Farb-Looijenga Course Spring 2020

0

Higher dimensional Dehn trusts

Usual Dehn trive : diffeo of E= S'x [0,1] that is the identity on DE, anhpodal on S'x {03 and commutes

1

which involution $(u,v) \mapsto (-u,-v)$. A natival generalization in duin is $E = E(S^n)$, the unit dok boundle in TS^n . The associated Dehn trust $h: E \supseteq$ has the same S properties. It can be defined as follows: regard S^n as the unit sophere in Eucledean (n+s)-space \mathbb{R}^{n+1} and let $h': E \supseteq$ be the geoderic flow evolucted at time π . So of $E = \frac{1}{2}(u,v) \in S^n \times \mathbb{R}^{n+1}$: $u \perp v$, $\mathbb{N} \setminus \mathbb{N} \leq 1^2$, then h(u,v) = (u',v').

We use the metric to dentify E with the unit dok bundle in T^*S^n . It then comes with a natural symplectic form. It is invariant under h: his a symplectic form defines an overhation of E - this is the overhation that we will use. The symplectic form defines an overhation of E - this is the overhation that we will use. The isomorphisms $\widetilde{H}_{n}(E) \cong \widetilde{H}_{n}(S^n) = \widetilde{H}_{n}(S^n)$ shows that $\widetilde{H}_{n}(E)$ is concentrated

in degree n and is as cyclic. Let $\mathcal{S} \in \widetilde{H}_n(\Xi)$ be a generator. Since h acts on S^n as the antipodal most we have $h_{\mathcal{X}}(\overline{s}) = (1)^{n+1}S$. The self-intersection $\mathcal{S} \cdot \overline{F}$ is $\pm e(S^n)$:

 $\delta.\delta = \begin{cases} 0 & nodd \\ 2 & n \equiv 0 (4) \\ -2 & n \equiv 2(4) \end{cases}$

We are mostly interested in n=0,1.

Pop If n=2, then he is isotopic to the identity. Proof by protive. Choose an mentadian of S^M, and let an onenled geodesic Shrink we oriented circles on (say)the left of the geodesic to a constant map. This defines a canonical isotopy rel. DE of he to the identity map.

Rem1: A theorem of Paul Seitel (1997) within that no nonhinal power of this istopre to 1 by sumplectomorphisms.

<u>Rem 2:</u> We get another isohopy of h^2 to the identity by taking the showhing circles on the right (or equivalently, by changing the orientation of \mathcal{B}^n). The two isohopies define a loop in Diff (E, DE). Knowheriner has shown that this loop represents a nontrival elt of TC, Dff (E, DE). Its appearance in algebraic germetry

Let M be a complex man. of dim not, f: M _ C holom. We say most f has an ordinary double point at p if df(p) = 0 and the hession of f at p is nondegenerale (=) If has a simple zero at p). A holom version of the Morse lemma unplies that we can than find local coard's (zo,..., zn) at p such that f is there given as fip) + Z' zi. B This suggests we investigate $f: \mathbb{C}^{n+1} \subseteq \mathbb{C}$, $z \mapsto \mathbb{Z}_{c=0}^n Z_c^2$. Let 0 < y << 1 and consider 112hs1 B = { = { = e C + 1 : || = || ≤ 1 , |+ (2) | < y } B 14 $\dot{\Delta} = \{ t \in C : |t| < \eta \}$ We let 3B = { ZEB : || Z ||= 1 }. `f-'(0) Then 2B_D is locally Co-twise (hence trisse) and (B, 20) _ A is locally mial over D \$ 203. Do if o <t<y, then the monodromy of B- D over the circle of vadius VE is naturally an wotony class of (Bz-3Bz)

We construct a diffeo
$$(B_{\pm}, \partial B_{\pm}) = (E_{\pm}, \partial E)$$
 as follows.
A point $Z = \mathcal{U} + V_{\mp} y \in \mathbb{C}^{h_{\pm}}$ lies in B_{\pm} if and only if $||\mathcal{U}||^2 + ||\mathcal{U}||^2 \leq i$,
 $||\mathcal{U}||^2 - ||\mathcal{U}||^2 = t$ and $\langle \mathcal{U}, \mathcal{U} \rangle = 0$. This implies $||\mathcal{U}||^2 \geq t$ and $||\mathcal{U}||^2 \leq i - t$.
Then $Z = (\mathcal{U}, \mathcal{U}, \mathcal{U})$ is as desired.
A none defaulted analysis shows that the monodromy isotopy class of $(B_{\pm}, \partial B_{\pm})$
is naturally represented by $h_{\pm}(E_{\pm}, \partial E_{\pm})$?

Atiyah Plop

In the preceding ormation assume n=2. If we blow up p in Xo we revolve the singulants:

 $\hat{X}_{0} \longrightarrow X_{0}$ The enc. dursor C (over p) is like a conic in P^{2} , so $\cong P^{1}$. We have $C \cdot C = -2$ The monocromy of f becomes handle if we make a base change of order 2:

what single blow up:

Ý___y

The enc. dissor Q is like a nonsing quadric in \mathbb{N}^3 , so $\cong \mathbb{N}^1 \times \mathbb{N}^1$. We have $Y_0 = X_0$ and the shirt transform of Y_0 is just a copy of \hat{X}_0 . It meets Q transversally in a plane section, \simeq the discounded of $\mathbb{P}^1 \times \mathbb{P}^1$. We can retract Q arts C in two ways (coverp to the two factors $\mathbb{P}^1 \times \mathbb{P}^1$). This can in fact we done bolon inside $\hat{\Pi}$ so that we get

 $M^{*} \leftarrow M - M^{*}$ The maps f^{\pm} are now inhorst sugnanties (submersions) $f^{+} \qquad f^{-} \qquad They are equal are <math>\Delta^{1} \setminus \{a\}$ and they also have $f^{+} \qquad f^{-} \qquad Central fiber \cong X_{0}$. Yet they are different : you $\Delta^{1} \qquad pass from M^{+}$ to M^{-} by taking in $Y^{+}_{0} \cong X_{0}$. We copy of C, blow it up in M^{+} and then blow down in a different way to get M.

(This the Atiyah flop). This impties a nonseparated uses property for moduli spaces of certain KS surfaces. This phenomenon will has occur in a projective setting.

Rem. Since Y^{\pm}_{-} , Δ^{i} is C[®]. loc-hunal, we get the isotopies of the square of the monodromy to the identity. These are essentially the isotopies found earlier.

3

Kodawa-Spencer theony (generalities)

maps X ison onto Xo XciX X: a connected complex manifold of dim n. A deformation of X over a pointed complex manifold S=0 is given by: T for submersion This is a reasonable def. because of the Ehresmann fibration theorem which tells us that TE is then locally mirial in the C[∞]-calegory. What may makers here is what happens near a and so we should achally think of this as a deformation over the germ (S,o). This replaces X by its germ at 2(X) = Xo. With this in mind the deformations of X are objects of a Calegory Def(X): a morphism from $(X \subset \mathcal{X}, \mathcal{X}', \pi', S')$ to $(X \subset \mathcal{X}, \mathcal{X}, \pi, S)$ is given Xby a pair (f, \tilde{f}) which makes the discovern $2 \neq 2$ commute and the square conteston. $(\mathcal{X}', \mathcal{X}'_{0}) \xrightarrow{\mathcal{F}} (\mathcal{X}, \mathcal{X}_{0})$ Def (X) has an obvious initial object: take $S = \{s\}$. $|\pi'| \equiv |\pi|$ $(S', \mathfrak{s}) \xrightarrow{f} (S, \mathfrak{s})$ A deformation is called time of it admits a murphion to the initial staged -A deformation is called universal of it is a final abject of Def (X) (need not exist?) Remark, Ant (X) naturally acts on a universal deformation (TI, i) of X: $\frac{rf}{here} g \in Aut(X), ken \qquad lg X I$ $here a unrope morphism <math>\chi \xrightarrow{fg} \chi$ $\pi \int \frac{fg}{fg} \int n$ $5 \xrightarrow{II}{fg}$ Applying this to g shows that this murphism is invertible The actum is given by grow (fg, Fg) Remork 2. If (X C, X T, S) is a deformation an O & TCS is singular, then we want to say that the restriction of TI over T is a deformation of X over T. So it is desirable to allow S to be any analytic gern at a point. The condition for Te to be a submession then becomes : IT is anoth, meaning to cal-analytically the the projection of a product (complex n-man) x (Tro) _1 (Tro). The includes the case When (S, o) is a "thickened point". For enamyle for (TI, 2) as above we can take The 1st order part of S: To S. The rediriction over this deformation is XC, TX/X, So this amounts to a hol entension of vector bundles: Jdn $\circ - \mathsf{T} X \longrightarrow \mathfrak{t}^* \mathsf{T} \mathcal{X} \longrightarrow \mathfrak{n}^* \mathsf{T}_S \mathsf{S} \longrightarrow \mathsf{o}$ (x) ToS

and Kis deformation over ToS is his al if and maly of this makazin ophits in the hol. category.

Let us unte Θ_{χ} for $O(T\chi)$ (just as we write Ω_{χ} for $O(T^*\chi)$). Then (χ)

gives the enact sequence of Ox-modules:

$$\circ - \Theta_{\chi} - \iota^{*} \Theta_{\widetilde{\chi}} - O_{\chi} \circ_{c} T_{o} S - o$$

and gives vise to the long enact sequence

$$\rightarrow H^{\circ}(X, \Theta_{X}) - H^{\circ}(X, i^{*}\Theta_{X}) - T_{o}S \xrightarrow{\delta} H^{\prime}(X, \Theta_{X}) - .$$
Kodawa-Spencer man

So the sequence (*) polits hol. () S=0. The definition of the KS-map is Prehorial: Tois! ToS H'(X, 2)

As of new our category Def (X) includes as objects def. over arb. anolytic germs.

Thm (Kodaira-Spencer,...) If $H^{0}(X, \partial_{X}) = H^{0}(X, \partial_{X}) = 0$, then X admits a new def. over a complex manifold germ (S;0), and its Kodaira map will be an isom of C-vector spaces (so drins = drin $H'(X, \partial_{X})$).

Classical example: X compact Riem surface of genus $g \ge 2$. Satisfies hyp of the above thin and to have a univ. def. with base (S, c), $T_s S \cong H'(X, \Theta_X)$ and have $T_s^*S \ge H^o(X, \Omega_X^{\otimes 2})$ (Serve duality), which is of drin 3g-3.

We now assume X is a K3 surface. Let
$$\alpha \in H^{\circ}(X, \Omega_{X}^{2})$$
 be nonhere 28ro. Then
 $\Theta_{X} \longrightarrow \Omega_{X}^{1} = \Omega_{X}$ is an isom of Θ_{X} -modules and so this induces an isom
 $g \longmapsto \Omega_{g}(\alpha)$
 $H^{\circ}(X, \Theta_{X}) \cong H^{\circ}(X, \Omega_{X}^{*}) \stackrel{!}{=} \begin{cases} \circ f \ i \neq 1 \\ H^{i}(X, \Omega_{X}^{i}) \end{cases}$ of dim 20.

Hence X has a new def. whose base (S, o) is a complex man of drin 20. The above identification $T_0 S \cong H^1(X, \Theta_X) \cong H^1(X, \Omega_X)$ can be expressed w/o reference to a generator of $H^0(X, S^2_X)$: we have a comprised som

$$T_{o}S \xrightarrow{\simeq} H'(X, \partial_{X}) \xrightarrow{} Hom_{c}\left(\underline{H}^{o}(X, \Omega_{X}^{2}), \underline{H}'(X, \Omega_{X}^{1})\right)$$

$$H^{o}(X) \xrightarrow{} H^{o}(X) \xrightarrow{} H^{o}(X)$$

We will interpret this as the derivative of a period map.

Hodge omicture and the period map for a K3.

Let M be a q-manifold which underlies a K3 ourface X. Then $p_1(M) = 2 C_2(X) = 2 e(X) = 2.24$. generator of $H^4(M)$. So M has a comonical or. $[M] \in H_q(M)$ (preserved by any self-diffeo of M). Let us write H for $H^2(M)$ equipped with

(it quedrete form
$$q(n) = \frac{1}{2}\int_{1/2} u d d$$

(where an even university some but form of agen (5.15)). For $d_1(1) \in H_{\mathbb{R}}$, set
 $(u, b) := \int u \partial p$
(a have have of trip (1,10)) $H^{1/2}$
 $(a have have of trip (1,10))$ $H^{1/2}(a)$
 $(a have have of trip (1,10))$ $H^{1/2}(a)$
 $(a have have of trip (1,10))$ $H^{1/2}(a)$
 $(a have have of trip (1,10))$
 $(a have have $f(x) = H^{1/2}(x)$
 $(a have $H^{1/2}(x) = H^{1/2}(x) = H^{1/2}(x)$
 $(a have $H$$$

$$\frac{P_{100p}}{D_{0}P_{1}} \text{ The derivative of P at 0,} \qquad D_{0}P_{1} \text{ To S} \longrightarrow T_{[H^{2,0}(X)]} D \cong Hum (H^{2,0}(X), \underline{H^{2,0}(X)^{\perp}/H^{2,0}(X)})$$
is the K-S map.
$$H^{1/1}(X)$$
Proof is not so difficult

<u>Cor</u> A def. (XC, X , S) is universal if and only if the gen (S,o) P, (D, [H^{2,0}(x)]) is an isom of hole genns.

7

Spinor orientation and Kähler cone

Have M and $H = H^2(M)$ are as above. The posself. 3-planes in H_{RE} make up an open subset $Gr_3^*(H_{RE})$. The group $O(q_{RE})$ acts bransitively and pupply on \overline{ot} ; it is in fact US symm. space ($\cong O(s, g)/O(s) \times O(ig)$) and (hence) inhactible. This implies detait $Y_{H_{RE}}^3 | Gr_3^+(H_{RE})$ is initial and hence one-hable. An element of $O(q_{RE})$ may or may not preserve its one-itation. This defines a hum. $\sigma: O(q_{RE}) \longrightarrow \mu_2$ (the <u>spinor name</u> for $-q_{RE}$) Together with det: $O(q_{RE}) \longrightarrow \mu_2$ this defines a subjection $O(q_{RE}) \longrightarrow \frac{1}{2} \times \mu_2$ whose hence is the identity component of $O(q_{RE})$. A <u>spinor orientation</u> of H_{RE} is an orientation of $Y_{H_{RE}}^3(H_{RE})$. We will see theat of H_{RE} . We use:

Thun (Yum-Tong Sin, 1983) Every K3 surface admits a Kähler wetric.

Recall that to give a Kähler metric on a complex manifold Y is to give a simplicitic form w on Y which is of type (1,1) and is ouch that $(u,v) \in T, Y \mapsto w(J_{p}u,v)$ is possible, everywhere. So the Kähler classes $[w] \in H^{h_1}(Y, \mathbb{R})$ make up an open convex cone in $H^{h_1}(Y, \mathbb{R})$.

For X as above, a Kähler class $[\omega] \in H^{1/1}(X,\mathbb{R})$ has the property that $q_{\mathbb{R}}([\omega]) > 0$. So $\Pi_X + \mathbb{R}[\omega]$ is a 3-plane and not oriented. The spinor constants thus obtained is independent of the choice of $[\omega]$, since these he in a convex cone. More is true:

Thm (Donaldson 1990) This opinor orientation is even in hursic to M: every complex of include making it a KS surface defines the same opinior orientation. In particular Diff (M) preserves this opinor orientation. <u>Thun</u> (Yau) Let X be a K3 surface and $\kappa \in H^{(3)}(X_3)(\mathbb{R})$ the class of a Kähler metric. Then there is a unique <u>Kähler-Einstein</u> metric g on X whose inagmany part represents κ (K-E metric means here: Receiflat)

This has important consequences.

Then currentin $(\mathbb{P}^3, \mathbb{P}^3 \setminus U) \cong (U_3 \otimes U)$