tn] and hence defines a closed subset Z[I•] ⊆ Pn ×X0 whose
homogeneous coordinate ring can be identified with A0[T0, . . . , Tn]/I• ∼= A• as a
graded ring. We refer to Z[I•] as the ‘proj’ of A and denote it Proj(A•). (In more
intrinsic terms, a point of Proj(A•) is given by a proper graded ideal of A• which
is maximal for this property.) The surjection A0[T0, . . . , Tn] → A• also defines a
closed embedding X ↪→ An+1×X0. It has the property that on X0 it is the obvious
map X0 → {0} × X0 and that the Gm-action is given by scalar multiplication in
the first coordinate. In this way we see that Proj(A•) can be identified with the
Gm-orbit space of X r X0 and that the projection Proj(A•) → X0 is a projective
morphism.

An important class of examples is obtained as follows. Let Y be an affine
variety and J ⊂ k[Y ] an ideal. Then ⊕∞d=0J

d ∼=
∑∞
d=0 J

dtd is a finitely graded k-
algebra. Since it is a subalgebra of k[Y ][t], it is also reduced. The associated variety
Proj(

∑∞
d=0 J

dtd), denoted BlJ(Y ), is called the blow-up of the ideal J in Y . In case
J is the ideal defined by a closed subset Z, we call this the blow-up of Z in Y and
we may write BlZ(Y ) instead.

In order to understand what BlJ(Y ) is like, we follow the recipe above: we
choose a set f0, . . . , fn of generators of J so that a surjective k[Y ]-algebra homo-
morphism

φ : k[Y ][T0, . . . , Tn]→
∑∞
d=0 J

dtd, Ti 7→ fit

is defined. This allows us to regard BlJ(Y ) as a closed subset of Pn × Y . Since
fjTi − fiTj is in the kernel of φ, we have BlJ(Y ) ⊂ Z[fjTi − fiTj ]. Let us see
what this gives us on the basic affine open subset PT0

× Y = An × Y . If we put
ti := Ti/T0 (i = 1, . . . , n) as usual, then fiT0 − f0Ti becomes fi − f0ti, so that
BlJ(Y )T0

is contained in the closed subset in An × Y defined by the equations
fi = f0ti. The k[Y ]-algebra homomorphism φ now becomes the surjective k[Y ]-
algebra homomorphism

φT0
: k[Y ][t1, . . . , tn]→ ∪d≥0J

df−d0 , ti 7→ fi/f0.
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Note that its target ring ∪d≥0J
df−d0 is a k[Y ]-subalgebra of k[Y ][1/f0]. The identity

J.Jdf−d0 = f0.J
d+1f−d−1

0 shows that it has the interesting property that J generates
in ∪d≥0J

df−d0 a principal ideal, namely (f0). The kernel of φT0 defines BlJ(Y )T0

in An × Y and consists of the F ∈ k[An × Y ] = k[Y ][t1, . . . , tn] which become zero
after substuting fi/f0 for ti. This just means that BlJ(Y )T0

is the Zariski closure in
An × Y of the graph of the map (f1/f0, . . . , fn/f0) : Yf0 → An. This is of course
also the Zariski closure of the graph of the map [f0 : · · · : fn] : Yf0 → Pn intersected
with PnT0

× Y . If we apply the same argument to the other coordinates, we find:

Corollary 3.4.1. Let Y be an affine variety and let the ideal J ⊂ k[Y ] be generated
by f0, . . . , fn. Then the closure in Pn × Y of the graph of the morphism

[f0 : · · · : fn] : Y r Z(J)→ Pn

is Y -isomorphic to the projection π : BlJ(Y )→ Y . In particular, π an isomorphism
over Y r Z(J), and hence birational when Z(J) is nowhere dense in Y .

Moreover, we can cover BlJ(Y ) by affine open subsets U with the property that
the ideal generated by J in k[U ] is principal, so that π−1Z(J) is a hypersurface in
BlJ(Y ). �

REMARK 3.4.2. This construction is compatible with localization: for any g ∈
k[Y ], the restriction of π : BlJ(Y )→ Y to the principal open Yg is just BlJ[1/g](Yg)→
Yg. It follows that the blow-up is also defined for an ideal sheaf on an arbitrary va-
riety. A fiber π−1(y) is a projective variety whose homogeneous coordinate ring is
obtained by taking the reduction of the algebra

∑
n≥0 J ny tn modulo the maximal

ideal mY,y, so that is
∑
n≥0(J ny /mY,yJ ny )tn. If y is not in the closed subset defined

by the ideal sheaf, then we have Jy = OY,y, then this gives us
∑
n≥0 kt

n = k[t],
which is the homogeneous coordinate ring of P0 (a single point), just as we expect.

EXAMPLE 3.4.3. Let the variety Y be smooth of dimension n at a point y ∈ Y .
We abbreviate O := OY,y and m := mY,y. Then Bly(Y ) is over an unspecified
neighborhood of y given as the proj of the graded O-algebra

∑
d≥0 m

dtd. Choose
O-generators y1, . . . , yn of m and assume these are regular and have linearly inde-
pendent differentials on an affine neighborhood U of y. Geometrically, Bly(U) is
obtained as the Zariski-closure of the morphism x ∈ Ur{y} 7→ [y1 : · · · : yn] ∈ Pn−1

in the product Pn−1 × U . Let us note that in this case, Bly(U) is smooth when
U is: Bly(U)yn is a subset of An−1 × Uyn defined by the vanishing of yi − tiyn,
i = 1, . . . , n − 1 and the total differentials of the regular functions yi − tiyn are
linearly independent (where (t1, . . . , tn−1) are the coordinates of An−1). Note that
the preimage of y ∈ U in Bly(U)yn is the smooth hypersurface defined by yn = 0.
So the preimage of y ∈ U in Bly(U) is all of Pn−1 × {y}. To be precise, the homo-
geneous coodinate ring of this preimage is the graded ring that is the quotient of∑
d≥0 m

dtd by the ideal generated by m and this is just
∑
d≥0(md/md+1)td. Since

O is regular, md/md+1 is the dth symmetric power of the Zariski cotangent space
m/m2. It follows that

∑
d≥0(md/md+1)td is the homogeneous coordinate ring of the

Zariski tangent space TyY (the k-dual of m/m2) so that π−1(y) ∼= P(TyY ) canoni-
cally. We may think of a point of this fiber as a tangent direction in TyY , or what
amounts to the same, a curve through y in Y , given up to first order.

EXAMPLE 3.4.4. Let Y be smooth variety and let Z ⊂ Y be a smooth subvariety
of codimension n. We want to understand BlZ Y locally, and so we choose y ∈ Z
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and write I for the ideal in O := OY,y which defines Z. Then I has generators
y1, . . . , yn with linearly independent differentials, and the same reasoning as above
shows that for an affine neighborhood U of y on which the yi are regular and
have linearly independent differentials, BlZ(U) is the closure of the graph of x ∈
U rZ 7→ [y1 : · · · : yn] ∈ Pn−1 in the product Pn−1×U . We also find that BlZ(U) is
smooth and that the preimage of U ∩Z in BlZ(Y ) is identified with Pn−1× (U ∩Z).
The preimage of Z at y is more canonically given as the Proj of

∑
d≥0 m

d/md+1td.
The latter is the symmetric algebra m/m2. But the dual of m/m2 can be understood
as defining the normal bundle of Z in Y at y, whose fiber at y is TyY/TyZ. So the
fiber of BlZ(U) → U over y is P(TyY/TyZ). A point of π−1(y) is now understood
as a line in TyY/TyZ, or equivalently, as a linear subspace of TyY which contains
TyZ as a linear subspace of codimension one. If we make this argument a bit more
precise, we see that BlZ Y is over Y the projectivized normal bundle of Z in Y .

EXAMPLE 3.4.5 (Linear version of Example 3.4.4). In the special case when Y
is a finite dimensional k-vector space of dimension and W ⊂ V a proper linear
subspace, BlW (V ) is simply the set of pairs (p, [W ′/W ]) ∈ V × P(V/W ), such that
p ∈ W ′ (so here W ′ is a linear subspace of V which contains W as a hyperplane;
W ′/W is then a one-dimensional subspace of V/W ). Note that when p ∈ V rW ,
there is precisely one choice of W ′ such that (p, [W ′]) ∈ BlW V , namely the linear
span of W and p, but when p ∈W , [W ′] ∈ P(V/W ) can be arbitrary. The projection
BlW V → V is an isomorphism over V rW with inverse p 7→ (p, π(p)), so that the
projection BlW V → P(V/W ), may be regarded as an extension of π.

EXAMPLE 3.4.6 (Projective version of Example 3.4.4). Let P be a projective
space and Q ⊆ P a linear subspace of dimension codimension n. Let us denote by
P(P ;Q) the collection of linear subspaces Q′ of P which contain Q as a hyperplane
(and so are of dimension dimQ+1). Let us first observe that P(P ;Q) is a projective
space of dimension n − 1. For, let ` : P ∼= P(V ) be a structural bijection so that
Q = `−1P(VQ) for some linear subspace VQ ⊆ V of codimension n. Then any
Q′ as above corresponds to the linear subspaces VQ′ ⊆ V which contain VQ as a
hyperplane and hence to 1-dimensional subspace of V/VQ. This identifies P(P ;Q)
with P(V/VQ). A morphism PrQ→ P(P ;Q) is defined by sending p ∈ PrQ to the
projective linear span of Q and p. This is a morphism and the closure of its graph
in P(P ;Q)× P is the blow-up BlQ P . It comes with a projection π : BlQ P → P as
usual and the preimage of Q is P(P ;Q)×Q.

Let us express this in coordinates: choose a homogeneous coordinate system
[T0 : · · · : Tm] for P such that Q is given by T0 = · · · = Tn−1 = 0. A linear
subspace of P which contains Q as a hyperplane is specified by giving a nonzero
ratio [a0 : · · · : an−1]. So this gives rise to a homogeneous coordinate system
[S0 : · · · : Sn−1] for P(P ;Q) and the map Q r P → P(P ;Q) is given by [T0 : · · · :
Tm] 7→ [T0 : · · · : Tn−1] Then BlQ P is as a subset of P(P ;Q)× P given by the pairs
([S0 : · · · : Sn−1], [T0 : · · · : Tm]) such that [S0 : · · · : Sn−1] = [T0 : · · · : Tn−1] in case
T0, . . . , Tn−1 are not all zero. In other words, BlQ P is defined in P(P ;Q) × P by
the system of equations TiSj = TjSi for all 0 ≤ i < j ≤ n− 1.

The projection p : BlQ P → P(P ;Q) extends the morphism P r Q → P(P ;Q)
and is therefore often referred to as the projection away from Q.

Lemma 3.4.7. We have dimP(P ;Q) = codimQ− 1. The projection away from Q,
p : BlQ P → P(P ;Q), is locally trivial. It is even so for the pair (BlQ P,P(P ;Q)×Q)
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in the sense that we can cover P(P ;Q) with open subsets U such that there exists
an U -isomorphism p−1U ∼= P1+dimQ×U which maps P(P ;Q)×U onto PdimQ×U
(where PdimQ is defined in P1+dimQ by putting a coordinate equal to zero).

PROOF. Let U be a standard affine open subset of P(P ;Q). By a judicious
choice of our homogeneous coordinates we may assume that U = P(P,Q)S0

. Then
on p−1U = (BlQ P )S0

we have Ti = siT0, for i = 1, . . . , n − 1 and so p−1U is
parametrized by by U × Pm+1−n by means of the morphism

([1 : s1 : · · · : sn−1], [T0 : Tn : Tn+1 : · · · : Tm]) ∈ U × Pm+1−n 7→
([1 : s1 : · · · : sn−1], [T0 : s1T0 : · · · : sn−1T0 : Tn : Tn+1 : · · · : Tm]) ∈ p−1U,

This is indeed an isomorphism over U (the inverse is obvious). Since U × Q is
defined by T0 = 0, this isomorphism takes U×Pm−n isomorphically onto U×Q. �

Corollary 3.4.8. Suppose that in the situation of Lemma 3.4.7, Z ⊆ P is an irre-
ducible and closed subset such that Z ∩ Q = ∅. When Z is regarded as a closed
subset of PrQ ∼= BlQ PrP(P,Q)×Q, then p|Z : Z → P(P ;Q) is a finite morphism
and (so) dimZ + dimQ < dimP .

PROOF. We use the notation of Lemma 3.4.7. Since π : BlQ P → P is an
isomorphism over P rQ, we may identify Z with π−1Z. Thus Z becomes a closed
subset of BlQ(P ) which is disjoint with P(P ;Q) × Q. We must show that p|Z is
finite. This is a local issue on P(P ;Q): we must show that P(P ;Q) can be covered
by affine open U ⊂ P(P ;Q) such that Z ∩ p−1U → U is finite. But if we take U as
in Lemma 3.4.7, then we may think of Z ∩p−1U as lying in U ×A1+dimQ and being
closed in U × P1+dimQ. The proposition then follows from 3.2.7. �

In particular, any linear subspace of P of dimension equal to codim(Z) must
meet Z. On the other hand, for any given Z as in Corollary 3.4.8, a linear subspace
Q of P as in that corollary can always be found:

Proposition 3.4.9. For every closed subset Z of a projective space P there exists a
linear subspace Q ⊆ P of dimension codim(Z)− 1 such that Q ∩ Z = ∅.

PROOF. We may assume that Z is irreducible. We then prove with induction
on i ∈ {−1, . . . , codim(Z)− 1} that Z misses a linear subspace of dimension i. For
i = −1, the empty subspace will do. For i = 0, we must have Z 6= P and so we
can take for our linear subspace any singleton in P rZ. Suppose that we found for
some 0 < i < codim(Z) − 1, a linear subspace Q ⊆ P of dimension (i − 1) which
does not meet Z. Then dimZ < dimP − i = dimP(P,Q). By Corollary 3.4.8,
πQ|Z : Z → P(P,Q) is a finite morphism and so dimπQ(Z) < dimP(P,Q). Hence
there exist a point in P(P,Q) r πQ(Z). This defines a linear subspace Q′ in P of
dimension i which passes through Q and misses Z. �

REMARK 3.4.10. Let X be an irreducible variety. A famous theorem of Hironaka (that
won him the Fields medal) asserts that if k has characteristic zero, thenX admits a resolution
of singularities, which means that there exists a birational morphism π : X̃ → X with X̃
smooth. His theorem is more precise: if we are given a closed subset Y which contains
the singular locus of X, then we can arrange that π is an isomorphism over X r Y and
π−1Y is what is called a simple normal crossing divisor: the ideal definining π−1Y has a
at every p ∈ π−1Y a generator of the form f1f2 . . . fr, where f1, . . . , fr have independent
differentials (this makes π−1Y a hypersurface). In fact, X̃ is of the form BlJ (X), where J



3.5. ELIMINATION THEORY AND PROJECTIONS 87

is an ideal sheaf with Z(J ) ⊆ Y . It is still not known whether this is also true in positive
characteristic.

EXERCISE 68. Let f ∈ k[x1, . . . , xn] be irreducible and vanish at the origin.
Write f =

∑
d≥r fr with fd homogeneous of degree d and fr 6= 0 (so r > 0). Prove

that the preimage of the origin under the projection B := Bl0 Z(f)→ Z(f) can be
identified with the projective hypersurface Z[fr] ⊂ Pn−1.

3.5. Elimination theory and projections

Within a category of reasonable topological spaces (say, the locally compact
Hausdorff spaces), the compact ones can be characterized as follows: X is compact
if and only if the projection X × Y → Y is closed for every space Y in that cate-
gory. In this sense the following theorem states a kind of compactness property for
projective varieties.

Theorem 3.5.1. A projective morphism is closed. In particular, if X is projective
and Y is an arbitrary variety, then X × Y → Y is closed.

Here are two corollaries.

Corollary 3.5.2. Every morphism f : X → Y with X projective is closed (and
hence has closed image).

PROOF. Such a morphism is the composite of the graph morphism (idX , f) :
X → X × Y (which is closed) and the closed projection X × Y → Y and hence
closed. �

It is an elementary result from complex function theory (based on Liouville’s
theorem) that a holomorphic function on the Riemann sphere is constant. This
implies the corresponding assertion for holomorphic functions on complex projec-
tive n-space PnC (to see that a holomorphic function on PnC takes the same value on
any two distinct points, simply apply the previous remark to its restriction to the
complex projective line passing through them, viewed as a copy of the Riemann
sphere). The following corollary is an algebraic version of this fact.

Corollary 3.5.3. Let X be a projective variety. Then any regular function on X is
constant. In particular, any morphism from X to a quasi-affine variety is constant.

PROOF. If f : X → Y is a morphism to a quasi-affine variety Y , then its com-
posite with an embedding of Y in some affine space An is given by n regular func-
tions on X. So it indeed suffices to prove the special case when Y = A1. By the
previous corollary this image is closed in A1. But if we think of f as taking its
values in P1 (via the embedding y ∈ A1 7→ [1 : y] ∈ P1), then we see that f(X) is
also closed in P1. So f(X) cannot be all of A1 and hence must be finite. Since X is
irreducible, it follows that f(X) is a singleton. In other words, f is constant. �

We derive Theorem 3.5.1 from the main theorem of elimination theory, which
we state and prove first.

Given an integer d ≥ 0, let us write Vd for k[T0, T1]d, the k-vector space of
homogeneous polynomials in k[T0, T1] of degree d. The monomials (T i0T

d−i
1 )di=0

form a basis, in particular, dimVd = d+ 1. Given F ∈ Vm and G ∈ Vn, then

uF,G : Vn−1 ⊕ Vm−1 → Vn+m−1, (A,B) 7→ AF +BG
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is a linear map between two k-vector spaces of the same dimension m + n. The
resultant R(F,G) of F and G is defined as the determinant of this linear map
with respect to the monomial bases of the summands of Vn−1 ⊕ Vm−1 and of
Vn+m−1. So R(F,G) = 0 if and only if uF,G fails to be injective. Notice that if
F =

∑m
i=0 aiT

i
0T

m−i
1 and G =

∑n
j=0 biT

i
0T

n−i
1 , then the matrix of uF,G with respect

to the monomial bases is

a0 0 0 · · · 0 b0 0 · · · · · · 0
a1 a0 0 · · · 0 b1 b0 · · · · · · 0
a2 a1 a0 · · · 0 b2 b1 · · · · · · 0
· · · · · · · · · · · · · · · · · · · · · · · · · · · · · ·
am am−1 ∗ · · · ∗ ∗ ∗ · · · · · · ∗
0 am ∗ · · · ∗ ∗ ∗ · · · · · · ∗
0 0 am · · · ∗ ∗ ∗ · · · · · · ∗
0 0 0 · · · ∗ ∗ ∗ · · · · · · ∗
· · · · · · · · · · · · · · · · · · · · · · · · · · · · · ·
0 0 · · · · · · am−1 0 0 · · · · · · bn−1

0 0 0 · · · am 0 0 0 · · · bn


from which we see that its determinant R(F,G) is a polynomial in the coefficients
of F and G. So the resultant defines an element of k[Vm × Vn] = k[Vm]⊗ k[Vn].

Lemma 3.5.4. Assume that F and G are both nonzero. Then R(F,G) = 0 if and
only if F and G have a common linear factor.

PROOF. If R(F,G) = 0, then uF,G is not injective, so that there exist a nonzero
(A,B) ∈ Vn−1 ⊕ Vm−1 with AF +BG = 0. One of A and B is 6= 0, say B 6= 0. It is
clear that F then divides BG. Since deg(B) = m − 1 < m = degF , it follows that
F and G must have a common factor.

Conversely, if F and G have a common linear factor L: F = LF1, G = LG1,
then G1F = F1G and so (G1,−F1) ∈ Vn−1 ⊕ Vm−1 is a nonzero element of the
kernel of uF,G. �

PROOF OF THEOREM 3.5.1. Let f : X → Y be a projective morphism. This
means that Y can be covered by affine open subsets U such that f−1U → U factors
as a closed immersion j : f−1U ↪→ Pn × U followed by the projection onto U . If
Z ⊂ X is closed, then f(Z) is closed if and only if πX(Z) ∩ U is closed in U for
all such U (for they cover Y ). The restriction of j as above to Z ∩ f−1U is also a
closed embedding, and hence it suffices to prove that the projection Pn × U → U
is closed. We can therefore assume that Y is affine and X = Pn ×X. We proceed
with induction on n, starting with the crucial case n = 1.

So let Z ⊂ P1 × U be closed and denote by I• the graded ideal in k[X][T0, T1]
which defines Z. For every homogeneous pair F,G ∈ ∪mIm, with F andG nonzero,
their resultant R(F,G) lies in k[Y ] (the coefficients of F and G are in k[Y ] and
hence their resultant, which is a polynomial in these coefficients, is also in k[Y ]).
We claim that πY (Z) is the common zero set Z(R) ⊆ Y of these resultants.

Suppose that y ∈ πY (Z). Then (y, p) ∈ Z for some p ∈ P1 and so p is a
common zero of each pair Fy, Gy, with F,G ∈ ∪mIm, where the subscript y refers
to substituting y for the first argument. So R(F,G)(y) = 0 and hence y ∈ Z(R).

Next we show that if y /∈ πY (Z), then y /∈ Z(R). Since {y}×P1 is not contained
in Z, there exists an m > 0 and a F ∈ Im with Fy 6= 0. Denote by p1, . . . , pr ∈ P1



3.5. ELIMINATION THEORY AND PROJECTIONS 89

the distinct zeroes of Fy. We show that there exists an n > 0 and a G ∈ In such that
Gy does not vanish in any pi; this suffices, for this means that R(Fy, Gy) 6= 0 and
so y /∈ Z(R). For any given 1 ≤ i ≤ r, Z

⋃
∪j 6=i{(y, pj)} is closed in Y × P1, so that

there will exist a G(i) ∈ ∪mIm with G(i)
y zero in all the pj with j 6= i, but nonzero

in pi. Upon replacing each G(i) by some positive power of it , we may assume that
G(1), . . . , G(r) all have the same degree n, say. Then G := G(1) + · · · + G(r) ∈ In
and Gy(pi) = G(i)(pi) 6= 0.

Now assume n ≥ 2. Let q = [0 : · · · : 0 : 1] and consider the blow-up P̃n :=

Bl{q} Pn → Pn. Recall that the projection P̃n → Pn−1 is locally trivial as a P1-
bundle: we can cover Pn−1 by affine open subsets U such that over U this is like
the projection P1 × U → U . Then the same is true for the projection p : P̃n × Y →
Pn−1 × Y and so by the case treated above, this projection is closed.

Pn × Y P̃n × Y P1 × U × Y

Y Pn−1 × Y U × Y

πY

π

p

π′

Denote by π : P̃n × Y → Pn × Y the projection. Then π−1Z is closed and by what
we just proved, pπ−1Z is then closed in Pn−1 × Y . By induction, the image of the
latter under the projection π′ : Pn−1 × Y → Y is closed. But this is just πY (Z). �

REMARK 3.5.5. This proof can be adapted to show more, namely that given a
closed and irreducible subset Z ⊆ Pn × Y , then for any x ∈ πY (Z), Zx := {p ∈
Pn : (p, x) ∈ Z} has dimension ≥ dimZ − dimπY (Z) with equality holding over
an open-dense subset of πY (Z).

EXERCISE 69. Let P be a projective space of dimension n.

(a) The dual P̌ of P is by definition the collection of hyperplanes in P . Prove
that P̌ has a natural structure of a projective space.

(b) Identify the double dual of P with P itself.
(c) The incidence locus I ⊆ P × P̌ is the set of pairs (p, q) ∈ P × P̌ with the

property that p lies in the hyperplane Hq defined by q. Prove that I is a
smooth variety of dimension 2n− 1.

(d) Show that we can find homogeneous coordinates [Z0 : · · · : Zn] for P and
[W0 : · · · : Wn] for P̌ such that I is given by

∑n
i=0 ZiWi = 0.

EXERCISE 70. Let F ∈ k[X0, . . . , Xn]d define a smooth hypersurface H in Pn.
Prove that the map H → P̌n which assigns to p ∈ H the projectived tangent space
of H at p is given by [ ∂F∂Z0

: · · · : ∂F
∂Zn

]. Prove that the image of this map is closed in
P̌n (this image is called the dual of H). What can you say in case d = 2?
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3.6. The Veronese embeddings

Let be given a positive integer d. We index the monomials in T0, . . . , Tn that
are homogenous of degree d by their exponents: these are the sequences of non-
negative integers k = (k0, . . . , kn) of length n + 1 with sum d. They are

(
n+d
d

)
in

number (3). We use this to label the homogeneous coordinates Zk of P(n+d
d )−1.

Proposition 3.6.1 (The Veronese embedding). The map fd : Pn → P(n+d
d )−1 de-

fined by Zk = T k00 · · ·T knn is a closed immersion.

PROOF. It is enough to show that for every chart domain Uk := P(n+d
d )−1

Zk
of

the standard atlas of the target space, its preimage f−1
d Uk is open in Pn and is

mapped by fd isomorphically onto a closed subset of Uk. This preimage is defined
by T k00 · · ·T knn 6= 0. Let us renumber the coordinates such that k0, . . . , kr are positive
and kr+1 = · · · = kn = 0. Then f−1

d Uk = PnT0···Tr ⊆ PnT0
. So if we use the

standard coordinates (t1, . . . , tn) to identify PnT0
with An, then f−1

d Uk is identified
with Ant1···tr .

The coordinates on Uk are the functions Zl/Zk with l 6= k. In terms of these
coordinates fd is given as:

fd : Ant1···tr ∼= f−1
d Uk → Uk, f∗d (Zl/Zk) = tl11 · · · tlnn /t

k1
1 · · · tkrr ,

with l = (l1, . . . , ln) running over all the n-tuples of nonnegative integers with sum
≤ d and distinct from k = (k1, . . . , kr, 0, . . . , 0). Among the components of this map
are 1/t1 . . . tr (take li = ki− 1 for i ≤ r and li = 0 for i > r) and ti (take li = ki + 1
and lj = kj for j 6= i; this is allowed because then l1 + · · ·+ ln = 1 +k1 + · · ·+kn ≤
k0 +k1 + · · ·+kn = d). These generate the coordinate ring k[t1, . . . , tn][1/(t1 . . . tr)]
of Ant1···tr and so fd defines a closed immersion of Ant1···tr in Uk. �

The following proposition is remarkable for its repercussions in intersection
theory.

Proposition 3.6.2. Let H ⊆ Pn be a hypersurface. Then Pn rH is affine and for
every closed irreducible subset Z ⊆ Pn of positive dimension, Z ∩H is nonempty
and of codimension ≤ 1 in Z, with equality holding if Z is not contained in H.

PROOF. The hypersurface H is given by a homogeneous polynomial of degree
d, say by

∑
k ckT

k0
0 · · ·T knn . This determines a hyperplane H̃ ⊆ P(n+d

d )−1 defined
by
∑

k ckZk. It is clear that H is the preimage of H̃ under the Veronese morphism
and hence the latter identifies Pn r H with a closed subset of the affine space
P(n+d

d )−1 r H̃. So Pn rH is affine.
For the rest of the argument we may, by passing to the Veronese embedding,

assume that H is a hyperplane. Let c be the codimension of Z ∩ H in Z, so that
dim(H)− dim(Z ∩H) = (n− 1)− (dimZ − c) = n− dimZ + c− 1. By Proposition
3.4.9 (applied to Z ∩H ⊂ H) there exists then a linear subspace Q of H dimension
of n − dimZ + c − 2 which avoids Z ∩H. Since is Q also a linear subspace of Pn

3If we expand
∏n
i=0(1−tTi)

−1 as a power series, we see that the coefficient of td is the sum of the
monomials in T0, . . . , Tn of degree d. So we get the number of such monomials by substituting Ti = 1

for all i: it is the coefficient of td of in (1 − t)−(n+1) and hence the value of (d/dt)d(1 − t)−(n+1)/d!

in t = 0, which is (n + 1)(n + 2) · · · (n + d)/d! =
(n+d
d

)
.
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which avoids Z, we also have dimQ ≤ n−dim(Z)−1 by Corollary 3.4.8. It follows
that c ≤ 1. Clearly, if Z is not contained in H, then c > 0. �

REMARK 3.6.3. A theorem of Lefschetz asserts that if in the situation of Propo-
sition 3.6.2 above dimZ ≥ 2 (so that dim(Z ∩H) ≥ 1), then Z ∩H is connected.

EXERCISE 71. Let d be a positive integer. The universal hypersurface of degree d
is the hypersurface of Pn×P(n+d

d )−1 defined by F (X,Z) :=
∑
|k|=d ZkT

k0
0 T k11 · · ·T knn .

We denote it by H and let π : H → P(n+d
d )−1 be the projection. As of item (c) we

assume that d ≥ 2.
(a) Prove that H is smooth.
(b) Prove that projection π is singular at (X,Z) (in the sense that the deriv-

ative of π at (X,Z) is not a surjection) if and only the partial derivatives
of FZ ∈ k[X0, . . . , Xn] have X as a common zero.

(c) Prove that the singular set of π is a smooth subvariety of Pn × P(n+d
d )−1

of codimension n+ 1.
(d) Prove that the set of Z ∈ P(n+d

d )−1 over which π has a singular point is a
hypersurface. This hypersurface is called the discriminant of π.

(e) For d = 2 we denote the coordinates of P(n+d
d )−1 simply by Zij (where it

is understood that Zij = Zji). Prove that the discriminant of π is then the
zero set of det(Zij).

3.7. Grassmannians

Let P be a projective space of dimension n and let d ∈ {0, . . . , n}. We want to
show that the collection Grd(P ) of linear d-dimensional subspaces of P is a smooth
projective variety. Let the projective structure on P be defined by the pair (V, `) so
that V is a (n+1)-dimensional k-vector space and P has been identified with P(V ).
This identifies Grd(P ) with the collection Grd+1(V ) of linear (d + 1)-dimensional
subspaces of V .

Lemma 3.7.1. Let Q ⊆ P be a linear subspace of codimension d + 1. Then the
collection Grd(P )Q of linear d-dimensional subspaces of P contained in P rQ has
in a natural manner the structure of an affine space of dimension (n− d)(d+ 1).

PROOF. The subspace Q determines a linear subspace VQ ⊆ V of dimension
(n + 1) − (d + 1) = n − d and any [L] ∈ Grd(P )Q determines (and is determined
by) a linear subspace VL ⊆ V of dimension d + 1 with VL ∩ VQ = {0}. Since
dimVQ+dimVL = n+1 = dimV , this means that VL⊕VQ → V is an isomorphism.
In other words, VL is the image of a section of the projection π : V → V/VQ.

This defines a bijection between Grd(P )Q and the set of sections of π. The
latter set is in a natural manner a principal homogeneous (=affine) space over
Hom(V/VQ, VQ): given a section s : V/VQ → V of π and a φ ∈ Hom(V/VQ, VQ),
then the ‘translate’ of s over φ is simply s + φ. It is also clear that any two sec-
tions of π differ by an element of Hom(V/VQ, VQ). So the choice of a fixed s
identified the set of sections of π with Hom(V/VQ, VQ). It remains to observe that
dim Hom(V/VQ, VQ) = dim(V/VQ) dimVQ = (n− d)(d+ 1). �

It can now be shown without much difficulty that Grd(P ) admits a unique
structure of a variety for which every Grd(P )Q as in this lemma is affine open
and its identification with affine space an isomorphism. We will however proceed
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in a more direct manner and show in fact that Grd(P ) admits the structure of a
projective variety.

For this we recall that the exterior algebra ∧•V = ⊕p≥0 ∧p V is the quotient
of the tensor algebra on V , ⊕∞p=0V

⊗p (here V ⊗0 = k by convention), by the two-
sided ideal generated by the set of ‘squares’ {v ⊗ v}v∈V . It is customary to denote
the product by the symbol ∧. So we can characterize ∧•V as a (noncommutative)
associative k-algebra with unit element by saying that is generated by the k-vector
space V and is subject to the relations v ∧ v = 0 for all v ∈ V . It is a graded
algebra (∧pV is the image of V ⊗p) and ‘graded-commutative’ in the sense that if
α ∈ ∧pV and β ∈ ∧qV , then β ∧ α = (−1)pqα ∧ β. If (ε0, . . . , εn) is a basis for
V , then a basis of ∧pV is indexed by the p-element subsets I ⊆ {0, . . . , n}: if we
order the elements of such an I as 0 ≤ i1 < i2 < · · · < ip ≤ n, then to I is
associated the basis element εI := εi1 ∧ · · · ∧ εip (where the convention is that
ε∅ := 1 ∈ k = ∧0V ). So dim∧pV =

(
n+1
p

)
. Notice that ∧n+1V is one-dimensional

and spanned by ε0 ∧ · · · ∧ εn, whereas ∧pV = 0 for p > n+ 1. We also note that if
V ′ and V ′′ are subspaces of V , then the map

∧•V ′ ⊗ ∧•V ′′ → ∧•V, α⊗ β 7→ α ∧ β,
is a linear map of graded vector spaces which is injective (resp. surjective) when
this is so in degree 1, i.e., when V ′⊕V ′′ → V is. (The product transferred from the
right hand side becomes (α1 ⊗ β1).(α2 ⊗ β2) := (−1)deg β1 degα2α1 ∧ α2 ⊗ β1 ∧ β2,
where we assume that β1 and α2 are homogenenous.)

We say that α ∈ ∧pV is fully decomposable if there exist linearly independent
v1, . . . , vp in V such that α = v1 ∧ · · · ∧ vp. This is equivalent to the existence of a
p-dimensional subspace K ⊆ V such that α is a generator of ∧pK.

Lemma 3.7.2. For α ∈ ∧•V denote by K(α) the set of v ∈ V with v ∧ α = 0. If
α ∈ ∧pV r {0} and r := dimK(α), then α ∈ ∧rK(α) ∧ (∧p−rV ). In particular,
r ≤ p and equality holds if and only if α is fully decomposable and spans ∧pK(α).

PROOF. Let ε1, . . . , εr be a basis of K(α) and let V ′ ⊆ V be a subspace supple-
mentary to K(α) so that V = K(α)⊕ V ′. Then we have a decomposition

∧•V ∼= (∧•K(α))⊗ (∧•V ′) =
⊕

I⊆{1,...,r}

εI ⊗ (∧•V ′).

Via this isomorphism, the kernel of εi∧ : ∧•V → ∧•V is the subsum of the εI ⊗
(∧•V ′) with i ∈ I. Since α ∈ ∩ri=1 ker(εi∧), it follows that α ∈ ε1∧· · ·∧εr∧(∧p−rV ′).
We assumed α 6= 0, and so this implies that r ≤ p with equality holding if and only
if α is a multiple of ε1 ∧ · · · ∧ εp. �

If W is a linear subspace of V of dimension d+ 1, then ∧d+1W is of dimension
1 and will be thought of as a one dimensional subspace of ∧d+1V . We thus have
defined a map δ : Grd+1(V ) → P(∧d+1V ), [W ] 7→ [∧d+1W ]. It is called the Plücker
embedding because of:

Proposition 3.7.3. Let 0 ≤ d ≤ dimV −1. Then the map δ : Grd+1(V )→ P(∧d+1V )
maps Grd+1(V ) bijectively onto a closed subset of P(∧d+1V ).

PROOF. Let α ∈ ∧d+1V be nonzero. According to Lemma 3.7.2 , [α] is in the
image of δ if and only if K(α) is of dimension d + 1 and if that is the case, then
δ−1[α] has [K(α)] as its unique element. In particular, δ is injective.
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The subset Σd+1(V,∧d+2V ) ⊆ Hom(V,∧d+2V ) of linear maps whose kernel is
of dimension ≥ d + 1 is (after we have chosen a basis for V ) the common zero set
of a system of homogeneous equations in Hom(V,∧d+2V ), namely the (n+1−d)×
(n+ 1− d)-minors of the corresponding matrices. Consider the linear map

σ : ∧d+1V → Hom(V,∧d+2V ), α 7→ (v 7→ α ∧ v).

Since σ−1Σd+1(V,∧d+2V ) is given by a set of homogeneous equations it defines
a closed subset of P(∧d+1V ). This is just the image of δ, for by Lemma 3.7.2,
σ−1Σd+1(V,∧d+2V ) r {0} is the set of fully decomposable elements of ∧d+1V . �

Proposition 3.7.3 gives Grd(P ) the structure of projective variety. In order
to compare this with the approach of Lemma 3.7.1, we choose a linear subspace
Q ⊆ P of codimension d + 1. We assume P = P(V ) and let VQ ⊆ V be the linear
subspace corresponding to Q. It has dimension n − d. If we choose a generator
β ∈ ∧n−dVQ, then we have a nonzero linear map to the one-dimensional ∧n+1V :

eβ : ∧d+1V → ∧n+1V, α 7→ α ∧ β.

Its kernel is a hyperplane whose complement defines a principal open subset of
P(∧d+1V ) that we shall denote by P(∧d+1V )Q. Such principal open subsets cover
P(∧d+1V ). To see this, choose a basis (ε0, . . . , εn) of V and observe that if VQ
runs over the codimension d + 1 subspaces of V spanned by basis vectors, then
P(∧d+1V )Q runs over a collection of principal open subsets defined by the basis
(εI)|I|=d+1 of ∧d+1V .

Lemma 3.7.4. The preimage of P(∧d+1V )Q under the Plücker embedding δ is the
affine space Grd(P )Q and δ maps this affine space isomorphically onto its image.

PROOF. Let α ∈ ∧d+1V be fully decomposable. It then generates ∧d+1W for
a unique (d + 1)-dimensional subspace W ⊆ V . If β is a generator of ∧n−dVQ as
above, then W ∩ VQ = {0} if and only if α ∧ β 6= 0: if W ∩ VQ contains a nonzero
vector v then both α and β are divisible by v and so α∧β = 0 and if W ∩VQ = {0},
then we have a decomposition V ∼= W ⊕ VQ and so α ∧ β 6= 0. This proves that
δ−1P(∧d+1V )Q = Grd(P )Q.

Let us now express the restriction δ : Grd(P )Q → P(∧d+1V )Q in terms of
coordinates. Choose a basis (ε0, . . . , εn) for V such that (εd+1, . . . , εn) is a basis
for VQ and take β := εd+1 ∧ · · · ∧ εn. If W0 ⊆ V denotes the span of ε0, . . . , εd,
then Grd(P )Q is identified with the affine space Hom(W0, VQ) ∼= A(d+1)×(n−d) of
(d+ 1)× (n− d)-matrices via

(aji )0≤i≤d<j≤n 7→ k-span in V of the d+ 1 vectors {εi +
∑n
j=d+1 a

j
iεj}di=0 ,

so that δ is given by

(aji )0≤i≤d<j≤n 7→ (ε0 +
∑n
j=d+1 a

j
0εj) ∧ · · · ∧ (εd +

∑n
j=d+1 a

j
dεj).

The coefficient of εi0 ∧ · · · ∧ εid is a determinant of which each entry is 0, 1 or
some aji and hence is a polynomial in the matrix coefficients aji . It follows that
this restriction of δ is a morphism. Among the components of δ we find the matrix
coefficients themselves, for aji appears up to sign as the coefficient of ε0 ∧ · · · ∧ ε̂i ∧
· · · ∧ εd ∧ εj . Since these generate the coordinate ring of Hom(W0, VQ), it follows
that δ defines a closed immersion of Grd(P )Q in P(∧d+1V )Q. �
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Corollary 3.7.5. The Plücker embedding realizes Grd(P ) as a smooth irreducible
subvariety of P(∧d+1V ) of dimension (n − d)(d + 1). This structure makes each
subset Grd(P )Q open and isomorphic to affine (n− d)(d+ 1)-space in a way that is
compatible with the one obtained in Lemma 3.7.1.

PROOF. Every two open subsets of the form Grd(P )Q a have nonempty inter-
section and so Grd(P ) is irreducible. The rest follows from the previous corol-
lary. �

REMARK 3.7.6. The image of Grd(P ) is a closed orbit of the natural SL(V )-
action on P(∧d+1V ). It lies in the closure of any other SL(V )-orbit(4).

EXERCISE 72. Let V be a finite dimensional k-vector space. For every linear
subspace W ⊆ V we identify (V/W )∗ with the subspace of V ∗ of linear forms on
V that are zero on W . Prove that for every 0 ≤ r ≤ dimV the resulting map
Grr(V )→ GrdimV−r(V

∗) is an isomorphism of projective varieties.

EXERCISE 73. Let V and W be finite dimensional k-vector spaces and let r be
a nonnegative integer ≤ min{dimV,dimW}.

(a) Prove that the subset Homr(V,W ) ⊆ Hom(V,W ) of linear maps of rank r
is a (locally closed) subvariety of Hom(V,W ).

(b) Prove that the map Homr(V,W ) → GrdimV−r(V ) resp. Homr(V,W ) →
Grr(W ) which assigns to φ ∈ Homr(V,W ) its kernel resp. image is a morphism.

(c) Prove that the resulting morphism Homr(V,W )→ GrdimV−r(V )×Grr(W )
is trivial over any product of principal open subsets with fiber the general linear
group GLr(k). Conclude that Homr(V,W ) is smooth of codimension (dimV −
r)(dimW − r).

Grassmannians appear naturally both in differential topology and in algebraic
geometry because their role in the theory of vector bundles. The definition of a
vector bundle in the setting of differential topology carries over to ours in a rather
straightforward manner:

DEFINITION 3.7.7. A rank r vector bundle over a variety X is given by a mor-
phism of varieties ξ : E → X such that each fiber Ex := ξ−1(x) has the structure
of a k vector space of dimension r in the following sense: we can cover X by open
subsets U for which there exists a morphism κU : EU := ξ−1U → Ar = kr which

(i) is an isomorphism of vector spaces when restricted to every fiber Ex,
x ∈ U and

(ii) together with the projection ξU : EU
ξ−→ U yields an isomorphism EU ∼=

U × Ar of varieties.

This implies that the maps A1×E → E and E×XE → E given by scalar multi-
plication resp. subtraction are morphisms; it is like having a family of vector spaces
parametrized by X. The standard operations with one or more vector spaces, like
dualizing, taking direct sum, taking tensor product, . . . and the notion of linear
map carry over in a straightforward manner to vector bundles over a given X. In
particular we have a notion of isomorphism for vector bundles over X. We also we

4In representation theory it is shown that ∧d+1V is an irreducible representation of GL(V ) and
that the fully decomposable elements in ∧d+1V consist of its highest weight vectors.
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have a notion of a short exact sequence of vector bundles. A more concise defini-
tion of a vector bundle is in terms of OX -modules, as doing the following exercise
will show.

EXERCISE 74. Let ξ : E → X be a vector bundle of rank r over a variety X. For
every open U ⊂ X, denote by OX(ξ)(U) the set of morphisms s : U → EU that are
sections of ξU : ξUs is the identity of U . Pointwise addition and multiplication with
an element of OX(U) turns OX(ξ)(U) into a OX(U)-module.

(a) Prove that OX(ξ) is a coherent OX -module that is locally free of rank r.
(b) Prove that for any coherent OX -module M that is locally free of rank r

there exists a rank r vector bundle ξ : E → X such thatM isomorphic toOX(ξ)(U)
and prove that ξ is unique up to isomorphism

EXERCISE 75. Let X be a smooth variety of dimension d. Prove that the tangent
spaces {TxX}x∈X are the fibers of a vector bundle TX → X of rank r (called the
tangent bundle).

EXERCISE 76. Let V be a finite dimensional vector space of dimension d and let
r ∈ {1, 2, . . . , d − 1}. Every x ∈ Grr(V ) determines by definition a linear subspace
Ex ⊂ V of dimension r.

(a) Prove that this defines a vector bundle γrV : Er(V ) → Grr(V ) of rank r
(called the tautological bundle).

(b) Via Exercise 72 we regard γd−rV ∗ : Ed−r(V
∗)→ Grd−r(V

∗) as a vector bundle
of rank d−r over Grr(V ). Prove that the tangent bundle of Grr(V ) can be identified
with γrV ⊗ γ

d−r
V ∗ . (Hint: note that the fiber of γrV ⊗ γ

d−r
V ∗ over x can be identified

with Hom(Ex, V/Ex). Next take a look at the proof of Lemma 3.7.1.)

The Grassmannian of hyperplanes in a projective space is itself a projective
space (see Exercise 69). So the simplest example not of this type is the Grassman-
nian of lines in a 3-dimensional projective space. Let us see what this is like. On the
6-dimensional space ∧2(k4) we have a homogeneous polynomial F : ∧2(k4)→ k of
degree two defined by

F (α) := α ∧ α ∈ ∧4(k4) ∼= k.

To be more explicit, if e1, . . . , e4 is the standard basis of k4, then (ei ∧ ej)1≤i<j≤4 is
basis for ∧2(k4), and so if we label the homogeneous coordinates of P(∧2(k4)) = P5

accordingly: [T1,2 : · · · : T3,4], then F is given by

F (T1,2, . . . , T3,4) = T1,2T3,4 − T1,3T2,4 + T1,4T2,3.

Notice that F is irreducible. Its partial derivatives are the coordinates themselves
(up to sign and order) and so F defines a smooth quadric hypersurface of dimension
4 in a 5-dimensional projective space.

Proposition 3.7.8. The image of the Plücker embedding of G1(P3) in P5 is Z[F ].

PROOF. The image of the Plücker embedding is of dimension 4 and so must be
a hypersurface. Since the zero set of F is an irreducible hypersurface, it suffices to
show that the Plücker embedding maps to the zero set of F . For this, let α be a
generator of ∧2W for some linear subspace W ⊆ V of dimension 2. If α = v1 ∧ v2,
then it is clear that F (α) = α ∧ α = 0. This proves that the Plücker embedding
maps to the zero set of F . �
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The smooth quadric hypersurfaces of the same dimension are isomorphic to
one another and so this proposition shows that any smooth quadric hypersurface
of dimension 4 is isomorphic to the Grassmannian of lines in a three dimensional
projective space.

EXERCISE 77. Let P be a projective space dimension 3. Prove for a given q ∈ P ,
the lines in P through q define a copy of a projective plane Gr1(P ; q) ⊂ Gr1(P ).
Prove also that for a given plane Q ⊂ P , the lines in Q define a copy of a projective
plane in Gr1(P ;Q) ⊂ Gr1(P ). What is Gr1(P ; q) ∩Gr1(P ;Q) like?

REMARK 3.7.9. The image of the Plücker embedding Grd(P ) ↪→ P(∧d+1V ) is in fact
always the common zero set of a collection of quadratic equations, called the Plücker rela-
tions. To exhibit these, we first recall that every φ ∈ V ∗ defines a linear ‘inner contraction’
map ιφ : ∧•V → ∧•V of degree −1 characterized by the fact that for v ∈ V , ιφ(v) = φ(v) ∈
k = ∧0V and for α ∈ ∧pV, β ∈ ∧•V , ιφ(α ∧ β) = ιφ(α) ∧ β + (−1)pα ∧ ιφ(β). Under the
natural isomorphism End(V, V ) ∼= V ⊗V ∗, the identity of V defines a tensor in V ⊗V ∗. The
wedge-contraction with this tensor defines a linear map BV : ∧•V ⊗∧•V → ∧•V ⊗∧•V of
bidegree (1,−1). Concretely, if (e0, . . . , en) is a basis of V and (e∗0, . . . , e

∗
n) is the basis of V ∗

dual to (e0, . . . , en), then

BV (α⊗ β) :=
∑n
r=0(α ∧ er)⊗ (ιe∗rβ).

Notice that if W ⊆ V is a subspace, then BW is just the restriction of BV to ∧•W ⊗ ∧•W .
So if α ∈ ∧d+1W is fully decomposable so that α ∈ ∧d+1W for some (d + 1)-dimensional
subspace W ⊆ V , then BV (α⊗ α) = BW (α⊗ α) = 0. This is the universal Plücker relation.

Conversely, any nonzero α ∈ ∧d+1V for which BV (α ⊗ α) = 0 is fully decomposable.
The proof proceeds with induction on n. For n = 0 there is nothing to show. Assume
n ≥ 1, let e ∈ V be nonzero and let V ′ ⊆ V be a hyperplane not containing e. If we write
α = α′ + e ∧ α′′ with α′, α′′ ∈ ∧•V ′, then the component of B(α ⊗ α) in ∧•V ′ ⊗ ∧•V ′
is BV ′(α′ ⊗ α′) and so α′ is zero or fully decomposable by our induction hypothesis: there
exists a subspace W ′ ⊆ V ′ of dimension d + 1 such that α′ ∈ ∧d+1W ′. Then the vanishing
of the component of B(α ⊗ α) in ∧•V ′ ⊗ e ∧ (∧•V ′) is seen to imply that ιφα′′ = 0 for all
φ ∈ (V ′/W ′)∗ ⊆ V ′∗. This means that α′′ ∈ ∧dW ′. So if we put M := ke + W ′, then
dimM = d+ 2 and α ∈ ∧d+1M . But then α ∈ ιφ ∧d+2 M for some nonzero φ ∈ M∗. Then
α is a generator of ∧d+1 Ker(φ) and hence fully decomposable.

Let us rephrase this in terms of algebraic geometry: every nonzero linear form ` on
∧d+2V ⊗∧dV , determines a quadratic form Q` on ∧d+1V defined by α 7→ `(B(α, α)) whose
zero set is a quadratic hypersurface in P(∧d+1V ). This hypersurface contains the Plücker
locus and the latter is in fact the common zero set of the Q`, with ` running over the linear
forms on ∧d+2V ⊗ ∧dV . It can be shown that the Q` generate the full graded ideal defined
by the Plücker locus. The quadratic forms Q` are called the Plücker relations(5).

3.8. Fano varieties and the Gauß map

The Fano variety of a projective variety is defined in the following proposition.

Proposition-definition 3.8.1. Let X be a closed subvariety of the projective space
P . If d is an integer between 0 and dimP , then the set of projective linear subspaces
of P of dimension d that are contained in X defines a closed subvariety Fd(X) of
Grd(P ), called the Fano variety (of d-planes) of X.

5These show up in the algebro-analytic setting of the Sato Grassmannian (for which both d and
n− d are infinity) and are then known as the Hirota bilinear relations.
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PROOF. An open affine chart of Grd(P ) is given by a decomposition V =
W ⊕W ′ with dimW = d + 1 and dimW ′ = n − d and is then parametrized by
Hom(W,W ′) by assigning to A ∈ Hom(W,W ′) the graph of A. It suffices to prove
that via this identification Fd(X) defines a closed subset of Hom(W,W ′).

Choose homogeneous coordinates [T0 : · · · : Tn] such that W resp. W ′ is given
by Td+1 = · · · = Tn = 0 resp. T0 = · · ·Td = 0. A linear map A ∈ Hom(W,W ′) is
then given by A∗Td+i =

∑d
j=0 a

j
iTj , i = 1, . . . , n− d. Given a G ∈ I(X)m for some

m, thenG vanishes on the graph ofA if and only ifG(T0, . . . , Td, A
∗Td+1, . . . , A

∗Tn)
is identically zero as an element of k[T0, . . . , Td]. This means that the coefficient of
every monomial Tm0

0 · · ·Tmdd in such an expression much vanish. Since this coef-
ficient is a polynomial in the matrix coefficients aji of α, we find that the space
of A ∈ Hom(W,W ′) for which this is the case makes up a closed subset ZG of
Hom(W,W ′). It is clear that the intersection of such ZG, where G runs over
∪m≥0Im(X)G, is the preimage of Fd(X) in Hom(W,W ′). �

EXAMPLE 3.8.2. Consider the case of a quadratic hypersurface X ⊆ P(V ) and
assume for simplicity that char(k) 6= 2. So X can be given by a nonzero quadratic
form F ∈ k[V ]2. With F is associated a symmetric bilinear form B : V × V → k
defined by B(v, v′) = F (v+v′)−F (v)−F (v′) so that B(v, v) = 2F (v) (so nonzero,
because char(k) 6= 2). Since we have F (p + tv) − F (p) = tB(p, v) + t2F (v), the
partial derivative of F in the v direction is the linear form Bp ∈ V ∗ = k[V ]1 defined
by v ∈ V 7→ B(p, v). Let us assume that X is smooth. This means that the partial
derivatives of F have no common zero in P(V ). This amounts to B : V × V → k
being a nonsingular bilinear form in the sense that Bp is zero only when p = 0.
In other words, the map b : V → V ∗, p 7→ Bp is an isomorphism. A subspace
W ⊆ V determines an element of the Fano variety of X precisely when F is zero
on W . This amounts to B being identically zero on W ×W , or equivalently, that
b maps W to the subspace (V/W )∗ ⊆ V ∗. Since b is injective, this implies that
dimW ≤ dim(V/W ), in other words that dimW ≤ 1

2 dimV .
This condition is optimal. It not difficult to show that we can find coordinates

(T0, · · · , Tn) such that B(v, v′) =
∑n
i=0 Ti(v)Tn−i(v

′) (the matrix of B is the unit
antidiagonal). If for instance dimX is even, say 2m (so that n = 2m + 1), then
let W resp. W ′ be the linear subspace defined by Tm+1 = · · · = T2m+1 = 0 resp.
T0 = · · · = Tm = 0. Note that V = W ⊕ W ′ and that both [W ] and [W ′] are
in Fm(X). The vector space Hom(W,W ′) describes an affine open subset of the
Grassmannian of m-planes in P(V ). An A ∈ Hom(W,W ′) is given by A∗T2m+1−i =∑m
j=0 aijTj , i = 0, . . . ,m. The corresponding m-plane is contained in X precisely

when F (T0, . . . , Tm, A
∗Tm+1, . . . , A

∗T2m+1) =
∑m
i,j=0 aijTiTj is identically zero,

i.e., if (aij) is antisymmetric. It follows that [W ] ∈ Fm(X) has a neighborhood
isomorphic to an affine space of dimension

(
m+1

2

)
= 1

2m(m + 1). In particular,
Fm(X) is smooth.

EXERCISE 78. Let X be a smooth quadratic hypersurface of odd dimension
2m+ 1 in a projective space P and assume that char(k) 6= 2.

(a) Prove that Fm+1(X) = ∅ and that Fm(X) 6= ∅.
(b) Let Em(X) := (x, [Q]) ∈ X×Fm(X) |x ∈ Q}. Prove that Em(X) is a closed

subset of X × Fm(X).
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(c) Prove that the projection Em(X) → Fm(X) is locally trivial with fiber Pm
and prove that Em(X)→ X is locally trivial over X with fiber the Fm−1(Y ), where
Y is a nonsingular quadric hypersurface of dimension 2m− 1.

(c) Prove that Fm(X) is a smooth irreducible variety and determine its dimen-
sion.

EXERCISE 79. Let X ⊆ Pn be a hypersurface of degree d and let 0 ≤ m ≤ n.
Prove that the intersection of Fm(X) with a standard affine subset of Grm(Pn) is
given by

(
m+d
d

)
equations.

EXERCISE 80. Consider the universal hypersurface of degree d in Pn, H ⊆
Pn × P(n+d

d )−1.
(a) For every m-plane Q ⊆ Pn, let Yz denote the set of z ∈ P(n+d

d )−1 for which
the corresponding hypersurface Hz contains Q. Prove that Yz is a linear subspace
of P(n+d

d )−1 of codimension
(
m+d
d

)
.

(b) Let Y ⊆ P(n+d
d )−1 be the set of z ∈ P(n+d

d )−1 for which Hz contains an m-
plane. Prove that Y is a closed subset of P(n+d

d )−1 of codimension at most
(
m+d
d

)
−

(m+ 1)(n−m).
(c) Prove that the family of m-planes contained in a generic hypersurface of

degree d in Pn is of dimension (m+ 1)(n−m)−
(
m+d
d

)
or empty. In particular, this

is a finite set when (m+ 1)(n−m) =
(
m+d
d

)
(6).

Let P be a projective space and let X be an irreducible closed subset of P of
dimension d. For every smooth point p ∈ X, there is precisely one d-dimensional
linear subspace T̂ (X, p) of P which contains p and has the same tangent space at
p as X. In other words, it is characterized by the property that the ideals in OP,p
defining X resp. T̂ (X, p) have the same image in OP,p/m2

P,p.

Proposition-definition 3.8.3. The map G : p ∈ Xsm 7→ [T̂ (X, p)] ∈ Grd(P ) is a
morphism, called the Gauß map(7).

PROOF. We assume P identified with P(V ) for some vector space V of dimen-
sion n + 1 so that the Gauß map takes its values in Grd+1(V ). Let po ∈ Xsm and
choose a choose a basis (T0, . . . , Tn) for V ∗ such that po ∈ PnT0

∼= An. We regard
XT0

as a closed subset of An with coordinates (ti = Ti/T0)ni=1. Theorem 2.2.12 tells
us that there exists a principal neighborhood U of po in PnT0

and f1, . . . , fn−d ∈ k[U ]
which define X ∩U in U and have linearly independent differentials at every point
of U , so that for all p ∈ X ∩ U, TpX is defined by dfj(p) = 0, j = 1, . . . , n − d.
Then for p ∈ X ∩ U , G(p) is the affine subspace of An defined as the common zero
set of the n − d affine-linear equations

∑n
i=1

∂fj
∂ti

(p)(ti − ti(p)) = 0, or in homoge-

neous coordinates,
∑n
i=1

∂fj
∂ti

(p)(Ti−ti(p)T0) = 0 (so this is the intersection of n−d
hyperplanes of P(V )).

We can now show that G|X∩U is a morphism. With the help of Exercise 72 we
see that the map which assigns to a (d+1)-dimensional subspace of V its annihilator

6For instance, every cubic surface in P3 (so here n = 3, d = 3 and m = 1) contains a line. If it is
smooth, then it contains in fact exactly 27 lines. This famous result due to Cayley and Salmon published
in 1849 is still subject of research.

7Thus named because it is related to the map that Gauß studied for a surface Σ in Euclidian 3-
space E3 which bounds a compact subset: it is then the map Σ → S2 which assigns to p ∈ Σ the unit
outward normal vector of Σ at p.
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in V ∗ (which is an (n− d)-dimensional subspace of V ∗) defines an isomorphism of
Grd+1(V ) onto Grn−d(V

∗). Via this isomorphism, the Gauß map takes its values in
Grn−d(V

∗) and assigns to p ∈ X ∩ U the span of the n − d linearly independent
covectors

∑n
i=1

∂fj
∂ti

(p)(Ti − piT0), j = 1, . . . , n − d. Composed with the Plücker
embedding Grn−d(V

∗)→ P(∧n−dV ∗) this gives the map

x ∈ X ∩ U 7→[ n∑
i=1

∂f1

∂ti
(x)(Ti − ti(x)T0) ∧ · · · ∧

n∑
i=1

∂fn−d
∂ti

(x)(Ti − ti(x)T0)
]
∈ P(∧n−dV ∗).

For any sequence 0 ≤ i0 < · · · < in−d ≤ n, the coefficient of Ti0 ∧ · · · ∧ Tin−d is
clearly a regular function on X ∩U and so the associated map X ∩U → Grn−d(V

∗)
is a morphism. �

REMARK 3.8.4. The closure of the graph of the Gauss map in X × Grd(P )
is called the Nash blow-up of X. Its projection to X is clearly an isomorphism
over the open-dense subset Xsm and hence birational. A remarkable property of
the Nash blow-up is that the Zariski tangent space of each of its points contains
a distinguished d-dimensional subspace (prescribed by the second projection to
Grd(P )) in such a manner that these subspaces extend the tangent bundle of Xsm

in a regular manner.

3.9. Multiplicities of modules

Bézout’s theorem asserts that two distinct irreducible curves C,C ′ in P2 of de-
grees d and d′ intersect in dd′ points. Strictly speaking this is only true if C and C ′

intersect as nicely as possible, but the theorem is true as stated if we count each
point of intersection with an appropriate multiplicity. There is in fact a generaliza-
tion: the common intersection of n hypersurfaces in Pn has cardinality the product
of the degrees of these hypersurfaces, provided that this intersection is finite and
each point of intersection is counted with an appropriate multiplicity. One of our
aims is to define these multiplicities. The tools from commutative algebra that we
use for this have an interest in their own right.

DEFINITION 3.9.1. We say that an R-module has length ≥ d if there exist a d-
step filtration by submodules M = M0 ) M1 ) · · · ) Md = {0}. The length of M
is the supremum of such d (and so may be∞).

EXERCISE 81. Suppose R is a noetherian local ring with maximal ideal m and
residue field κ. Prove that the length of a finitely generated R-module M is finite
precisely when mdM = 0 for some d and is then equal to

∑d−1
i=0 dimκ(miM/mi+1M).

Prove that if R is a κ-algebra, then this is also equal to dimκ(M).

In the remainder of this section R is a noetherian ring and M a finitely generated
(and hence noetherian) R-module.

Recall that if p is a prime ideal of R, then Rp is a local ring with maximal ideal
pRp whose residue field can be identified with the field of fractions of R/p. We
define Mp := Rp ⊗RM . So this is a Rp-module.

REMARK 3.9.2. We can describe Mp and more generally, any localization S−1R⊗RM ,
as follows. Consider the set S−1M of expressions m/s with m ∈ M and s ∈ S with the
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understanding that m/s = m′/s′ if the identity s′′s′m = s′′sm holds in M for some s′′ ∈ S
(so we are considering the quotient of S×M by an equivalence relation). Then the following
rules put on S−1M the structure of a R-module:

m/s−m′/s′ := (s′m− sm′)/(ss′), r ·m/s := rm/s.

The map S−1R×M → S−1M , (r/s,m)→ (rm)/s is R-bilinear and hence factors through
an R-homomorphism S−1R ⊗R M → S−1M . On the other hand, the map S−1M →
S−1R ⊗R M , m/s 7→ 1/s ⊗R m is also defined: if m/s = m′/s′, then s′′(s′m = sm)
for some s′′ ∈ S and so

1/s⊗R m = 1/(ss′s′′)⊗R s′′s′m = 1/(ss′s′′)⊗R s′′sm = 1/s′ ⊗R m.

It is an R-homomorphism and it immediately verified that it is a two-sided inverse of the
map above. So S−1R⊗RM → S−1M is an isomorphism.

This description shows in particular that if N ⊆M is a submodule, then S−1N may be
regarded as submodule of S−1M (this amounts to: S-localization is an exact functor on the
category of R-modules).

DEFINITION 3.9.3. The multiplicity of M at a prime ideal p of R, denoted
µp(M), is the length of Mp as an Rp-module.

In an algebro-geometric context we may modify this notation accordingly. For
instance, if we are given an affine variety X and an irreducible subvariety Y , then
we may write µY (X) for µI(Y )(k[X]). Or if x ∈ X, andM is a OX,x-module, write
µx(M) for µmX,x(M).

REMARK 3.9.4. Let X be a variety, x ∈ X and I ⊆ OX,x an ideal with
√
I =

mX,x. So mrX,x ⊆ I ⊆ mX,x for some positive integer r. Then dimk(OX,x/I) is
finite (since dimk(OX,x/mrX,x) is) and according to Exercise 81 equal to the length
of OX,x/I as an OX,x-module and hence equal to the multiplicity µx(OX,x/I) of
OX,x/I at the maximal ideal mX,x. IfX is affine and we are given an ideal I ⊆ k[X]
whose image in OX,x is I, then OX,x/I is the localization of k[X]/I at x and so
the multiplicity of k[X]/I at x is µx(k[X]/I) = µx(OX,x/I) = dimk(OX,x/I). Note
that x is then an isolated point of Z(I).

If X is smooth at x of dimension n and I has exactly n generators f1, . . . , fn,
then we will see that µp(OX,x/(f1, . . . , fn)) = dimk(OAn,p/(f1, . . . , fn)) can be in-
terpreted as the multiplicity of p as a common zero of f1, . . . , fn.

We wish to discuss the graded case parallel to the ungraded case. This means
that when R is graded, R = ⊕∞i=0Ri, then we assume M to be graded as well, that
is, M is endowed with a decomposition as an abelian group M = ⊕i∈ZMi such that
Rj sends Mi to Mi+j (we here do not assume that Mi = 0 for i < 0). For example,
a graded ideal in R is a graded R-module. In that case we have the notion of graded
length of M , which is the same as the definition above, except that we only allow
chains of graded submodules.

CONVENTION 3.9.5. Given an integer l and a graded module M over a graded
ring, then M [l] denotes the same module M , but with its grading shifted over l,
meaning that M [l]i := Ml+i.

So if M is homogeneous of degree 0, then M [l] is homogeneous of degree −l.
Let us call an R-module elementary if it is isomorphic to R/p for some prime

ideal p. If R is graded then a graded R-module is called graded elementary if it is
isomorphic to R/p[l] for some graded prime ideal p and some l ∈ Z.
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Given a (graded) R-module M , then every m ∈ M (m ∈ Ml) defines a homo-
morphism or R-modules r ∈ R 7→ rm ∈ M . Its kernel is a (graded) ideal of R, the
annihilator Ann(m) of m, so that M contains a copy R/Ann(m) (R/Ann(m)[l]) as
a (graded) submodule.

Lemma 3.9.6. Let M be a finitely generated nonzero (graded) R-module. Then
the collection of annihilators of nonzero (homogeneous) elements of M contains a
maximal element and any such maximal element is a (homogeneous) prime ideal
of R. In particular, M contains an elementary (graded) submodule.

PROOF. We only do the graded case. The first assertion follows from the noe-
therian property of R. Let now Ann(m) be a maximal element of the collection
(so with m ∈ M homogeneous and nonzero). It suffices to show that this is a
prime ideal in the graded sense (see Exercise 63), i.e., to show that if a, b ∈ R are
homogeneous and ab ∈ Ann(m), but b /∈ Ann(m), then a ∈ Ann(m). So bm 6= 0
and a ∈ Ann(bm). Since Ann(bm) ⊇ Ann(m), the maximality property of the latter
implies that this must be an equality: Ann(bm) = Ann(m), and so a ∈ Ann(m). �

Corollary 3.9.7. Every finitely generated (graded) R-module M can be obtained
as a successive extension of elementary modules in the sense that there exists a
finite filtration by (graded) R-submodules M = M0 )M1 ) · · · )Md = {0} such
that each quotient M j/M j+1, j = 0, . . . , d− 1, is elementary.

PROOF. We do the graded case only. Since M is noetherian, the collection
of graded submodules of M which can be written as a successive extension of
elementary modules has a maximal member, M ′, say. We claim that M ′ = M . If
M/M ′ 6= 0, then it contains an elementary submodule by Lemma 3.9.6. But then
the preimage N of this submodule in M is a successive extension of elementary
modules which strictly contains M ′. This contradicts the maximality of M . �

The annihilator of M , Ann(M), is the set of r ∈ R with rM = 0. It is clearly
an ideal of R. We denote by P(M) the set of prime ideals of R which contain
Ann(M) and are minimal for that property. According to Proposition 1.2.15 these
are finite in number and their common intersection equals

√
Ann(M) (recall that R

is noetherian). In the graded setting, Ann(M) is a graded ideal and then according
to Lemma 3.2.3 the members of P(M) are all graded.

Proposition 3.9.8. In the situation of the preceding proposition, let p(j) be the
prime ideal of R such that M j/M j+1 ∼= R/p(j). Then P(M) is the set of minimal
members of the collection {p(j)}d−1

j=0 and for every p ∈ P(M), µp(M) is finite and p

occurs precisely µp(M) times in the sequence (p(0), . . . , p(d−1)).

PROOF. We first show that
√

Ann(M) = p(0) ∩ · · · ∩ p(d−1). If r ∈ p(0) ∩ · · · ∩
p(d−1), then r maps M j−1 to M j and so rd ∈ Ann(M) and hence r ∈

√
Ann(M).

Conversely, if r ∈ R and l ≥ 1 are such that rl ∈ Ann(M), then for all j, rl ∈ p(j)

and hence r ∈ p(j). This proves that
√

Ann(M) = p(0) ∩ · · · ∩ p(d−1). Since every
prime ideal containing p(0)∩· · ·∩p(d−1) contains some p(j) it also follows that P(M)

is the collection of minimal members of {p(j)}d−1
i=0 .

Fix p ∈ P(M). An inclusion of R-modules induces an inclusion of Rp-modules
(but as we will see, a strict inclusion may become an equality). So we have a
filtration Mp = M0

p ⊇ · · · ⊇ Md
p = {0} and M j

p/M
j+1
p

∼= Rp/p
(j)Rp. Either
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p(j) = p, and then the latter is equal to the residue field Rp/pRp and hence of
length 1. Or p(j) 6= p, and then we cannot have p(j) ⊆ p by the minimality of p.
So there exists an r ∈ p(j) r p. This means that r/1 ∈ p(j)Rp is invertible so that
p(j)Rp = Rp, or equivalently M j

p/M
j+1
p = 0. Following our definition the first case

occurs precisely µp(M) times. �

REMARK 3.9.9. Let us here assume that we are in the ungraded case. This
proposition then suggests to attach to the R-module M an element in the free
abelian group generated be the prime ideal of R, namely

(M) :=
∑

p∈P(M) µp(M)(p).

We call this the cycle defined by M . In a geometric setting, where R = k[X] for
some affine variety X, each p defines a closed irreducible subset Z(p) of X, and we
then usually regard (M) as an element of the free abelian group Z(X) generated
by such subsets.

We can pass from the graded case to the nongraded case by just forgetting
the grading. But more relevant here is the following construction, which we shall
use to pass from a projective setting to an affine one and vice versa. The example
to keep in mind is when our graded ring is k[Cone(X)], with X a closed subset
X ⊂ P(V ). If p ⊂ k[Cone(X)] is the graded prime ideal which defines a one-
dimensional subspace L contained in Cone(X) and hence a point p ∈ X, we then
want to express the local ring OX,p in terms of k[Cone(X)] and p and show that
the multiplicity of a graded k[Cone(X)]-module M at L is the same as that of an
associated OX,x-moduleMp at p. See Corollary 3.9.10 and Example 3.9.12 below.

Let p ⊆ R be a graded prime ideal and let us write mp for the maximal ideal
pRp = (Rrp)−1p of the localization Rp = (Rrp)−1R. Given l ∈ Z, let Rp,l denote
the set of homogeneous fractions of degree l in Rp, i.e., that are representable as
r/s with r ∈ Ri+l and s ∈ Ri r pi for some i and put Rp,• := ⊕l∈ZRp,l and mp,• :=
mp ∩Rp,•. So Rp,•/mp,• is a subring of the residue field Rp/pRp = Frac(R/p). Note
that Rp,0 ⊆ Rp,• ⊆ Rp are ring inclusions of which Rp,0 and Rp are local rings; the
maximal ideal mp,0 of Rp,0 being obtained by taking in the previous sentence r ∈ pi
(but Rp,• has maximal ideals other than mp,•, see below).

Suppose now that p1 6= R1 and choose s ∈ R1 r p1 so that 1/s ∈ Rp,−1.
Then multiplication with sl defines an Rp,0-module isomorphism of Rp,0

∼= Rp,l

(the inverse is given by multiplication with s−l). It follows that the natural map
Rp,0[s, s−1] → Rp,• is a ring isomorphism which maps mp,0[s, s−1] onto mp,•. So
this will induce an isomorphism Rp,0/mp,0[s, s−1] ∼= Rp,•/mp,•. Hence we have a
purely transcendental field extension of residue fields:

Frac(R/p) ∼= (Rp,0/mp,0)(s) ⊃ Rp,0/mp,0 = Frac(R0/p0).

This makes sense for any graded R-module M by letting Mp,l be the set of
fractions m/s with m ∈ Mi+l and s ∈ Ri r pi for some i. Note that this is a
Rp,0-module and that the direct sum Mp,• := ⊕lMp,l is equal to Rp,• ⊗RM .

A graded Rp-module N is elementary if and only if it is isomorphic to a shift
of the big residue field Frac(R/p). This is equivalent to its degree zero part N0

being isomorphic to the small residue field Frac(R0/p0), which simply means that
the Rp,0-module N0 is elementary.
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Corollary 3.9.10. In this situation (so with the setting noetherian and p1 6= R1)
we have µp(M) = µmp,0(Mp,0).

PROOF. An iterated extension M = M0 ) M1 ) · · · ) Md = {0} of M by
elementary graded R-modules yields an iterated extension of Mp resp. Mp,0 by
trivial or by elementary Rp resp. Rp,0-modules. The corollary then follows from
the observation that a successive quotient M j

p/M
j+1
p is obtained from M j

p,0/M
j+1
p,0

by extension of scalars (from the small residue field to the big one). In particular,
M j

p/M
j+1
p is nonzero if and only M j

p,0/M
j+1
p,0 is. �

REMARK 3.9.11. If R = k[V ], then we may in this situation attach to M unam-
biguously an element in the free abelian group generated by the irreducible closed
subsets of P(V ), namely [M ] :=

∑
p∈P(M) µp(M)Z[p] ∈ Z(P(V )), where p ⊂ k[V ]

is a graded ideal which appears as a (shifted) subquotient of M . Corollary 3.9.10
then says that [M ] ∈ Z(P(V )) is obtained from (M) ∈ Z(V ) in rather simple man-
ner: (M) is a linear combination of irreducible cones and to get [M ] replace every
cone of positive dimension by the corresponding closed subset of P(V ).

We use this mainly via the following example.

EXAMPLE 3.9.12. Let V be a vector space of dimension n + 1, J ⊆ k[V ] a
homogeneous ideal and p ∈ P(V ) an isolated point of the closed subset Z[J ] ⊆
P(V ) defined by J . We take here M := k[V ]/J and take for p the graded ideal Ip ⊆
k[V ] defining p. Then k[V ]Ip,0 can be identified with the local k-algebra OP(V ),p.
So
√
JIp,0 = mP(V ),p and we can identify MIp,0 with OP(V ),p/JIp,0. According to

the above discussion µIp(k[V ]/J) (the coefficient of the line defined by p in [M ])
equals µp(OP(V ),p/JIp,0) (the coefficient of {p} in [M ]) and by Exercise 81 this is
just dimk(OP(V ),p/JIp,0).

3.10. Hilbert functions and Hilbert polynomials

We shall be dealing with polynomials in Q[z] which take integral values on in-
tegers. Such polynomials are called numerical. An example is the binomial function
of degree n ≥ 0: (

z

n

)
:=

z(z − 1)(z − 2) · · · (z − n+ 1)

n!
.

It has the property that its value in any integer i is an integer, for i ≥ n this is an
ordinary binomial coefficient and hence an integer: for i ≤ −1 this is so up to sign,
for then we get (−1)n

(
n−1−i
n

)
and for 0 ≤ i ≤ n− 1 it is 0.

For a function f : Z → Z, let ∆f(z) := f(z + 1) − f(z). Its restriction to
Q[z] defines a Q-linear map ∆ : Q[z] → Q[z] with the property that it decreases
the degree of nonconstant polynomials and has the constant polynomials Q as its
kernel. It clearly sends numerical polynomials to numerical polynomials and a
simple verification shows that it maps

(
z

n+1

)
to
(
z
n

)
.

Let us say that a function f : Z → Z is eventually numerical of degree d if there
exists a P ∈ Q[z] of degree d such that f(n) = P (n) for n large enough. It is clear
that this P is then unique; we call it the numerical polynomial associated to f .

Lemma 3.10.1. Every P ∈ Q[z] which is eventually numerical is in fact numerical
and a Z-basis of the abelian group of numerical polynomials is provided by the
binomial functions.



104 3. PROJECTIVE VARIETIES

If f : Z → Z is a function such that ∆f is eventually numerical of degree d,
then f is eventually numerical of degree d+ 1, unless f is eventually zero.

PROOF. The first assertion is proved with induction on the degree d of P . If
d = 0, then P is constant and the assertion is obvious. Suppose d > 0 and the
assertion known for lower values of d. So ∆P (z) =

∑d−1
i=0 ci

(
z
i

)
for certain ci ∈ Z.

Then P (z) −
∑d−1
i=0 ci

(
z
i+1

)
is in the kernel of ∆ and hence is constant. As this

expression takes integral values on large integers, this constant is an integer. This
proves that P is an integral linear combination of binomial functions.

The proof of the second assertion is similar: let Q ∈ Q[z] be such that Q(i) =
∆f(i) ∈ Z for large i. By the preceding, Q(z) =

∑
i ci
(
z
i

)
for certain ci ∈ Z. So if

we put P (z) :=
∑
i ci
(
z
i+1

)
, then P is a numerical polynomial with ∆(f −P )(i) = 0

for large i. This implies that f − P is constant for large i, say equal to c ∈ Z. So
f(i) = P (i) + c for large i and hence P + c is as required. �

We shall see that examples of such functions are furnished by the Hilbert func-
tions of graded noetherian modules.

REMARK 3.10.2. A function f : Z → Z which is zero for sufficiently negative integers
determines a Laurent series Lf :=

∑
k∈Z f(k)uk ∈ Z((u)). For the function k 7→ max{0,

(
k
n

)
}

this gives∑
k≥n

k(k − 1) · · · (k − n+ 1)

n!
uk =

un

n!

dn

dun

∑
k≥0

uk =
un

n!

dn

dun
1

1− u =
un

(1− u)n
=
( u

1− u
)n
.

So if we also know that for sufficiently large integers f is the restriction of a polynomial
function, then Lemma 3.10.1 implies that Lf ∈ Z[ u

1−u ] + Z[u, u−1].

In the remainder of this section V is a k-vector space of dimension n + 1 (but we
allow n = −1). We equip k[V ] with the usual grading (for which each linear form
on V has degree one) and view it as the homogeneneous coordinate ring of P(V ). A
k[V ]-module is always assumed to be graded and finitely generated.

Let M be a finitely generated graded k[V ]-module. Then for every i ∈ Z, Mi

is a finite dimensional k-vector space and so we may define the Hilbert function of
M , φM : Z → Z, by φM (i) := dimkMi. For example, the Hilbert function of k[V ]

itself is i 7→
(
i+n
n

)
and so is given by a numerical polynomial of degree n.

The graded ideal Ann(M) defines a closed subset of P(V ) that is called the
(projective) support of M and denoted supp(M). It is clear that if N is a graded
submodule of M , then dimkM = dimkN + dimk(M/N) and so we have φM =
φN+φM/N . We also observe Ann(N)∩Ann(M/N) has the same radical as Ann(M)
(in fact, Ann(M) ⊆ Ann(N)∩Ann(M/N) and the square of Ann(N)∩Ann(M/N)
is contained in Ann(M)). It follows that supp(M) = supp(N) ∪ supp(M/N).

This shows that supp(M) is also the support of [M ].

Theorem-definition 3.10.3 (Hilbert-Serre). Let M be a graded finitely generated
k[V ]-module. Then φM is eventually numerical of degree dim supp(M) (where
we agree that the zero polynomial has the same degree as the dimension of the
empty set, namely −1). Its associated numerical polynomial is called the Hilbert
polynomial of M and denoted PM ∈ Q[z]. It only depends on [M ] in the sense that
it factors through a linear map Z(P(V ))→ Q[z].
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PROOF. If N is a graded submodule of M such the theorem holds for N and
M/N , then by the observations above, it will hold for M . As M is a successive
extension of elementary modules, it therefore suffices to do the case M = A[l],
where A = k[V ]/p with p a graded prime ideal. But φA[l](i) = φA(i + l) and since
the degree of a polynomial does not change after the substitution z 7→ z + l, we
only need to do the case M = A.

So now supp(A) = Z[p] is the closed irreducible subset of P(V ) defined by the
graded ideal p. We proceed with induction on dimZ[p]. When dimZ[p] = −1 (or
equivalently, Z[p] = ∅), then p = k[V ]+ and A = A0 = k, and so Ai = 0 for i > 0.
Hence PA is identically zero, so of degree −1 by convention.

Suppose therefore dimZ[p] ≥ 0. Then p 6= k[V ]+, so that there exists a T ∈
k[V ]1 = V ∗ that is not in p1. Denote by V ′ ⊆ V its zero hyperplane. Since k[V ]/p is
a domain, multiplication by T induces an injection A → A (increasing the degree
by one) with cokernel A′ := A/TA and so

φA′(i) = φA(i)− φA(i− 1) = ∆φA(i− 1).

We claim that Ann(A′) = p + (T ): the inclusion ⊇ is clear and if f ∈ Ann(A′),
then fT ∈ p and since p is a prime ideal, we then must have f ∈ p or f ∈ (T ). It
follows that supp(A′) = supp(A) ∩ P(V ′). According to Proposition 3.6.2 we then
have dim supp(A′) = dim supp(A)− 1. Our induction hypothesis tells us that φA′ is
eventually numerical of degree dim supp(A′). Lemma 3.10.1 then implies that φA
is eventually numerical of degree dim supp(A′) + 1 = dim supp(A). �

REMARK 3.10.4. ForM as in this theorem we may also form the Laurent series LM (u) :=∑
i dim(Mi)u

i (this is usually called the Poincaré series of M). It follows from Remark
3.10.2 and Theorem 3.10.3 that if PM (z) =

∑d
i=0 ci

(
z+i
i

)
, then LM (u) −

∑d
i=0 ci(

u
1−u )i ∈

Z[u, u−1].

Lemma 3.10.1 shows that when PM is nonzero, then its leading term has the
form cdz

d/d!, where d is the dimension of supp(M) and cd is a positive integer.
This observation leads to a notion of degree (which should not be confused with
the degree of PM ):

DEFINITION 3.10.5. If d = dim supp(M), then the (projective) degree deg(M)
is d! times the leading coefficient of its Hilbert polynomial (an integer, which we
stipulate to be zero in case supp(M) = ∅). For a closed subset Y ⊆ P(V ), the Hilbert
polynomial PY resp. the degree deg(Y ) of Y is that of k[V ]/I(Y ) as a k[V ]-module.

REMARK 3.10.6. Let us take for Y a linear subspace Q ⊂ P(V ) of dimension m.
In other words, M = k[VQ], considered as a graded k[V ]-module. Then for i ≥ 0,
φQ(i) =

(
i+m
m

)
and so PQ(z) =

(
z+m
m

)
. This shows that deg(Q) = 1.

This applies in particular to the case when Q is a singleton {q}. So if Y ⊆ P(V )
is nonempty, and q ∈ Y , then φY (i) ≥ φ{q}(i) = 1 for all i ≥ 0. Hence PY is
nonzero with positive leading coefficient, and so Y has degree ≥ 1.

EXERCISE 82. Let M be a finitely generated k[V ]-module and Y ⊂ P(V ) is
projective variety.

(a) Suppose M not of finite length. Prove that there is a unique integer d ≥ 0
such that i 7→ ∆dφM (i) is a nonzero constant for i sufficiently large. Show that d is
the dimension of the support of M and that the constant is its degree.

(b) Prove that if Y ⊂ P(V ) is projective variety, then there exists a nonempty
open subset of linear subspaces Q ⊆ P(V ) of dimension equal to the codimension
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of Y in P(V ) which meet Y in exactly deg(Y ) points. (This characterization is in
fact the classical way of defining the degree of Y .)

EXERCISE 83. Compute the Hilbert polynomial and the degree of
(a) the image of the d-fold Veronese embedding of Pn in P(n+d

n )−1,
(b) the image of the Segre embedding of Pm × Pn in Pmn+m+n.

EXERCISE 84. Let Y ⊆ Pm and Z ⊆ Pn be closed and consider Y ×Z as a closed
subset of Pmn+m+n via the Segre embedding. Prove that the Hilbert function resp.
polynomial of Y ×Z is the product of the Hilbert functions resp. polynomials of the
factors.

We may now supplement Theorem 3.10.3 as follows. Let M be as in that
theorem: a finitely generated graded k[V ]-module. Recall that P(M) denotes the
set of minimal prime ideals containing Ann(M). For every p ∈ P(M) not equal
to k[V ]+, the associated closed subset Z[p] ⊆ P(V ) is an irreducible component of
supp(M) and all irreducible components of supp(M) are so obtained. Denote by
Po(M) the set of p ∈ P(M) that define an irreducible component of supp(M) of
the same dimension as supp(M).

Proposition 3.10.7. Let M be a finitely generated graded k[V ]-module. Then

deg(M) =
∑

p∈Po(M)

µp(M) deg(Z[p])

and Po(M) is the set of graded prime ideals that define the irreducible closed sub-
sets of P(V ) that appear in [M ] with positive coefficient and have maximal dimen-
sion.

PROOF. We write M as an iterated extension by elementary modules: M =
M0 ) M1 ) · · · ) Md = {0} with M j/M j+1 ∼= k[V ]/p(j)[lj ]. Then PM (z) =∑d−1
j=0 Pk[V ]/p(j)(z + lj). Now Pk[V ]/p(j) is a polynomial of degree equal to the di-

mension of supp(k[V ]/p(j)) = Z[p(j)] ⊆ P(V ). This degree does not change if we
replace the variable z by z + lj . So we only get a contribution to the leading co-
efficient of PM when p(j) ∈ Po(M). For any given p ∈ Po(M) this happens by
Proposition 3.9.8 exactly µp(Mp) times. The proposition follows. �

REMARK 3.10.8. Note the special case whenM has finite support: then Po(M) =
P(M) r {k[V ]+} and this set is in bijective correspondence with the points of
supp(M). For p ∈ Po(M), Z[p] ⊆ P(V ) is just a singleton {p} and so by Re-
mark 3.10.6, deg(Z[p]) = 1. Furthermore, µp(M) is the length of Mp as a k[V ]-
module and this is by Example 3.9.12 equal to dimkMp, where Mp := Mp,o is
a OP(V ),p = k[V ]p,o-module of finite length. So the above formula then says that
deg(M) =

∑
p∈supp(M) dimk(Mp).

EXERCISE 85. Let Y ⊆ P(V ) be closed. Prove that if Y1, . . . , Yr are the distinct
irreducible components of Y of maximal dimension (= dimY ), then deg(Y ) =∑r
i=1 deg(Yi).

We can now state and prove a result of Bézout type.

Proposition 3.10.9. Let M be a graded k[V ]-module and F ∈ k[V ]d such that F is
not a zero divisor in M . Then deg(M/FM) = ddeg(M).
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PROOF. Our assumption implies that the sequence

0→M(−d)
·F−→M →M/FM → 0

is exact. This shows that PM/FM (z) = PM (z)− PM (z − d). Put e := dim supp(M)

so that PM (z) =
∑e
i=0 aiz

i/i! with ae = deg(M). Since we have

zi/i!− (z − d)i/i! = dzi−1/(i− 1)! + lower order terms,

we find that PM/FM (z) = daez
e−1/(e−1)!+ lower order terms. So deg(M/FM) =

dae = ddeg(M). �

Note the special case for which M = k[V ] and F is a generator of the ideal
defining a hypersurface H ⊆ P(V ). Then PM (z) =

(
n+z
n

)
and so the degree of M

(which is also the degree of P(V )) is 1 and hence the degree of H is d, just as we
would expect. Here is a first corollary.

Corollary 3.10.10. Let P be a projective plane and C ⊂ P be an irreducible
(closed) curve. Then the degree of C is equal to its number of intersection points
with a line L ⊂ P not contained in C when multiplicities are taken into ac-
count: if for every p ∈ C ∩ L, fp ∈ mP,p is a local equation for L at p, then
deg(C) =

∑
p∈C dimk(OC,p/(fp)).

PROOF. Choose a homogeneous coordinate system on P . We apply Proposition
3.10.9: we take for M the homogeneous coordinate ring of C and for F a linear
form which defines L. Then the proposition tells us that deg(C) is the degree of
M/FM . The latter is a module with support the finite set C ∩H whose degree is
computed with the recipe of Remark 3.10.8. �

We can now also state:

Theorem 3.10.11 (Theorem of Bézout). Let Hi ⊆ P(V ) be a hypersurface of de-
gree di > 0 (i = 1, . . . n), and assume that Z := H1 ∩ · · · ∩ Hn is finite. Each Hi

determines at p ∈ Z a principal ideal in OP(V ),p; denote by Ip ⊆ OP(V ),p the sum of
these ideals. Then

d1d2 · · · dn =
∑
p∈Z

dimk(OP(V ),p/Ip).

Here dimk(OP(V ),p/Ip) should be interpreted as the intersection multiplicity
the hypersurfaces H1, . . . ,Hn at p. So the theorem can be paraphrased as saying
that H1, . . . ,Hn meet in d1d2 · · · dn points, provided we count each such point with
its intersection multiplicity (8).

We shall need the following result which we state without proof.

*Proposition 3.10.12. Let R be a regular local ring of dimension n and let for r ≤
n, f1, . . . , fr ∈ mR be such that dim(R/(f1, . . . , fr)) = n− r. Then for i = 1, . . . , r,
the image of fi in R/(f1, . . . , fi−1) is not a zero divisor.

A ring R/(f1, . . . , fr) is this type is called a complete intersection local ring.
The proposition essentially says such a ring is “without embedded components”: it
does not contain an R-submodule isomorphic to a ring quotient of R of dimension
< n− r. It implies the homogeneous version we shall need:

8In the language of schemes, Z is a subscheme of P(V ) whose local ring at p ∈ Z is OP(V ),p/Ip.
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Corollary 3.10.13. Let r ≤ n + 1 and let F1, . . . , Fr be homogeneous elements of
k[V ] of positive degree such that dim(k[V ]/(F1, . . . , Fr)) = n + 1 − r. Then the
image of Fr in k[V ]/(F1, . . . , Fr−1) is not a zero divisor.

PROOF. Let G ∈ k[V ] be such that FrG ∈ (F1, . . . , Fr−1). The homogeneous
components of G have then also this property and so it suffices to see that when
G is homogeneous, this implies that G ∈ (F1, . . . , Fr−1). The hypotheses of the
above proposition are fulfilled by the local ring k[V ]mo and the images of F1, . . . , Fr
therein. So the image of Fr in the quotient k[V ]/(F1, . . . , Fr−1) is not a zero divisor
after localization at o. This means that there exists a H ∈ k[V ] with nonzero con-
stant term such thatGH ∈ (F1, . . . , Fr−1). By taking at both sides the homogeneous
part of degree equal to the degree of G, we then see that G ∈ (F1, . . . , Fr). �

PROOF OF THEOREM 3.10.11. Choose a definining equation Fi ∈ k[V ]di forHi

and put Ai := k[V ]/(F1, . . . , Fi) (so that A0 = k[V ]). Then Propositions 3.10.9 and
Corollary 3.10.13 imply that deg(Ai) = di deg(Ai−1). Since degA0 = 1, it follows
that deg(An) = d1d2 · · · dn. The support of An is H1 ∩ · · · ∩ Hn and hence finite.
Its degree is then also computed as

∑
p∈Po(An) µp(An). But according to Remark

3.10.8 this is just
∑
p∈Z dimk(OP(V ),p/Ip). �

EXAMPLE 3.10.14. Assume char(k) 6= 2. We compute the intersection multi-
plicities of the conics C and C ′ in P2 whose affine equations are x2 + y2 − 2y = 0
and x2 − y = 0. There are three points of intersection: (0, 0), (−1, 1) and (1, 1)
(so none at infinity). The intersection multiplicity at (0, 0) is the dimension of
OA2,(0,0)/(x

2 + y2−2y, x2− y) as a k-vector space. But OA2,(0,0)/(x
2 + y2−2y, x2−

y) = OA1,0/(x
4 − x2) ∼= k[x]/(x2) (for (x2 − 1) is invertible in OA1,0). Clearly

dimk(k[x]/(x2)) = 2 and so this is also the intersection multiplicity at (0, 0). The
intersection multiplicities at (−1, 1) and (1, 1) are easily calculated to be 1 and thus
the identity 2 + 1 + 1 = 2 · 2 illustrates the Bézout theorem.

REMARK 3.10.15. If Y ⊆ Pn is closed, then PY (0) can be shown to be an invari-
ant of Y in the sense that it is independent of the projective embedding. In many
ways, it behaves like an Euler characteristic. (It is in fact the Euler characteristic of
OY in a sense that will become clear once we know about sheaf cohomology.) For
example, PY×Z(0) = PY (0)PZ(0).

We have seen that for a hypersurface Y ⊆ Pn of degree d > 0, PY (z) =
(
z+n
n

)
−(

z−d+n
n

)
and so PY (0) = 1 −

(−d+n
n

)
= 1 − (−1)n

(
d−1
n

)
. For n = 2 (so that Y is a

curve), we get PY (0) = 1− 1
2 (d−1)(d−2). The number 1−PY (0) = 1

2 (d−1)(d−2) is
then called the arithmetic genus of the curve. If the curve is smooth and k = C, then
we may regard it as a topological surface (a Riemann surface) and g is then just the
genus of this surface (and so PY (0) is half its topological Euler characteristic). We
will encounter this in the next chapter.



CHAPTER 4

Projective curves

In this chapter we will see that a finitely generated field extension of k of
transcendence degree 1 is the function field of a projective curve and that this
curve is unique up to unique isomorphism. This explains why properties of (and
notions associated with) such field extensions admit a complete translation into a
geometry. We subsequently discuss notions like divisor, Riemann-Roch theorem and
Serre duality (which all can be given a meaning for arbitrary projective varieties)
in terms that are particular to curves.

Note: as of Subsection 4.2, C and C ′ denote an irreducible smooth projective
curves whose function fields we abbreviate by K resp. K ′.

4.1. Valuations and points

Function fields of curves. Let C be a smooth curve. We recall from Corollary
2.2.18 that for every x ∈ C, OC,x is a discrete valuation ring. Its fraction field is of
course k(C) and OC,x defines a valuation vx : k(C)× → Z on it which assigns to
any f ∈ k(C)× its ‘order of vanishing’ at x ∈ C: if f ∈ mrC,xrmr+1

C,x with r ∈ Z, then
vx(f) = r. The function vx : k(C)× → Z is a surjective homomorphism satifying

vx(f + g) ≥ min{vx(f), vx(g)}.

This property continues to hold if we agree that vx(0) = +∞.
We first use this notion to prove:

Proposition 4.1.1. Let C be a nonsingular curve. Then every rational map from C
to a projective space is a morphism.

PROOF. Let f : C 99K Pn be a rational map. Let x ∈ C. We prove that
f is regular at x ∈ C. Observe that x has an affine open neighborhood in C
on which there exist rational functions f0, . . . , fn such that f is there of the form
[f0 : · · · : fn]. Let r := mini vx(fi). Choose t ∈ mC,x r m2

C,x (a uniformizer:
vx(t) = 1). Upon replacing each fi with t−rfi we still represent f near x, but
we have now arranged that mini vx(fi) = 0. In other words, each fi is a regular
function on a neighborhood of x and at least one of them takes a nonzero value in
x. This just means that f is defined on a neighborhood on x. �

This leads to a dictionary between smooth projective curves and finitely gener-
ated field extensions of k of transcendence degree 1.

Corollary 4.1.2. For any finitely generated field extension K/k of transcendence
degree 1 there exists an irreducible smooth projective curve CK whose function
field is k-isomorphic to K. This curve is unique up to unique isomorphism and is
functorial in K in the sense that any finite extension K ′/K of such fields is induced

109
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a unique finite morphism CK′ → CK . In particular, the Galois group of K/k can be
identified with the automorphism group of C.

We need:

Lemma 4.1.3. Let π : C̃ → C be a finite morphism of irreducible curves with C
projective. Then C̃ is projective.

PROOF. By assumption C admits a finite covering {Ui}mi=1 by nonempty affine
open subsets such that for i = 1, . . . ,m, π−1Ui is affine and finite over Ui. Let
π−1Ui ↪→ Ani be a closed immersion. By Proposition 4.1.1 this immersion extends
to a morphism fi : C̃ → Pni . It has the property that the preimage of Ani = PniT0

is
π−1Ui so that fi is a closed immersion over PniT0

. Consider the morphism

f := (f1, . . . , fm) : C̃ →
∏m
i=1 Pni

Its restriction to π−1Ui is a closed embedding and lands in the open subset Wi ⊂∏
i Pni defined by having the ith component lie in Ani ⊂ PniT0

. Then f−1Wi = π−1Ui

and since these open subsets cover C̃, it follows that f is a closed immersion. Since∏
i Pni is projective, so is C̃. �

PROOF OF COROLLARY 4.1.2. By Proposition 1.8.2, K ∼= k(C◦) for some irre-
ducible affine curve. Suppose C◦ closed in An. Let C be its closure in Pn and
denote by ν : CK → C its normalization. Then CK is smooth. Since ν is finite,
Lemma 4.1.3 implies that CK is projective. Since both CK → C and C◦ ⊆ CK
induce k-isomorphisms of function fields, we obtain a k-isomorphism k(CK) ∼= K.

For the second assertion we need to show that given irreducible smooth pro-
jective curves C and C ′, then any field embedding k(C) ↪→ k(C ′) is induced by a
finite morphism. We know (Proposition 1.8.2) that this field embedding is induced
by a rational map C ′ 99K C. Since C is projective, it follows from Proposition 4.1.1
that this rational map is a morphism. The maps is clearly unique. Corollary 1.10.11
shows that it is finite. �

REMARK 4.1.4. If C is as in the preceding corollary, then every x ∈ C defines
a discrete valuation ring in K having K as its field of fractions and k as its residue
field. One can prove that every such discrete valuation ring in K so arises (for a
unique x ∈ C). So we could define the underlying point set of CK as the set of
its discrete valuations v : K× � Z having residue field k and set up the theory of
curves as a chapter of field theory (as some authors do).

Note that when an element f ∈ K is regarded as a rational map C 99K P1,
then it is by Proposition 4.1.1 a morphism f̂ : C → P1. If f is nonconstant, then
this morphism is dominant and since K has transcendence degree one over k, the
extension of K/k(P1) = K/k(t) must be finite. We denote by deg(f̂) its degree.

In the remainder of this chapter C and C ′ denote an irreducible smooth projective
curves whose function fields we abbreviate by K resp. K ′.

4.2. Divisors and invertible modules on a curve

Divisors. A divisor D on C is a Z-valued function on C, x ∈ C 7→ dx ∈ Z,
whose support supp(D) (the set of x ∈ C for which dx 6= 0) is finite: D assigns to
every x ∈ D an integer dx ∈ Z such that dx = 0 for all but a finite number of x. In
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other words, it is a formal integral linear combination of points of C. Note that the
divisors on C form an abelian group under pointwise addition: it is the free abelian
group Z(C) generated by the set of points of C.

We denote the generator defined by x ∈ C (its characteristic function) by (x),
so that we may write the divisor D as

∑
x∈C dx(x), the sum being finite. The

integer
∑
x∈C dx is called the degree of D, denoted deg(D) and defines a surjective

homomorphism deg : Z(C) → Z. The relation D ≥ D′ (taken pointwise, so that
dx ≥ d′x for all x ∈ C) defines a partial order on the group of divisors. We say that
D is effective if D ≥ 0 and we say that D is positive (and write D > 0) if D ≥ 0 and
is nonzero. Obviously any divisor D can be written as D+ −D− with D+ and D−
effective. When all the nonzero coefficients of D are 1, we say that D is reduced.

Every nonzero f ∈ K has only finitely many zeroes and poles and hence x 7→
vx(f) defines a divisor; we denote it by div(f). Any divisor thus obtained is called
a principal divisor. If f is a nonzero constant, then clearly div(f) = 0. The converse
also holds: if div(f) = 0, then f̂ : C → P1 is a morphism which takes its values in
P1 r {0,∞} and since f̂ is closed, f̂ must be constant.

Notice that div(f/g) = div(f) − div(g) and so div defines a homomorphism
K× → Z(C) from the (multiplicative) group of units of K to the (additive) group
of divisors. The cokernel of this homomorphism will be identified with the Picard
group Pic(C) of C defined below so that we have an exact sequence

1→ k× → K× → Z(C) → Pic(C)→ 1.

We say that two divisors D and D′ on C are linearly equivalent (and write D ≡ D′)
if they have the same image in Pic(C), in other words, if their difference D −D′ is
a principal divisor.

Invertible modules. There is direct connection between divisors and vector
bundles of rank one. Recall (3.7.7) that a vector bundle over a variety X of rank
r is essentially a locally free OX -module of rank r. When r = 1, the vector bundle
is called a line bundle and the associated locally free OX -module of rank one an
invertible sheaf for the following reason. If L and L′ are invertible OX -modules,
then L ⊗OC L′ is one. Also the dual, L∨ := HomOX (L,OX), is invertible and the
evaluation map t⊗ s ∈ L∨ ⊗OX L 7→ t(s) ∈ OC is an isomorphism. It then follows
that the isomorphism classes of invertible O-modules make up a group for which
[L] + [L′] = [L ⊗OC L′]. Its zero element is represented by OX and −[L] = [L∨].
We write this group additively, because it is abelian: s⊗ s′ ∈ L ⊗OC L′ 7→ s′ ⊗ s ∈
L′⊗OC L is an isomorphism. It is called the Picard group of X and denoted Pic(X).

EXAMPLE 4.2.1. An important example of an invertible sheaf is the canonical
sheaf ΩC of the smooth curve C. Note that a rational section of ΩC is just an
element of ΩK/k. The divisor of such a section (when nonzero) is called a canonical
divisor. More generally, ifX is a smooth variety of dimension d, then ΩdX = ∧dOXΩX
is invertible and referred to as the canonical sheaf of X.

Although much of what follows applies to an arbitrary normal variety, we re-
turn to the smooth curve C. Let L be an invertible OC -module. Then a rational
section of L is a section of L given on an open-dense subset with the understanding
that two such are considered equal if they coincide on an open-dense subset. So
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this vector space is

k(L) := lim−→
U open-dense in C

L(U).

This is a vector space over K = k(C) of dimension one, a generator being given by
a generator so of L|U for some open nonempty U ⊆ C (any rational section of L is
then of the form fs with f ∈ k(C)).

Any nonzero section s ∈ L(C) defines a divisor div(s) ≥ 0 on C: it is charac-
terized by the property that if so ∈ L(Uo) is generator of L|Uo (so Uo ⊂ C open en
φ ∈ OUo 7→ φso ∈ L|Uo is an isomorphism), and s|Uo is written fso with f ∈ O(Uo),
then div(S)|Uo = div(f). If s′ ∈ L(C) is another section of L, then s′ = fs for some
f ∈ K and then div(s′) = div(f) + div(s) (check this on every U ⊂ C over which
we are given a a local trivialization). In other words, div(s′) is linearly equivalent
to div(s). Conversely, if f ∈ K is such that div(f) + div(s) ≥ 0, then fs ∈ L(C).

We could also do this for a rational section so of L; the only difference being
that its divisor div(so) need not be ≥ 0. It is of course still true that is f ∈ K is
nonzero, then fso is a rational section of L whose divisor is div(so)+div(f). As any
rational section of L is so obtained, we see that ξ determines a linear equivalence
class of divisors, i.e., an element [ξ] ∈ Pic(C). In particular, fso is a regular section
of ξ precisely when div(so) + div(f) ≥ 0. Since any regular section of L is of this
form, we conclude that the space of regular sections of L can be identified with the
space of f ∈ K with div(so) + div(f) ≥ 0.

We can take this a bit further. If L and L′ are invertible OC -modules with
nonzero rational sections s resp. s′, then L ⊗OC L′ is line bundle for which s ⊗ s′
is a nonzero rational section. It is straightforward to verify that div(s ⊗ s′) =
div(s) + div(s′). We also note that s determines a rational section s∨ of the dual
L∨ of ξ: is is characterized by the property that s∨(s) = 1 where s has neither a
zero nor a pole. It is not hard to check that div(s∨) = −div(s). In particular, we
have a rational section of HomOX (L,L′) = L∨ ⊗OC L′ which takes s to s′; it has
divisor −div(s)+div(s′). If the latter is a principal divisor, say equal to div(f), then
the rational section of HomOX (L,L′) which takes fs to s′ has as its divisor zero.
This just means that we have an OC -isomorphism L ∼= L′ of invertible modules. In
other words, L and L′ are isomorphic if and only if div(s) and div(s′) are linearly
equivalent.

There is also an inverse procedure which associates to a divisor D on a smooth
curve C a locally free OC -module of rank one OC(D): if U ⊂ C is open, then the
module of sections ofOC(D) over U (which we will denote by H0(U,OC(D)) rather
than by OC(D)(U)) are the f ∈ K = k(U) with vx(f) ≥ −dx for all x ∈ U . These
two constructions are indeed each others inverse: if L is an invertible OC -module,
and D is the divisor of a nonzero rational section s of L, then an OC -isomorphism
O(D) ∼= L is defined by f 7→ fs.

We sum up:

Proposition 4.2.2. With every invertible OC -module L is associated a linear equiv-
alence class of divisors on C (the divisors of its rational nonzero sections) and this
linear equivalence class is a complete invariant of the isomorphism type of L. This
identifies Pic(C) with the the group of linear equivalence classes of divisors on C.

Is given a rational section s of L with divisor D, then f ∈ OC(D) 7→ fs ∈ L
is an isomorphism of invertible OC -modules which identifies the k-vector space
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H0(C,L) = L(C) of regular sections of L with the the space of f ∈ K with div(f) ≥
−D.

Given an invertible OC -module L and a divisor D, then we write L(D) for
O(D) ⊗OC L. So a section of L(D) over an open nonempty U ⊆ C is a rational
section of L whose divisor restricted to U is ≥ −D|U . Note that if D is a divisor for
L, then L(−D) ∼= OC .

4.3. The Riemann-Roch theorem

We first introduce a second vector space attached to an invertible sheaf.

DEFINITION 4.3.1. Let L be an invertible OC -module. A repartition of L, is a
map s which assigns to every x ∈ L a rational section sx of L with the property
that sx is regular at x for all but finitely many x ∈ C. We say that the repartition is
regular if sx is regular at x for all x ∈ C.

Note that if f ∈ K and s is a repartition of L, then so is fs : x 7→ fsx. This
makes the set of repartitions of L a K-vector space; we shall denote that vector
space by A(L). The regular repartitions form a k-subspace Areg(L). Note that
A(L(D)) = A(L), but that in general Areg(L(D)) 6= Areg(L). Any rational section s
of L defines repartition s by letting sx be the germ of s as x. The latter is regular
precisely if s is regular. The obvious map k(L) → A(L) is one of K-vector spaces.
It is clearly an injection and k(L) ∩ Areg(L) = L(C). Said differently, L(C) is the
kernel of the map k(L) → A(L)/Areg(L). We observe that A(L)/Areg(L) can be
understood as the k-vector space of polar parts of sections of L:

A(L)/Areg(L) ∼= ⊕x∈C
(
K ⊗OC,x Lx

)
/Lx.

We shall often write AC(D) resp. Areg
C (D) for A(OC(D)) resp. Areg(OC(D)), omit-

ting D, when D = 0 (note however that AC(D) = AC). So AC/Areg
C = ⊕x∈CK/Ox.

Observe that AC is in fact a ring(1) which contains Areg
C as a subring.

Recall that L(C) is also written H0(C,L). We now define H1(C,L) (the first
cohomology group of L) as the cokernel of the above map so that we have an exact
sequence

0→ H0(C,L)→ k(L)→ A(L)/Areg(L)→ H1(C,L)→ 0.

We will see that the middle map what is called in functional analysis a Fred-
holm map: its kernel and its cokenel are finite diemensional k-vector spaces. The
Riemann-Roch theorem will be a formula for its index χ(L) := dimk H0(C,L) −
dimk H1(C,L). We first show that H1(C,OC) = Coker(K → ⊕x∈CK/Ox) is finite
dimensional as a k-vector space. To this end we consider for a finite nonempty
subset S ⊂ C the natural map

O(C r S)→ ⊕x∈SK/OC,x
and denote by P(S) its cokernel (we shall later see that C r S is affine, so that we
can also write k[C r S] for O(U r S)). Note that when S′ ⊆ S, the preimage of
the subsum ⊕x∈S′K/OC,x ⊆ ⊕x∈SK/OC,x in O(C r S) is O(C r S′). So P(S′)
naturally embeds in P(S). It is also clear that ∪SP(S) (or rather lim−→S

P(S)) equals
H1(C,OC), where the union (limit) is taken over all finite subsets of C.

1This an analogue of the adèle ring in algebraic number theory.
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Lemma 4.3.2. Let φ : C ↪→ P be a closed immersion in a projective space and
H ⊂ P a hyperplane which does not contain the image of φ so that S = φ−1H
is finite. If Pφ(z) the Hilbert-Serre polynomial of φ(C), then P(S) has the (finite)
dimension 1− Pφ(0).

PROOF. The map O(C r S) → ⊕x∈SK/OC,x has as its kernel the functions
regular on C and hence consists of the constants. We regard P r H as an affine
space which contains C rS as a closed subset (so that C rS is affine). We observe
that we may identify the degree r-part of the homogeneous coordinate ring of
C with the k-vector space k[C r S]r of regular functions on C r S that are the
restriction of a degree r polynomial on P rH. If D := φ∗H, then for every r ≥ 0,
the above map restricts to an injection

k[C r S]r/k → ⊕x∈Sm−rdxC,x /OC,x.

The dimension of the target space is
∑
x∈S rdx = r deg φ(C). We know that Pφ(z)

is of degree dimφ(C) = 1 and has leading coefficient deg(φ(C)) so that Pφ(z) =
deg(φ(C))z+Pφ(0). For r large enough, dimk k[CrS]r = Pφ(r) and so the cokernel
of this map has dimension 1 − Pφ(0). This proves that these cokernels stabilize to
P(S) and that dimP(S) = 1− Pφ(0). �

Corollary-definition 4.3.3 (Genus of a curve). For S as in the previous lemma,
P(S) → H1(C,OC) is an isomorphism. In particular, H1(C,OC) is of finite dimen-
sion 1− Pφ(0). We call dimk H1(C,OC) the genus of C and denote it by g(C).

PROOF. Since H1(C,OC) = lim−→S
P(S), it suffices to show that for every finite

S′ ⊇ S, the natural map P(S) ↪→ P(S′) is an isomorphism. Given such an S′, choose
a hypersurface in P which contains φ(S′), but does not contain φ(C). If r is the
degree of this hypersurface, then let φ′ : C ↪→ P ′ be the r-fold Veronese embedding
so that our hypersurface determines a hyperplane H ′ in P ′ which does not contain
φ′(S) and for which S′ ⊆ φ′−1H ′. Then we have injections P(S) ↪→ P(S′) ↪→
P(φ′−1H ′). Now the Hilbert-Serre polynomial for φ′ is given by Pφ′(z) = Pφ(rz)
and so dimP(φ′−1H ′) = 1 − Pφ′(0) = 1 − Pφ(0) = dimP(S). It follows that
P(S) ↪→ P(S′) is an isomorphism. �

EXAMPLE 4.3.4. We observed in Remark 3.10.15 that for a smooth plane curve
C of degree d, PC(0) = 1− (d− 1)(d− 2)/2 and so g(C) = (d− 1)(d− 2)/2.

EXERCISE 86. Prove that g(P1) = 0.

Corollary 4.3.5 (Riemann-Roch). Let L be an invertible OC -module. Then the
vector spaces H0(C,L) and H1(C,L) are finite dimensional. Every divisor of a
rational section of L has the same degree and if we denote this common degree by
deg(L), then we have the Riemann-Roch formula:

χ(L)(:= dimk H0(C,L)− dimk H1(C,L)) = 1− g(C) + deg(L).

PROOF. If D is the divisor of a rational section of L, then L is isomorphic to
OC(D). If we prove the Riemann-Roch formula for the latter, but with deg(L)
replaced by deg(D), then it will also follow that deg(D) is invariant of L. We
compare the situation for D and D′ := D + (x) for some x ∈ C. We claim that we
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have an exact sequence of k-vector spaces

0→ H0(C,OC(D))→ H0(C,OC(D′))→ m−dx−1
C,x /m−dxC,x →

→ H1(C,OC(D))→ H1(C,OC(D′))→ 0.

Note that the term in the middle is a k-vector space of dimension one. Let us now
indicate what the maps are and establish at the same time exactness. The obvious
map H0(C,OC(D))→ H0(C,OC(D′)) is clearly an inclusion. It is an equality unless
there exists an f ′ ∈ H0(C,OC(D′)) with vx(f ′) = −dx − 1 (and then the second
map H0(C,OC(D′))→ m−dx−1

C,x /m−dxC,x is onto). On the other hand,

AC/Areg
C (D)→ AC/Areg

C (D′)

is surjective with kernel m−dx−1
C,x /m−dxC,x . So we divide out both members by the

image of K, we obtain a surjection

H1(C,OC(D))→ H1(C,OC(D′))

whose kernel can be identified with the image of m−dx−1
C,x /m−dxC,x in the left hand

side. This image is zero precisely when K ∩Areg(D′) = H0(C,OC(D′)) contains an
f ′ such that vx(f ′) = −dx − 1. This yields the exact sequence.

Returning to the proof of the corollary, we note that it is trivially true forD = 0.
The exact sequence shows that if H0 and H1 are finite for D, then so they are for
D′ and vice versa. The alternating sum of the dimensions of the terms of a finite
exact sequence of finite dimensional vector spaces is zero and so it then follows that
χ(OC(D)) = χ(OC(D′)) − 1. Since we can restate this as χ(OC(D)) − deg(D) =
χ(OC(D′)) − deg(D′), this assertion proves that the Riemann-Roch formula holds
for D if and only if it holds for D′. So if we use induction on

∑
x∈C |dx|, this then

reduces the assertion to be proved to the trivial case D = 0. �

REMARK 4.3.6. For any abelian sheafF on a spaceX there are defined (sheaf) cohomol-
ogy groups Hi(X,F) (i = 0, 1, 2, . . . ) such that H0(X,F) = F(X). A very general theorem
asserts that the cohomology groups of a coherent sheaf F on a projective variety X are finite
dimensional k-vector spaces which are zero in degree > dimX so that we can form its Eu-
ler characteristic χ(X,F) :=

∑dim(X)
i=0 (−1)k dimk Hi(X,F). So the Riemann-Roch theorem

says that for an invertible OC -module χ(C,L) = 1− g(C) + deg(L), where we note that for
k = C the right hand side is of a topological nature (for the Hausdorff topology): g(C) is the
topological genus of the compact connected orientable surface underlying C and deg(L) is
the Euler number of the associated complex line bundle. Something like this is still true in
the general projective setting: χ(X,F) can be expressed in terms of other invariants, which
for k = C, are topological in character.

Linear systems. Effective divisors on C arise when we have a morphism φ :
C → P to a projective space of positive dimension such that the image of φ is not
contained in a hyperplane of P . Then φ(C) is of dimension one and any hyperplane
H ⊂ P determines a divisor on C as follows. First note that φ−1H is a finite set.
With every x ∈ C is associated the intersection number of C and H at x: a local
equation f for H at x in OP,x yields φ∗(f) ∈ OC,x and the intersection number
in question is vx(φ∗f). This intersection number only depends on C and H and is
zero unless x ∈ φ−1H (when φ(x) /∈ H, then we can take f = 1). Denoting this
intersection number (φ∗H)x, then we define the intersection divisor by

φ∗H : x ∈ C 7→ (φ∗H)x.
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We shall see that all effective divisors arise in this manner.

Proposition-definition 4.3.7. A complete linear system on C is the set of positive
divisors in a linear equivalence class of divisors on C. It has naturally the structure
of a projective space: if L an invertible OC -module defining this inear equivalence
class, then the points of the finite dimensional projective space P(H0(C,L)) corre-
spond to the divisors of nonzero sections of L.

PROOF. Two sections of L defined the same divisor if and only if they are
proportional. So such a divisor corresponds to a point of the projective space
P(H0(C,L)). An isomorphism L ∼= L′ of invertible OC -modules induces an iso-
morphism H0(C,L) ∼= H0(C,L′) of k-vector spaces and hence an isomorphism of
the associated projective spaces |L| ∼= |L′|. So the projective structure on a com-
plete linear system is independent of the way we represent by an L. �

REMARK 4.3.8. So a complete linear system on C is naturally a projective space,
but as the proof of the above proposition already suggests, there is no canonically
defined vector space of which it is the projectivization: a divisor D in the associated
linear equivalence class must be chosen to obtain such a vector space. This is why
we defined the notion of a projective space as in 3.1.1. Note that by Riemann-Roch
the dimension of this projective space is dimk H1(C,O(D))− g(C) + degD.

The complete linear system defined by a divisor D is often denoted |D|. It is
nonempty precisely when H0(C,O(D)) 6= {0}. In that case we have a morphism

φD : C → |D|∨ = P̌(H0(C,O(D))) = P(H0(C,O(D))∨).

This map is easiest to describe in terms of a basis (f0, . . . , fr) of H0(C,O(D)): it
is then given by the morphism [f0 : · · · ; fr] : C → Pr. In more intrinsic terms:
a hyperplane H ⊂ |D|∨ is by definition given by a point of |D|, that, is a divisor
DH ≥ 0 linearly equivalent to D, and then DH = φ∗D. This property characterizes
φD.

4.4. Residues and Serre duality

The Riemann-Roch theorem becomes much more effective when we use an
interpretation of the k-dual of H1(C,L) in terms of the differentials on C. Let us
first recall that we have universal k-derivation d : K → ΩK/k. The target ΩK/k is
a K-vector space of dimension one: if t ∈ K is such that K is a finite separable
extension of k(t)/k, then dt is nonzero as an element of ΩK/k and generates it asK-
vector space: indeed, if φ ∈ K has minimal polynomial F = xn+a1x

n−1+· · ·+an ∈
k(t)[x] (so with ai ∈ k(t)), then F is separable so that F ′(φ) 6= 0 and from

0 = d(F (φ)) = F ′(φ)dφ+

n∑
i=1

a′i(t)φ
n−idt.

it then follows that dφ ∈ Kdt.
For every x ∈ C we also have a universal k-derivation d : OC,x → ΩOC,x/k =:

ΩC,x. The universal property of the latter makes that we have a natural homo-
morphism of OC,x-modules ΩC,x → ΩK/k which extends d : K → ΩK/k. This
homomorphism is nonzero and since ΩC,x is free OC,x-module of rank one, the re-
sulting K-linear map K ⊗OC,x ΩC,x → ΩK/k is an isomorphism of K-vector spaces
of dimension one.
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The trace map for differentials. Let π : C → C ′ be a finite separable mor-
phism between smooth projective curves. This gives rise to the finite field extension
K/K ′, for which we have defined the trace TrK/K′ : K → K ′. This isK ′-linear map
which assigns to f ∈ K the trace of the endomorphism of the (finite dimensional)
K ′-vector space K defined by multiplication with f . This trace has a counter part
for differentials: we have a K ′-linear map TrK/K′ : ΩK/k → ΩK′/k characterized
by the property that if α′ ∈ ΩK′/k and f ∈ K, then TrK/K′(fπ

∗α′) = TrK/K′(f)α′.
It is easy to check that this is unique: if α′ is nonzero, then so is π∗α′ (for π is
separable) and hence generates ΩK/k as a K-vector space. So every α ∈ ΩK/k can
then be written as fπ∗α′ with f ∈ K. To see that this is well-defined, suppose
β′ ∈ ΩK′/k is another nonzero element. Then β′ = uβ for a unique u ∈ K ′ and so
if α = gπ∗β′, then f = gu and hence

TrK/K′(f)α′ = TrK/K′(gu)α′ = uTrK/K′(g)α′ = Tr(g)β′.

The residue operator. In what follows we need the residue map, that is, a
k-linear map Resx : ΩK/k → k, which has all the properties familiar in the complex
case in terms of a uniformizer t ∈ mC,x r m2

C,x: if we write α ≡ (
∑N
i=0 a−it

−i)dt/t

(mod ΩC,x), then Resx(α) = a0. That this is well-defined when k = C is a conse-
quence of the Cauchy residue formula, but such an argument is not immediately
available in positive characteristic. We follow another approach due to Tate [11] to
define the residue and derive its basic properties.

Proposition 4.4.1. Let O be a DVR which contains its residue field κ. Denote by F
its field of fractions. Then there is a κ-linear map Res : ΩF/κ → κ characterized by
the following two properties:

(i) Res is zero on the image of ΩO/κ ↪→ ΩF/κ and
(ii) for any f ∈ F× and n ∈ Z, Res fn−1df is zero unless n = 0, in which case

we get the image of ν(f) in κ (here ν : F× → Z is the valuation).

Moreover, Res factors through the m-adic completion as a map Res : Ω̂F/κ → κ

These two properties indeed determine Res: if t ∈ mrm2 is a uniformizer, then
every α ∈ ΩF/κ is the sum of an element of ΩO/κ and a polar part

∑N
i=0 a−it

−i−1dt
and it follows from the two properties that then Res(α) = a0. Since the same is
true for any α ∈ Ω̂F/κ (it is the sum of an element of Ω̂O/κ and a polar part a s
above) is then also clear that Res factors through the m-adic completion.

We apply this to O = OC,x, where C is a smooth curve and x ∈ C so that κ = k
and F = K. In that case we write Resx : ΩK/k → k for Res. Proposition 4.4.1 tells
us that for a given α ∈ ΩK/k, Resx α can only be nonzero if α has a pole at x. So
we can form the (finite) sum

∑
x∈C Resx α.

Theorem 4.4.2 (Residue theorem). For every α ∈ ΩK/k,
∑
x∈C Resx α = 0.

The proofs involve a notion of trace in an infinite dimensional setting.
Let κ be a field and let V be a κ-vector space. We say that a κ-linear map f :

V → V is finipotent if for some n ≥ 0, fnV is finite dimensional. Such a map has a
trace: since the sequence {fnV }n≥0 is nonincreasing, it becomes stationary, and we
let TrV (f) be the trace of the map f has on the finite dimensional Vf := ∩n≥0f

nV
(or on any other other f -invariant finite dimensional subspace V ′ ⊂ V for which f
is nilpotent on V/V ′). Some of the usual properties of the trace continue to hold
for finipotent endomorphisms. For example, if f : V → V is finipotent and W ⊂ V
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is a f -invariant κ-linear subspace, then f induces finipotent maps in W and V/W
and we have TrV (f) = TrW (f) + TrV/W (f). Also, if φ : V → V ′ and φ′ : V → V ′

are κ-linear maps of κ-vector spaces, and φ′φ : V → V is finipotent, then so is
φφ′ : V ′ → V ′ and φφ′ has the same trace as φ′φ. This is because φ induces an
isomorphism Vφ′φ → V ′φφ′ with inverse induced by φ′.

More generally, we say that a κ-linear subspace E ⊂ Endκ(V ) is finipotent if
for some n ≥ 0, fn · · · f1V is finite dimensional for all n-tuples (f1, · · · , fn) ∈ En.
The trace then defines a κ-linear map E → κ and, as with the usual trace, we have
TrV ([f, g]) = 0 when f, g ∈ E. Tate’s approach to the residue exploits the fact that
in certain situations [f, g] is finipotent, but may have nonzero trace (so that neither
fg nor gf is finipotent).

We shall consider κ-linear subspaces of V up to finite dimensional κ-linear
subspaces of V : given two such subspaces A,A′, we say that A is not much bigger
than A′ (and we write [A] ≤ [A′]) if A/(A∩A′)(∼= (A+A′)/A′) is finite dimensional.
If both [A] ≤ [A′] and [A′] ≤ [A], we say that A and A′ are about the same. This is
clearly an equivalence relation and so if [A] is understood to mean the equivalence
class of A, then ≤ is indeed a partial order on the set of equivalence classes.

Suppose given a κ-linear subspace A ⊂ V . Let EA resp. EA denote the space
of κ-linear maps f : V → V with [fV ] ≤ [A] resp. [fA] ≤ [0]. Then EAA := EA ∩EA
is finipotent and hence the linear form TrV : EAA → κ is defined. We claim that
EA +EA is the space E(A) of κ-linear maps V → V with [fA] ≤ [A]. The inclusion
EA+EA ⊆ E(A) is clear. To see the opposite inclusion, assume [fA] ≤ [A]. Choose
a projection π ∈ Endκ(V ) onto A. Since fA is contained in A = Ker(1− π) plus a
finite dimensional subspace, fA := (1− π)f to A has finite rank, i.e., fA ∈ EA. On
the other hand, fA := f − fA = πf has its image in A, and hence lies in EA.

It is clear that E(A) is a (possibly noncommutative) κ-subalgebra of Endκ(V )
which contains EA and EA as two-sided ideals. This implies that when (f, g) ∈
EA × EA or (f, g) ∈ E(A) × EAA , fg and gf lie in EAA and hence are finipotent. In
particular, they will have the same trace, so that TrV [f, g] = 0.

If f, g ∈ E(A) happen to commute, then we can take this one step further: if
we write f = fA+fA with fA ∈ EA and fA ∈ EA, so that fA ∈ EA∩(f+EA), then
it is clear that [fA, g] ∈ EA. But we also have [fA, g] ∈ [f + EA, g] ⊆ [EA, g] ⊆ EA
and so [fA, g] ∈ EAA . This means that TrV ([fA, g]) ∈ κ is defined. In case f ∈ EA,
we have fA ∈ EAA and hence TrV ([fA, g]) = 0. So TrV ([fA, g]) only depends of f
(not on the way we wrote f as fA + fA), with the dependence on f via its coset
f +EA. We will write TrVA([f, g]) for this trace. By interchanging the roles of f and
g, we conclude that TrVA([f, g]) only depends on the pair of cosets (f +EA, g+EA)
and is antisymmetric.

The dependence on A is through [A], for changing A by a finite dimensional
subspace of V does not change TrVA([f, g]). In particular, TrVA([f, g]) = 0 whenA has
finite dimension or finite codimension. In the same vein, V hardly matters in the
sense that if have a κ-linear subspace V ′ ⊆ V which contains A, and is preserved by
f and g, then TrV

′

A ([f, g]) = TrVA([f, g]). We can therefore write Tr[A]([f, g]) instead.

Proposition 4.4.3. Let R be a commutative κ-algebra, V an R-module and A ⊂ V
an almost submodule in the sense that for every f ∈ R, dimκ(A + fA)/A is finite.
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Then for f, g ∈ R, Tr[A]([f, g]) only depends on fdg ∈ ΩR/κ and hence defines a
linear map Res[A] : ΩR/κ → κ.

It has the property that Res[A](fdg) = 0 when f and g preserve A.

PROOF. Our assumption says that R lands in E(A). Recall that ΩR/κ can be
obtained as the quotient of R⊗κR by the κ-linear subspace spanned by the tensors
f ⊗ gh− fg ⊗ h− fh⊗ g. So all we need to do is to check that the corresponding
identity holds for Tr[A]. Choose fA, gA, hA as above. Then fAgA ∈ EA ∩ (fg+EA)
(and similar for the other products). The required property then follows from the
identity [fA, gAhA] = [fAgA, hA] + [hAfA, gA].

When fA ⊆ A and gA ⊆ A, then if π ∈ Endκ(V ) is a projection onto A,
we may take fA = fπ and gA = gπ, so that [fA, gA] = [f, g]π = 0 and hence
TrVA([f, g]) = 0. �

It is clear from the definition that if n ≥ 0, then for any f ∈ R, Res[A](f
ndf) =

0. So if f is invertible in R, then also Res[A](f
−n−2df) = Res[A](−f−nd(f−1)) = 0.

EXERCISE 87. Show that

Res[A] f
−1df = Tr[A](f, f

−1) = dimκ(A/A ∩ fA)− dimκ fA/(A ∩ fA),

or rather, the image of the right hand side in κ.

PROOF OF PROPOSITION 4.4.1. We here take Res := Res[O]. The two basic
properties that characterize it as a residue have already been established, except
for the assertion that Res[O](df/f) = ν(f). But since O ∩ fO = mmax{0,ν(f)}, we
indeed get using Exercise 87,

Res[O](df/f) = dimκ

(
O/mmax{0,v(f)})− dimκ

(
mν(f)/mmax{0,ν(f)}) = ν(f). �

PROOF OF THE RESIDUE THEOREM. We here take R = K, κ = k and our am-
bient K-module V will be KC . First we show that

∑
p∈C Resp = Res[OC ]. Let

f, g ∈ K and consider α = fdg ∈ ΩK/k. We assume α 6= 0 and let S ⊂ C be a
finite set which contains the poles of f and g. Put U := C r S and write KC as a
finite direct sum of K-modules KC = KS ⊕KU so that OC = ⊕x∈SOC,x ⊕ OU . It
follows that Res[OC ] = Res[OU ] +

∑
p∈C Resp. Since f and g preserve the summand

OU ⊂ KU , we find that Res[OC ] α =
∑
p∈C Resp α.

So it now remains to show that Res[OC ] = 0. Since K ∩ OC , being the space of
regular functions of C, is equal to k, we have an exact sequence

0→ k → K ⊕ OC → K + OC → 0.

This shows that Res[K+OC ] + Res[k] = Res[K⊕OC ] = Res[K] + Res[OC ]. But the
terms distinct from Res[OC ] all vanish: Res[k] = 0 because k is finite dimensional,
Res[K+OC ] = 0 because K + OC ⊂ KC is of finite codimension, and Res[K] = 0
because K is a K-submodule of KC . It follows that Res[OC ] = 0, also. �

REMARK 4.4.4. Proposition 4.4.1 requires the that the DVR O contains its
residue field κ. Examples of DVR’s which do not have this property arise quite
naturally as follows. Given an irreducible variety X, then every irreducible subva-
riety Y ⊂ X of codimension one which contains a smooth point of X determines
a discrete valuation vY on k(X) by assigning to a rational function on X its ‘order
of vanishing’ along Y (which is negative when it has a pole there; see Exercise 53).
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The residue field of the associated DVR is k(Y ), but this does not appear in a natu-
ral manner as a subfield of k(X) unless X is a curve (so that Y is a singleton and
k(Y ) = k). Indeed, in this generality there is no reasonable definition of a residue
map ResY : Ωk(X)/k → k(Y ).

Yet without making this assumption, a residue can still be defined for the O-
submodule ΩO(log) of differentials α ∈ ΩF which have, what is called, a logarithmic
pole: this means that α can be written as ft−1dt + β with t ∈ m a uniformizer,
f ∈ O and β ∈ ΩO. It is easy to check that the image f of f in κ then only
depends on α (for any other uniformizer t′ is of the form ut with u ∈ O× and so
t′−1dt′ = t−1dt+ u−1du ≡ t−1dt (mod ΩO)) and so we then define Res(α) := f .

EXERCISE 88. Let F be the field of fractions of a DVR that is complete for the
m-adic topology. Assume that its residue field κ is of characteristic zero and is
contained in F . Prove that the sequence

0 −−−−→ κ −−−−→ F
dK/κ−−−−→ Ω̂F/κ

Res−−−−→ κ −−−−→ 0.

is exact.

EXERCISE 89. In the situation of Remark 4.4.4, assume also given a ring R such
thatO has the structure of an R-algebra (so when R = Z this assumption is empty).
Put ΩrO/R(log) := ∧rOΩO/R(log), where ΩO/R(log) := ΩO(log) ∩ ΩF/R.

(a) Prove that dF/R takes ΩrO/R(log) to Ωr+1
O/R(log) so that this defines a differ-

ential graded subalgebra (Ω•O/R(log), dF/R) of (Ω•F/R, dF/R) (see Exercise 57).
(b) Show that the residue map extends uniquely to a map of complexes Res :

(Ω•O/R(log), dF/R) → (Ω•−1
κ/R, dκ/R) which is linear over Ω•O/R in the sense that if

α ∈ ΩpO/R and β ∈ ΩqO/R(log), then Res(α ∧ β) = α ∧ Res(β), where α ∈ Ωpκ/R is
the image of α. Conclude that we have an induced map on cohomology which is
H•DR(O/R)-linear.

The duality theorem. Given g = (gx ∈ K)x∈C ∈ AC and an α ∈ ΩK/k,
then for only finitely many x ∈ C, gxα has a pole at x ∈ C and hence the sum∑
x∈C Resx gxα is also finite. The residue theorem tells us that this sum is zero on

the main diagonal K ⊂ AC and so we have defined a pairing

(α,g +K) ∈ ΩK/k × AC/K 7→
∑
x∈C Resx gxα ∈ k

If f ∈ K, then (fα,g + K) and (α, fg + K) have clearly the same image, and so
this pairing factors through ΩK/k ⊗K (AC/K). When viewed as a pairing between
(infinite dimensional) k-vector spaces, it gives rise to a k-linear map

R : ΩK/k → Homk(AC/K, k),

which is even K-linear when we let the right hand side inherit the structure of a K-
vector space via (AC/K (so if f ∈ K and a ∈ Homk(AC/K, k), then fa : AC/K →
k is obtained by first multiplying in AC/K with f and then applying a).

Note that if α ∈ H0(C,ΩC(D)), then R(α) vanishes on Areg(−D). In other
words, it induces a k-linear map of finite dimensional k-vector spaces

RD : H0(C,ΩC(D))→ Homk(H1(C,OC(−D)), k) = H1(C,OC(−D))∨.

Since ΩK/k is the union of the LΩ(D), the image of R lies in the union of the finite
dimensional subspaces H1(C,OC(−D))∨ ⊂ Homk(AC/K, k). We call the latter
union the topological dual of AC/K and denote it by Homc

k(AC/K, k). Concretely,
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a k-linear form α : AC/K → k lies in Homc
k(AC/K, k) if and only if it vanishes

on the image of Areg(−D) → AC/K for some divisor D (2). This is a K-linear
subspace, for if f ∈ K, and α is as above, then fα : AC/K → k vanishes on the
image of Areg(−D + div(f))→ AC/K.

Theorem 4.4.5 (Duality theorem). The map R : ΩK/k → Homc
k(AC/K, k) is a

K-linear isomorphism and for every divisor D on C,

RD : H0(C,ΩC(D))→ H1(C,O(−D))∨

is a k-linear isomorphism.

So the Riemann-Roch theorem can now be stated as:

dimk H0(C,OC(D))− dimk H0(C,ΩC(−D)) = 1− g(C) + degD.

The proof of Theorem 4.4.5 relies on:

Lemma 4.4.6. The K-vector space Homc
k(AC/K, k) is of dimension ≤ 1.

PROOF. We follow the proof given in Serre [10]. Suppose the dimension in
question is > 1 so that we can find a, b ∈ Homc

k(AC/K, k) that are K-independent.
Choose a divisor D > 0 such that both a and b vanish on the image of Areg(−D)→
AC/K, in other words, lie in H1(C,O(−D))∨, and let E be a positive divisor on C
of degree n > 3g(C) − 3 + deg(D). Since a and b are K-independent, the k-linear
map

(f, g) ∈ H0(C,OC(E))⊕H0(C,OC(E))→ fa+ gb ∈ Homc
k(AC/K, k)

is injective. Its image vanishes on Areg
C (−D−E), hence lies in H1(C,OC(−D−E))∨.

Since −D−E < 0, we have H0(C,OC(−D−E)) = 0 and so by the Riemann-Roch
theorem,

dimk H1(C,OC(−D−E))∨ = dimk H1(C,OC(−D−E)) = g(C)− 1 + deg(D) + n.

This theorem also tells us that dimk H0(C,OC(E)) ≥ 1 − g(C) + n. It follows that
2(1− g(C) + n) ≤ g(C)− 1 + deg(D) + n. But this contradicts our assumption that
n > 3(g(C)− 1) + deg(D). �

PROOF OF THE DUALITY THEOREM 4.4.5. The K-linear map R is injective, has
1-dimensional source and a target of dimension ≤ 1. So if we prove it to be
nonzero, then it will be an isomorphism. For this we fix some p ∈ C and a nonzero
α ∈ ΩK/k. Then choose for every x ∈ C a gx ∈ K with vx(gx) = −vx(α) except
when x = p, where we require that vp(gp) = −vp(α) − 1. Then Resx(gxα) = 0
unless x = p and hence R(α)(g) = Resp(gpα) 6= 0. So R is an isomorphism.

To prove that RD is an isomorphism, it suffices to show that the R-preimage of
H1(C,OC(−D))∨ equals H0(C,ΩC(D)). But this amounts to: if α ∈ ΩK/k and for
all x ∈ C, Resx gxα = 0 for all gx with v(gx) ≥ dx, then vx(α) ≥ −dx for all x ∈ C
and this is obvious. �

2We can make AC/K a topological k-vector space by stipulating that the images of the maps
Areg(−D) → AC/K make up a neighborhood basis of the origin (these are subspaces of finite codi-
mension by Corollary 4.3.5). If we give k the discrete topology, then Homc

k(AC/K, k) is the space of
continuous linear forms on AC/K.
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EXERCISE 90. Assume that k has characteristic zero. Let C be an irreducible
smooth projective curve. Prove that if f ∈ K is such that df is everywhere regular
(i.e., in Ω[C]) then f is constant. Conclude that in the sequence in Exercise 88 need
not be exact if O = OC,p (which is not complete for the mC,p-adic topology).

4.5. Some applications of the Riemann-Roch theorem

There are quite a few.

Corollary 4.5.1. We have dimk H0(C,ΩC)) = g(C), dimk H1(C,ΩC)) = 1 and
deg(ΩC) = 2g(C)− 2.

PROOF. The duality theorem asserts that H0(C,ΩC)) can be identified with the
k-dual of H1(C,OC) and so its dimension is g(C). Similarly, H1(C,ΩC)) can be
identified with the k-dual of H0(C,OC) and so its dimension is 0. Then Riemann-
Roch implies that deg(ΩC) = g(C) − 1 + dimk H0(C,ΩC)) − dimk H1(C,ΩC)) =
2g(C)− 2. �

Corollary 4.5.2. A complete linear system on C of degree d ≥ 2g(C) − 1 has
dimension d− g(C).

PROOF. Let D be a divisor of degree d. In that case a divisor for ΩC(−D) has
degree ≤ 2g(C) − 2 − d ≤ −1, and so H0(C,Ω(−D)) = {0}. The assertion then
follows from the Riemann-Roch theorem: dim H0(C,OC(D)) = 1− g(C) + d. �

We say that p ∈ C is a fixed point of a linear system if p is in the support of
each of its members. So p is a fixed point of |D| if D′ := D − (p) is such that
|D| = (p) + |D′|. Or equivalently, the inclusion H0(C,OC(D′)) ⊆ H0(C,OC(D)) is
an equality.

Corollary 4.5.3. A complete linear system on C of degree d ≥ 2g(C) has no fixed
point. If d > 2g(C), then this linear system defines an embedding of C in a projec-
tive space.

PROOF. Let D be a divisor of degree d ≥ 2g(C) and let p ∈ C. We then have
dim |D− (p)| = d− 1− g(C) < d− g(C) = dim |D| and so there exists a member of
|D| such that p is not in its support.

Now assume d ≥ 2g(C) + 1. When p, q ∈ C, then Corollary 4.5.2 implies that
dim |D − (p)| > dim |D − (p) − (q)|. So if p 6= q, then there exists a member D′

of |D| with p ∈ supp(D′) and q /∈ supp(D′). This means that for the associated
map φ : C → P , there exists a hyperplane H ⊂ P such that φ(p) ∈ H and φ(q) /∈
H. In other words, φ is injective. In case p = q, this means that there exists
a hyperplane H ⊂ P such that φ∗H has multiplicity 1 at p, which means that
φ : mP,φ(p)/m

2
P,φ(p) → mC,p/m

2
C,p is onto. Nakayama’s lemma then implies that

φ∗ : OP,φ(p) → OC,p is also onto.
In order to show that φ is a closed immersion, it now suffices to show that for

every p ∈ C, there exists an affine neighborhood Vp ⊂ P of φ(p) in P such that φ
defines a closed immersion of φ−1Vp into Vp. To prove this, let Up be an open affine
neighborhood of p in C and let f1, . . . , fr ∈ k[Up] generate k[Up] as a k-algebra.
Then by the above there exists an affine neighborhood Vp ⊂ P of φ(p) in P and
gi ∈ k[Vp] such that Up ⊇ φ−1Vp and φ∗gi = fi|φ−1Vp. Hence φ defines a closed
immersion of φ−1V into V . �
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REMARK 4.5.4. The original Riemann-Roch theorem was stated in a complex-analytic
setting, where C is a compact connected Riemann surface. The notion of a divisor is then
defined as before and the Riemann-Roch theorem and the duality theorem are for spaces
of meromorphic functions resp. differentials (rather than for their rational counterparts). It
is then proved that the genus is in fact the genus of the underlying topological surface (by
showing that every element ofH1(C;C) is uniquely represented as the sum of a holomorphic
differential and the complex conjugate of one, so that the first Betti number of C is 2g(C)).
The holomorphic version of Corollary 4.5.3 tells us that C can be holomorphically embedded
in a complex projective space and with a bit more work one may show that the image is
in fact Zariski closed. Consequently, C can be endowed with the structure of a smooth
complex projective curve for which every meromorphic function is a rational function. It
is not hard to show that this structure must be unique. So a compact connected Riemann
surface is essentially the same thing as an irreducible smooth complex projective curve and
the topological genus of the surface is equal to the genus as defined here.

Corollary 4.5.5. If S ⊂ C is finite and nonempty, then C r S is affine.

PROOF. Let D =
∑
x∈S(p) and choose an integer n > 0 such that ndeg(D) ≥

2g(C) + 1. By Corollary 4.5.3 this defines a closed immersion φ : C ↪→ P in a
projective space and a hyperplane H ⊂ P such that nD = φ∗H. So φ maps C r S
isomorphically onto a closed subset of the affine space P r H. Hence C r S is
affine. �

EXERCISE 91. Prove that for a divisor D of degree 2g(C) − 2 which is not
canonical, dimk H0(C,OC(D)) = g(C)− 1.

EXERCISE 92. Let C be a smooth irreducible projective curve of genus 1 and let
o ∈ C.

(a) Prove that C has a differential with neither poles nor zeroes.
(b) Let x, y ∈ C. Prove that there is a unique point of C (denoted here x ∗ y)

such that (x) + (y) ≡ (o) + (x ∗ y). Prove that ∗ defines on C the structure of an
abelian group having o as its unit element.

(c) Prove that the linear system |3(o)|maps C isomorphically onto a cubic curve
in a projective plane with o mapping to a flex point and that x ∗ y ∗ z = o means
that (x) + (y) + (z) is the preimage of a line.

The (defining) identity dim H1(C,OC) = g(C) tells us that in order that a given
polar part (fx +OC,x)x∈C ∈ ⊕x∈C(K/OC,x) = AC/OC be the polar part of a ratio-
nal function, the Laurent coefficients of the (fx)x∈C must obey g(C) linearly inde-
pendent linear equations. These linear equations are defined by residue identities.
To be precise, we have an exact sequence

0 −−−−→ K −−−−→ ⊕x∈CK/OC,x −−−−→ H0(C,ΩC)∨ −−−−→ 0,

where the last map assigns to (gx +OC,x)x∈C the linear function α ∈ H0(C,ΩC) 7→∑
x∈C Resx gxα. The next corollary gives a similar characterization for the polar

parts of differentials. It is simpler, as it involves just one equation:

Corollary 4.5.6. The residue map determines a natural isomorphism H1(C,ΩC) ∼=
k and the sequence

0 −−−−→ ΩK/k −−−−→ ⊕x∈CΩK/k/ΩC,x

∑
x Resx−−−−−−→ k −−−−→ 0
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is exact. In other words, a necessary and sufficient condition that given polar parts
of differentials at a finite set of points of C is the polar of a rational differential on
C is that the sum of their residues is zero.

PROOF. The map ΩK/k → ⊕x∈CΩK/k/ΩC,x = A(C,ΩC)/Areg(C,ΩC) in the
sequence is clearly injective and its cokernel is (by definition) H1(C,ΩC), which
according to Corollary 4.5.1 is of k-dimension 1. The residue theorem asserts that
its composite with the residue map is zero. Since the residue map is not identically
zero, the corollary follows. �

EXERCISE 93 (The Weierstraß gap sequence). Let C be a connected smooth
projective curve of genus g and let p ∈ C. We put C◦ := C r {p}.

(a) Prove that the orders of vanishing at p of a regular differential on C at p
make up a sequence m1 < · · · < mg with mg ≤ 2g − 2.

(b) Let n be a nonnegative integer. Prove that for a positive integer n the
following are equivalent:

(i) n /∈ {m1 + 1, . . . ,mg + 1},
(ii) there exists a f ∈ k(C)× regular on C◦ with νp(f) = −n,

(iii) there exists a morphism π : C → P1 of degree n such that π−1(∞) = {p}.
(c) Prove that Z≥0 r {m1 + 1, . . . ,mg + 1} is a semigroup. (It is not known

which semigroups can arise.)

EXERCISE 94. Let C be a connected smooth projective curve and let p ∈ C.
Prove that for any n ∈ Z, the natural map Frac(OC,p)/(mnC,p+k[C◦])→ IK(−n(p))

is a k-isomorphism.

EXERCISE 95. Assume that k is of characteristic zero. Let C be a connected
smooth projective curve of genus g and let Ω′K/k be the subspace of ΩK/k consisting
of differentials which have zero residue at each x ∈ C (differentials of the second
kind in the classical terminology).

(a) Prove that d : K → ΩK/k has its image in Ω′K/k.

(b) By Exercise 88, for every x ∈ X the image of ω ∈ Ω′K/k in Ω̂C,x can be

written as dφx for some φx ∈ Frac(ÔC,p). Show that for ω, η ∈ Ω′K/k, the residue

sum ψ̃(η, ω) :=
∑
x∈X Resx φxη ∈ k is well-defined (i.e., is a finite sum and in-

dependent of the choice the φx), antisymmetric (ψ̃(ω, η) = −ψ̃(η, ω)) and zero
when one of its arguments lies in dk[C◦]. Conclude that ψ̃ factors through a map
ψ : H1

DR(C)×H1
DR(C)→ k, where H1

DR(C) := Ω′K/k/dK.
(c) Prove that the natural map H0(C,ΩC) → H1

DR(C) of k-vector spaces is
injective and that ψ is zero if one of its arguments lies in the image of this map (so
that ψ induces a pairing ψ′ : H0(C,ΩC)×H1

DR(C◦)/H0(C,ΩC)→ k).
(d) Construct a natural isomorphism of k-vector spaces H1

DR(C)/H0(C,ΩC) ∼=
H1(C,OC) which identifies ψ′ with the Serre duality pairing H0(C,ΩC)×H0(C,ΩC)→
k. (Hint: use that H0(C,ΩC) = Coker(K → ⊕x∈CK/OC,x).) Conclude that
dimk H1

DR(C) = 2g and that ψ is nondegenerate.

REMARK 4.5.7. when k = C, C has an underlying Riemann surface Can, there is a
natural isomorphism H1

DR(C)→ H1(Can;C). It identifies Ω[C] withH1,0(Can), the quotient
H′DR(C)/Ω[C] ∼= IK(0) with H0,1(Can) and ψ with (α, β) 7→ 2π

√
−1
∫
Can α ∧ β.
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EXERCISE 96. Let C and k be as in the previous exercise and suppose also given
a finite, nonempty subset S ⊂ C. We put C◦ := C r S and denote by Ωo[C

◦] the
subspace of Ω[C◦] = Ωk[C◦]/k with zero residue at each s ∈ S.

(a) Prove that the natural map Ωo[C
◦]/dk[C◦]→ H1

DR(C) is an isomorphism.
(b) Recall (from Exercise 57) that we defined H1

DR(C◦) := Ω[C◦]/dk[C◦]. Prove
that we have an exact sequence

0→ H1
DR(C)→ H1

DR(C◦)→ kS
sum−−→ k → 0.

Conclude that dimk H1
DR(C◦) = 2g + |S| − 1 and that H1

DR(C)→ H1
DR(C r {x}) is

an isomorphism for any x ∈ C.
(c) Denote by Ω[C](S) the subspace of Ω[C◦] consisting of differentials that

have a simple pole at each point of s ∈ S. Prove that the natural map Ω[C](S) →
H1

DR(C◦) is injective and that its cokernel can be identified with IK(0).

REMARK 4.5.8. When k = C, the natural map H1
DR(C◦) → H1(Can r S;C) is an iso-

morphism. This identifies the exact sequence in (b) with part of the exact (Gysin) sequence
of the pair (Can, Can r S):

0→ H1(Can;C)→ H1(Can r S;C)→ CS sum−−→ C→ 0,

except that the middle map is multiplied with 2π
√
−1. The subspace of H1

DR(Can r S;C)
defined by Ω[C](S) is in mixed Hodge theory denoted by F 1 H1(Can r S;C); together with
the integral lattice H1(Can r S;Z) ⊂ H1(Can r S;C) this completely describes the mixed
Hodge structure on H1(Can r S;C).

REMARK 4.5.9 (Cartier operator). The situation in positive characteristic is best under-
stood in terms of the Cartier operator (or rather its inverse), which we will define below. Let
us begin with a simple observation. We fix a field κ. Then d = dκ[t]/κ : κ[t] → Ωκ[t]/κ =

κ[t]dt is the κ-linear map which sends tr to rtr−1dt. If the characteristic of κ is zero, then
r is invertible in κ and so d is onto. In other words, the Poincaré lemma holds for κ[t]. If
however κ has characteristic p > 0, then rtr−1dt is zero precisely when r is divisible by p
and so k[tp]tp−1dt complements the image of d. In fact, d is linear over the subalgebra k[tp]
and its cokernel is a free k[tp]-module of rank one whose generator is represented by tp−1dt.

Now let A be any κ-algebra. The inverse Cartier operator for A and the prime p is the
map

δ : A→ ΩA/κ, f 7→ fp−1df

The right hand side could be read as d(fp)/p, but this makes of course no sense when κ has
characteristic p. Let us first observe that δ kills κ and that for f, g ∈ A,

δ(fg) = fpδ(g) + gpδ(f).

The map δ is in general not additive:

δ(f + g) = δ(f) + δ(g) + d
(∑p−1

i=1 p
−1
(
p
i

)
f igp−i

)
.

The right hand side makes sense, even in characteristic p (and the verification of the identity
is then easy), once one observes that for i = 1, . . . , p− 1,

(
p
i

)
.i/p =

(
p−1
i−1

)
. In particular, δ is

additive modulo the image of d.
Assume now that κ has characteristic p so that the absolute Frobenius Fr := FrA : f ∈

A 7→ fp ∈ A is a ring homomorphism. For an A-module M , we define Fr∗M to be the
A-module structure obtained by precomposition with Fr: it has the same underlying abelian
group as M , but f ∈ A acts on Fr∗M as Fr(f) = fp acts on M . The preceding properties
then tell us that we have a κ-derivation

D : A→ Fr∗(ΩA/κ/dA), f 7→ fp−1df + dA.
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It must factor through the universal derivation, so that we obtain an A-linear map

D : ΩA/κ → Fr∗(ΩA/κ/dA), fdg 7→ fpgp−1dg + dA.

In particular, if g ∈ A× and c ∈ κ, then D(cg−1dg) = cpg−1dg + dA. We see that if A is the
field of fractions of a DVR with residue field λ, then ResD = Frλ Res.

For A = κ[t], D is an isomorphism of A-modules and essentially the isomorphism found
above: f(t)dt 7→ f(t)ptp−1dt = f(tp)tp−1dt. More generally, D is an isomorphism if A
is the affine coordinate ring of a smooth affine connected curve. Its inverse is then called
the Cartier isomorphism. We thus obtain for a connected smooth projective curve C isomor-
phisms of k[Cr{x}]-modules Ω[Cr{x}] ∼= Fr∗H1

DR(Cr{x}) (x ∈ C) and an isomorphism
of k-vector spaces Ωo(C) ∼= Frk∗H1

DR(C).

4.6. The theorem of Riemann-Hurwitz

Let π : C → C ′ be a finite morphism of smooth projective irreducible curves.
Such a morphism is closed and hence surjective. The ramification index ex(π) of
π at x ∈ C is equal to vx(π∗t), when t ∈ OC′,π(x) is a uniformizer. It is clear that
ex(π) ≥ 1 with equality for all but finitely many x ∈ X and so we can define the
ramification divisor Rπ of π by x ∈ C 7→ ex(π)−1. Note that this divisor is effective.

If D′ is a divisor on C ′, then we define π∗D′ to be the divisor which assigns to
x ∈ C, the value ex(π)d′π(x). This definition is justified for the following reason:

Proposition 4.6.1. Let π : C → C ′ be a finite morphism of smooth irreducible
projective curves so that π∗ defines a finite field extension k(C)/k(C ′) of degree
d, say. Then π∗OC is as a OC′ -module locally free of rank d and π∗ multiplies the
degree of a divisor by d: for every divisor D′ on C ′ we have deg(π∗D′) = ddeg(D′).

For the proof we need the following lemmas.

Lemma 4.6.2. Let Y be a smooth curve and let M be a coherent OY -module
without torsion: we can cover Y by affine open subsets U such that the k[U ]-
annihilator of any nonzero element of M(U) is trivial. Then M is a locally free
over Y (and hence defines a vector bundle).

PROOF. We find such a neighborhood V of any y ∈ Y as follows. Let My :=
OY,y ⊗k[Y ] M be the localization of M at y. We note that sinceMy is torsion free,
M →My is injective and My is also torsion free.

Let e1, . . . , er ∈ My project onto a k-basis of My/mY,yMy. By Nakayama’s
lemma, these then generateMy as a OY,y-module.

We claim that these elements are in fact a OY,y-basis of My. Suppose there
exists a nontrivial relation

∑r
i=1 uiei = 0 with ui ∈ OY,y We then choose one with

mini v(ui) minimal. Since this relation becomes trivial in My/mY,yMy, we must
have v(ui) ≥ 1 for all i. Choose a uniformizer t ∈ m. Then u′i := ui/t ∈ OY,y. Now∑r
i=1 u

′
iei ∈ My is annihilated by t and since My is torsion free, it must be zero.

As mini v(u′i) = mini v(ui)− 1, we get a contradiction.
Now let U be an affine neighborhood of y in U on which each ei is defined.

Let m1, . . . ,ms ∈ M(U) be k[U ]-generators. Then mi =
∑r
j=1 fi

jej for certain
fi
j ∈ OY,y. So if we replace U by a possibly smaller neighborhood of y on which

each fij is regular, thenM(U) is a free k[U ]-module. �

The following is a special case of what is known as the approximation lemma.
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Lemma 4.6.3. Let U be an irreducible smooth affine curve and S ⊂ U a finite
subset. Then the natural k-algebra homomorphism k[U ]→ ⊕s∈SOU,s/mnU,s is onto
for all n ≥ 0.

PROOF. Given n ≥ 0 and an element of ⊕x∈SOU,s/mnU,s, then represent the
latter by (fs ∈ OU,s)s∈S . Let S′ be the union of S and the set of x ∈ U for which
vx(fs) < 0 for some s ∈ S. This is a finite set. We then observe that here exists for
every s ∈ S, a φs ∈ k[U ] which is zero on S′ r {s} and 1 in s. We can of course
replace φs by φ′s := 1 − (φs − 1)2 = 2φs − φ2

s. Since vs(φ′s − 1) = vs((φs − 1)2) >
vs(φs−1) we can, by iterating this, also arrange that in addition that vs(φs−1) ≥ n.
For every m ≥ 1, φms still has this property, but will then also vanish of order ≥ m
at every point of S′ r {s}.

It follows that for m� n, f :=
∑
s∈S φ

m
s fs is a regular function on U with the

property that it has the same image in OC,x/mnC,x as fs for all s ∈ S. �

EXERCISE 97. Show that in the situation of Lemma 4.6.3, the natural k-algebra
homomorphism k[U r S]→ ⊕s∈Sk(U)/mnU,s is also onto for all n ≥ 0.

PROOF OF PROPOSITION 4.6.1. We show that for every y ∈ C ′, the divisor
π∗(y) has degree d. Choose an open affine neighborhood U ′ of y in C ′ with the
property that there exists a t ∈ k[U ′] which has a simple zero at (y) and no other
zeroes (so t defines a uniformizer of OC′,y). Then U := π−1U ′ is also affine and
k[U ] is finite over k[U ′]. Lemma 4.6.2 applied to Y = U ′ and M = k[U ] shows that
upon replacing U ′ be a possibly smaller neighborhood of y we can arrange that in
addition k[U ] is a free k[U ′]-module of finite rank. Proposition 1.9.3 then implies
that this rank equals d. This also proves that π∗OC is coherent as a OC′ -module. It
is torsion free and hence by Lemma 4.6.2 locally free of rank d.

By Lemma 4.6.3, the natural homomorphism of k-algebras

φ : k[U ]→ ⊕x∈π−1(y)OC,x/mC′,yOC,x

is onto. It is clear that ker(φ) ⊇ tk[U ]. The opposite inclusion holds also, for
if f ∈ ker(φ), then vx(f) ≥ vx(t) for all x ∈ f−1y and hence ft−1 is regular
on U = π−1U ′, so that f ∈ tk[U ]. It follows that φ induces an isomorphism of
k[U ]/tk[U ] onto ⊕x∈π−1(y)OC,x/mC′,yOC,x. Since the k-dimension of k[U ]/tk[U ]
is d, and the k-dimension of ⊕x∈π−1(y)OC,x/mC′,yOC,x is the degree of π∗(y), the
proposition follows. �

Lemma 4.6.4. Let π : C → C ′ be a morphism of projective curves and assume
that no ramification index is divisible by the characteristic of k. If D′ is a canonical
divisor for C ′, then π∗D′ +Rπ is a canonical divisor for C.

PROOF. Let D′ be the divisor of a differential α′ on C ′. It suffices to show
that π∗D′ + Rπ is the divisor of π∗α′. In other words, that for x ∈ C, vx(π∗α′) =
vx(α′)ex(π) + (ex(π)− 1).

Let us write e for ex(π). Let t ∈ OC′,f(x) and s ∈ OC,x be uniformizers so that
π∗t = use for some unit u ∈ OC,x. Then α′ = u′tndt with n = vf(x)(α

′) and u′ ∈
OC′,f(x) a unit. The identity π∗α′ = π∗(u′tn)π∗(dt) = π∗(u′)unsneπ∗(dt) shows
that vx(π∗α′) = ne + vx(π∗dt) and so it remains to show that vx(d(π∗t) = e − 1.
This follows from d(π∗t) = sedu + euse−1ds and the fact that eu is a unit in OC,x
(here we use that e has nonzero image in k). �
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EXERCISE 98. Assume char(k) = p > 0. Does Lemma 4.6.4 hold for the Frobe-
nius map π : [z0 : z1] ∈ P1 7→ [zp0 : zp1 ] ∈ P1?

So if in the situation of Lemma 4.6.4 we compare the degrees of the canonical
divisors we obtain:

Corollary 4.6.5 (Riemann-Hurwitz). Let π : C → C ′ be a morphism of irreducible
smooth projective curves and assume that no ramification index is divisible by the
characteristic of k. Then 2g(C)− 2 = deg(π)(2g(C ′)− 2) + deg(Rπ).

PROOF. By Corollary 4.5.1 the degree of D′ is 2g(C ′) − 2. So by Proposition
4.6.1, the degree of π∗D′ +Rπ is deg(π)(2g(C ′)− 2) + deg(Rπ). This is by Lemma
4.6.4 the degree of a canonical divisor of C and hence equal to 2g(C)− 2. �

EXAMPLE 4.6.6. Assume k not of characteristic 2 and let π : C → P1 be of
degree 2. Then the hypotheses of the above Corollary are fulfilled and and Rπ will
be a reduced divisor. We find that its degree must be 2g(C) + 2. Such a curve C is
said to be hyperelliptic.
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of a variety, 35
Frobenius

absolute, 26
map, 25

fully decomposable form, 92
function field, 34

Gauß map, 98
genus of a smooth curve, 114
germ

of a section of a sheaf, 72
going down theorem, 51
going up

property, 41
theorem, 41

graded
algebra, 78
ideal, 78
length of a module, 100
ring, 78

graded-commutative algebra, 70
Grassmannian, 91

Hilbert
basis theorem, 13
function of a graded module, 104
Nullstellensatz, 9
polynomial of a graded module,

104
Hilbert-Serre theorem, 104
homogeneous

coordinate ring, 80
coordinate ring relative to a base,

80
coordinate system, 76

polynomial, 79
homomorphism

of modules, 17
hyperplane

of a projective space, 76
hypersurface, 7

ideal sheaf, 74
immersion

of varieties, 33
incidence locus, 89
incomparability property, 41
initial coefficient, 18
initial coefficient of a polynomial, 18
integral

closure, 39
dependence, 39
extension, 39

invertible sheaf, 111
irreducible

chain of length d, 53
component, 10
space, 10

Kähler differential, 67
Krull dimension

of a ring, 54
of a space, 53

Leibniz rule, 66, 70
length of a module, 99
line bundle, 111
linear morphism

of projective spaces, 76
linear subspace

of a projective space, 76
local homomorphism, 61
localization

of a ring, 14
logarithmic pole, 120

main theorem of elimination theory,
87, 88

module over a ring, 16
morphism

of affine varieties, 20
of prevarieties, 28
of ringed spaces, 73

multiplicative subset of a ring, 14
multiplicity at a prime ideal, 100
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Nakayama’s Lemma, 40
Nash blow-up, 99
Noether normalization, 44
noetherian

module, 17
ring, 12
space, 12

nonarchimedean norm, 60
nonarchimedean valuation, 65
nonsingular variety, 62
normal

domain, 46
extension of fields, 50
variety, 46

normalization, 49
of a domain, 46

numerical polynomial, 103

perfect field, 38, 44
Picard group, 111
Picard group of a curve, 111
Plücker

embedding, 92
relations, 96

Poincaré series
of a graded module, 105

positive divisor, 111
presheaf, 74
prevariety, 28
prime avoidance lemma, 50
prime chain of length n, 41
principal divisor, 111
principal subset, 7
product

of affine varieties, 30, 31
proj construction, 83
projection away from, 85
projective

morphism, 82
variety, 82

projective degree
of a graded module, 105

projective n-space, 75
projective space, 75

associated to a vector space, 75
projective support

of a graded module, 104
proper graded ideal, 78
pure dimension

of a ring, 54
of a space, 53

quadratic hypersurface, 22
quasi-affine variety, 30
quasi-coherent sheaf, 73
quasi-compact space, 23
quasi-projective variety, 82
quotient module, 17

radical ideal, 9
radical of an ideal, 9
ramification divisor, 126
rational function, 35
rational map, 35
rational variety, 37
reduced divisor, 111
reduced ring, 9
regular

local ring, 62
regular function, 7, 9, 27
relative differentials, 68
repartition, 113
residue

for a DVR, 117
residue theorem

on a curve, 117
resolution of singularities, 86
resultant, 88
Riemann extension property, 47
Riemann-Hurwitz theorem, 128
Riemann-Roch theorem

for curves, 114
ring

of integers, 40
total fraction, 34

ringed space, 72

section
of a sheaf, 71

Segre embedding, 81
sheaf

abelian, 71
of rings, 72

sheaf of ring valued functions, 28
sheafification, 74
singular

locus, 62
point, 62
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smooth
locus, 62
morphism, 69
point, 62
variety, 62

spectrum
maximal ideal, 22

stably rational variety, 37
stalk, 28, 72
standard atlas

for a projective space, 77
strata, 64
stratification, 64
submodule, 17
subvariety, 33

tangent bundle, 95
tautological bundle, 95
tensor algebra, 70
tensor product over a ring, 31
total differential, 57
total fraction ring, 15
trace

for differentials, 117
for finite extensions, 117
form, 48

of a finite field extension, 48
transition map, 29

UFD, 11
ultrametric, 60
uniformizer, 65
unique factorization domain, 11
unirational variety, 37
universal hypersurface of degree d,

91

variety, 33
vector bundle

over a variety, 94
Veronese embedding, 90
Veronese surface, 82
vertex of a cone, 79

Weierstraß gap sequence, 124
Weil zeta function, 26

Zariski
cotangent space, 61
tangent space, 61
topology, 7, 8
topology on a projective space, 77
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