
MODULI SPACES AND LOCALLY SYMMETRIC VARIETIES

EDUARD LOOIJENGA

1. SOME CLASSICAL SYMMETRIC DOMAINS AND HODGE THEORY

Let G be a connected reductive Lie group with compact center. If G acts
smoothly and transitively on manifold X such that the stabilizer of a point is
maximal compact in G, then we call the G-manifold X a symmetric space for
G. Since the maximal compact subgroups of G belong to a single conjugacy
class, there is only one symmetric space for G up to unique isomorphism
(and one may think of it as the moduli space of the maximal compact sub-
groups of G). If X happens to a be a complex manifold on which G acts by
biholomorphic transformations, then X can be embedded as an open subset
in complex vector space and that is why X is then called a bounded symmet-
ric domain. These domains often appear in algebraic geometry because they
parametrize polarized Hodge structures. (And the philosophy is that their
arithmetically enhanced versions, the Shimura varieties, should parametrize
motives.)

The irreducible bounded symmetric domains, i.e., those for which G is
simple, were classified by E. Cartan. He listed them into six types (labeling
them by roman numbers), of which the first four are (classical) series and
the last two are exceptional in the sense that they are associated to groups
of type G2 and E7 respectively.

Siegel upper half spaces. Perhaps the most familiar class of bounded sym-
metric domains are those of type III (in the Cartan classification), usually
presented as a tube domain and then known as a Siegel upper half spaces.
Such an object is naturally associated with a finite dimensional real vector
space V endowed with a nondegenerate symplectic form a : V ×V → R. So
V has even dimension, 2g say, and if aC : VC×VC → C denotes the complex-
ification of the symplectic form, then the Hermitian form h : VC × VC → C,
h(v, v ′) :=

√
−1aC(w, w̄

′) has signature (g, g). We take G = Sp(V) and
X = HV , the subset of the Grassmannian GrG(VC): a g-dimensional sub-
spaces F ⊂ VC is in HV if F is totally isotropic relative to aC and positive
definite relative to h. The group Sp(V) acts transitively on HV . The stabi-
lizer of any F ∈ HV restricts isomorphically to the unitary group U(F); it is a
compact subgroup of Sp(V) and maximal for that property. That makes HV
a symmetric space for Sp(V). If F ∈ HV , then F defines a Hodge structure
on V of weight 1 polarized by a by taking V1,0 = F and V0,1 = F̄. Thus HV
parametrizes polarized Hodge structures on V of this type. This is why the

1



2 EDUARD LOOIJENGA

tautological bundle of rank g over Grg(VC) restricted to HV is often called
the Hodge bundle. We refer to its g-th exterior power, denoted by LV , as the
automorphic line bundle of HV .

Domains of type I. Another class of classical bounded symmetric domains
(type Ip,q in the Cartan classification) is defined by a finite dimensional
complex vector space W endowed with a nondegenerate Hermitian form
h : W × W → C of signature (p, q), say. We take G = U(W) and let
X be the open subset BW ⊂ Grp(W) of positive definite subspaces of di-
mension p. The action of U(W) on BW is transitive and the stabilizer of
F ∈ BW is the product of compact unitary groups U(F) × U(F⊥). This is
indeed a maximal compact subgroup of U(W). The tautological bundle of
rank p over Grp(W) restricts to one over BW; the automorphic line bundle
over BW is its pth exterior power and denoted by LW . The case p = 1 is
of special interest to us: then BW appears in Gr1(W) = P(W) as a complex
unit ball and the locus W+ of w ∈ W with h(w,w) > 0 can be identified
with the complement of the zero section L×W ⊂ LW . For p = q = 1, we
recover the usual upper half plane: there is a cobasis (z1, z2) of W such
that h(v, v ′) = −

√
−1(z1(v)z̄2(v

′) − z2(v)z̄1(v
′)). Then BW is defined by

Im(z1/z2) > 0. In fact, the set defined by h(v, v) = 0 defines a circle in P(W)
and there is a unique real form V ofW for which this circle is the associated
real projective line. The imaginary part of h defines a symplectic form a on
V for which BW gets identified with HV .

Type I domains can arise as subdomains of type III domains as follows.
With (V, a) as above, suppose we are given a semisimple σ ∈ Sp(V) (in
the sense that it decomposes VC into a direct sum of its eigenspaces: VC =
⊕λVλC). We assume that its fixed point set HσV is nonempty and determine
what it is like. Clearly, if F ∈ HσV , then σ ∈ U(F)×U(F̄ and so the eigenvalues
lie of σ are 1 absolute value and occur in complex conjugate pairs. Write
Fλ := F ∩ VλC.

Now note that V±1C is defined over R and that a is nondegenerate on
the underlying real vector space V±1. So HV±1 is defined dim F±1 defines
an element of HV±1 . Suppose λ 6= {±1}. Then aC(v, v ′) = aC(σv, σv

′) =
λ2aC(v, v

′) and so VλC is aC-isotropic. If Im(λ) > 0, then h is nondegenerate,
say of signature (pλ, qλ), and Fλ will be positive definite subspace of dimen-
sion pλ of VλC: it is an element of BVλ . Note that then V λ̄C = V̄λC has signature
(qλ, pλ) and that Fλ̄ is the annihilator of Fλ relative to aC. We thus obtain an
isometric embedding

HV1 ×HV−1 ×
∏

Im(λ)>0

BVλC ↪→ HV

whose image is a totally geodesic subdomain HσV . The centralizer of σ in
Sp(V), Sp(V)σ, will act transitively on this product via a homomorphism
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Sp(V)σ → Sp(V1)×Sp(V−1)×
∏

Im(λ)>0 U(VλC) that is in fact an isomorphism
and HσV may be regarded as its symmetric domain. The pull-back of the
automorphic line bundle LV can be equivariantly identified with the exterior
tensor product of the automorphic line bundles of the factors.

Thus a polarized Hodge structure of type (1, 0) + (0, 1) invariant under a
semisimple symmetry gives rise to point in such a product decomposition.
Our main interest will be in the factors that give rise to complex balls, i.e.,
those of type I1,q.

Domains of type IV. A class of classical bounded domains especially dear
to algebraic geometers are those of type IV. Such a domain is given by a real
vector space V of dimension n + 2 ≥ 2 endowed with a symmetric bilinear
form s : V × V → R of signature (2, n). We let sC : VC × VC → C denote
the complexification of s and h : VC × VC → C the Hermitian form defined
by h(v, v ′) = sC(v, v̄

′). Let V+ ⊂ V be the set of v ∈ VC with sC(v, v) = 0
and h(v, v) > 0 and denote by DV := P(V+) ⊂ P(V) the corresponding
projectivization. The latter is an open subset in the nonsingular quadric in
P(VC) defined by sC(v, v) = 0. If we assign to [v] ∈ DV the oriented plane
P[v] spanned by the real part and the imaginary part of v, then we obtain an
identification of DV with the Grassmannian of positive definite oriented 2-
planes in V. This makes it clear that that DV has two connected components
that are exchanged by complex conjugation. The orthogonal group O(V)
acts transitively on DV . The stabilizer of [v] ∈ DV is SO(P[v]) × O(P⊥[v]). Its
intersection with the identity component O(V)◦ is SO(P[v])×SO(P⊥[v]) and this
is a maximal compact subgroup of O(V)◦. So each connected component of
DV is a bounded symmetric domain for O(V)◦. The automorphic line bundle
LV on DV is simply the restriction of the tautological bundle over P(VC).
The complement of its zero section L×V can be identified with V+.

We have already seen the cases n = 1, 2 in a different guise: if V1 is of
real dimension two and endowed with a real symplectic form a : V1 × V1 →
R, then Sym2 V1 comes with a natural nondegenerate symmetric bilinear
form of signature (1, 2) and assigning to F ∈ HV1 the line Sym2 F defines an
isomorphism HV1 ∼= DSym2 V1 that is compatible with an isogeny of Sp(V1)
onto O(Sym2 V1)

◦ and for which LSym2 V1 pulls back to LV1 . Similarly, V1⊗V1
comes with a natural nondegenerate symmetric bilinear form of signature
(2, 2) and (F, F ′) ∈ H2V1 7→ F⊗ F ′ defines an isomorphism H2V1

∼= DV1⊗V1 that
is compatible with an isogeny of Sp(V1) × Sp(V1) onto O(V1 ⊗ V1)◦. Here
LV1⊗V1 pulls back to the exterior product LV1 � LV1 .

Any F ∈ DV gives rise to a decomposition VC = F⊕ F̄⊕ (F⊕ F̄)⊥, which we
can think of as defining a Hodge structure of weight 2 polarized by s with
F = V2,0, V1,1 = (F⊕ F̄)⊥ and F̄ = V0,2.

In this context ball domains may arise in a similar manner. Suppose σ ∈
O(V) is semisimple and DσV is nonempty. Clearly, if [v] ∈ DσV , then v ∈ VλC
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for some eigenvalue λ of σ. Since sigma ∈ SO(P[v]) × SO(P⊥[v]), all the
eigenvalues of σ lie on the complex unit circle. When λ = ±1, then VλC is
defined over R and must have signature (2, n ′) for some integer n ′ ≥ 0.
This yields a totally geodesic embedding DV±1 ∼= DσV ⊂ DV and O(V)σ acts
via a homomorphism O(V)σ → O(V±1). This homomorphism is onto and
has compact kernel.

For Im(λ) > 0, h will have the same signature on V λ̄C as on VλC. It fol-
lows that this signature must be of the form (1, n ′) for some integer n ′ ≥ 0.
Then DσV is the disjoint union of BVλC and its complex conjugate B

V λ̄C
. Both

are totally geodesically embedded and O(V)σ acts via a homomorphism
O(V)σ → U(VλC) that is onto and has compact kernel.

Remark 1.1. All the geodesic embeddings discussed here have the property
that the pull-back of the automorphic line bundle is an automorphic line
bundle. It is also easy to check that in all cases the canonical bundle on the
domain is equivariantly identified with a positive power of the automorphic
line bundle.

The remaining irreducible Hermitian domains. These are the classical
domains of type II and and two domains that are the symmetric spaces of
real forms of simple Lie groups of type G2 and E7. A domain of type II is
given by a real vector space V of finite even dimension 2g endowed with
symmetric bilinear form s : V × V → R of signature (g, g). If sC and h
are as usual, then let DV be the set of sC-isotropic g-dimensional subspaces
F ⊂ VC that are h-positive. The group O(V) acts transitively on DV and the
stabilizer of any F ∈ DV restricts isomorphically to the unitary group U(F),
a maximal compact subgroup of O(V). So DV is a symmetric space for the
identity component of O(V). If F ∈ DV , then F defines a Hodge structure
on V of weight 0 polarized by a by taking V1,−1 = F and V−1,1 = F̄. so
that DV parametrizes polarized Hodge structures on V of this type. The the
automorphic line bundle LV is the exterior power of the tautological bundle
of rank g over Gr(VC) restricted to DV .

The exceptional domains have dimension 16 and 27 respectively.

Hermitian domains admitting complex reflections. The complex balls
and the domains of type IV are the only bounded symmetric domains which
admit totally geodesic subdomains of codimension one (or what turns out
be equivalently, admit complex reflections). In one direction this is easy to
see: if (W,h) is a Hermitian form of hyperbolic signature (1, n), then any
subspace W ′ ⊂ W of complex codimension one of signature (1, n − 1) is
the fixed point set of a copy of U(1) (just let z ∈ U(1) act on W ′ ⊕ (W ′)⊥

as multiplication by (1, z)) and so BW ′ = BW ∩ P(W ′) = BU(1)
W . This im-

plies that BW ′ is geodesically embedded. A similar argument shows that
if (V, s) defines a domain of type IV as above and V ′ ⊂ V is of real codi-
mension of signature (2, n− 1), then V ′ is the fixed point set of a reflection
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σ ∈ O(W) (let it act on −1 on V ′ ⊕ (V ′)⊥) as multiplication by (1,−1))
and so DV ′ = DV ∩ P(V ′C) = DσV . So both cases, any nonempty hyperplane
section has this property.

2. THE BAILY-BOREL PACKAGE

Arithmetic structures. The notion of an arithmetic subgroup of an alge-
braic group requires the latter to be defined over a number field. A trick
(‘restriction of scalars’) shows that here is in fact little or no loss in general-
ity in assuming that this number field is Q. In the cases Sp(V) and O(V) this
is simply accomplished by assuming that (V, a) resp. (V, s) is defined over
Q. An arithmetic subgroup Γ of Sp(V) resp. O(V) is then a subgroup which
fixes a lattice VZ ⊂ VQ and is of finite index in Sp(VZ) resp. O(VZ). Such
a group is discrete in the ambient algebraic group and hence acts properly
discontinuously on the associated Hermitian domain.

Examples for the case of complex ball can be obtained as in the discussion
above by taking a semisimple σ ∈ Sp(VZ) resp. σ ∈ O(VZ) that has fixed
points in the associated Hermitian domain. Since σ lies in a unitary group
and fixes a lattice, it must have finite order, m say so that its eigenvalues
arefmth roots of unity. If µpr

m denotes the set of primitive roots of unity, then
⊕λ∈µpr

m
VλC is defined over Q. So the subgroup G of Sp(V)σ resp. O(VZ) which

acts as the identity on the remaining eigen spaces is defined over Q and the
subgroup G(Z) which stabilizes the lattice VZ is arithmetic in G. Suppose
first we are in the symplectic case. If for all λ ∈ µpr

m , the form h is definite
on VλC except for a complex conjugate pair (λo, λ̄o) with h of signature (1, n)

on VλoC (and hence of signature (n, 1) on V λ̄oC ), then G acts properly on B
VλoC

and hence G(Z) acts on this domain properly discretely. A similar argument
applies to the orthogonal case. The situation simplifies considerably when
m = 3, 4, 6, for then there are only two primitivemth roots of unity (namely
ζm := exp(2π

√
−1/m) and its conjugate ζ̄m := exp(−2π

√
−1/m)). So the

above decomposition reduces to VζmC ⊕ V ζ̄mC and G has no compact factors
unless G itself is compact.

The more intrinsic approach is to interpret an arithmetic structure on
(W,h) as given by a lift (WK, hK) over a CM-field K/Q with the property
that for every embedding ι : K → C the corresponding Hermitian form
on WK ⊗ι C is definite except for a complex conjugate pair, for which the
signatures are (n, 1) and (1, n).

The Baily-Borel package for arithmetic varieties. Let (G,L) be on of the
examples above. To be precise: G is an algebraic group defined over R and
G(R) acts properly and transitively on a complex manifold X such that each
connected component of X is a symmetric domain for the identity compo-
nent G(R)◦ of G(R). This action lifts to one on an automorphic line bundle
L over X. We denote by L× ⊂ L the complement of the zero section.
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Now suppose G is defined over Q and we are given an arithmetic sub-
group Γ ⊂ G(Q). Then Γ acts properly discretely on D (and hence on L×).
The action of Γ on L× commutes with the obvious action of C× so that we
have an action of Γ × C× on L×. The Baily-Borel package that we are go-
ing to state below can be entirely phrased in terms of this action. It begins
with the observation that we can form the Γ -orbit space of the C×-bundle
L× → X in the complex-analytic category of orbifolds to produce an C×-
bundle L×Γ → XΓ . For d ∈ Z, we denote by Ad(L×) the linear space of
holomorphic functions f : L× → C that are homogeneous of degree −d (in
the sense that f(λz) = λ−df(z)) and subject to a growth condition (which in
many cases is empty). This growth condition is such that A•(L×) is closed
under multiplication (making it a graded C-algebra) and invariant under Γ .

Finiteness: The graded C-subalgebra of Γ -invariants,A•(L×)Γ is finitely
generated with generators in positive degree. So we have defined
the weighted homogeneous (affine) cone (L×Γ )

bb := SpecA•(L×)Γ

whose base is the projective variety Xbb
Γ := Proj(A•(L×)Γ ). If Γ acts

transitively on the connected components of L×, then A•(L×)Γ is
normal.

Separation: The elements of A•(L×)Γ separate the Γ -orbits in L× so
that the natural maps L×Γ → (L×Γ )

bb and XΓ → Xbb
Γ are injective.

Topology: The underlying analytic space of (L×Γ )
bb is obtained as Γ -

orbit space of a ringed space ((L×)bb,O(L×)bb) endowed with a Γ ×
C×-action and a Γ × C×-invariant partition into complex manifolds
such that O(L×)bb is the sheaf of continuous complex valued func-
tions that are holomorphic on each part. This partition descends
to one of (L×Γ )

bb into locally closed subvarieties which has L×Γ as
an open-dense member. (Thus Xbb

Γ comes with stratification into
locally closed subvarieties which has the image of XΓ as an open-
dense member. In particular, L×Γ resp. XΓ acquires the structure of a
quasi-affine resp. quasi-projective variety.)

In fact, (L×)bb and A•(L×) only depend on G(Q) and the Γ × C×-action
is the restriction of one of G(Q) × C×, but in generalizations that we shall
consider the latter group is no longer acting. We will make the topological
part explicit in some of the classical cases discussed above.

Ball quotients. These are in a sense the simplest because Xbb
Γ adds to XΓ

a finite set. Denote by I the collection of isotropic subspaces of W that is
left pointwise fixed by an element of G(Q) of infinite order (one can show
that we can then take this element to lie in Γ). Note that every I ∈ I is of
dimension ≤ 1. It is known that Γ has finitely many orbits in I.

For every I ∈ I, we have a projection πI⊥ : L× ⊂ W → W/I⊥. When I
is of dimension one, the image of πI⊥ is the complement of the origin. As a
set (L×)bb, is the disjoint union of L× and its projections πI⊥(L×). It comes
with an evident action of G(Q) × C× and the topology we put on it makes
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this action topological. It has a conical structure with vertex the stratum
defined by I = {0}. So (L×)bb adds to L× a finite number of C×-orbits, one
of which is a singleton. In particular, Xbb

Γ − XΓ is finite.

Quotients of orthogonal type. Here (V, s) is a real vector space endowed
with a nondegenerate quadratic form defined over Q and of signature (2, n).
Denote by I the collection of isotropic subspaces of V defined over Q.

For every I ∈ I, we have a projection πI⊥ : L× ⊂ VC → VC/I
⊥
C . When

dim I = 2, then the image consists to the elements in VC/I
⊥
C that under the

identification VC/I
⊥
C

∼= HomR(I,C) have real rank 2 (this has two connected
components, each being the image of a connected component of L×). The
C×-orbits space of πI⊥(L×) is isomorphic to C − R and the Γ -stabilizer of
each of these half planes acts there via a group which acts nicely with the
orbit space a modular curve. These modular curves are noncompact, but
their missing points are supplied by the I ∈ I of dimension one.

When dim I = 1 the image is the punctured line VC/I
⊥
C − {0} and for

I = {0} we get a singleton. Then (L×)bb is the disjoint union of L× with its
projections πI⊥(L×) and endowed with a O(VQ)×C×-equivariant topology.
So Xbb

Γ −XΓ consists of a union of finitely many modular curves and finitely
many points.

Arithmetic arrangements. We noted that the domains of type I1,n and IV
have totally geodesic hyperplane sections. For these cases, and where G
is defined over Q, we define an arithmetic arrangement as a collection H
of such hyperplane sections with the property that the G-stabilizer of each
member is defined over Q and that the there is an arithmetic subgroup Γ ⊂
G(Q) such thatH is a finite union of Γ -orbits. Then the collection {L×H}H∈H is
locally finite and for Γ ⊂ G(Q) as above, its image in Γ\L×H is a hypersurface
∆H ⊂ Γ\L×H. This hypersurface locally given by a single equation (it is Q-
Cartier). We call such a hypersurface an arrangement divisor. Its closure in
(Γ\L×H)

bb is also a hypersurface, but need not be Q-Cartier.

3. MODULAR EXAMPLES

Basics of GIT. Let G be a complex reductive algebraic group and H a finite
dimensional complex representation of G. Then G acts on the algebra C[H]
of regular functions on H. Here are two basic facts

Finiteness: The graded C-algebra C[H]G is normal and finitely gen-
erated with generators in positive degree. So we have defined the
weighted homogeneous (affine) cone Spec(C[H]G) whose base is
the projective variety Proj(C[H]G).

Geometric interpretation: The closure of every G-orbit in H contains
a closed G-orbit and this G-orbit is unique. Any two distinct closed
orbits are separated by a member of C[H]G and assigning to a closed
G-orbit the corresponding point of SpecC[H]G sets up a bijection
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between the set of closed G-orbits on H and the closed points of
SpecC[H]G (we therefore write G\\H for SpecC[H]G).

This also leads to an interpretation of ProjC[H]G. The obvious map H →
G\\H has as fiber through 0 ∈ H the set of v ∈ H with 0 ∈ Gv. The comple-
ment, called the semistable locus and denoted Hss, then maps to the comple-
ment of the vertex of the cone SpecC[H]G and we get a bijection between
the set of closed orbits in P(Hss) and ProjC[H]G. This is why we denote
the latter sometimes by G\\P(Hss). Often these separated quotients contain
an genuine orbit space as an open-dense subset: the stable locus Hst ⊂ Hss

consists of the v ∈ H− {0} whose orbit is closed and for which the stabilizer
Gv is finite. Then Hst is Zariski open (but it need not be dense; it could even
be empty while Hss is nonempty). Then the morphisms Hst → G\\H and
P(Hst) → G\\P(Hss) are open with image the G-orbit space of the source. In
case Hst is dense in Hss, we may regard G\\P(Hss) as a projective compacti-
fication of the G-orbit space of Hst.

Example: cyclic covers of the projective line (Deligne-Mostow). Let U
be complex vector space of dimension 2. Then we have the irreducible
SL(U)-representation H := Sym12(U∗). We regard H as the space of homo-
geneous polynomials of degree 12 on U and P(H) as the linear system of
degree 12 divisors on the projective line P(U). It is known that Hss resp. Hst

parametrizes the divisors which have no point of multiplicity > 6 resp. ≥ 6.
The only closed orbit in Hst − Hss is the one for which the divisor is given
by two distinct points, each of multiplicity 6 and so this will represent the
unique point of SL(U)\\Hss − SL(U)\\Hst.

Denote by H◦ ⊂ H the locus which defines reduced divisors (12 element
subsets of P(U)). It is the complement of the discriminant D ⊂ H, a hy-
persurface. For F ∈ H◦ we have a cyclic cover of degree 6 CF → P(U)
ramified over the divisor ∆F defined by F: its homogeneous equation is
w2 = F(u), where it is understood that u has degree 2 so that for every
λ ∈ C×, (λ2u, λw) and (u,w) define the same point. This only depends on
the image of F in P(H), but this is not so for the differential ωF we define
next: fix a translation-invariant 2-form α onU. ThenωF is a residue of the 2-
form of α/w restricted to the surface defined by w6 = F(u) at infinity. To be
concrete: if (u0, u1) is a coordinate pair for U, such that µ = du0∧du1, then
an affine equation for CF is w ′6 = F(1, u ′) with u ′ = u1/u0 and w ′ := w/u20.
ThenωF is in terms of these coordinates given by du ′/w ′. The Galois group
of the cover is the group µ6 of sixth roots of unity which acts on the CF
via the w-coordinate according to the inverse of the (tautological) charac-
ter χ : µ6 ↪→ C×. Hence ωF is an eigenvector for the character χ. Now
CF has genus 25. The group µ6 has no invariants in H1(CF,C) and the
eigenspaces of µ6 with nontrivial characters all have dimension 10. More-
over, H1,0(CF,C)χ

i
is for i = 1, . . . , 5 of dimension 2i − 1 with H1,0(CF,C)χ

spanned by ωF. So H1,0(CF,C)χ has signature (1, 9).
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Now fix a unimodular symplectic lattice VZ of genus 25 endowed with an
action of µ6 such that there exists a µ6-equivariant isomorphismH1(CF,Z) ∼=
VZ of symplectic lattices. Such an isomorphism will be unique up to an ele-
ment of Sp(VZ)µ6 , the centralizer of µ6 in Sp(VZ). If Γ denotes the image of
Sp(VZ)µ6 in U(VχC), then ωF defines an element of (L×

V
χ
C
)Γ so that we have

defined a map H◦ → (L×
V
χ
C
)Γ . This map is easily seen to be constant on

the SL(U)-orbits in H◦. The work of Deligne-Mostow shows that this map
extends to an isomorphism SL(U)\\Hst ∼= (L×

V
χ
C
)Γ . One can show that this

isomorphism extends from one of SL(U)\\Hss onto (L×
V
χ
C
)bb
Γ so that the GIT

compactifcation SL(U)\\P(Hss) gets identified with the Baily-Borel compact-
ification (BVχC )

bb
Γ (both are one-point compactifications). This also identifies

their algebras of regular functions: the graded algebra of automorphic forms
A•(L×VχC

)Γ gets identified with the algebra of invariants C[H]G.

Remark 3.1. In particular, there is an automorphic form that defines the
discriminant D ⊂ H. It would be interesting to see such an automorphic
form written down. We expect this to have an infinite product expansion
for the following reason: if two of the 12 points in P(U) coalesce, then the
curve CF is degenerate: it acquires an A5-singularity with local equation
w6 = u2, but the differential ωF (locally like du/w) does not degenerate in
the sense that it becomes a regular differential on the normalization of CF
(this is clear if we write u = ±w3). This accounts for the integral ofωF over
a vanishing cycle to vanish. This implies that near such a point D maps to a
hyperplane section of L×

V
χ
C
.

Remark 3.2. We could also consider the other eigenspaces. This amounts to
passing to the intermediate Galois covers of the projective line: the µ3-cover
and the hyperelliptic cover ramified in 12 points. The above isomorphism
then leads to interesting morphisms from the 9-dimensional ball quotient to
a locally symmetric variety of type I3,7 (of dimension 21) and to an arith-
metic quotient of a Siegel upper half space of genus 5 (of dimension 15).

The Deligne-Mostow theory provides many more examples, but the one
discussed here is the one of highest dimension in their list. This includes
for instance the µ4-coverings of a projective line totally ramified in 8 points.
This case is related to the example that we discuss next.

Example: quartic plane curves (Kondo). Let U be complex vector space
of dimension 3 and let H := Sym4(W∗) (an irreducible representation of
SL(U)). So P(H) is the linear system of degree 4 divisors on the projective
plane P(W). We denote the divisor associated with F ∈ H− {0} by CF and we
let H◦ ⊂ H be the set of F ∈ H for which CF is a smooth quartic curve. This
is the complement of the discriminant hypersurface DF ⊂ H. It is classical
fact that F ∈ Hst if and only if CF is a reduced curve whose singularities
are only nodes or cusps and a closed orbit a Hss − Hst is representable by
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(u1u2 − u
2
0)(su1u2 − tu

2
0) for some (s, t) ∈ C2 with s 6= 0 (hence defines the

sum of two conics, one of which is smooth, which meet at two points with
multiplicity ≥ 2). This includes as the case of a smooth conic with multi-
plicity 2. The orbit space SL(U)\P(H◦) has a simple modular interpretation:
it is the moduli space of nonhyperelliptic curves of genus 3 (for each such
curve is canonically embedded in a projective plane as a quartic curve).

With every F ∈ H◦ we associate the µ4-cover SF → P(U) which totally
ramifies along CF: the smooth quartic surface in P(U⊕ C) defined by w4 =
F(u); indeed, this is a polarized K3 surface of degree 4 with µ4-action. The
same argument as in the previous example shows that if α is a translation
3-form on U, then the residue of α/w3 defines a nowhere zero 2-form ωF
on SF. We let µ4 act on w with the tautological character χ : µ4 ↪→ C×
so that ωF ∈ H2,0(SF)χ. In fact, ωF generates H2,0(SF). The abelian group
H2(SF,Z) is free abelian of rank 22 and the intersection pairing H2(SF,Z)×
H2(SF,Z) → Z is even unimodular of signature (3, 19). The µ4-fixed point
subgroup in H2(SF,Z) is the image of H2(P(U),Z) → H2(SF) and contains
the polarization of SF. The other character spaces in H2(SF,C) all have
dimension 7. Since H2,0(SF,C)χ = H2,0(SF,C) is spanned by ωF, it follows
that the orthogonal complement of H2,0(SF,C)χ (relative to the Hermitian
form) in H2(SF,C)χ is primitive cohomology of type (1, 1) and of dimension
6. In particular, H2,0(SF,C)χ has signature (1, 6).

Fix a unimodular even lattice Λ of signature (3, 19) endowed with an ac-
tion of µ4 such that there exists a µ4-equivariant isomorphismφ : H2(SF,Z) ∼=
Λ of lattices. Let us write (W,h) for the Hermitian vector space ΛχC and L×
for L×W , the set of w ∈ W with h(w,w) > 0. The isomorphism φ will be
unique up to an element of O(Λ)µ4 . If Γ denotes the image of this group
in U(W), then ωF defines an element of L×Γ so that we have defined a map
H◦ → L×Γ . This map is constant on the SL(U)-orbits in H◦. Kondo has shown
that this map extends to an open embedding SL(U)\\Hst ↪→ L×Γ .

The situation is however not as nice as in the previous example: the map
is not surjective and, related to this, does not extend to SL(U)\\Hss. In
fact, its image is the complement of an arrangement divisor. This can be
explained by the fact that we miss out some K3 surfaces of degree 4 with
µ4-action. It is also related to the fact that we miss out some of the genus 3
curves, namely the hyperelliptic ones. This locus is well-represented in L×Γ
an arrangement divisor ∆H so that we have an isomorphism SL(U)\\Hst ∼=
(L×H)Γ . The divisor ∆H is irreducible: the group Γ acts transitively onH, and
its normalization, the quotient of a member H ∈ H by its Γ -stabilizer, is a
copy the Deligne-Mostow ball quotient for the pair µ4-covers of projective
line totally ramified in 8 points. This locus is not visible in SL(W)\\P(Hss),
for P(Hss) − P(Hst) is just a singleton (represented by the conic with multi-
plicity 2). Since this difference is codimension one, C[H]SL(U) is also the alge-
bra of regular functions on SL(U)\\Hst. So via the isomorphism SL(U)\\Hst ∼=
(L×H)Γ the graded algebra C[H]SL(U) is reproduced as the graded algebra of
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Γ -invariant analytic functions on (L×H)Γ that are sums of homogeneous func-
tions. There is no growth condition here and these functions are automat-
ically meromorphic on L×. From the ball quotient perspective, it is quite a
surprise that this algebra is finitely generated and has positive degree gen-
erators!

Example: double covers of sextic curves. Let U be complex vector space
of dimension 3 and let H := Sym6(U∗) be a SL(U)-representation. So P(H)
is the linear system of degree 6 divisors on the projective plane P(W). As
above, we denote by H◦ ⊂ H be the set of F ∈ H for which CF is a smooth
sextic curve. According to Jayant Shah, Hst contains H◦ and allows CF
to have simple singularities in the sense of Arnol’d. The closed orbits in
P(Hss − Hst) make up a longer list and come in families, but two of them
deserve special mention: the closed orbit represented by a smooth conic of
multiplicity 3 and the the closed orbit represented by a coordinate triangle
of multiplicity 2. We proceed as before: we associate to F ∈ H◦ the dou-
ble cover SF → P(W) which totally ramifies along CF: it has the weighted
homogeneous equation w2 = F(u) (where degw = 3) and ωF := α/w
defines a nowhere zero regular 2-form on SF. The surface SF is a a K3
surface. The obvious involution of SF acts on H2(SF,Z) with the image of
H2(P(U),Z) in H2(SF,Z) (a copy of Z) as its fixed point set. The sublattice
H2(SF,Z)− ⊂ H2(SF,Z) on which this involution acts as minus the identity
is nondenegerate and of signature (2, 19). Notice that its complexification
contains ωF.

We therefore take the same lattice (Λ, s) of signature (3, 19) as above, but
now endowed with an involution ι such that there exists an isomorphism
φ : H2(SF,Z) ∼= Λ of lattices with involution. We denote by V ⊂ Λ ⊗ R the
subspace on which ι acts as minus the identity (it has signature (2, 19) and
write L× for L×V (the set v ∈ VC for which sC(v, v) = 0 and sC(v, v̄) > 0). The
isomorphism φ will be unique up to an element of Γ := O(Λ)ι ⊂ O(VZ). The
above construction produces a map SL(U)\H◦ → L×Γ . This map is constant
on the SL(U)-orbits in H◦ and J. Shah has shown that it extends to an open
embedding SL(U)\\Hst ↪→ L×Γ . But he also observed that as in the previous
case its map is not onto: the image is the complement of an irreducible
arrangement divisor ∆H and the map does not extend to SL(U)\\Hss. The
explanation is similar: ∆H parametrizes the K3 surfaces of degree 2 that
we missed, namely the hyperelliptic ones. Since SL(U)\\Hss − SL(U)\\Hst is
of dimension 2 (hence of codimension > 1 in SL(U)\\Hss, C[H]SL(U) can be
understood as the graded algebra of Γ -invariant analytic functions on (L×H)Γ
that are sums of homogeneous functions (these functions are automatically
meromorphic on L×). Again there seems reason for surprise.

A potential example: Allcock’s 13-ball. Consider an even unimodular lat-
tice VZ of signature (2, 26) endowed with an action of µ3 ⊂ O(VZ) which
leave no nonzero vector fixed. The pair (VZ, µ3 ⊂ O(VZ)) is unique up to
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isomorphism. We put Γ := O(VZ)µ3 and let χ : µ3 ⊂ C× denote the tautologi-
cal character. Then VχC has signature (1, 13) and so we have a 13-dimensional
ball quotient Γ\BVχC . Allcock makes a number of intriguing conjectures about
this ball quotient and suspects that it has a modular interpretation (that is
why call it a potential example).

4. A BAILY-BOREL PACKAGE FOR ARITHMETIC ARRANGEMENT COMPLEMENTS

In the preceding two examples we found that an algebra of invariants can
be understood as an algebra Γ -invariant functions on an arrangement com-
plement. These Γ -invariant functions are meromorphic, when considered as
functions on L×: they are meromorphic automorphic forms. This cannot be
just a coincidence: it suggests that there should be an Baily-Borel package
in that setting. This is indeed the case. Let us first focus on the case of a
complex ball:

Arithmetic arrangements on complex balls. Let (W,h) be a hermitian
vector space of Lorentz signature (1, n) with n ≥ 1 and Γ ∈ U(W) the image
of an arithmetic group acting onW (so this presupposes that we have a CM-
subfield K ⊂ C and a K-form WK ⊂W such that h|WK ×Wk takes its values
in K, and Γ ⊂ U(WK)). Let be given a Γ -arrangement H on W: every H ∈ H
is a hyperplane of W defined over K and of signature (1, n − 1), and the
collection H is a finite union of Γ -orbits. We let L× = L×W ⊂ W be as usual,
∆H := ∪H∈HL×H (a locally finite union) and L×H := L×−∆H the arrangement
complement.

Denote by JH the collection of subspaces J ⊂ W that are not positive for
h and can be written as an intersection of members of H ∪ I⊥, where I⊥ is
the set of I⊥ with I ⊂ W an isotropic line. This includes W, because that
corresponds to the empty intersection, but does not include {0}, because
{0} is positive definite. Suppose first that J ∈ JH is nondegenerate: so J
Lorentzian and J⊥ is negative definite. Then J⊥ maps isomorphically toW/J
and the Γ -stabilizer of J will act on W/J through a finite group. The image
of L× in W/J is all of W/J, whereas the image of L×H is the complement in
W/J of the union of the hyperplanes H/J with H ∈ H and H ⊃ J (there are
only finitely many such).

Next consider the case when J ∈ JH is degenerate. Then I := J ∩ J⊥ is an
isotropic line and the image of L× in W/J is the complement of the hyper-
plane I⊥/J. In other words, πIJ(L×) is a principal bundle over W/I⊥ − {0}

with structure group the vector group Hom(W/I⊥, I⊥/IJ). The Γ -stabilizer
of JI has a subgroup of finite index which is abelian and acts on πIJ(L×) via
a lattice in Hom(W/I⊥, I⊥/IJ) so that the orbit space is a C×-bundle over
(a torsor of) an abelian variety. We get πJ(L×H) by also removing the hyper-
planes H/J, with H ∈ H and H ⊃ J. This amounts the removal of a finite
arrangement in the C×-bundle over the abelian torsor.
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The disjoint union

(L×H)
bb := L×H t

∐
J∈JH

πJ(L×H),

can be endowed with a Satake type of topology that is invariant under
Γ × C×. We then find that if Γ is sufficiently small (in the sense that no
eigenvalue 6= 1 of an element of Γ is of finite order), then the orbit space
(L×H)

bb
Γ is an extension of L×H by a finite number strata, each of which is

either a linear arrangement complement or an affine arrangement comple-
ment. With J = V is associated a singleton stratum. If we remove that
singleton and divide by C×, we get a space denoted (BH)bb.

If we are lucky and all these strata have codimension > 1 (which means
that no member of J has dimension 1, then a Koecher principle applies and
we have an easily stated Baily-Borel package:

Finiteness: If Ad(L×H) denotes the space of holomorphic functions
on L×H that are homogeneous of degree −d, then the graded C-
algebra A•(L×H)

Γ is finitely generated with generators in positive de-
gree. So we have defined the weighted homogeneous (affine) cone
SpecA•(L×H)

Γ whose base is the projective variety Proj(A•(L×H)
Γ ).

Separation and Topology: The underlying topological spaces (for the
Hausdorff topology) are naturally identified with (L×H)

bb
Γ resp. (BH)bb

Γ

and via these identifications, SpecA•(L×H)
Γ and Proj(A•(L×H)

Γ ) ac-
quire a partition into locally closed subvarieties (the former invari-
ant under C×).

We think of A•(L×H)
Γ as an algebra of meromorphic Γ -automorphic forms

(we allow poles along the hyperplane sections indexed by H).
Returning to the example of quartic curves, recall that Kondo’s theorem

asserts that SL(U)\Hst maps isomorphically onto an arrangement comple-
ment (L×H)Γ . This assertion can now be amplified: since isomorphism gives
rise to an isomorphism of C-algebras C[U]H ∼= A•(L×H)

Γ , this isomorphism
must extend to an isomorphism of SL(U)\\Hss onto (L×H)

bb
Γ .

Arithmetic arrangements for type IV domains. Let (V, s) be a nondegen-
erate symmetric bilinear form of signature (2, n) defined over Q with n ≥ 1,
Γ ⊂ O(V) an arithmetic group and H a Γ -arrangement in V. We write L×
for L×V , the set of v ∈ VC with sC(v, v) = 0 and sC(v, v̄) > 0.

We are going to define an indexed collection {J}J∈JH of nonpositive sub-
spaces J ⊂ V defined over Q. When this collection is defined, then we
define (L×H)

bb as in the ball quotient case and the Baily-Borel package holds
verbatim.

So let us then define JH. A linear subspace J ⊂ V of signature (2, n ′)
with n ′ > 0 is in JH if and only if it is an intersection of members of H. A
linear subspace J ⊂ V with radical I := J⊥ ∩ J of dimension 2 is in JH if and
only if it is an intersection of I⊥ and members of H. The linear subspaces in
JH whose radical I is of dimension 1 are some harder to index. First note
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that such an I is defined over Q. So s induces on I⊥/I is nondegenerate
symmetric bilinear sI form of signature (1, n−1) such that the pair (I⊥/I, sI)
is defined over Q. Choose a connected component C of the set v ∈ I⊥/I
with sI(v, v) > 0. This is a quadratic cone. The members ofH which contain
I define a locally finite collection of hyperplane sections of C and these
decompose C into locally rational polyhedral cones. Then the members of
JH containing I are indexed by these locally rational polyhedral cones: if σ
is such a cone, then we assign to its linear span, or rather the preimage of
that linear span in I⊥. This means that the indexing leads to repetitions. For
instance, all the open cones in CI determine the same space I⊥.


