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ABSTRACT. We define a remarkable ‘quasi-logarithmic’ n-form on the configuration space
of n points on a compact Riemann surface and determine its cohomology class and Hodge
type. For the two-point configuration space this gives the 2-form on the complement of the
diagonal of the self-product of a compact Riemann surface that was recently investigated
by a number of authors.

INTRODUCTION

We describe a remarkable meromorphic 2-form on C2 whose polar divisor is twice the
diagonal and whose cohomology class is related to the Weil operator acting on H1(C;R)
(it definitely does not represent an algebraic cycle) and find a higher dimensional gener-
alization as a meromorphic n-form on CZ/n whose polar divisor is the sum of the diagonal
hypersurfaces defined by zi = zi+1, i ∈ Z/n. These forms have such a classical flavor that
they might well have already been known in the 19th century.

We ran into these a while ago when working on our project to relate the WZW theory
to the Hodge theory of configuration spaces of curves, in particular to make the latter a
receptacle of the highest weight representations a centrally extended loop algebra (also
known as a Kac-Moody Lie algebra of affine type); the appearance of these forms comes
then from the central extension. In the belief that this may be of independent interest,
we think it worthwhile to separate this from the envisaged application as to let it be
uncluttered by the somewhat involved context in which we plan to use it.

I recently became aware of some papers in which this 2-form appears, namely in the
work of Colombo-Frediani-Ghigi [3], in a draft of a book by Gunning [6] and in more
recent work by Biswas-Colombo-Frediani-Pirola [2] and Ghigi-Tamborini [5]. Although
there is some overlap with these works when n = 2, the emphasis in this note is different;
besides obtaining a higher dimensional generalization, we obtain a complete and direct
description of the cohomology class that is represented by this form.

It is a pleasure to acknowledge some helpful discussions that I had with Ashok Raina
a long time ago and some correspondence related to [1] on this material back in 2011.
In hindsight, my interest in this must have the same origin as his.
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In what follows C stands for a nonsingular complex projective irreducible complex
curve (equivalently, a compact connected Riemann surface) of genus g.

1. CANONICAL MEROMORPHIC FORMS ON THE CONFIGURATION SPACE OF A CURVE

1.1. Review of the Künneth decomposition. What follows is classical and well-known,
but since we must be careful with signs, we think it worthwhile to spell this out. We let
S2 act on C2 by transposition of factors. If we take its action on the cohomology into
account, then the Künneth decomposition reads as follows

H2(C2) ∼=
(
H2(C)⊗1⊕ 1⊗H2(C)

)
⊕
(
H1(C)⊗H1(C)⊗ sign2

)
,

where general sign2 stands for the nontrivial character of S2. Indeed, if µ ∈ H2(C) is the
natural generator, then the transposition exchanges µ⊗ 1 and 1⊗ µ, but if α, β ∈ H1(C),
then it exchanges α ⊗ β and −β ⊗ α. If ∆ : C → C2 is the diagonal, then the Gysin
map ∆! : H•(C) → H•+2(C2) is H•(C2)-linear. The class of the diagonal is ∆!(1) ∈
H2(C2) is (of course) fixed under S2 and is under the Künneth decomposition equal to
µ × 1 + 1 × µ + δ, where δ ∈ H1(C) ⊗ H1(C) is defined by the intersection pairing on
H1(C). To be precise, if α±1, . . . , α±g is a symplectic basis of H1(C) (i.e., if i > 0, then
αi · αj is 1 when j = −i and is zero otherwise), then δ =

∑g
i=1(−αi × α−i + α−i × αi).

Note that δ has the property that for α ∈ H1(C),

(α× 1) ∪ δ = µ× α, (1× α) ∪ δ = α× µ and so

∆!(α) = µ× α + α× µ.

Both µ and δ are of Hodge type (1, 1).

1.2. A canonical bidifferential on C2. Let D ⊂ C2 stand for the diagonal. Then the
biresidue defines an equivariant trivialization

Ω2
C2(2D)⊗OD ∼= OD ⊗ sign2 .

According to Biswas-Raina (Prop. 2.10 of [1]) there exists a ζ ∈ H0(C2,Ω2(2D)) whose
restriction toD yields this trivialization. We may, of course, take this generator to be anti-
invariant under the nontrivial element σ of S2 so that σ∗ζ = −ζ. It is then unique up an
element of H0(C2,Ω2)−σ ∼= Sym2H0(C,ΩC). Note that this last space is of Hodge type
(2, 0). It defines an anti-invariant class in H2(C2 r D;C). As is clear from the Künneth
decomposition, this space of anti-invariant classes can be identified with the direct sum
of Sym2H1(C;C) and the C-span of −µ × 1 + 1 × µ. We will identify an optimal choice
of ζ and determine its class in terms of this decomposition.

In order to find the coefficient of [ζ] on −µ× 1 + 1× µ we proceed as follows. Choose
p ∈ C and consider Z := −C × {p}+ {p} ×C as a 2-cycle. It is clear that with respect to
the Künneth decomposition of H2(C), its class is annihilated by H1(C)×H1(C), whereas
µ × 1 and 1 × µ take on it the value −1 resp. 1. So the coefficient in question is then
computed by integrating ζ over any 2-cycle on C2rD that is homologous to Z in H2(C2).
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We construct such a cycle by modifying Z a bit near (p, p). To this end we choose a chart
(U ; z) centered at p, so that ζ has on U2 the form

(†) ζ = (z1 − z2)−2dz1 ∧ dz2 + a form regular at (p, p).

For any ε > 0 such that U contains a closed disk D2ε mapping onto the closed disk of
radius 2ε in C, we embed the cylinder [−ε, ε]× S1 in U2 by

uε : [−ε, ε]× [0, 2π]→ U2; u∗z1 = (ε− s)e
√
−1φ , u∗z2 = −(ε+ s)e

√
−1φ

Considered as a 2-chain, its boundary is {p} × ∂Dε − ∂Dε × {p} (we use the complex
orientation), so that if we add to this the 2-chain −(C rDε)× {p}+ {p} × (C rDε) we
obtain a 2-cycle Zε in C2 rD. It is clear that Zε is homologous to Z in C2 rD.

Lemma 1.1. The value of the cohomology class [ζ] on Zε (and hence the coefficient of [ζ] on
−µ× 1 + 1× µ) equals 2π

√
−1.

Proof. The form pull-back of ζ to Zε is nonzero only the cylindrical part of Zε and so

〈[ζ], Zε〉 =
∫
Zε
ζ =

∫
[−ε,ε]×[0,2π]

u∗εζ

In order to compute the latter, we note that

u∗εdz1 = e
√
−1φ(−ds+

√
−1(ε− s)dφ), u∗εdz2 = e

√
−1φ(−ds−

√
−1(ε+ s)dφ)

so that u∗ε(dz1 ∧ dz2) = 2
√
−1εe2

√
−1φds ∧ dφ. On the other hand, z1 − z2 = 2εe2

√
−1φ and

so it follows that

u∗εζ =
(√−1

2ε
+O(ε)

)
ds ∧ dφ and hence

∫
[−ε,ε]×[0,2π]

u∗ζ = 2π
√
−1 + o(ε).

The left hand side of the integral is independent of ε, and so 〈[ζ], Zε〉 = 2π
√
−1. �

Any K =
∑
αi ⊗C βi ∈ H1(C) ⊗ H1(C) determines endomorphisms EK and KE of

H1(C) defined by the formulae∑
i αi × (βi ∪ x) = EK(x) ∪ µ,

∑
i(αi ∪ x)× βi = µ× KE(x).

Note that Eσ∗K = −KE. In particular, if σ∗K = −K (which means that
∑

i αi × βi ∈
H2(C2) is σ-invariant), then EK = KE. Our main example will be the following: let
ω1, . . . , ωg be an orthonormal basis of H0(C,ΩC) in the sense that

∫
C
ωi∧ωj = δij, so that

W := ωi ⊗ ω̄i + ω̄i ⊗ ωi.
represents the ‘inverse’ hermitian form on the dual of H0(C,ΩC). Note that this is a real
(1, 1)-form which satisfies σ∗W = −W so that EW = WE. We also find that

EW (ωj) =
∑
i

ωi(

∫
C

ω̄i ∧ ωj) = −ωj ; EW (ω̄j) =
∑
i

ω̄i(

∫
C

ωi ∧ ω̄j) = ω̄j

and so EW acts as multiplication with −1 resp. 1 on H1,0(C) resp. H0,1(C). In other
words

√
−1EW is the Weil operator acting in H1(C;R) for the convention that is used

nowadays (so it has H1,0(C) as −
√
−1 eigenspace and H0,1(C) as +

√
−1 eigenspace).

Thus W encodes the full Hodge decomposition of H1(C;C).
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The 2-form ζ that appears in the proposition below was found by Colombo-Frediani-
Ghigi in [3] in their study of the local geometry of the period map. We here obtain this
form in a somewhat different manner and also determine its periods.

Theorem 1.2. There exists a ζ whose class lies in H2(C2 rD12;R(1)) and is given by

2π
√
−1(−µ× 1 + 1× µ+W ),

where W =
∑g

i=1(ωi⊗ ω̄i+ ω̄i⊗ωi) (so that
√
−1EW represents the Weil operator). It is the

unique antisymmetric meromorphic 2-form on C2 with polar divisor −2D with biresidue 1
along D and whose class is of type (1, 1).

Proof. If we are given a p ∈ C and a meromorphic differential η that is regular on Cr{p},
then it defines an class [η] ∈ H1(C r {p};C) = H1(C;C). Its image in H1(C,OC) is
obtained as follows: write in a punctured neighborhood of p the form η as df (which
is possible since the residue of η at p has to be zero) and then take the image of f in
the above quotient. The theorem of Stokes combined with the Cauchy residue formula
implies the (well-known) identity∫

C

[η] ∧ ω = 2π
√
−1 Resp fω.

We first show that for ζ be as in the lemma, E[ζ] is the identity on H0(C,ΩC). Let p and a
chart (U ; z) centered at p be a above so that ζ is on U2 as above (†). It is also clear that
ζ|U × C is of the form dz1 ∧ π∗2η, where η is a meromorphic differential relative to the
projection U × C → U with η|U2 = (z1 − z2)−2dz2 and η regular elsewhere. Integration
of η on U2 with respect to z2 yields −(z1 − z2)−1 plus a holomorphic function on U2. Let
ω be an abelian differential on C. So ω|U = f(z)dz for some holomorphic f . The residue
pairing relative to the second coordinate (with z1 as parameter) yields∫

C

[η] ∧ ω = 2π
√
−1 Resz2→z1 −(z1 − z2)−1ω =

= 2π
√
−1 Resz2→z1(z2 − z1)−1f(z2)dz2 = 2π

√
−1f(z1)

If we apply dz1∧ to both sides, we find that E[ζ] takes ω to 2π
√
−1ω = −2π

√
−1EW (ω).

We now write the component of ζ in H1(C;C)⊗H1(C;C) as∑
i,j

(
aijωi ⊗ ωj + bijωi ⊗ ω̄j + sijω̄i ⊗ ωj + dijω̄i ⊗ ω̄j

)
.

The assumption that σ∗ζ = −ζ implies that aij = aji, bij = sji and dij = dji. From
what we proved, it follows that bij is 2π

√
−1 times the identity matrix and that dij = 0.

Since we have the freedom of choosing the aij ’s arbitrary, the unique representative in
question is then obtained by taking each aij = 0. If we combine this Lemma 1.1, the
assertion follows. �

Remark 1.3. We prefer to think of ζ as a polydifferential. It is then σ-invariant and this
makes it more canonical, as unlike the 2-form interpretation, it does not depend on how
we ordered the factors. Note that for C = P1, ζ is simply given by (z1 − z2)−2dz1dz2 (so
that its divisor is minus twice the diagonal).
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Remark 1.4. At each point x ∈ C we can find a local holomorphic coordinate z such that ζ
takes at (x, x) the simple form (z1−z2)−2dz1dz2. Such a coordinate is not unique, but any
other coordinate with that property is necessarily a fractional linear (Möbius) transform
of z. In other words, ζ determines a projective structure at x. It is clearly invariant
under the automorphism group of C. This group acts transitively when C has genus 0
or 1, and so this projective structure must then be the standard one. When the genus
g of C is > 1, then the universal cover of C is realized by the upper half plane H with
covering group contained in PSL2(R). So this defines another projective structure on
C. It was shown by Biswas-Colombo-Frediani-Pirola [2] that these projective structures
differ in general. Since the difference between two projective structures is a quadratic
differential on C, and a quadratic differential has the interpretation of a covector at the
point that C defines in its Teichmüller space, it follows that thus been constructed a form
of type (1, 0) on the moduli space of curvesMg.

2. A HIGHER DIMENSIONAL GENERALIZATION

We will here find a higher order generalization of the 2-form that we introduced in the
previous section. Consider for n ≥ 2 on Cn the divisors

Dn := D12 +D23 + · · ·+Dn−1,n, En := Dn +Dn,1 = D12 +D23 + · · ·+Dn−1,n +Dn,1,

where Dij stands for the diagonal hypersurface zi = zj (so that E2 = 2D12 = 2D). Note
that Dn is a normal crossing divisor, and that En is nearly so: it has this property away
from the main diagonal. According to Deligne [4] this implies that Hq(Cn,Ωn

Cn(Dn)) can
for q ≥ 0 be identified with a term of the Hodge filtration on the cohomology of CnrDn,
namely F nHn+q(Cn rDn). The second assertion of the following lemma shows that this
mixed Hodge structure is in fact pure (and therefore implies formally its first assertion).

Let for 1 ≤ i < j ≤ n, πij : Cn → C2 be given by πij(z1, . . . , zn) = (zi, zj). We
note that the map ∆ij : Cn−1 → Cn which puts zi also in the jth slot but otherwise
preserves the order of the numbering, has image Dij and has the property that ∆ij!(1) =
π∗ij(µ× 1 + δ + 1× δ) = π∗i µ+ π∗ijδ + π∗jµ.

Lemma 2.1. The inclusion Ωn
Cn ⊂ Ωn

Cn(Dn) defines an isomorphism on global sections. The
inclusion Cn r Dn ⊂ Cn identifies H•(Cn r Dn) with the quotient of H•(Cn) by the ideal
generated by the classes ∆i,i+1!(1) of the irreducible components Di,i+1 of Dn (i = 1, . . . , n−
1) so that in the Künneth decomposition H•(Cn) ∼= H•(C)⊗n the subsum of the tensor
products not involving π∗i (µ), for i = 2, 3, . . . , n maps isomorphically onto H•(Cn rDn).

Proof. For the first statement it suffices to show that the inclusion in question defines an
isomorphism when taking the direct image under the projection πn : Cn → Cn−1 which
omits the last factor. This is clear: this defines a curve over the generic point of Cn−1 with
the divisor Dn defining a single section and the assertion thus becomes a consequence of
the residue theorem.

For the second assertion, we note that for n = 2 this is a straightforward consequence
of the fact that the Gysin sequence for the diagonal embedding splits up in short exacts
sequences. So we assume n > 2 and, proceeding with induction, that H•(Cn−1) →
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H•(Cn−1 rDn−1) is onto with kernel generated by the classes of irreducible components
ofDn−1. Consider the Gysin sequence associated to the closed embedding Cn−1rDn−1 ↪→
Cn rDn induced by map ∆n−1,n : Cn−1 → Cn (which repeats the last component):

· · · → H•−2(Cn−1 rDn−1)(−1)
∆n−1,n!−−−−→ H•((Cn−1 rDn−1)× C)→ H•(Cn rDn)→ · · ·

The coboundary in this sequence is the homomorphism of H•(Cn−1 rDn−1)-modules

H•−2(Cn−1 rDn−1)(−1)→ H•(Cn−1 rDn−1)⊗H•(C)

which sends 1 to the image of ∆n−1,n!(1) = π∗n−1µ + π∗n−1,nδ + π∗nµ. Our inductive de-
scription of H•(Cn−1 rDn−1) shows that this map is injective, so that its cokernel gives
H•(Cn rDn). This proves that H•(Cn rDn) is as asserted. �

The following proposition may be regarded as a generalization of the construction of
our canonical bidifferential on C2.

Theorem 2.2. For n ≥ 2, the space H0(Cn,Ωn
Cn(En)) embeds in Hn(Cn r En;C) and

lands in F n−1Hn(Cn r En). Its subspace H0(Cn,Ωn
Cn) is of codimension one and maps

isomorphically onto F nHn(CnrEn). There is a unique supplementary line of H0(Cn,Ωn
Cn)

in H0(Cn,Ωn
Cn(En)) that maps to a line in Hn(CnrEn;C) of Hodge type (n− 1, n− 1) and

that is spanned by a real class. The Sn-stabilizer of En (a dihedral group of order 2n) acts
on this line with the character of the expression (z1−zn)(z2−z1) · · · (zn−zn−1)dz1∧· · ·∧dzn.
For n ≥ 3, it has a unique generator ζn with the property that the residue along ∆n,n−1 is
equal to ζn−1, where ζ2 = ζ is the 2-form defined earlier.

Proof. We already established this for n = 2. We therefore assume n > 2 and the propo-
sition verified for n− 1. Taking the residue along ∆n,1 gives for n ≥ 3 the exact sequence

0→ Ωn
Cn(Dn)→ Ωn

Cn(En)→ ∆n,1∗Ω
n−1
Cn−1(Dn−1)→ 0

whose associated long exact sequence begins with

0→ H0(Ωn
Cn(Dn))→ H0(Ωn

Cn(En))→ H0(Ωn−1
Cn−1(En−1))→ H1(Ωn

Cn(Dn))→ . . .

This sequence is compatible with the Gysin sequence for the closed embedding ∆n,1 :
Cn−1 r En−1 ⊂ Cn rDn in the sense that we have morphism of exact sequences

Hn(Cn rDn;C) Hn(Cn r En;C) Hn−1(Cn−1 r En−1;C)(−1) Hn+1(Cn rDn;C)

0 H0(Ωn
Cn(Dn)) H0(Ωn

Cn(En)) H0(Ωn
Cn−1(En−1)) H1(Ωn

Cn(Dn))

The top sequence is one of mixed Hodge structures. SinceDn is a normal crossing divisor,
the first and the fourth up arrow are embeddings with image F nHn(Cn r Dn) resp.
F nHn+1(Cn r Dn). According to our induction hypothesis, the third up arrow embeds
H0(Ωn

Cn−1(En−1)) in F n−2(Hn−1(Cn−1rEn−1))(−1) = F n−1(Hn−1(Cn−1rEn−1)(−1)) and
its image in grn−1

F (Hn−1(Cn−1rEn−1)(−1)) is one dimensional. Since the (Hodge) functor
Fn−1 is exact, it follows that the second up arrow is an embedding whose image lies in
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F n−1Hn(Cn r En) and contains F nHn(Cn r En) as a subspace of codimension one. We
also see that the residue map defines an isomorphism

H0(Ωn
Cn(En))/H0(Ωn

Cn) ∼= H0(Ωn
Cn−1(En−1))/H0(Ωn−1

Cn−1).

Since the latter is of Tate type (n− 2, n− 2), the former is of Tate type (n− 1, n− 1). The
uniqueness of the line follows from the fact that it is spanned by preimage of the real
cohomology Hn(Cn r En;R).

It remains to determine the character of the Sn-stabilizer of En on the corresponding
line of polydifferentials. Near the main diagonal, any generator of that line has in terms
of a local coordinate z on C the form

f(z1, . . . , zn)dzn ∧ dzn−1 · · · ∧ dz1

(z1 − zn)(z2 − z1) · · · (zn − zn−1)
.

with f holomorphic and invariant under cyclic permutation and f(z, z, . . . , z) constant
nonzero. We let ζn be the generator such that this constant is 1. Then it is clear that the
residue of ζn along ∆n−1,n is ζn−1. The fact that it transforms under the dihedral group
as indicated is clear. �

Remark 2.3. In a subsequent paper we will see that Theorem 2.2 is best expressed in
term of a class of polydifferentials that we have baptized quasi-logarithmic n-forms on
the n-point configuration space of C, which as the name is intended to suggest, contains
the space logarithmic n-forms. Theorem 2.2 will then imply that every quasi-logarithmic
form is a sum of exterior products of logarithmic forms and forms of the type described
by that theorem.
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