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Prerequisites

In this short chapter we review some basic notions and results from analysis
in several variables and from elementary topology. It can be consulted as we go
along, but occasionally it may be well worth returning to the sources where you
learn(ed) these things.

1. What we need from calculus

We call a map f from an open subset U of Rm to Rn differentiable at a ∈ U if it
admits a first order approximation by a polynomial of degree one, more precisely,
if there exists a linear map σ ∈ Hom(Rm,Rn) with the property that

lim
h→0

‖f(a+ h) − f(a) − σ(h)‖
‖h‖

= 0

The map σ is unique, is called the derivative of f at a and usually denotedDaf. The
map x 7→ f(a) + σ(x− a) is the (best) first order approximation of f at a.

If f is differentiable in every point of U, then we have a matrix valued map
Df : U → Hom(Rm,Rn) whose coefficients are the first order partial derivatives
of f. We say that f is a C1-map if Df is continuous. And inductively, we say that f
is a Ck-map (k ≥ 2) if Df is a Ck−1-map. In order to make this also true for k = 1,
we agree that C0 stands for continuous. A map is Ck precisely when all its partial
derivatives up to order k exist and are continuous. Een C∞-map is a map which is
Ck for all k.

THEOREM 1.1 (Chain rule). Let f be a map from an open U ⊂ Rm to an open
subset V ⊂ Rnand let g be a map from V to Rp. Als f is differentiable at a ∈ U and g is
differentiable at b := f(a), then gf is differentiable at a and we haveDa(gf) = DbgDaf.

Notice that this theorem implies that if f and g are Ck, then so is gf.
A bijection f between two open subsets U and V of Rm with the property that

both f and f−1 are Ck-maps is called a Ck-diffeomorphism. In case k ≥ 1, it follows
from the chain rule that for every a,Daf is invertible with inverseDf(a)(f

−1). The
inverse function theorem yields a local converse:

THEOREM 1.2 (Inverse Function Theorem). Let f be a Ck≥1-map from an open
neigborhood of a ∈ Rm to Rm and suppose that Daf ∈ Hom(Rm,Rm) is nonsingular.
Then f maps an open neighborhood of a Ck-diffeomorphically onto an open subset of Rm.

We formally derive the implicit function theorem (stated below) from the in-
verse function theorem as follows: write Rm+n as a product Rm × Rn and denote
its points accordingly: x = (x ′, x ′′). Let f be a Ck≥1-map from an open neigh-
borhood U of a = (a ′, a ′′) ∈ Rm+n to Rn and suppose that the restriction of
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Daf ∈ Hom(Rm+n,Rn) to 0 × Rn (the map v ∈ Rn 7→ Daf(0, v) ∈ Rn) is non-
singular. Then the map f̃ : U → Rm+n, f̃(x ′, x ′′) := (x ′, f(x ′, x ′′)), satisfies the
hypotheses of the inverse function theorem at a and hence maps a neighborhood
W 3 a Ck-diffeomorphically onto a neighborhood of (a ′, f(b)). Choose a product
neighborhood W ′ × V of (a ′, f(b)) in f̃(W) and replace W by f̃−1(W ′ × V). Our
gain is that f̃(W) is now a product, namely W ′ × V . The inverse of f̃, denoted
g̃ : W ′ × V → W, is a Ck-diffeomorphism which will have the form g̃(x ′, y) =
(x ′, g(x ′, y)). So (x ′, x ′′) ∈ W is mapped to (x ′, y) ∈ W ′ × V precisely when
y = f(x ′, x ′′), or equivalently, if x ′′ = g(x ′, y). In particular:

— fg̃(x ′, y) = y and
— for every y ∈ V , f−1y ∩W, is the graph of x ′ ∈W ′ 7→ g(x ′, y) ∈ Rn.

The second property provides an implicit description of the map g(−, y) : W ′ →
Rn (whence the name implicit function theorem), whereas the first property tells
us that if we compose f with a suitable diffeomorphism (namely g̃), we get a pro-
jection (namely the one of W ′ × V onto V). From this point of view the following
formulation seems more natural:

COROLLARY 1.3. Let f be a Ck≥1-map from an open neighborhood of a ∈ Rm+n to
Rn and suppose that Daf ∈ Hom(Rm+n,Rn) is surjective. Then there exists a diffeo-
morphism h of an open neighborhood of a onto an open subset of Rm+n such that fh−1 is
on its domain the restriction of the projection Rm+n = Rm × Rn → Rn.

PROOF. Since Daf is onto, there exist n basis vectors ei1 , . . . , ein of Rm+n

whose images underDafmake up a basis of Rn. If σ : Rm+n → Rm+n is the linear
map given by a permutatation of basis vectors which sends the last n basis vectors
onto ei1 , . . . , ein , dan fσ is as above. If g̃ the Ck-diffeomorphism there obtained,
then fσg̃ on its domain the projection to Rn. So h := (σg̃)−1 is as desired. �

There is a similar result for the case of an injective derivative:

PROPOSITION 1.4. Let f be a Ck≥1-map from an open neighborhood of a ∈ Rm
to Rm+n and suppose that Daf ∈ Hom(Rm,Rm+n) is injective. Then there exists a
diffeomorphism h from an open neighborhood of f(a) ∈ Rm+n onto an open neighborhood
of (a, 0) in Rm×Rn such that hf is a restriction of Rm ∼= Rm×0 ⊂ Rm×Rn = Rm+n.

PROOF. Since Daf is injective, the matrix of Daf has m linear independent
rows, say rows i1, . . . , im. Let σ : Rm+n → Rm+n be defined by a permutation of
basis vectors with the property that maps ei1 , . . . , eim to e1, . . . , em. This ensures
that the composite of σDaf = Da(σf) with the projection Rm × Rn → Rm is
nonsingular. Then the map F : U × Rn → Rm+n, F(x, y) := σf(x) + (0, y), has
the property that Da,0F(u, v) = σDaf(u) + (0, v), from which we see that Da,0F is
nonsingular. By the inverse function theorem F maps a neighborhood of (a, 0) in
U×Rn Ck-diffeomorphically onto a neighborhood of f(a). IfG denotes its inverse,
then h := Gσ is as desired, for hf(x) = Gσf(x) = GF(x, 0) = (x, 0). �

Summing up: if a Ck≥1-map f from a neighborhood of a ∈ Rp to Rq has
in a a derivative of maximal rank min{p, q}, then f composed with some Ck-
diffeomorphism at a (if p ≥ q) resp. at f(a) (if p ≤ q) is the restriction of a linear
projection resp. a linear inclusion. Phrased more suggestively (albeit less precise):
the behavior of such a map at a is qualitatively no different from its derivative.
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2. Recalling some notions from general topology

Topology addresses, among other things, the following question: if f : X → Y

is a map between sets, what extra structure is needed on both X and Y in order to
be able say that f is continuous? If we remember from calculus that a map f from
a subset X of Rm to Rn is continuous precisely when the preimage of any open
subset of Rn is open in X (which means: the intersection of X with an open subset
of Rm), then it is clear that all that is required is a notion of ‘open set’.

Given a set X, then a topology on X is a collection O of subsets of X that is
closed under taking arbitrary unions and finite intersections and has both X and
the empty set as members. A set equiped with a topology is called a topological
space and the members of the topology are then refered to as open subsets. Although
a topological space is strictly speaking a pair (like (X,O) above), we often denote
it by a single symbol (X, for instance). A subset of a topological space is said to be
closed if its complement is open (so the collection of such subsets is closed under
taking arbitrary intersections and finite unions and contains both ∅ and Xt).

The standard example is Rm with its collection of usual open subsets. Recall
what ‘usual’ means here: U ⊂ Rm is then open if for every p ∈ U there is an open
ball centered at that point and contained inU (the adjective open in open ball means
that we take the ball defined by a strict inquality ‖x−p‖ < r, so the definition is not
circular). In other words, a subset is open if and only if it is a union of open balls.
If you check that the collection of subsets with this property is indeed a topology
in the above sense, you readily discover that this is a formal consequence of two
rather trivial properties of open balls: (i) every point is contained in an open ball
and (ii) for every point in an intersection of two open balls there is an open ball
centered at that point and contained in the intersection. This means that if you are
given a set X and any collection B of subsets of X

(i) whose union is X and
(ii) has the property that if p ∈ B ∩ B ′ with B,B ′ ∈ B, then there is a B ′′ ∈ B

with p ∈ B ′′ ⊂ B ∩ B ′,

then the subsets of X that can be written as a union of members of B make up a
topology on X. One calls this the topology generated by B and B is called a basis of
this topology.

The notion of basis is quite helpful when we wish to give a product of topo-
logical spaces a topology: if X1, . . . , Xm are topological spaces, then the collec-
tion of subsets of U1 × · · · × Um with Ui open in Xi is usually not a topology on
X1×· · ·×Xm because the union of two product subsets is in general not a product.
What is however easily seen to be true is that this collection satisfies the properties
(i) and (ii) above and hence generates a topology on X1×· · ·×Xm. We call this the
product topology. It is usually understood that X1×· · ·×Xm has been endowed with
this topology; it is then called the topological product of the spaces Xi. For instance,
Rm is the topological product ofm copies of R.

Suppose X is a topological space.
A neighborhood of p ∈ X is a subsetN ⊂ X for which there exists an open subset

Uwith p ∈ U ⊂ N. More generally, a neighborhood of a subsetA ⊂ X is subsetN ⊂ X
for which there exists an open subset Uwith A ⊂ U ⊂ N.

Let A ⊂ X be a subset.
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The collection {A ∩ U}U∈O is a topology on A, called the induced topology. If a
subset of X has been endowed with this topology we often refer to it as a subspace.

The closure of A, A, the smallest closed subset of X containing A: p ∈ A if
any neighborhood of p meets A. In case this closure equals X, then we say that
A is dense in X. The interior of A, A◦, is the biggest open subset of X contained
in A: p ∈ A if A is a neighborhood of p in X. It is clear that A◦ ⊂ A ⊂ A. The
difference A −A◦ is called the boundary of A in X, and sometimes denoted ∂A. (It
is bit unfortunate that these notions have a slightly different meaning in theory of
manifolds, but there is no need to go into this now.)

We say that X is connected if X is nonempty and the only two open subsets that
are also closed are X and ∅. It is proved in an analysis course that R and in fact any
interval in R is connected.

We say that X is a Hausdorff space if X if any two of distinct points of X have
disjoint neighborhoods. Notice that every subspace of Hausdorff space is also a
Hausdorff space. For instance, Rm and (hence) its subspaces are Hausdorff spaces.

We say that X is compact if for any collection {Uα}α of open subsets with union
X (briefly, an open covering of X), there is a finite subcollection Uα1 , . . . , Uαr whose
union is X (a finite subcovering of X). We know from analysis that the compact sub-
spaces of Rm are precisely those that are both closed and bounded and that such
subsets have the property that every sequence in them has a convergent subse-
quence. This is an indication of this notion’s nature and usefulness.

Let f : X→ Y be map between topological spaces.
We make the expected definition and say that f is continuous if for every open

V ⊂ Y, f−1V is open in X. It is easy to see that this property does not change if we
replace open by closed. As noted above, if X is a subspace of Rm and Y a subspace
of Rn, then this coincides with the notion familiar from calculus.

We say that f is open (resp. closed) if the image of every open (resp. closed)
subset of X under f is open (resp. closed) in Y. For instance, the projection of a
product onto a factor X1×X2 → X1 is open and continuous. It need not be closed:
if we take X1 = X2 = R, then the subset of X1 × X2 defined by x1x2 = 1 is closed,
but its projection in X1, R − {0}, isn’t.

If f is bijective and both f and f−1 are continuous, then f is called a homeomor-
phism. Notice that f then also establishes a bijection between the open subsets of X
and Y: U ⊂ X is open in X if and only if f(U) is open in Y and so this is the notion of
isomorphism in topology: the topological spaces X and Y are then indistinguish-
able (for their topological properties) and we say that X and Y are homeomorphic.
A deep theorem due to Brouwer says that a nonempty open subset of Rm is not
homeomorphic to an open subset of Rn when n 6= m.

The proof of the items in the proposition below is no different from the special
case (of subspaces of some Rn) that you are familiar with.

PROPOSITION 2.1. (i) Every closed subset of a compact space is compact.
(ii) Every compact subspace of a Hausdorff space is closed in that space.

(iii) The image of connected (resp. compact) space under a continuous map is con-
nected (resp. compact).

PROOF. (i) Let X be a compact space and A ⊂ X closed. An open covering of
A can be given by a collection of open Uα ⊂ X with ∪αUα ⊃ A. Make it an open
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covering of X by throwing in the open set X−A. Since X is compact, we can select
a finite subcovering of X. This clearly yields a finite number of Uα’s covering A.
So A is compact.

(ii) Let X be a Hausdorff space and A ⊂ X compact. We show that X − A is
open in X by proving that every p ∈ X−A has a neighborhood U disjoint with A.
For every q ∈ A choose disjoint X-open subsets Uq 3 p, Vq 3 q. The collection
{Vq}q∈A is an open covering ofA and soA ⊂ Vq1∪· · ·∪VqN for certain q1, . . . , qN.
Then U := Uq1 ∩ · · · ∩UqN is as desired.

(iii) Let f : X → Y be continuous. Suppose X compact. To prove that f(X) is
compact, let {Vα}α be a collection of Y-open subsets covering f(X). Then {f−1Vα}α
is an open covering of X (for f is continuous) and hence has a finite subcovering:
X = f−1Vα1 ∪ · · · ∪ f−1VαN for certain α1, . . . , αN. Hence f(X) ⊂ Vα1 ∪ · · · ∪ VαN
and so f(X) is compact.

Similarly it is proved that X connected implies f(X) connected. �

The third part gives among other things a generalization of the mean value
theorem:

COROLLARY 2.2. Let f : X → R be a continuous function on a topological space X.
If X is connected, then f is constant or f(X) is an interval; if X is compact, then f has a
minimum and a maximum; if X is both, then f(X) = [a, b] for certain finite a ≤ b.

PROOF. If X is connected (resp. compact), then so is f(X) and hence f(X) is an
interval or a singleton (resp. a bounded closed subset of R). �

Quite useful is:

COROLLARY 2.3. Let f : X → Y be a continuous map from a compact space X to a
Hausdorff space Y. Then f is closed. So if f is also bijective, then f is a homeomorphism.

PROOF. If A ⊂ X is closed, then A is compact (by 2.1-(i)), hence f(A) is com-
pact (by 2.1-(iii)) and therefore closed in Y (by 2.1-(ii)). If f is also bijective, then f
being closed amounts to f−1 being continuous. �

Let now f : X→ Y be simply a map of sets.
If Y comes with a topology, then the collection f−1V , with V running over the

open subsets of Y defines a topology on X. We call it the induced topology on X (this
is indeed a generalization of the case of an inclusion considered above); it is the
smallest topology on X that makes f continuous.

EXERCISE 2.1. Let V be a real vector space of finite dimensionm. If f : V → Rm
is an isomorphism of R-vector spaces, then endow V with the f-induced topology.
(a) Prove that this topology is independent of the choice of f so that V has a natu-
ral topology. (We will always assume that a real finite dimensional vector space is
endowed with this topology.)
(b)Prove that a linear map between finite dimensional real vector spaces is contin-
uous. Prove also that the map is open resp. closed when it is onto resp. injective.
(c) Prove that the topology on V as above is the smallest that makes all its linear
functions f : V → R continuous.

If, on the other hand, X (instead of Y) comes with a topology, then the col-
lection of subsets V ⊂ Y for which f−1V is open in X defines a topology on Y,
sometimes called the co-induced topology. It is clearly the biggest topology on Y
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that makes f continuous. When f happens to be surjective, we usually call it the
quotient topology. Such a situation arises from any equivalence relation ∼ on X: take
Y := X/∼ to be the set of equivalence classes and take for f : X→ Y the map which
assigns to x its equivalence class. Thus an equivalence relation ∼ on a topological
space X determines a topology on X/∼.

Here is an example. Take X = Sm, the unit sphere in Rm+1, and let ∼ be
the equivalence relation whose equivalence classes are the antipodal pairs {x,−x}.
Then the quotient space is the real projective m-space Pm. This description of Pm

is quite convenient if you are interested in its topology, but it does not very well
exhibit its geometric origin as an extension of Rm ‘with points at infinity’. The
following exercise develops that point of view and at the same time helps you to
familiarize yourself with the preceding.

EXERCISE 2.2. (a) Prove that Pm is connected and compact (you may use that
Sm is connected form ≥ 2).
(b) Let Sm+ ⊂ Sm be the closed northern hemisphere defined by xm+1 ≥ 0 and
identify its equator (defined by xm+1 = 0) with Sm−1. Prove that Sm+ ⊂ Sm → Pm

is still surjective and the topology Pm picks up this way is the same topology as
above.
(c) Prove that P1 is homeomorphic to the circle S1.
(d) Prove that Pm−1 is a subspace of Pm.
(e) LetH ⊂ Rm+1 be the hyperplane obtained by lifting up Rm in Rm+1 by the last
unit vector: H is defined by xm+1 = 1. Prove that the map x ∈ H→ x/‖x‖ defines
a homeomorphism of H onto Pm − Pm−1.
(f) Interpret the missing part Pm − Pm−1 in terms of H as the set of unoriented
directions in H. More specifically, show that if x ∈ H and y ∈ Sm−1, then the
image of x + ty ∈ H in Pm tends to the image of y in Pm−1 as t → ±∞. (In this
way a line inH has a single point ‘at infinity’; that point lies in the ‘projective space
at infinity’, Pm−1. Two lines inH have the same point at infinity if and only if they
are parallel.)

Classical projective geometry is, as the name indicates, more concerned with
geometry than topology and also tends to be more algebraic in character. In this
setting a point of Pm is given by a nonzero vector in Rm+1 given up to scalar, rather
than by an antipodal pair in Sm (there is no difference, of course, since any such
vector spans a line which meets Sm in an antipodal pair). This leads to denoting a
point of Pm by an (m + 1)-fold ratio, [x0 : · · · : xm]. A projective linear subspace of
Pm of dimension k is simply the set of points coming from a (k + 1)-dimensional
linear subspace of Rm+1, but if k = 1 we rather speak of a (projective) line. Since
any two distinct planes through the origin in R3 meet in a line, any two distinct
lines in the projective plane P2 will meet in a single point. This is in way simpler
than what happens with distinct lines in an ordinary plane, as these can also be
parallel. It is because of properties such as these that one often prefers to work
with projective spaces rather than with affine spaces.



CHAPTER 1

The language of manifolds

1. Topological manifolds

DEFINITION 1.1. An m-manifold (where m is an integer ≥ 0) is a Hausdorff
space that is locally homeomorphic to Rm (i.e., every point of this space has a
neighborhood homeomorphic to an open subset of Rm). We call m the dimension
ofM.

Before giving examples, we make a few general remarks. The space Rm is
Hausdorff and hence an m-manifold. The same must then also be true for any
real finite dimensional vector space. Since a subspace of a Hausdorff space is also
Hausdorff, any open subset of an m-manifold is an m-manifold as well; in partic-
ular, any open part of Rm is one.

We remark here that there is a topological notion of dimension that assigns to
a nonempty open subset of Rm the number m (the definition is relatively simple,
the proof anything but). This implies that a nonempty m-manifold cannot be at
the same time an n-manifold if n 6= m.

Here are some more interesting examples.

EXAMPLES 1.2. (i) The m-sphere Sm = {x ∈ Rm+1 | ‖x‖ = 1}. Given i =

0, . . . ,m and ε ∈ {+,−} we have defined a half sphere Ui,ε := {x ∈ Sm ‖ εxi > 0}.
These half spheres form an open covering of Sm. The mapUi,ε → Rm which omits
the ith coordinate is a homeomorphism onto the open unit ball Bm ⊂ Rm. Hence
Sm is am-manifold.

(ii) The real projective space Pm, defined as the quotient of Sm by antipodal
identification. Check that this is a Hausdorffs space. Notice that the restriction of
Sm → Pm to Ui,+ is injective and that its image Ui has preimage in Sm equal to
Ui,+ ∪ Ui,−. This implies that Ui is open in Pm and that Ui,+ → Ui is a homeo-
morphism. Hence Pm is am-manifold.

(iii) Let f be a Ck≥1-map from an open U ⊂ Rm+n to Rn. Let b ∈ Rn and
suppose that for every a ∈ f−1(b), Dfa is onto. Then it follows from Corollary
1.3 that f−1(b) a m-manifold. (We may regard example (i) as a special case: take
f(x) := ‖x‖2 and b = 1.

(iv) This is a nonexample. LetM be obtained from two copies of R, R× {1} and
R × {2} by identifying (t, 1) and (t, 2) for t 6= 0 (so M is a quotient of R × {1, 2} by
an equivalence relation). It is easy to verify that the image Mi of R × {i} is open
in M and that R ∼= R × {i} → Mi is a homeomorphism. Since M = M1 ∪M2, it
follows that M is locally homeomorphic to R. But M is not Hausdorff and hence
not a manifold: if 0i denotes the image of (0, i) in M, and Ni is a neighborhood of
0i for i = 1, 2, then Ni contains the image of (−εi, εi) × {i} for some εi > 0 and it
is then clear that N1 ∩N2 contains the image of (0,min{ε1, ε2})× {1}.

9
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Chart and atlas. Let M be a m-manifold. A chart for M is a couple (U, κ),
where U is an open part of M and κ : U → Rm a homeomorphism of U onto an
open subset of Rm (the terminology is quite appropriate for this is like charting
part of a territory).

Is given p ∈M, then a chart at p simply a chart (U, κ) with p ∈ U and κ(p) = 0.
Is given another chart (U ′, κ ′), then we have two charts with domain U ∩ U ′

and the map
κ ′κ−1 : κ(U ∩U ′)→ κ ′(U ∩U ′)

is a homeomorphism between open subsets of Rm. We call this homeomorphism
a coordinate change.

An atlas forM is a collection chartsA = (Uα, κα)α forMwhose domains cover
M: ∪αUα = M. If besides the atlas also all coordinate changes are given, then M
may be reconstructed in much the same way as our globe can be recovered from
satellite images: let M̃ be the disjoint union of the open subsets κα(Uα) of Rm and
obtain M from this as a quotient space: a ∈ κα(Uα) is declared equivalent with
b ∈ κβ(Uβ) if a ∈ κα(Uα ∩ Uβ) and b ∈ κβ(Uα ∩ Uβ) and κβκ−1

α (a) = b. This is
indeed an equivalence relation and the quotient space isM.

2. Smooth manifolds

Let M be an m-manifold. An atlas A = (Uα, κα)α for M is called a Ck-atlas
if each of its coordinate changes is a Ck-map. Since the inverse of the coordinate
change κβκ−1

α is also one (namely κακ−1
β ) this implies that any coordinate change

is then a Ck-diffeomorphism. It is clear that a Ck-atlas is also a Cl-atlas if l < k.

EXAMPLES 2.1. The atlases described in Examples 1.2-i, ii are C∞. The atlas in
Example 1.2-iii that we get from an application of the implicit function theorem, is
Ck.

Perhaps the main consequence of having a Ck-atlas A is that it gives rise to
a notion of Ck-differentiability for R-valued functions defined on open subsets of
M: we say that such a function f : U → R is Ck with respect to A if for every chart
(Uα, κα) of A, fκ−1

α : κα(Uα ∩U)→ R is Ck.

PROPOSITION 2.2. For two Ck-atlasesA and B of anm-manifoldM are equivalent:
(i) A and B determine the same notion of Ck-function: if U ⊂ M is open, then
f : U→ R is Ck with respect to A if and only if it so with respect to B,

(ii) A ∪ B is a Ck-atlas.

PROOF. Suppose (i) holds. We must show that for a chart (U, κ) from A and
a chart kaart (V, λ) from B the coordinate changes λκ−1 and κλ−1 are Ck. Since
every component λi : V → R of λ a Ck-function voor B, it is, by our assumption,
also one for A. This means that λiκ−1 is Ck (i = 1, . . . , n). In other words, λκ−1 is
Ck. The same argument shows that κλ−1 is Ck.

The implication (ii)⇒(i) is left to you. �

If the equivalent properties of the preceding proposition are satisfied then we
say that the two atlases are Ck-equivalent. Property (i) makes it plain that this is
indeed an equivalence relation. Property (ii) shows that the union of all Ck-atlases
belonging to the same Ck-equivalence class is itself also a Ck-atlas (and so there is
a maximal one).
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DEFINITION 2.3. A Ck-structure on a manifoldM is the data of an equivalence
class of Ck-atlases on M, or what boils down to the same: the data of a maximal
Ck-atlas on M. A Ck-manifold is a manifold endowed with a Ck-structure; when
k = ∞, we also call it a smooth manifold (but see Convention 2.8). A chart of a
Ck-manifold is tacitly assumed to be taken from the Ck-atlas, unless otherwise
stated.

Since Sm and Pm come in a natural manner with a C∞-structure, we will re-
gard them as smooth manifolds. TheM that appears in Example 1.2-iii comes with
the structure of a Ck-manifold.

It is obvious that a Ck-manifold can be regarded as a Cl-manifold if l < k. A
converse, due to H. Whitney, states that a maximal Ck≥1-atlas always contains a
C∞-atlas (more than one usually), so that every Ck-manifold ‘comes from’ a C∞-
manifold. On the other hand, R. Kirby and L. Siebenmann (1968) found manifolds
that possess no C1-atlas at all!

It turns out that smooth manifolds offer the right setting for many results from
calculus, although this sometimes forces us to state these results in a more geomet-
ric fashion (usually making them appear easier). But the chief reason for introduc-
ing this notion is its ubiquity: smooth manifolds are everywhere.

EXERCISE 2.1. Prove that the product of twoCk-manifolds is in a natural man-
ner a Ck-manifold.

Differentiable maps. We already agreed on what it means for an R-valued
function on a Ck-manifold to be a Ck-function. A minor extension yields the no-
tion of a Ck-mapping between Ck-manifolds:

DEFINITION 2.4. Let f : M → N be a continuous map between Ck-manifolds.
We say that f is a Ck-map if for every chart (U, κ) of M en every chart (V, λ) of N,
the composite λfκ−1 (whose domain is the open κ(U∩ f−1V) ⊂ RdimM and whose
range is RdimN) is a Ck-map. We say that f is a Ck-diffeomorphism if f is bijective
and both f and f−1 are Ck; if such a Ck-diffeomorphism exists, then M and N are
said to be Ck-diffeomorphic.

Notice that this definition makes every chart (U, κ) of a Ck-manifold a Ck-
diffeomorphism of U onto κ(U).

EXERCISE 2.2. Prove that a continuous map f : M→ N between Ck-manifolds
is aCk-map if and only if it takesCk-functions toCk-functions in the sense that ifψ
is an R-valued Ck-function on an open V ⊂ N, thenψf is an R-valued Ck-function
(with domain f−1V).

EXERCISE 2.3. Prove that twoCk≥1-manifolds that areCk-diffeomorphic have
the same dimension. (You are not allowed to use the here unproven fact that di-
mension is a topological notion.)

EXERCISE 2.4. Prove that a composite of Ck-maps is a Ck-map.

H. Whitney showed that if two smooth manifolds are C1-diffeomorphic, then
they areC∞-diffeomorphic. This is no longer true if the smooth manifolds are only
homeomorphic: J. Milnor found in 1956 examples of smooth manifolds homeo-
morphic, but not diffeomorphic to S7.
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DEFINITION 2.5. Given a Ck-manifold N of dimension n, then we say that a
subset M ⊂ N is a Ck-submanifold of dimension m if M can be covered by charts
(U, κ) of N with the property that M ∩U = κ−1(Rm × {0}). (If k =∞ we will also
call this is a smooth submanifold.)

Here we must have m ≤ n, of course, and Rn is written as Rm × Rn−m.
The definition says that the diffeomorphism κ : U → κ(U) maps M ∩ U onto
κ(U)∩ (Rm× {0})). In other words, locallyM lies inN in the same way as Rm× {0}

lies in Rn. The restriction of a chart as in the above definition to M maps an open
subset ofM homeomorphically onto an open subset of Rm. The collection of these
defines a Ck-atlas for M, so that M acquires the structure of a Ck-manifold of
dimensionm. The inclusion mapM ⊂ N is automatically Ck.

EXAMPLE 2.6. Let f be a Ck≥1-map from an open U ⊂ Rm+n to Rn and let
b ∈ Rn be such that the derivative of f is surjective in any point of f−1(b). Then
Corollary 1.3 implies that f−1(b) is a Ck-submanifold of U of dimensionm.

Applying this to U = Rm+1and f(x) := ‖x‖2, shows that Sm is a submanifold
of Rm+1.

EXERCISE 2.5. Prove that for m ≤ n, Sm is a smooth submanifold of Sn if
we identify Sm with Sn ∩ (Rm+1 × 0). Conclude that likewise Pm is a smooth
submanifold of Pn.

EXERCISE 2.6. Let f : Rn → R be a homogeneous function of degree d. Prove
that f−1(1) is a (possibly empty) submanifold of dimension d.

EXERCISE 2.7. The set of n × n-matrices of determinant 1 makes up a group
under composition, called the special linear group SL(n,R). Prove that this group
is a smooth submanifold and determine its dimension. Prove also that the map
SL(n,R)×SL(n,R)→ SL(n,R), (σ, τ) 7→ στ−1 is C∞. Do the same for the orthog-
onal group SO(n). (These are examples of so-called Lie groups: a Lie group is a
group Gwhich at the same time has the structure of a smooth manifold for which
the map (g, h) ∈ G×G 7→ gh−1 ∈ G is C∞.

You may wonder whether every smooth manifold is diffeomorphic to a smooth
submanifold of some RN. The answer is that this is the case, provided a rather
mild countability property is satisfied (we shall return to this issue). So smooth
manifolds are less abstract you might have feared and your subsequent question
then might well be: why bother if it does not produce anything we did not know?
The reason for introducing the notion of a smooth manifold is not because it might
more general, but because it is more convenient than the notion of a smooth sub-
manifold of some RN: quite often the context makes a possible ambient RN irrele-
vant and hence a drag. This means in practice that the theory becomes much more
transparant and effective in the abstract setting.

AN ASIDE 2.7. A (smooth) knot is a smooth submanifold of R3 that is diffeo-
morphic to S1. Knot theory is among other things concerned with the question of
when two knots are ‘the same’. This sameness can be formalized in several ways,
one is saying that K ⊂ R3 and K ′ ⊂ R3 are equivalent if there exists a diffeomor-
phism of R3 onto R3 that takes K to K ′. Incidentally, one usually prefers to regard
a knot as a submanifold of the S3 (obtained from R3 by adding a single ‘point at in-
finity’); the advantage of this is that S3 is compact, while the passage to S3 hardly



3. TANGENT SPACE 13

affects the sameness issue. Knot theory is intimately tied with group theory and
noncommutative algebra. Some remarkable developments in this area during the
past 15 years were inspired by quantum field theory.

From now on we confine ourselves to C∞-notions:

CONVENTION 2.8. In what follows we tacitly assume that all manifolds and all maps
between them are C∞, unless it is explicitly stated otherwise.

In particular, an R-valued function on a manifold is automatically C∞.

3. Tangent space

We now have agreed on what is a (C∞-) map f : M → N between (smooth)
manifolds, but still conspicuously missing is the basic notion of derivative. We
would like it to be at a point p ∈ M a linear map Dpf deserving of that name.
Domain and range of a linear map are vector spaces, and so the question arises:
which vector spaces? The answer is: Dpf will go from the tangent space M at p
to the tangent space of N at f(p). This makes it our first business to define these
tangent spaces.

We begin our discussion in Rn. Is γ a curve in Rn, i.e., a (C∞-) map from
an open interval I to Rn, then for every t ∈ I, the derivative of γ at t can be
represented by a vector:

γ̇(t) :=


γ̇1(t)

γ̇2(t)
. . .

γ̇n(t)

 ,
where γ̇i(t) is of course the derivative of γi at t. This Newtonian notation purports
to suggest that we regard γ̇(t) as a velocity vector based at γ(t). If is given a
(smooth) submanifold M ⊂ Rn and a p ∈ M, the we may restrict our attention
to curves γ with image in M, defined on an (unspecified) neighborhood of 0 ∈ R
with γ(0) = p. The velocity vector γ̇(0) of such a curve will be tangent to M and
if we let γ run over all such curves, the vectors γ̇(0) run over all vectors that are
tangent to M at p. The collection of these velocity vectors is a linear subspace of
Rn translated over pwhich we may well call the ‘tangent space ofM at p’.

This notion can be transfered without much difficulty to the abstract case of
a manifold M and a point p ∈ M: let us first make an auxiliary definition and
agree that a curve at p is a (smooth) map γ from an open neighborhood of 0 in
R to M met γ(0) = p. On the collection of curves at p we define an equivalence
relation: γ1 ≡ γ2 if for a chart κ at p, κγ1 and κγ2 have the same derivative in 0.
The equivalence class of γ relative to this equivalence relation will be called the
derivative of γ at 0 and will be denoted accordingly by γ̇(0). This relation is in fact
independent of the choice of κ.

EXERCISE 3.1. Prove this.

DEFINITION 3.1. A tangent vector of M at p is the derivative at 0 of a curve at
p. The collection tangent vectors ofM at p is the tangent space ofM at p and will be
denoted TpM.
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We now want to show that the term tangent vector is justified in the sense
that TpM is a vector space in a natural way. We will see this by means of the
following general argument: if we are given a set T , then every bijection K : T →
Rm can be used (in the most banal way) to give T the structure of a real vector
space for which K is a linear isomorphism of vector spaces: subtraction and scalar
multiplication in T are just transfered through K: v −w := K−1(K(v) − K(w)) and
λ.v := K−1(λK(v)). Another bijection K ′ : T → Rm yields the same vector space
structure on T precisely when K ′K−1 : Rm → Rm is a linear isomorphism (check
this!).

Returning to the case at hand, we note that for every chart κ at p, the map
γ 7→ (κγ)̇(0) ∈ Rm defines a bijection TpM → Rm: the injectivity follows from
Exercise 3.1 and every v ∈ Rm arises as the image of the curve t 7→ κ−1(κ(p) + tv)
at p. We use this bijection, which we have good reason to denote by Dpκ, to
transfer the vector space structure of Rm to TpM so that Dpκ becomes a linear
isomorphism. This structure is independent of κ:

PROPOSITION 3.2. The tangent space of a manifold M at a point p ∈M, TpM, has
a natural (so chart independent) structure of a vector space of the same dimension as M.
It is characterized by the property that every chart κ at p defines an isomorphism of vector
spaces Dpκ : TpM → Rm. If κ ′ is another chart at p, then Dpκ ′ = Dκ(p)(κ

′κ−1)Dpκ

(where Dκ(p)(κ
′κ−1) is the usual derivative of κ ′κ−1 at κ(p)).

PROOF. We first address the last statement. Since κ ′γ = (κ ′κ−1)(κγ), the chain
rule tells us that

(κ ′γ)̇(0) = Dκ(p)(κ
′κ−1)((κγ)̇(0)).

This is just saying thatDpκ ′ = Dκ(p)(κ
′κ−1)Dpκ, so that the last assertion follows.

The first assertion follows from the preceding applied to K = Dpκ and K ′ = Dpκ
′.
�

It is now fairly easy to present the derivative geometrically as a linear map
between tangent spaces: Given a map f : M → N between manifolds, p ∈ M
and q := f(p), we want to define Dpf : TpM → TqN. This is done as follows: if
v ∈ TpM, then choose a representative curve γ inM at p, so that fγ is a curve inN
at f(p) and we want that curve to represent Dpf(v). There is something to check
here: that this is independent of the choice of γ and that the map is linear. To see
this, let κ resp. λ be a chart ofM at p, resp. ofN at q. Then λfγ = (λfκ−1)(κγ) and
hence following the chain rule

(λfγ)̇(0) = Dκ(p)(λfκ
−1)((κγ)̇(0)).

The right hand side is justDκ(p)(λfκ
−1)Dpκ(v) and hence the equivalence class of

fγ only depends on v. Denoting this class by Dpf(v) ∈ TqN as we intended, then
the left hand side is written DqλDpf(v). Thus Dpf : TpM → TqN is well-defined
and obeys a formula that looks like the chain rule:

Dqλ◦Dpf = Dκ(p)(λfκ
−1)◦Dpκ

(but bear in mind that here only Dκ(p)(λfκ
−1) is a derivative of the old-fashioned

kind). We claim that the derivative of f at p, Dpf : TpM→ TqN, is linear. In view of
the way we put vector space structures on TpM and TqN, this amounts to stating
that Dqλ◦Dpf◦(Dpκ)−1 is linear. This is clearly the case, because this composite
equals Dκ(p)(λfκ

−1).
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We note that our somewhat ad hoc definition of Dpκ : TpM → Rm agrees
with the final one, if we bear in mind that the tangent space of Rm at f(p) can be
identified with Rm.

PROPOSITION 3.3. A map f : M → N between manifolds determines for every
p ∈M a linear map between vector spaces, the derivative of f at p,Dpf : TpM→ Tf(p)N.
This derivative obeys the chain rule: if g : N→ P is another map between manifolds, then
Dp(gf) = Df(p)gDpf.

PROOF. The verification of the chain rule is easy: if γ is a curve in M at p
(representing v ∈ TpM), then fγ is one inN at f(p) (representingDpf(v) ∈ Tf(p)N)
and gfγ one in P at gf(p) (representing Df(p)gDpf(v), but also Dp(gf)(v)). �

4. Submersions, immersions and embeddings

The notions just introduced enable us to state the inverse and implicit function
theorems in a more canonical fashion.

PROPOSITION 4.1. Let f : M → N be a map from an m-manifold to an n-manifold
and let p ∈M, q := f(p).
(subm) If Dpf : TpM → TqN is surjective (so m ≥ n), then there exist charts κ of M

at p and λ of N at f(p) such that λfκ−1 is on its domain equal to the projection
Rm = Rn × Rm−n → Rn. In particular, a neighborhood of p in f−1(q) is a
submanifold ofM of dimensionm− n.

(imm) IfDpf : TpM→ TqN is injective (som ≤ n), then there exist charts κ ofM at p
and λ ofN at f(p) such that λfκ−1 is on its domain equal to the injection Rm ∼=
Rm × 0 ⊂ Rm × Rn−m = Rn. In particular, f maps an open neighborhood of
p diffeomorphically onto a submanifold of N.

(diff) If Dpf : TpM → TqN is bijective (so m = n), then f maps an open neighbor-
hood of p diffeomorphically onto an open neighborhood of q.

PROOF. We only treat the first case since the proof of the other two is anal-
ogous or simpler. Let κ and λ be charts of M at p resp. of N at q. Then Dpf is
onto precisely when Dκ(p)(λfκ

−1) is. If Dκ(p)(λfκ
−1) is onto, then Corollary 1.3

applied to λfκ−1 tells us that there is a diffeomorphism h of an open neighborhood
of κ(p) in Rm onto an open subset of Rm such that λfκ−1h−1 is on its domain the
projection of Rm on Rn. So the assertion follows if we replace κ by hκ. �

These properties deserve a name:

DEFINITION 4.2. A map f : M → N between manifolds is called a submersion
resp. immersion at p ∈ M if Dpf : TpM → Tf(p)N is onto resp. injective. If this is
the case for all p ∈M, then f is said to be a submersion resp. immersion.

COROLLARY 4.3. Let f : M → N be a map between manifolds and q ∈ N. If f is
in every point of f−1(q) a submersion, then f−1(q) is a submanifold of M of dimension
m− n.

In order to determine whether a manifold can be realized as a submanifold of
Rn it is convenient to have the following notion .

DEFINITION 4.4. A map f : M→ N between manifolds is an embedding if f(M)
is a (smooth) submanifold of N and f is a diffeomorphism ofM onto f(M).
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This means that for every p ∈ M there exists a chart λ = (λ ′, λ ′′) : V →
Rm × Rn−m of N at f(p) such that λ ′f : f−1V → Rm is a chart ofM.

Proposition 4.1 implies that an immersion f : M→ N is locally an embedding
in the sense, thatM is covered by open subsets on which f is an embedding.

It is clear that an embedding is an injective immersion. The converse fails to
hold, witness the following two examples.

EXAMPLE 4.5. Consider the map f : R→ R2 defined by f(t) = (t2 − 1, t3 − t).
This is an immersion. We have f(1) = f(−1), but apart from that, f is injective. The
image of f is a curve with a simple self-intersection in the origin and is certainly
no submanifold. That image does not change if we replace f by its restriction to
R − {−1}. But this restriction is an injectieve immersion.

EXAMPLE 4.6. Let a ∈ R−Q and consider the map f : R→ S1×S1 defined by
f(t) = (e

√
−1t, e

√
−1at). This is an injective immersion. It is not hard to prove that

the image of f is dense in the torus S1 × S1 and so is certainly not a submanifold.

Nevertheless we have:

PROPOSITION 4.7. An injective immersion f : M → N between smooth manifolds
is an embedding if and only if it mapsM homeomorphically onto its image f(M).

PROOF. We prove the nontrivial direction: we suppose that f maps M home-
omorphically onto f(M) and prove that f(M) is a submanifold of N and f a dif-
feomorphism of M onto f(M). Let q ∈ f(M). If p ∈ M is such that f(p) = q,
then according to (imm) of Proposition 4.1 f maps an open neighborhood U of p
diffeomorphically onto a submanifold of N. Since f is a homeomorphism onto its
image, f(U) will be open in f(M), i.e., be the intersection of f(M) with an open
V ⊂ N. So V ∩ f(M) = f(U) is a submanifold ofN and fmapsU diffeomorphically
onto V ∩ f(M). The proposition follows. �

If we combine the preceding proposition with the fact that a continuous bijec-
tion from a compact space to a Hausdorff space is a homeomorphism (Corollary
2.3), we find:

COROLLARY 4.8. A closed injective immersion is an embedding. In particular, an
injective immersion whose domain is compact is an embedding.

EXERCISE 4.1. Let R > r > 0. Prove that the map f : S1 × S1 → R3 defined by

f(e
√

−1α, e
√

−1β) = ((R+ r cosβ) cosα, (R+ r cosβ) sinα, r sinβ)

is an embedding.

EXERCISE 4.2. Find an embedding of Sn × Sm in Rn+m+1.

EXERCISE 4.3. Consider the map f : Rm+1 − {0} → R 1
2 (m+1)(m+2) which as-

signs to (x0, . . . , xm) ∈ Rm+1 the vector (xixj)i≤j (in lexicografical order, say).
(a) Prove that f is an immersion.
(b) Prove that f(a) = f(b) if and only if b = ±a, so that f|Sm factors through an
injective map g : Pm → R 1

2 (m+1)(m+2).
(c) Prove that g is an embedding.



4. SUBMERSIONS, IMMERSIONS AND EMBEDDINGS 17

REMARK 4.9. The preceding problem describes (for m = 2) an embedding of
the projective plane P2 in R6. We can bring this down to an embedding in R4 by
modifying the definition of f|S2 slightly: we take as its coordinates (w1, . . . , w6) =

(x2, y2, z2,
√
2xy,

√
2yz,

√
2xz) ∈ R6, and then note that the induced embedding g :

P2 → R6 takes its values in the intersectionN of the unit 5-sphere S5 ⊂ R6 and the
affine hyperplane defined byw1+w2+w3 = 1. ThisN is in fact diffeomorphic to
the 4-sphere (check this). The image will not be all ofN and so misses a point ofN,
q say. Since the complementN−{q} is (via stereographic projection) diffeomorphic
to R4, we thus have produced an embedding of P2 in R4. We shall see that we
cannot do better: P2 cannot be embedded in R3.

THEOREM 4.10. Every compact manifoldM can be embedded in some Rn.

PROOF. We fix a function φ : [0, 1) → R with φ−1(1) = [0, 12 ] and φ zero on
[34 , 1). For every p ∈ M, we choose a chart (Up, κp) at p. By replacing κ by λκ if
necessary, we may assume that κp(Up) contains the unit ball of Rm. We extend
φ(‖κp‖) : Up → R and φ(‖κp‖).κp : Up → Rm as differentiable maps defined on
all of M by letting them be zero (resp. the origin) on M−Up. Denote these exten-
sions by fp,0 resp. (fp,1, . . . , fp,m), so that we have a map fp := (fp,0, . . . , fp,m) :

M→ Rm+1.
Let Dp ⊂ M be defined by fp,0 = 1. This is also the subset of Up defined by

‖κp‖ ≤ 1
2 and so its interior D◦p is the subset of Up defined by ‖κp‖ < 1

2 . Observe
that on Dp, (fp,1, . . . , fp,m) coincides with κp. So fp|Dp is injective and fp|D◦p is
an immersion. Since {D◦p}p∈M is an open covering of M and M is compact, there
exists a finite subcovering {D◦pi }

s
i=1. We prove that

f = (fp1 , . . . , fps) : M→ (R(m+1))s = R(m+1)s

is an embedding. In view of Corollary 4.8 it suffices to show that f is an injective
immersion. Since theD◦pi coverM and fpi |D

◦
pi

is an immersion, f is an immersion
on all of M. Now let p, p ′ ∈ M be such that f(p ′) = f(p). We have p ∈ Dpi
for some i and so fpi,0(p) = 1. Since fpi,0 is a coordinate of f, we also have
fpi,0(p

′) = 1. This implies that p ′ ∈ Dpi . But fpi is injective on Dpi and hence
p ′ = p. �

REMARK 4.11. The compactness assumption can be weakened considerably
to: M has a countable basis for its topology. This condition is also necessary, be-
cause RN has a countable basis (for instance, the collection of open balls whose
center has rational coordinates and whose radius is rational) and hence every sub-
space will have that property as well. H. Whitney proved that a manifold of di-
mension m possessing a countable basis for its topology can in fact be embedded
in R2m.





CHAPTER 2

Tangent bundles and vector fields

1. The tangent bundle

Let M be a manifold of dimension m. Our immediate aim is to endow the
(disjoint) union

TM :=
∐
p∈M

TpM

with the structure of a manifold of dimension 2m so that the base point map
TM → M, v ∈ TpM 7→ p, is C∞ . At the same time we want the vector space
structure in the fibers (i.e., the subtraction and the scalar multiplication maps) to
vary smoothly with the base point.

We begin with the simple observation that the derivatives of a map f : M→ N

between manifolds combine to define a map Df : TM→ TN. This is a bijection if f
is a diffeomorphism (by the inverse function theorem the converse also holds).

For any p ∈ Rm we may identify TpRm with Rm. So if O ⊂ Rm is open, then
TO gets identified with O× Rm and the map which assigns to a tangent vector its
base point is simply the projection O × Rm → O. If f is a map from O to an open
O ′ ⊂ Rn, then

Df : O× Rm → O ′ × Rn, (a, v) 7→ (f(a), Daf(v))

is a C∞ map (the matrix coefficients of Daf are the first order partial derivatives
of f, hence C∞ ). We observe that in case f is a diffeomorphism from O onto O ′

(so that m = n), the inverse of the C∞ Df is the C∞ D(f−1) and hence Df is a
diffeomorphism as well.

The derivatives of a chart (U, κ) ofM define a bijectionDκ : TU→ κ(U)×Rm
and if (U ′, κ ′) is another chart ofM, then Dκ ′ ‘differs’ from Dκ by

(Dκ ′)(Dκ)−1 = D(κ ′κ−1) : κ(U ∩U ′)× Rm → κ ′(U ∩U ′)× Rm.
Since κ ′κ−1 is a diffeomorphism, so is D(κ ′κ−1). This suggest that we should
regard the collection of (TU,Dκ) as an atlas for a manifold structure on TM. The
only problem is that this presupposes a topology on TM that makes it a topological
manifold. This is solved by:

PROPOSITION 1.1. The set TM is in just one way a differentiable manifold of dimen-
sion 2m with the property that the collection {(TU,Dκ)}(U,κ) is a C∞-atlas. It has the
property that the base point map TM→M is C∞.

PROOF. We first establish what the topology on TM should be. For any mani-
foldN endowed with an atlas {(Vα, λα)}α, we have that a subsetΩ ⊂ N is open for
its topology if and only if λα(Ω∩Vα) is open for all α. This tells us that there can be
only one way to put a topology on TM as desired: it must consist of the collection

19
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of subsets Ω ⊂ TM with the property that Dκ(Ω ∩ TU) is open in TRm = R2m for
all charts (U, κ) of M. It is easy to check that this is a topology indeed: it is closed
under arbitrary unions and finite intersections and contains TM. Notice that then
for any chart (U, κ) of M, TU is open for this topology, for if (U ′, κ ′) is any other
chart, thenDκ ′(TU∩ TU ′) = κ ′(U∩U ′)×Rm is open in Rm×Rm. We now verify
that Dκ : TU→ U× Rm is a chart for this topology, i.e., is a homeomorphism. It is
clearly bijective and so we need to show that

Ω ⊂ TU open in TM⇔ Dκ(Ω) open in U× Rm.

The direction⇒ is trivial, let us therefore assume that Dκ(Ω) is open in U × Rm.
Then for any chart (U ′, κ ′) ofM,Dκ ′(Ω∩ TU ′) = D(κ ′κ−1)(Dκ)(Ω∩ TU ′) is open
in R2m (we use here that D(κ ′κ−1) is a homeomorphism). SoΩ is open in TM.

In order to prove that TM is a topological manifold, it remains to show that
it is a Hausdorff space. Suppose v ∈ TpM and v ′ ∈ Tp ′M are distinct. If p 6= p ′,
then we can choose disjoint chart domains U 3 p, U ′ 3 p ′ and then TU 3 v and
TU ′ 3 v ′ are disjoint open subsets. If p = p ′, we choose a chart (U, κ) at p. Then
Dκ(v) andDκ(v ′) are distinct in Rm×Rm, so if we choose disjoint neighborhoods
of these points, then their preimages in TU are disjoint neighborhoods of v and v ′.
So TM is a Hausdorff space.

We have already seen that a coordinate changeD(κ ′κ−1) is a diffeomorphism.
So TM becomes a smooth manifold. The proof that the projection TM→M is C∞
is straightforward. �

EXERCISE 1.1. Prove that if M is a submanifold of a manifold N, then TM is a
submanifold of TN. (So ifM ⊂ Rn, then TMmay be regarded as a submanifold of
M× Rn.)

EXAMPLE 1.2. The tangent bundle TSm of Sm is the collection pairs (p, v) ∈
Rm+1 × Rm+1 with ‖p‖ = 1 and p ⊥ v. This is a 2m-dimensional submanifold of
R2m+2.

EXERCISE 1.2. Prove that the tangent bundle of Pm can be obtained from the
preceding example by identifying in TSm the antipodal pairs (p, v) and (−p,−v).

Vector fields. In this subsection M is an m-manifold and so TM is a 2m-
manifold.

DEFINITION 1.3. A vector field onM is a (by our Convention 2.8, automatically
C∞ ) map V : M → TM, p 7→ Vp with Vp ∈ TpM for all p ∈M (in other words, V
is a C∞ section of TM→M).

The vector fields onMmake up a R-vector space (of infinite dimension unless
M is a finite set): if V,W are vector fields and λ, µ ∈ R, then λV + µW : p 7→
λVp+µWp is also one. We remark that scalar multiplication is not only defined for
real constants, but even makes sense for functions: first notice that the R-valued
functions on M form a ring (under pointwise addition and multiplication). Is V
a vector field and f : M → R a function (so C∞ by convention), then f.V : p 7→
f(p)Vp is a vector field and this product satisfies the same properties as scalar
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multiplication:

(f.g).V = f.(g.V),

1.V = V,

(f+ g).V = f.V + g.V,

f.(V +W) = f.V + f.W.

(In the language of algebra: the vector fields on M make up a module over the
ring of functions on M.) With this in mind, we say that an m-tuple of vector
fields (V1, . . . , Vm) on M is a basis of the tangent bundle if for every p ∈ M,
(V1)p, . . . , (Vm)p is a basis for TpM. This means that every vector field V on M
can be written as V = f1.V1 + · · · + fm.Vm for (unique) functions f1, . . . , fm on
M. (An algebraicist would then say that the vector fields on M form a free module
of rank m over the ring of functions on M.) Such a basis always exists locally: if
for a ∈ Rm, we let ∂

∂xi
|a ∈ TaRm be the tangent vector represented by the curve

γ(t) := a+ tei, then the vector fields
∂

∂xi
: a ∈ Rm 7→ ∂

∂xi

∣∣∣
a
, i = 1, . . . ,m,

are a basis for the vector fields on Rm (every vector field V on Rm can be written
as V =

∑m
i=1 f

i ∂
∂xi

). If (U, κ) is a chart of M, then let ∂
∂κi

be the vector field on U
that Dκ takes to ∂

∂xi
: ∂
∂κi

|p is defined by the curve γ(t) := κ−1(κ(p) + tei). The
identitity

∂

∂xi

∣∣∣
κ(p)

= Dκ(
∂

∂κi

∣∣∣
p
)

shows that this is a vector field on U and that ( ∂
∂κ1

, . . . ∂
∂κm ) is a basis of vector

fields on U.

REMARK 1.4. In general such a basis need not exist on all of M. Take for
instance S2: if a basis (V1, V2) of vector fields were to exist for S2, then the map
f : S2 → S2 which assigns to p ∈ S2 the unit vector (V1)p/‖(V1)p‖ ∈ S2 is such
that f(p) ⊥ p for all p. In particular, f leaves no point fixed. But algebraic topology
tells us that a continuous self-map of S2 without fixed points does not exist.

For S1 there is no problem: just think of S1 as the unit circle in C and take
Vz :=

√
−1z.

EXERCISE 1.3. Prove that S3 has a basis of vector fields. (Hint: use that S3 is
the unit sphere in the skew field of quaternions.)

With the help of the so-scalled octonians (also known as Cayley numbers) one
can prove that S7 too has a basis of vector fields. A deep theorem due to Frank
Adams (1958) says that there are no other spheres with that property.

EXERCISE 1.4. Let G be a Lie group (see Exercise 2.7) with unit e. For every
g ∈ G, let Lg : G→ G, h 7→ gh, be left multiplication.
(a) Prove that the map G × TeG → TG, (g, v) 7→ DeLg(v) is a diffeomorphism.
Conclude that G has a basis of vector fields.
(b) Prove that for every v ∈ TeG there exists a unique vector field V on G that is
left invariant (in the sense that Lg∗V = V for all g ∈ G) with Ve = v.

Observe that the same holds if we replace left by right (the right multiplication
Rg : G→ G is defined by h 7→ hg).
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2. Derivations and the Lie bracket

We first give an algebraic characterization of a vector field. A tangent vector
v ∈ TpM assigns to every function f on a neighborhood of p a ‘directional deriva-
tive’Dpf(v) ∈ R. Since we here fix v and let f vary, we prefer to denote this as v(f).
Let us then investigate the properties of the map f 7→ v(f) = Dpf(v). It is clearly
linear in f: v(λ1f1 + λ2f2) = λ1v(f1) + λ2v(f2). It also satisfies the so-called Leibniz
rule

v(f1.f2) = f1(p)v(f2) + v(f1)f2(p),

which is an incarnation of the product rule: if we represent v by a curve γ at p
and apply that rule to (f1.f2)◦γ we find v(f1.f2) = ((f1.f2)γ)̇(0) = (f1γ.f2γ)̇(0) =
(f1γ)̇(0).f2γ(0) + f1γ(0).(f2γ)̇(0) = f1(p)v(f2) + v(f1)f2(p).

So if V is a vector field on M, then for every function f : U → R on an open
U ⊂ M we get another function V(f) : p ∈ U 7→ Vp(f) = Dpf(Vp). For an open
part of Rm it is given as follows: if V =

∑m
i=1 V

i ∂
∂xi

, then

V(f) : p ∈ U 7→ m∑
i=1

Vi(p)
∂f

∂xi
(p).

This makes us to view a vector field as a simple kind of (one might say, first order
differential) operator on functions. We observe the following properties:

local character: If f is a function on an open U ⊂ M and U ′ ⊂ U is open,
then V(f|U ′) = V(f)|U ′ ,

R-linearity: if f1, f2 are functions on the open U ⊂ M and λ1, λ2 ∈ R, then
V(λ1f1 + λ2f2) = λ1V(f1) + λ2V(f2) and

Leibniz rule: V(f1.f2) = f1.V(f2) + V(f1).f2.
These turn out to characterize vector fields as operators on functions:

PROPOSITION 2.1. A map D which assigns to a real valued function f with domain
an open subset ofM a real valued functionD(f) with the same domain and obeys the three
properties above is defined by a vector field onM. That vector field is unique.

PROOF. We prove this for an openU ⊂ Rm; the general case is then dealt with
by means of an atlas. Consider the ith coordinate xi of Rm as a function on U and
let Vi := D(xi|U). We prove thatD is defined by the vector field V :=

∑m
i=1 V

i ∂
∂xi

.
We first show that D is zero on the constant functions: we have D(1) =

D(1.1) = 1.D(1) + 1.D(1) = 2D(1) so that D(1) = 0. The linearity of D then
implies that D(c) = 0 for every constant c.

Is f a function defined on a neighborhood of a ∈ U, then we must show that
V(f)(a) = D(f)(a). Notice that we have

f(x) = f(a) +

∫1
0

( d
dt
f(a+ t(x− a))

)
dt =

∑
i

(xi − ai)

∫1
0

∂f

∂xi
(a+ (t− x))dt.

So if write gi(x) for the integral that is the coefficient of (xi − ai), then f(x) =

f(a) +
∑
i gi(x).(x

i − ai) with gi(a) = ∂f
∂xi

(a). It follows that

D(f) = D
(
f(a) +

∑
i

gi.(x
i − ai)

)
=

= D(f(a))+
∑
i

(
D(gi).(x

i−ai)+D(xi−ai).gi

)
=
∑
i

(
D(gi).(x

i−ai)+Vi.gi

)
.
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Taking the value a gives

D(f)(a) =
∑
i

Vi(a).gi(a) =
∑
i

Vi(a)
∂f

∂xi
(a) = V(f)(a). �

This characterization turns out be extremely useful. We also remark that in
commutative algebra the R-linearity and the Leibniz rule make up the notion of
an R-derivation (so that a vector field is an R-derivation of the ring of functions to
iself). The following proposition is in fact a general property of derivations.

PROPOSITION 2.2. Let V andW be vectorfields on the manifoldM. Then we have a
vector field [V,W] onM characterized by

[V,W](f) := VW(f) −WV(f).

The binary operation [ , ] thus defined, the Lie product, obeys:
anti-symmetry: [V,W] = −[W,V ] and
Jacobi identitity: [[V,W], X] = [V, [W,X]] − [W, [V,X]].

PROOF. We first show by means of Proposition 2.1 that [V,W] is a vector field.
Local character and R-linearity are clear. We verify the Leibniz rule:

VW(f.g) = V(W(f).g+ f.W(g)) =

= VW(f).g+W(f).V(g) + V(f).W(g) + f.VW(g)

and subtracting from this the identity gotten by interchanging V andW yields

(VW −WV)(f.g) = (VW −WV)(f).g+ f.(VW −WV)(g).

The antisymmetry of the Lie bracket is obvious and the Jacobi identity is a formal
consequence of the definition:

[V, [W,X]] − [W, [V,X]] =
(
V(WX− XW) − (WX− XW)V

)
−
(
W(VX− XV) − (VX− XV)W

)
=

= (VW −WV)X− X(VW −WV) = [[V,W], X]].

�

EXERCISE 2.1. Prove that for vector fields V,W and a function f on a manifold:

[V, f.W] = f.[V,W] + V(f).W.

EXERCISE 2.2. Prove that for vector fields V =
∑
i V
i ∂
∂xi

and W =
∑
iW

i ∂
∂xi

on an open U ⊂ Rm

[V,W] =
∑
i,j

(
Vj
∂Wi

∂xj
∂

∂xi
−Wj ∂V

i

∂xj
∂

∂xi

)
EXERCISE 2.3. Let G be a Lie group with unit e. Prove that the Lie product of

two left invariant vector fields on G is left invariant. Conclude that the Lie bracket
defines a product TeG×TeG→ TeG (that we also denote by [ , ]) (see Exercises I-2.7
and 1.4). Compute this bracket for G = GL(n,R) (where we identify TeGwith the
space of n× n-matrices).
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REMARK 2.3 (Push-forward and pull-back). Given a diffeomorphism h : M→
M ′, then objects onM (such as a function f : M→ R or a vector field V : M→ TM)
can be transfered to M ′ to give a corresponding object on M ′. This is called push-
forward and the transfering map is often denoted by h∗. For instance, h∗f := fh−1

and h∗V := Dh◦V◦h−1 : M ′ → TM ′.
Similarly, the pull-back refers to transfering objects on M ′ via h to objects on

M and is denoted by h∗. This is in fact the push-forward of h−1. The difference is
however that it a pull-back often makes sense when h only is a C∞-map (without
insisting that it be a diffeomorphism). For instance, the pull-back of a function g
onM ′ is simply h∗g := gh. We will later encounter more interesting examples.

Is f ′ : M ′ → R a function, then

(h∗V)(f ′) = Df ′(h∗V) (by definition)

= Df ′◦Dh◦V◦h−1 = D(f ′h)◦V◦h−1 = V(f ′h)◦h−1 = h∗(V(h∗f ′)).

The last expression can be understood as the push-forward of V , regarded as a
derivation, applied to f ′. So whether we push forward V as a vector field or as a
derivation, the result is the same (as it should be).

3. Flows

You may think of a flow in the definition below as a fluid in motion which
does not change in time (the map in the definition below then describes how a
given fluid particle moves in time).

DEFINITION 3.1. A flow on a manifoldM is a (C∞-) mapH : R×M→Mwith
the property that if Ht : M → M is defined by Ht(p) = H(t, p), then H0 is the
identity and HsHt = Hs+t for all s, t ∈ R.

The fact that HtH−t = H0 and H−tHt = H0 are the identity, implies that Ht
is a diffeomorphism of M onto M with inverse H−t. (A flow is therefore simply a
differentiable action of the additive group R on M.) The orbit of a point p ∈ M is
the image of the map

γp : R→M, γp(t) := H(t, p).

If this map is constant (so that the orbit of p is reduced to {p}), then we call p a
stationary point of the flow. The orbit map γp defines a tangent vector γ̇p(0) ∈
TpM, which in the physical situation of a fluid in motion, can be interpreted as the
velocity of the particle at p. By letting p vary, we get a vector field on M. We call
this vector field the infinitesimal generator of the flow, and denote it, appropriately,
by ∂H

∂t |t=0. It is clearly zero at stationary points. We expect to know the flow of a
fluid, once we know the velocity of all its particles and therefore hope that this is
also true in the abstract setting, i.e., that a flow is determined by its infinitesimal
generator. We shall see that this is the case.

EXAMPLE 3.2. For a ∈ R − {0}, a flow on R is given by H(t, x) := eatx. It has
the origin as stationary point. The infinitesimal generator is the vector field ax ∂∂x .
For a < 0 every point of R − {0} flows to the origin (without it ever being reached)
and for a > 0 every point in (0,∞) (resp. (−∞, 0)) flows to +∞ (resp. −∞).

EXAMPLE 3.3 (Example Ch. 1, 4.6 revisited). We have for every a ∈ R a flow
on the torus S1 × S1 defined by Ht(z1, z2) := (e

√
−1tz1, e

√
−1atz2). If a ∈ Q, then
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every orbit closes up to become an embedded circle, but if a /∈ Q, then every orbit
is dense in S1 × S1.

EXERCISE 3.1. For a ∈ C, a flow on C is defined by H(t, z) := eatz. Describe
the qualitative behavior of this flow for the different values of a ∈ C (distinguish
in particular the cases when the real part of a is positive, zero or negative).

EXERCISE 3.2. Let W be real vector space of finite dimension and denote by
End(W) the vector space of all linear self-maps ofW. For A ∈ End(W) define

eA :=

∞∑
n=0

An

n!
.

We suppose as known that this series converges absolutely on every bounded part
of End(W) (relative to some norm on W) and that esAetA = e(s+t)A for s, t ∈ R.
Then for everyA,B ∈ End(W), (t, X) 7→ etAX, (t, X) 7→ XetB and (t, X) 7→ etAXetB

are flows on End(W). Determine their infinitesimal generators.

EXERCISE 3.3. LetH be a flow onMwith infinitesimal generator V . Prove that
Ht∗(V) = V for all t ∈ R.

Many processes in nature are modeled mathematically by a vector field on a
manifold. The predictions of the model—properties that we can observe—usually
concern a flow of which the vector field is an infinitesimal generator. This explains
the interest of finding the flow when the vector field is given. Unfortunately, such
a flow need not exist. To see this, suppose we are given a flow H on M and an
open U ⊂ M that is not preserved by the flow (Ht0(U) 6= U for some t0). Then
we clearly cannot restrict the flow to U, whereas there is no problem in restricting
the infinitesimal generator to U. The latter is then a vector field on U that does not
come from a flow; all we can say is that we have a map whose domain is the set of
(t, p) ∈ R×Uwith H(t, p) ∈ U; this is an open subset of R×U containing {0}×U.
This motivates the following

DEFINITION 3.4. A local flow consists of an open neighborhoodΩ of {0}×M in
R×Mwith the property that it meets every line R×{p} in an intervalΩp×{p} and a
map H : Ω→Mwith the property that H(0, p) = p and H(s,H(t, p)) = H(s+ t, p)
whenever that makes sense (i.e., when (t, p), (s,H(t, p)) and (s+ t, p) all lie inΩ).

We should perhaps emphasize that the domain of a local flow need not contain
a product neighborhood (−ε, ε) ×M of {0} ×M in R ×M and so Ht need not be
defined for any t 6= 0 (for the consequences, see Exercise 3.6 below).

A local flow still defines a vector field, which we shall continue to call its in-
finitesimal generator. The following converse turns out to be a geometric interpre-
tation of the existence and uniqueness of the solution of an ordinary differential
equation with initial conditions.

PROPOSITION 3.5. Every vector field V on M is the infinitesimal generator of a
local flow. This flow is unique in the sense that if (Ω,H) and (Ω ′, H ′) both have V as
infinitesimal generator, then H and H ′ coincide on Ω ∩ Ω ′ (and so there is local flow
whose domain is maximal; it is called the evolution of V).

PROOF. If (Uα, κα)α is an atlas forM, then it suffices to prove the proposition
for the restrictions V |Uα , for if the domain of the local flow on Uα is Ωα, then the
uniqueness part of the proposition guarantees that the two local flows defined on
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Ωα∩Ωβ will coincide so that we end up with a local flow whose domain is ∪αΩα.
We use the charts to transfer the issue to open subsets of Rm, so that now M has
been replaced by an open U ⊂ Rm. We then write the vector field V on U as

Vx =

m∑
i=1

Vi(x)
∂

∂xi

with Vi : U → R. The existence and uniqueness theorem for ordinary differential
equations says that for every p ∈ U there is a neighborhood Up of p in U and an
ε > 0 such that for every a ∈ Up there exists a unique solution γa : (−ε, ε)→ U of
the differential equation

(∗) γ̇(t) = Vγ(t),

with initial condition γ(0) = awhose dependence on a is C∞, in the sense that

Γ : (−ε, ε)×Up → U, (t, a) 7→ γa(t),

is a C∞-map. We prove that Γ is a local flow that has V |Up as infinitesimal gen-
erator. The initial condition requirement says that Γ(0, a) = a. We next observe
that for |s| < ε, the curve t 7→ γa(s + t) also satisfies the differential equation (∗).
This solution has a different initial condition as it starts for t = 0 in γa(s). The
uniqueness property then implies that

γa(s+ t) = γγa(s)(t)

as long as |s + t| < ε. This boils down to Γ(s + t, a) = Γ(t, Γ(s, a)) for a ∈ Up and
|s|, |t| and |s+ t| all < ε.

We finally verify uniqueness: suppose Γ ′ : (−ε, ε) × Up → U has V |Up as
infinitesimal generator. Let |t| < ε and a ∈ Up. It follows from Γ ′(s + t, a) =

Γ ′(s, Γ ′(t, a)) (by taking the derivative at s in s = 0) that ∂Γ
′

∂t (t, a) = VΓ ′(t,a).
If we write this out, we see that this amounts to γ ′a(t) := Γ ′(t, a) satisfying the
differential equation (∗) with the same initial condition. So Γ ′(t, a) = γ ′a(t) =
γa(t) = Γ(t, a). �

REMARK 3.6. A time dependent vector field on a manifoldM is of course a vector
field onM that depends on a real variable, hence is a map V : R×M→ TM of the
form (s, p) 7→ Vp(s) ∈ TpM. Such a field determines an ordinary vector field Ṽ on
R×M, whose R-component is the constant unit vector field:

Ṽ(s,p) := (
d

ds

∣∣
s
, Vp(s)).

Its evolution is of the form (t, (s, p)) 7→ (s+ t,H(t, s, p)).

EXERCISE 3.4. Let V be the vector field x ddx on the interval (0, 1). Determine
its evolution.

EXERCISE 3.5. Let V be a vector field on a manifold M, p ∈ M and N a sub-
manifold ofM through p of codimension 1 (dimN = dimM−1) with the property
that Vp /∈ TpN. Prove that there exists a diffeomorphism of a neighborhood of
(0, p) in R×N on a neighborhood of p inM exists that take the vector field ( ∂∂t , 0)
to V . Hint: Prove that a local flow H for V maps a product neighborhood of (0, p)
in R×N diffeomorphically onto a neighborhood of p inM.
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EXERCISE 3.6. Let V be a vector field on a manifold M with a local flow H

defined on (−ε, ε)×M for some ε > 0. Prove that V is the infinitesimal generator
of a flow. (Hint: use that Ht is defined for |t| < ε and that HsHt = Hs+t wherever
that makes sense.)

EXERCISE 3.7. Let V be the vector field on a manifold M with compact support
(this means that V is zero outside a compact subset). Prove that V generates a flow.
Hint: Use Exercise 3.6.

Local flows help us understand the Lie bracket of two vector fields in geomet-
ric terms. Let V be a vector field on M and let be given an open U ⊂M and some
ε > 0 such that (−ε, ε)×U) is in the domain of a local flowH of V . SoHt : U→M

is defined for all t ∈ (−ε, ε). If we fix our position in some p ∈ U, then after a
time interval t, 0 < t < ε, the particle that passes p was at time zero at H−t(p). So
if f : M → R is a function, then after time t its push-forward relative to Ht is the
function that takes in p value fH−t(p) (this is relevant if the function only depends
on the particle and we wish to record how that function changes at p with time).
We thus found a family of functions Ht∗f = fH−t|U : U → R, |t| < ε. If we do the
same for a vector fieldW onM, we find for |t| < ε the push-forward field

Ht∗W = DHt◦W◦H−t

∣∣∣
U
.

Instead of fixing our position at p, we could decide to keep track of the particle’s
vicissitudes as it moves along. Then it makes more sense to pull back the attributes
ofM atHt(p) to p and to considerH∗tf andH∗tW. This is in fact the point of view of
the Lie-derivative that we will discuss later. All these expressions can be derived
with respect to t.

PROPOSITION 3.7 (Infinitesimal transport). We have on U:

∂
∂t

∣∣∣
t=0
H∗tf = V(f), ∂

∂t

∣∣∣
t=0
Ht∗f = −V(f),

∂
∂t

∣∣∣
t=0
H∗tW = [V,W], ∂

∂t

∣∣∣
t=0
Ht∗W = −[V,W].

PROOF. We only verify the assertions on the left. Choose p ∈ U and let
γp(t) := Ht(p). So γ̇p(0) = Vp. Now is H∗tf(p) = fγp(t); the derivative of fγp(t)
with respect to t in t = 0 is Dp(f)(γ̇p(0)) = Dp(f)(Vp) = V(f)(p) by definition.

We check the second identity for the associated derivations. So given open
subset U ⊂ M, we consistently think of both W and H∗t as (time dependent)
operators in the linear space of functions on U (which therefore can be differ-
entiated with respect to t). Given g : U → R, then according to 2.3 we have
(H∗tW)(g) = H∗t(W(H∗−tg)) and we find
∂

∂t

∣∣∣
t=0

(H∗tW)(g) =
∂

∂t

∣∣∣
t=0
H∗t(W(H∗−tg))

=
∂

∂t

∣∣∣
t=0
W(H∗−tg) +

∂

∂t

∣∣∣
t=0
H∗tW(g) (since H0 is the identity)

= W(
∂

∂t

∣∣∣
t=0
H∗−tg) +

∂

∂t

∣∣∣
t=0
H∗tW(g)

= W(−V(g)) + V(W(g)) = [V,W](g),

where we used the chain rule for time dependent operators (and the already proven
assertion for the penultimate identity). �
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REMARK 3.8. The proof of the preceding proposition shows that properties of
vector fields are sometimes best proved using their interpretation as a derivation.
This is not the case for a proof that a vector field generates a local flow, but this
interpretation can still offer a different perspective. For instance, if X is a vector
field on the manifold M, then view it as an operator on functions f defined on M.
The exponential of this operator is formally given by the series

exp(tX)(f) :=

∞∑
n=0

tn

n!
Xn(f).

(So exp(tX) assigns to a function onM a series whose coefficients are functions on
M.) Assuming that the righthand side converges (in a sense we do not wish to
specify, but for which at least termwise differentiation can be justified), then we
find that

d

dt

∣∣∣
t=0

exp(tX)(f) =
d

dt

∣∣∣
t=0

∞∑
n=0

tn

n!
Xn(f) =

=

∞∑
n=1

tn−1

(n− 1)!
Xn(f) =

∞∑
n=0

tn

n!
Xn+1(f) = X

(
exp(tX)(f)

)
.

If we now compare this with the first formula of Proposition 3.7, then we conclude
that we must have H∗t = exp(tX).

EXERCISE 3.8. Let V (resp. W) be the infinitesimal generator of the flows H
(resp. I).
(a) Prove that

∂2

∂s∂t

∣∣∣
s=0,t=0

HsItH
−1
s I

−1
t = −[V,W].

(Hint: use the derivation interpretation for vector fields.)
(b) Prove that if HsIt = ItHs for all s, t ∈ R, then [V,W] = 0.
(c) Now assume that [V,W] = 0. Prove thatH∗sW = W for all s. Prove subsequently
that HsIt = ItHs for all s, t. (Hint: use Exercise 3.3.)

EXERCISE 3.9. The unit vector fields ∂
∂xi

on Rm mutually commute. Prove a
converse: letV1, . . . , Vm be mutually commuting vector fields on anm-dimensional
manifoldM: [Vi, Vj] = 0 for all i, j. Let p ∈M be such that (V1)p, . . . , (Vm)p make
up a basis of TpM. Prove that there exists a chart (U, κ) at p such that Vi|U = ∂

∂κi
,

i = 1, . . . ,m. Hint: Let Hi be a local flow for Vi and consider the map

h(x1, . . . , xm) = H1(x
1, H2(x

2, H3(. . . Hm(xm, p) · · · )))
in a neighborhood of 0 ∈ Rm to a neighborhood of p in M. Prove that this map is
a diffeomorphism onto a neighborhood B of 0 and show subsequently that if we
take B to be a block, then h∗( ∂

∂xi
|B) = Vi|h(B), i = 1, . . . ,m.

EXERCISE 3.10. LetW be a finite dimensional vector space. EveryA ∈ End(W)

determines vector fields Ãl and Ãr on End(W) by ÃlX := XA and ÃrX := AX (the
superscript r resp. l stands for ‘right invariant’ resp. ‘left invariant’). If A,B ∈
End(W), then determine [Ãr, B̃r], [Ãl, B̃l] and [Ãr, B̃l].



CHAPTER 3

Vector bundles and differential forms

1. Vector bundles

In the appendix we discuss a number of constructions (such as ‘dualizing’ and
‘tensor product’) which produce from one or more vector spaces another one. Our
goal is to imitate this with the tangent bundle of a manifold in such a manner that
for every tangent space this is the given construction. We thus obtain manifolds
E that are endowed with a map E → M such that every fiber Ep, p ∈ M, has the
structure of a vector space (e.g., ∧kTpM∗). Such objects are conveniently described
in terms of the following definition.

DEFINITION 1.1. A vector bundle of rank r over the manifold M is a map of
manifolds π : E → M with the property that every fiber Ep has the structure of
a real vector space of dimension r. This structure must depend C∞ on p in the
following sense: M can be covered by open subsets U ⊂M for which exists a map
ρ : EU → Rr with the property that

(i) the restriction of ρ to any fiber, ρ|Ep : Ep → Rr (p ∈ U), is an isomorphism
of vector spaces and

(ii) the map ρ̃ = (ρ, π|EU) : EU → Rr × U, (which is bijective by (i)) is a
diffeomorphism.

The manifold E is called the total space of the vector bundle, M its basis and π the
projection map.

As you will have guessed, Ep and EU simply denote the preimages of p andU
in E. We often denote a vector bundle by single (usually Greek) letter.

The definition simply says that the restriction EU → U looks like the projection
Rr × U → U in a way that is compatible with the vector space structure on the
fibers. A pair (U, ρ) as in the definition is called a local trivialization of the vector
bundle. If one exists with U = M, then the vector bundle is said to be trivial and ρ
is called a trivialization.

A collection of local trivializations (Uα, ρα)α which covers M (in the sense
thatM = ∪αUα) is sometimes called an atlas for the vector bundle.

EXAMPLES 1.2. (i) The trivial example is: the projection Rr ×M→M.
(ii) The tangent bundle τM of the manifold M is a vector bundle of rank m =

dimM. For a chart (U, κ) of M defines a local trivialization (U, ρ) of the tangent
bundle: take for ρ the last m components of Dκ : TU→ κ(U)× Rm. We have seen
that such a bundle need not be trivial (the tangent bundle of S2 is an example).

(iii) The tautological line bundle γ1m over the real-projective space Pm: every
point of Pm determines a line in Rm+1 through 0 and this line will be the fiber
above this point. Precisely, the total space E is the set of (x, {±y}) ∈ Rm+1 × Pm
with x ∈ Ry and the projection map is projection on the second factor. We can

29
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also obtain this bundle from the trivial line bundle R × Sm → Sm by taking the
quotient of total space and base by the antipodal map (it sends (t, y) to (−t,−y)).

Other examples are obtained by means of constructions that we discuss shortly.

EXERCISE 1.1. Prove that the total space of γ11 is diffeomorphic is to the Möbius
band.

Given two local trivializations (U, ρ) and (U ′, ρ ′) of a rank r vector bundle
E→M, then we have a ‘coordinate change’ over U ∩U ′:

ρ̃ ′ρ̃−1 : Rr × (U ∩U ′)
∼=←−−−− EU∩U ′

∼=−−−−→ Rr × (U ∩U ′).
It has the form (v, p) 7→ (h(p)(v), p), where h(p) is a r × r matrix. This matrix is
nonsingular and depends C∞ on p. The resulting map h : U ∩ U ′ → GL(r,R) is
called the transition function of the pair (ρ, ρ ′). Thus an atlas (Uα, ρα)α of the vector
bundle yields a collection transition functions {hα,β : Uα ∩Uβ → GL(r,R)}α,β.

The following lemma, which gives a kind of converse construction, will prove
quite useful. Among other things, it enables us to show that natural constructions
involving vector spaces generalize to vector bundles.

LEMMA 1.3. Let {Ep}p∈M be a collection of real vector spaces of dimension r indexed
byM. Suppose given a formal atlas in the sense that we have an open covering (Uα)α of
M and for every α and every p ∈ Uα an isomorphism of vector spaces ρα,p : Ep ∼= Rr. If
the associated transition functions

hα,β : Uα ∩Uβ → GL(r,R), hα,β(p) = ρβ,pρ
−1
α,p,

are C∞, then E :=
∐
p∈M Ep →M has precisely one structure of a rank r vector bundle

for which the pairs (Uα, EUα :=
∐
p∈Uα Ep

ρα,p−→Rr) make up an atlas.

PROOF. We proceed in much the same way as we defined a manifold structure
on a tangent bundle. For every α, the map ρ̃α := (ρα,p)p∈Uα : EUα → Rr × Uα is
a bijection. Give EUα the structure of a manifold by stipulating that this bijection
be a diffeomorphism. It is clear that then for every β, EUα∩Uβ is open in EUα .
The maps ρ̃α and ρ̃β differ on EUα∩Uβ by the self-map h̃α,β on Rr × Uα ∩ Uβ
defined by (v, p) 7→ (hα,β(p)(v), p). This map is C∞ as is its inverse h̃β,α. Hence
it is a diffeomorphism. This shows that the two manifold structures on EUα∩Uβ
coincide. A topology on E is gotten by declaring Ω ⊂ E open if its intersection
with every EUα is open in EUα . This topology is easily checked to be Hausdorff.
The lemma follows. �

Change of basis. Given a rank r vector bundle ξ = (E → N) over a manifold
N, then it is clear from the definition that if U ⊂ N is open, then the restriction
EU → U has still the structure of a rank r vector bundle. This is true more generally
if we restrict instead to a submanifold M ⊂ N: EM → M is in a natural manner
a rank r vector bundle (that we shall denote by ξ|M). There is even a further
generalization for which the inclusion M ⊂ N is replaced by an arbitrary map
(but of course C∞) f : M→ N of manifolds: the vector bundle f∗ξ that we want to
define on M, the so-called f-pull-back of ξ, puts over p ∈M the vector space Ef(p).
In precise terms, the total space of f∗ξwill be the subspace of E×M defined by

f∗E := {(z, p) ∈ E×M | f(p) = ξ(z)}
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and the projection to M is the projection on the second factor. We may apply
Lemma 1.3 to verify that this is a vector bundle: is (Vα, ρα)α an atlas for ξ with
transition functions hα,β, then let f∗ρα : f∗EVα → Rr be the composite f∗EVα →
EVα followed by ρα. Then (f−1Vα, f

∗ρα)α is an atlas for f∗ξ with transition func-
tions f∗hα,β = hα,βf.

Change of fiber. Here is another corollary to Lemma 1.3.

COROLLARY 1.4. Let ξ : E→M and ξ ′ : E ′ →M be vector bundles of rank r and
r ′. Then the disjoint union over p ∈ M of the vector spaces E∗p, resp. ∧kEp, Ep ⊕ E ′p,
Ep⊗E ′p, Hom(Ep, E

′
p), · · · have in a natural manner the structure of a vector bundle ξ∗,

resp. ∧kξ, ξ⊕ ξ ′, ξ⊗ ξ ′, Hom(ξ, ξ ′), · · · .

PROOF. We do this first for ξ⊗ξ ′. Choose atlases for ξ and ξ ′. By intersecting
their domains, we arrange that they are subordinate to the same open covering
{Uα}α of M: (Uα, ρα)α and (Uα, ρ

′
α)α. These have transition functions hα,β :

Uα ∩Uβ → GL(r,R) and h ′α,β : Uα ∩Uβ → GL(r ′,R). We want to apply Lemma
1.3 to the collection Ep⊗E ′p, p ∈M, and the isomorphisms ρα,p⊗ρ ′α,p : Ep⊗E ′p →
Rr ⊗ Rr ′(∼= Rrr ′), p ∈ Uα. The hypothesis of the lemma is satisfied, because the
transition function for (α,β),

p ∈ Uα ∩Uβ 7→ hα,β(p)⊗ h ′α,β(p) ∈ GL(Rr ⊗ Rr
′
) ∼= GL(rr ′,R),

is C∞. So we have a vector bundle ξ⊗ ξ ′ overM.
The other cases are handled likewise, for all we need is that the matrices

(hα,β(p)t)−1 ∈ GL(r,R),

∧khα,β(p) ∈ GL(∧kRr),

hα,β(p)⊕ h ′α,β(p) ∈ GL(Rr ⊕ Rr
′
),

(s ∈ Hom(Rr,Rr
′
) 7→ h ′α,β(p)sh−1

α,β(p)) ∈ Hom(Rr,Rr
′
)) ∈ GL(Hom(Rr,Rr

′
))

. . .

are C∞. �

We generalize the notion of a vector subspace:

DEFINITION 1.5. Let ξ = (E → M) be a vectorbundel on the manifold M of
rank r. A vector subbundle of ξ of rank r ′ ≤ r is (given by) a subset E ′ ⊂ E with
the property that there is an atlas (Uα, ρα) for ξ such that for all α, E ′ ∩ EUα =

ρ−1
α (Rr ′ × 0).

It is clear that then E ′ →M indeed defines a vector bundle ξ ′ of rank r ′. Using
Lemma 1.3 we easily see that the union of the quotients E/E ′ :=

∐
p∈M Ep/E

′
p with

its projection E/E ′ →M has the structure of a vector bundle of rank r− r ′ that has
(Uα, ρ̄α) as atlas. Here ρ̄α is the union over p ∈ Uα of the isomorphisms defined
by ρα Ep/E ′p ∼= Rr/Rr ′×0 ∼= Rr−r ′ . We call this the quotient bundle of ξ by ξ ′. That
ξ ′ is a vector subbundle of ξ is simply denoted ξ ′ ⊂ ξ and the associated quotient
bundle is then denoted ξ/ξ ′.

EXAMPLE 1.6. Let M be a submanifold of a manifold N. Then the tangent
bundle τM is a subbundle of the restriction τN|M of τN to M. De quotient bundle
νN,M := τN|M/τM is called the normal bundle of M in N. Although the name is
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appropriate, beware that we have no obvious way of saying that a vector in TpN
with p ∈ M is ‘normal’ to TpM (for that would require an inproduct in TpN). All
we can say here is that a vector in TpN−TpM defines a nonzero vector in TpN/TpM
and this should then thought of as a normal vector in an abstract sense.

Sections and homomorphisms. If ξ : E → M is a rank r vector bundle, then
a section of ξ is a map s : M → E with s(p) ∈ Ep for all p ∈ M. For instance, a
section of the tangent bundle of M is simply a vector field. The sections of ξ form
an R-vector space and admit—just as the vector fields—scalar multiplication by
functions onM.

It will be convenient to have some notation here. A local section of ξ is a section
of ξU for nonempty open U ⊂ M (so a map s : U → E with s(p) ∈ Ep for all
p ∈ U). ForU ⊂M open we denote the collection of sections of ξU by E(U, ξ). The
collection of all local sections of ξ (i.e., the union of the E(U, ξ) over the nonempty
open U ⊂M) will be denoted EM(ξ). Analogously, we write E(U) for the algebra
of (as ever, C∞-) functions U→ R and EM for their union.

Given vector bundles ξ = (E → M) and ξ ′ = (E ′ → M) over the same man-
ifold M, then a (vector bundle) homomorphism φ : ξ → ξ ′ is a map φ : E → E ′

that maps every fiber Ep linearly to the fiber E ′p. If we have (by means of local
trivializations over a common open subset U ⊂ M) ξ|U and ξ ′|U identified with
Rr × U → U and Rr ′ × U → U, then φ is over U given door een by a map of the
form (v, p) 7→ (sp(v), p), where sp ∈ Hom(Rr,Rr ′) depends C∞ on p. We thus see
that φ is simply a section of the bundle Hom(ξ, ξ ′). Clearly, a composite of homo-
morphisms of vector bundles over M is a homomorphism of vector bundles. We
remark that for every nonempty open U, φ determines a map E(U, ξ) → E(U, ξ ′)
(a homomorphism of E(U)-modules).

We have already encountered some simple examples in the case of vector sub-
bundle: both ξ ′ ⊂ ξ and the projection are ξ → ξ/ξ ′ homomorphisms. Here are
two more examples.

EXAMPLE 1.7. Let V be a vector field on M. Inner contraction with V defines
a homomorphism of vector bundles

ιV : ∧pτ∗M → ∧p−1τ∗M.

EXAMPLE 1.8. Let f : M → N be a map between manifolds. The pull-back of
τN, f∗τN, is a vector bundle overMwhose fiber over p ∈M is Tf(p)N. So the fiber
of Hom(τM, f

∗τN) over p is Hom(TpM,Tf(p)N), which is just the receiving space
of the derivative Dpf. Thus Dfmay be viewed as a homomorphism τM → f∗τN.

A homomorphism of vector bundles is called an isomorphism if it is bijective
on the total spaces. (Normally we would also require that its inverse be a homo-
morphism of vector bundles, but that is here automatic—why?) We then say that
the vector bundles are isomorphic. For instance, a vector bundle over M of rank r
is trivial precisely when it is isomorphic to Rr ×M→M.

EXERCISE 1.2. Prove that γ1m is naturally a subbundle of the trivial bundle
over Pm of rankm+ 1.

EXERCISE 1.3. Prove that a linear form on Rm+1 defines a section of the dual
bundle of γ1m. Show also that, conversely, any section of this dual determines a
function f : Rm+1 − {0} → R with the property that f(λx) = λf(x) for all x ∈
Rm+1 − {0} and λ ∈ R − {0}.
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2. Differentials and differential forms

Differentials. You will have encountered in analysis or elsewhere the notion
of a differential. It is usually sort of clear how to calculate with these objects, but
what they are is often left unsaid. We can now remedy this:

DEFINITION 2.1. Given a manifold M, then the cotangent space of M at p ∈M
is the dual T∗pM of the tangent space TpM. The cotangent bundle ofM is the dual of
the tangent bundle, and denoted here by τ∗M : T∗M → M. A differential on M is a
section of its cotangent bundle.

Is f : M → R a function, then for every p ∈ M, the derivative Dpf : TpM →
Tf(p)R = R may be regarded as an element of TpM∗. If denote that element by
dfp, then we thus get a differential df : p 7→ dfp onM.

Consider the basic case when M is an open U ⊂ Rm. Then for a function
f : U → R, the value of dfp on ∂

∂xi
|p is ∂f

∂xi
(p). If we take f = xj, then we see that

dxj takes on ∂
∂xi

the value δji. So (dx1, . . . , dxm) is (fiberwise) the basis dual to
( ∂
∂x1

, . . . , ∂
∂xm ). Hence every differentialω on U is uniquely written as

ω =

m∑
i=1

ωidx
i

with ωi : U → R being defined by ω( ∂
∂xi

). For f : U → R as above we thus
get df =

∑m
i=1

∂f
∂xi
dxi. In general, if (U, κ) is a chart of the manifold M, then

dκ1, . . . , dκm is a basis of differentials on U in the sense that every differential ω
on U is uniquely written as a E(U)-linear combination of dκ1, . . . , dκm:

ω =

m∑
i=1

ωidκ
i withωi = ω

( ∂
∂κi

)
.

In particular, we have for f ∈ E(U)

df =

m∑
i=1

∂f

∂κi
dκi,

where ∂f/∂κi is the value of the vector field ∂/∂κi applied to f.
Formation of the differential of a function on an open subset of M obeys the

following three properties:

local character: if U ′ ⊂ U ⊂ M are open, then for any function f : U → R
we have df|U ′ = d(f|U ′),

linearity: the map f 7→ df is R-linear,
Leibniz rule: if f, g : U→ R, then d(f.g) = fdg+ gdf.

The last property is essentially the product rule. That these properties agree with
those we observed earlier for a vector field is not a coincidence: is V a vector
field on M, then we have for an R-valued function f on an open U ⊂ M that
V(f)(p) = Dpf(Vp) = dfp(Vp) for all p ∈ U. This shows that V(f) only depends
on df. More precisely, V viewed as a map from E(U) to itself is the composite of d
with inner contraction ιV :

V = ιVd.
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Inner contraction is linear over E(U) (not just over R) and this causes the operator
d to share with V the properties listed above. (The operator d is what is called in
algebra the universal derivation of E(U).)

EXERCISE 2.1. Let U ⊂ Rm be an open block and let ω :=
∑m
i=1ωidx

i be a
differential onU. Prove thatω is the differential of a function onU precisely when
∂ωj/∂x

i = ∂ωi/∂x
j for all i, j.

EXERCISE 2.2. A differential on R2 − {0} is defined byω := (x2 + y2)−1(xdy−
ydx). Prove that ω can be locally written as the differential of a function, but not
of a function defined on all of R2 − {0}. (Hint: compute the integral of ω over the
unit circle.)

Let F : M → N be a map of manifolds. Then functions on open subsets of N
can be pulled back along F to give functions on open subsets ofM: if g a R-valued
function on an open V ⊂ N, then F∗g = gF is one on the open subset F−1V ⊂ M.
We thus have defined F∗ : E(V) → E(F−1V) (a homomorphism of commutative
R-algebra’s). We can do likewise for differentials: is ω a differential on the open
subset V ⊂ N, then for every p ∈ F−1V , the composite of DpF : TpM → TF(p)N

with ωF(p) : TF(p)N → R is a linear function on TpM, in other words, an element
of TpM∗. This is C∞ in p and we thus find a differential on F−1V , which we shall
denote by F∗ω. These two pull-backs are compatible:

LEMMA 2.2. The operator d commutes with pull-back: dF∗ = F∗d.

PROOF. Let g : V → R be a function on an open subset of N. If p ∈ F−1V and
v ∈ TpM, then the chain rule gives

(F∗dg)p(v) = dgF(p)((DpF)(v)) = DgF(p)DpF(v) = D(gF)p(v) = d(F∗g)p(v).

�

Differential forms. We begin with the definition.

DEFINITION 2.3. A form of degree k, or briefly, a k-form, on the manifold M,
k = 0, 1, 2, . . . , is a section of ∧kτ∗M. We denote the k-forms on an open U ⊂M by
Ek(U) (so this is also E(U,∧kτ∗M)) and the union (over U) of the Ek(U)’s by EkM.

Hence a 0-form is a function on M and a 1-form is a differential on M. A
k-form α on M can also be understood as a C∞-map which assigns to every k-
tuple of tangent vectors (v1, . . . , vk) taken from the same tangent space TpM a
real number, linear in every vi (if restricted to a tangent space) and zero if two
adjacent arguments coincide. We note that E•(U) := ⊕mk=0Ek(U) is an algebra: if
α,β ∈ E•(U), then α∧ β is defined pointwise.

Is (U, κ) a chart of M, then we found that dκ1, . . . , dκm is a basis of differ-
entials on U. In the same way the collection dκI = dκi1 ∧ · · · ∧ dκik , where
I = (1 ≤ i1 < i2 < · · · < ik ≤ m) runs over the k-element subsets of {1, . . . ,m}, is
a basis of k-forms on U: every k-form α on U is uniquely written as

α =
∑
|I|=k

αIdκ
I with αI ∈ E(U).

Forms can be pulled back along a map F : M → N of manifolds like we did
this for differentials: if V ⊂ N is open and α ∈ Ek(V), then F∗α ∈ Ek(F−1V) is
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characterized by

F∗α(v1, . . . , vk) = α(DpF(v1), . . . , DpF(vk)),

where p ∈ F−1V and v1, . . . , vk ∈ TpM. A special case is that when M is a sub-
manifold of N: a form α on N is mapped to one on M; this is restriction of α as a
form.

REMARK 2.4. In physical applications one may encounter the terms covariant
tensor and contravariant tensor. These are secions of van (τ∗M)⊗k and τ⊗kM respec-
tively (for some manifold M and some k). More generally, a notion is there said
to be covariant if a diffeomorphism pulls it back and contravariant if a diffeomor-
phism pushes it down. So a vector field would be a contravariant and a k-form
a covariant notion. This clashes with what is customary in mathematics, as the
conventions are there just the other way around.

3. The exterior derivative

We shall extend the d-operator as we defined on functions to one defined on
forms. This extension comes up if we want to state certain laws of physics (such
as the Maxwell equations) as naturally as possible. We also need this extension in
Stokes’ theorem, an elegant and powerful generalization of the theorem package
from calculus that goes by the same name.

THEOREM 3.1. For a manifold M there is precisely one R-linear map d : EkM →
Ek+1
M , k = 0, 1, . . . which for k = 0 is the formation of the differential and obeys:

local character: d preserves the domain of forms and commutes with restriction:
if U ′ ⊂ U ⊂M are open, then for every α ∈ E•(U) we have dα|U ′ = d(α|U ′),

Leibniz rule: if α ∈ Ek(U) and β ∈ E•(U), then

d(α∧ β) = (dα) ∧ β+ (−1)kα∧ dβ,

flatness: dd = 0.
Moreover d commutes with pull-back: if F : M → N is a map between manifolds and
α ∈ E•(N), then F∗(dα) = d(F∗α).

PROOF. We first prove uniqueness. Let α ∈ Ek(U), where U ⊂M is open. To
verify that the above properties determine dα, we may by locality assume thatU is
the domain of a chart κ. Then we can write α =

∑
I αIdκ

I. Flatness gives ddκi = 0

for i = 1, . . . ,m and iterated use of the Leibniz rule shows that d(dκI) = 0 for
every I ⊂ {1, . . . ,m} (there is something to check here because the notation dκI is a
bit misleading: it stands for an expression of the form dκi1 ∧ · · ·∧dκik and not for
the d of a form named κI). The Leibniz rule now implies that dα =

∑
I d(αI)∧dκ

I.
As to existence, an obvious way to proceed is to define for a formα =

∑
I αIdκ

I

on the chart domain U, dα by the preceding formula. This at least yields for
functions on U (k = 0) the differential introduced before. It is also clear that
d : E•(U) → E•(U) thus defined is R-lineair. It remains to verify the flatness and
the Leibniz rule and it suffices to do this for ‘monomial’ forms of the type fdκI.
Flatness is straightforward:

dd(fdκI) = d(df∧ dκI) = d
(∑
i

∂f

∂κi
dκi ∧ dκI

)
=
∑
j,i

∂2f

∂κj∂κi
dκj ∧ dκi ∧ dκI.
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Since ∂2f/∂κj∂κi is symmetric in i and j and dκj∧dκi = −dκi∧dκj it follows that
the last expression is zero.

We next verify the Leibniz rule for fdκI and gdκJ. If I ∩ J 6= ∅, then the rule
holds as all its terms are zero. We therefore assume that I ∩ J = ∅ and let ε ∈ {±1}
be the sign determined by dκI ∧ dκJ = εdκI∪J. Then

d(fdκI ∧ gdκJ) = d(εf.gdκI∪J) =

= d(εf.g) ∧ dκI∪J = ε(gdf+ fdg) ∧ dκI∪J =

= (gdf+ fdg) ∧ dκI ∧ dκJ =

= (df∧ dκI) ∧ gdκJ + (−1)|I|fdκI ∧ dg∧ dκJ =

= d(fdκI) ∧ gdκJ + (−1)|I|fdκI ∧ d(gdκJ),

showing that the Leibniz rule holds. This combined with uniqueness guarantees
that on an intersection of two chart domains the definition of d is unambiguous.
This also implies the local nature of d.

Finally the commutation of d and F∗. We already know that this is so on
functions. A k-form on N is locally a linear combination of forms α of the type
gdg1 ∧ · · ·dgk. Since F∗(α) = F∗gF∗dg1 ∧ · · · ∧ F∗dgk = F∗gdF∗g1 ∧ · · · ∧ dF∗gk,
we have

dF∗(α) = dF∗g∧ dF∗g1 ∧ · · ·∧ dF∗gk = F∗dg∧ F∗dg1 ∧ · · ·∧ F∗dgk =

= F∗(dg∧ dg1 ∧ · · ·∧ dgk) = F∗d(gdg1 ∧ · · ·∧ dgk) = F∗dα. �

The operator d is called the exterior derivative. Let us write it out once more on
an open U ⊂ Rm: a k-form α on U has the form α =

∑
|I|=k αIdx

I and then

dα =
∑
I

m∑
i=1

∂αI

∂xi
dxi ∧ dxI =

∑
I

∑
i/∈I

ε(i, I)
∂αI

∂xi
dxI∪{i},

where ε(i, I) = (−1)l if i /∈ I and I contains exactly l indices < i, and is zero if
i ∈ I. We consider a few special cases. For k = 1we have:

d(

m∑
j=1

ωjdx
j) =

∑
1≤i<j≤m

(∂ωj
∂xi

−
∂ωi

∂xj

)
dxi ∧ dxj,

Form = 3 this ressembles the curl of a vector field (we might come back to this).
Is V =

∑m
i=1 V

i∂/∂xi a vector field on U, then:

dιV(dx1 ∧ · · ·∧ dxm) = d
( m∑
i=1

(−1)i−1Vidx1 ∧ · · · d̂xi · · ·∧ dxm
)

=

=

m∑
i=1

(−1)i−1d(Vi) ∧ dx1 ∧ · · · d̂xi · · ·∧ dxm =
( m∑
i=1

∂Vi

∂xi

)
dx1 ∧ · · ·∧ dxm.

So the divergence of V appears here as the coefficient of the ‘volume-element’
dx1 ∧ · · · ∧ dxm. This has an interpretation as the infinitesimal change of the
volume under the local flow generated by V (see Exercise 3.2). A local flow of an
incompressible fluid (in an open subset of Rm) therefore has a vector field with
zero divergence as infinitesimal generator. The divergence of a vector field V on
a manifold M of dimension m can only be defined relative to an m-form µ on M



3. THE EXTERIOR DERIVATIVE 37

which is nowhere zero (and which we therefore regard as an infinitesimal volume
element): the preceding suggests the definition div(V).µ = dιV(µ).

EXERCISE 3.1. With the help of Remark 3.3 of the appendix we regard a k-
vorm α on a manifold M as a function on ∧kTM. The goal is to show that dα has
the property (which in fact characterizes it) that for every (k + 1)-tuple of vector
fields V0, . . . , Vk onM,

dα(V0 ∧ · · ·∧ Vk) =
∑

0≤i<j≤m

(−1)i+j−1α([Vi, Vj] ∧ V0 ∧ · · · V̂i · · · V̂j · · ·∧ Vk)

+

k∑
i=0

(−1)iViα(V0 ∧ · · · V̂i · · ·∧ Vk).

(We here see at work the Koszul rule, a heuristic principle that says that two vari-
ables of odd degree can only be interchanged at the expense of a minus sign; the
Vi’s have odd degree.) We do this in stages:
(a) Check this on an open U ⊂ Rm for α = fdxI, |I| = k < m, and Vi = ∂/∂xi+1,
i = 0, . . . , k.
(b) Same for α arbitrary on U and Vi of the form ∂/∂xji for some ji.
(c) Prove that the right hand side is multilinear over the functions onM: if f : U→
R and we replace Vi by fVi for some i, then the whole expression gets multiplied
by f).
(d) Prove the identity in general.
(e) Give another proof of this formula by exploiting the properties in Theorem 3.1
that characterize the exterior derivative.

Is V a vector field, then we define the Lie-derivative

LV : EkM → EkM, LV := ιVd+ dιV (k = 0, 1, . . . ).

Since dd = 0 and ιV ιV = 0, we have LV = (ιV + d)2. Observe that for a function f,
LV(f) = (ιVd+dιV)(f) = ιVdf = V(f) and for anm-form α, LV(α) = dιVα, which
can also be written as div(V)αwhen α is nowehere zero.

PROPOSITION 3.2. The Lie derivative obeys the following three properties.
commutation with d: dLV = LVd,
Leibniz rule: if α ∈ Ek(U) and β ∈ El(U), then

LV(α∧ β) = LV(α) ∧ β+ α∧ LV(β),

infinitesimal pull-back: is V the infinitesimal generator of a flow H on a mani-
foldM, then for every form α onM,

∂

∂t

∣∣∣
t=0
H∗tα = LVα.

PROOF. It is clear that dLV = dιVd = LVd. The Leibniz rule is a direct conse-
quence of the Leibniz rule for the exterior derivative and a similar property of the
interior product 3.5. We therefore concentrate on the last property.

For a function fwe have LV(f) = V(f), and so the pull-back formula holds for
0-forms because of Ch. 2., 2.3. Then the pull-back formula also holds for df:

∂

∂t

∣∣∣
t=0
H∗tdf =

∂

∂t

∣∣∣
t=0
dH∗tf = d(

∂

∂t

∣∣∣
t=0

(fHt)) = dιVdf = LV(df).
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The general case now follows from the product formula: A k-form with k ≥ 1 is
locally the sum of forms of the type α = fdf1 ∧ · · · ∧ dfk. For such a form we
have H∗tα = H∗tf(H

∗
tdf1) ∧ · · ·∧ (H∗tdfk). Differentiation with repect to t and then

taking t = 0 yields:

∂

∂t

∣∣∣
t=0
H∗tα =

= (
∂

∂t

∣∣∣
t=0
H∗tf)df1 ∧ · · ·∧ dfk +

∑
i

fdf1 ∧ · · ·∧ (
∂

∂t

∣∣∣
t=0
H∗tdfi) ∧ · · ·dfk =

= LV(f)df1 ∧ · · ·∧ dfk +
∑
i

fdf1 ∧ · · ·∧ (LV(dfi)) ∧ · · ·dfk =

= LV(fdf1 ∧ · · ·∧ dfk) = LV(α),

where the last transition used the Leibniz rule. �

EXERCISE 3.2. Let H be a local flow on an open U ⊂ Rm with infinitesimal
generator V . Prove that

∂

∂t

∣∣∣
t=0
H∗t(dx

1 ∧ · · ·∧ dxm) = div(V)dx1 ∧ · · ·∧ dxm.

4. The Frobenius theorem

We will be interested in subbundles of the tangent bundle of a manifold of a
particular type.

IfU ⊂ Rm is open and π : U→ Rm → Rm−r is the projection onto the lastm−r
coordinates (where 0 ≤ r ≤ m, of course), then the kernel of Dπ is a rather trivial
kind of subbundle of τU: under the obvious identification of TUwith Rm ×U this
will correspond to Rr × {0}×U; a section of this subbundle is a vector field of the
form

∑r
i=1 f

i(x)∂/∂xi. It is clear that the Lie bracket of two such vector fields is
of the same form: the sections of our subbundle are closed under Lie bracket. The
Frobenius theorem states a converse.

PROPOSITION 4.1 (Frobenius). LetM be anm-manifold and ξ ⊂ τM a subbundle
of rank r. Denote by ξ⊥ ⊂ τ∗M the subbundle (of rank (m− r)) of linear forms on tangent
spaces that vanish on this subbundle. Then the following are equivalent at p ∈M:

(i) there is a neighborhood U 3 p and a submersion π : U → Rm−r such that ξ|U
equals the kernel of Dπ,

(ii) there is a neighborhood U 3 p such that [E(U, ξ), E(U, ξ)] ⊂ E(U, ξ),
(iii) there is a neighborhood U 3 p such that dE(U, ξ⊥) ⊂ E1(U) ∧ E(U, ξ⊥),
(iv) there is a neighborhood U 3 p and a generating section α of ∧m−rξ⊥|U such

that dα ∈ E1(U) ∧ α.

PROOF. (i) ⇒ (ii). If ξ is defined at p by the submersion π in p, then choose
a chart (U, κ) at p such that π = (κr+1, . . . , κm). Then ξ has as a basis of sections
∂/∂κ1, . . . , ∂/∂κr. These have zero Lie brackets. It is easily checked that then the
Lie bracket of two E(U)-linear combinations of these is also of that form.

(ii) ⇒ (iii). Let V1, . . . , Vr be a basis of sections of ξ on a neighborhood U
of p. By assumption, [Vi, Vj] is a E(U)-linear combination of V1, . . . , Vr. Let θ ∈
E(U, ξ⊥). This means that θ(Vi) = 0 for all i. According to Exercise 3.1 we have

dθ(Vi, Vj) = θ([Vi, Vj]) + Vi(θ(Vj)) + Vj(θ(Vi))
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It is clear that all three terms on the right vanish, so that dθ(Vi, Vj) = 0. Af-
ter perhaps shrinking U we can extend V1, . . . , Vr to a basis of sections of τU:
V1, . . . , Vm. If θ1, . . . , θm is the basis of τ∗U dual to this: θi(Vj) = δij and if we
write dθ =

∑
i<j fijθi ∧ θj, then fij = 0 for i < j ≤ r. So dθ is an E1(U)-linear

combination of θr+1, . . . , θm. Since θr+1, . . . , θm is a basis of ξ⊥|U, the assertion
follows.

(iii)⇒ (iv). Let θ1, . . . , θm be as above so that θr+1, . . . , θm is a basis of ξ⊥|U.
Our assumption says that if i > r, then dθi =

∑
j>r θij∧θj for certain θij ∈ E1(U).

Now α := θr+1 ∧ · · ·∧ θm is a generating section of ∧m−rτ∗U and it follows that

dα =
∑
i>r

(−1)i−r−1θr+1 ∧ · · ·∧ dθi ∧ · · ·∧ θm = (
∑
i>r

θii) ∧ α.

(iv)⇒ (i). We prove with induction on r that after perhaps shrinking U, there
is a f ∈ E(U), an open W ⊂ Rm−r, a submersion π : U → W and a β ∈ Em−r(W)

such that efα = π∗β. This will suffice, for then π is as desired. For r = 0 there is
nothing to show, so let us assume r > 0 and the implication verified for smaller
values of r. Let V := V1 be as above. According to Exercise Ch.2 3.5, we may shrink
U to the domain of a chart κ at p such that V = ∂/∂κ1 and κ(U) = (−ε, ε)×U ′ for
some open U ′ ⊂ Rm−1. The fact that ιVα = 0 implies that α does not involve dκ1.
Since dα = θ∧ α for some θ ∈ E1(U), we also have

LVα = ιVdα = ιV(θ∧ α) = θ(V).α.

Let g ∈ E(U) be a solution to the ordinary differential equation V(g) = −θ(V).
Then

LV(egα) = egV(g)α+ egθ(V)α = 0.

This simply means that egα is invariant under the local flow generated by V . So
egα is independent of κ1. Since egα does not involve dκ1 either, it follows that egα
is the pull-back under ρ := (κ2, . . . , κm) : U→ U ′ of a (m− r)-form α ′ defined on
U ′. This form α ′ satisfies our induction hypothesis, for ρ∗dα ′ = d(egα) = eg(dg+
θ) ∧α = (dg+ θ) ∧ ρ∗dα ′ and since ρ faithfully preserves divisibility, this implies
that dα ′ is divisible by α ′ (this is straightforward to check using the coordinates
κ1, . . . , κm). So by induction we may shrink U ′ and find f ′ ∈ E(U ′), an open
W ⊂ Rm−r, a submersion π ′ : U ′ → W and a βm−r(W) such that ef

′
α ′ = π ′∗β.

The assertion follows with π := π ′ρ and f := g+ ρ∗f ′. �

LetM be a manifold. A rank r vector subbundle of the tangent bundle ofM is
also called a rank r distribution. Such a distribution is said to be integrable (or called
a rank r foliation) if satisfies the equivalent properties of Proposition 4.1 at every
point of M; property (ii) is sometimes refered to as saying that E(ξ) is involutive.
In that caseM has as a special subatlas, consisting of the charts (U, κ) for which the
foliation on U is defined by the submersion (κr+1, . . . , κm) : U → Rm−r. Its coor-
dinate changes are of the form h = (h ′, h ′′) with h ′′ a (local) diffeomorphism of an
open subset of Rm−r onto another such subset. A rank r foliation decomposes M
into subsets (called leaves) that look like connected r-dimensional submanifolds,
but aren’t in general: rather they are the images of connected r-manifolds under
an injective immersion. For instance, a flow without stationary points defines a
rank one foliation whose leaves are the orbits and the orbits of the irrational flow
defined in Example Ch. 2, 3.3 are not submanifolds.
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EXERCISE 4.1. Prove that any rank 1 distribution is a foliation.

EXERCISE 4.2. Let V = f∂/∂x + g∂/∂y + h∂/∂z be a vector field on an open
U ⊂ R3. Prove that the rank 2 distribution onU that is perpendicular to V (relative
to the standard inner product on R3) is integrable if and only if V has zero curl.

5. De Rham cohomology

We say that a form α on a manifold M is closed resp. exact if dα = 0 resp.
α = dβ for a form β. So for connectedM, the closed 0-forms onM are the constant
functions. The flatness property of d implies that an exact form is closed. ‘Being
closed’ is a local property in the sense that it only needs to be verified on the
members of an open covering of M, but not so with ‘being exact’. Still, for forms
of positive degree, being closed is equivalent to being locally exact:

PROPOSITION 5.1 (Poincaré Lemma). Every closed form of positive degree on Rm
is exact.

We derive this from a more general result. In order to state it, it is convenient
to have at our disposal some terminology.

DEFINITION 5.2. The k-th De Rham cohomology groupHkDR(M) of a manifoldM
is the vector space of closed k-forms onMmodulo the subspace of exact k-forms:

HkDR(M) = ker(d : Ek(M)→ Ek+1(M))/dEk−1(M).

(so it is a vector space rather than just a group).

So the Poincaré lemma says that HkDR(Rm) = 0when k ≥ 1.
It follows from 2.2 that pulling back along a map f : M → N of manifolds

takes a closed resp. exact form op N to a ditto form on M. For instance, is ω a
closed k-form onN, then df∗ω = f∗dω = 0 and so f∗ω is closed. This implies that
f∗ induces a linear map between De Rham cohomology groups:

Hk(f∗) : HkDR(N)→ HkDR(M).

The Poincaré lemma turns out to be a consequence of:

PROPOSITION 5.3. For a manifold M, the projection π : R ×M → M induces an
isomorphism of De Rham cohomology groups in every degree. The inverse is induced by
any embedding it : p ∈M 7→ (t, p) ∈ R×M, t ∈ R.

Before we begin the proof proper, let us make a few remarks about differential
forms on R×M. The tangent space of R×M at (t, p) decomposes as TtR⊕ TpM.
Hence the cotangent space of R ×M at (t, p) decomposes as T∗tR ⊕ T∗pM. Notice
that the first summand has the generator dpt. The differential forms on R ×M
decompose accordingly: a k-form α on R×M is uniquely written as

α = α ′ + dt∧ α ′′,

where α ′ and α ′′ are forms (of degree k resp. k−1) in which dt does not occur. This
means that α ′ (and likewise α ′′) can be considered as a form on M that depends
on t, that is, as a map t ∈ R 7→ α ′(t) ∈ Ek(M). Let us write dMα ′ for the (k + 1)-
form that is given by t ∈ R 7→ dα ′(t) ∈ Ek+1(M) (‘exterior derivation in the
M-direction’). Observe that α is the pull-back of a k-form on M precisely when
α ′′ = 0 and α ′(t) is constant in t (informally: neither dt nor t occurs in α) so that
α ′ can be thought of as a k-form onM (whose pull-back to R×M is then α).
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It is worthwhile to understand the exterior derivative on Ek(R ×M) with re-
spect to this decomposition. A local verification in terms of a chart of M shows
that

dα = dMα
′ + dt∧

(∂α ′
∂t

− dMα
′′
)
.

Let now ᾱ be the (k− 1)-form that we get by integrating α ′′ with respect to t:

ᾱp(t) :=

∫t
0

α ′′p(τ)dτ.

Here the right hand side is an ordinary Riemann integral of a function from R
to the vector space ∧•T∗PM. (In terms of a chart (U, κ) at p this integration takes
a familiar form: if α ′′p(t) =

∑
I α
′′
I (t, p)dκI, then we integrate every coefficient

α ′′I : R×U→ R with respect to t.) Notice, that since ∂
∂t ᾱ = α ′′, we have

dᾱ = dMᾱ+ dt∧
∂ᾱ

∂t
= dMᾱ+ dt∧ α ′′ = dMᾱ+ α− α ′.

PROOF OF PROPOSITION 5.3. First observe, that since πit : M → M is the
identity, so is Hk(i∗tπ∗) = Hk(i∗t)H

k(π∗) (as a transformation in HkDR(M)). In par-
ticular, Hk(π∗) is injective.

So it remains to prove that Hk(π∗) is surjective, in other words, that every
closed form α ∈ Ek(R ×M) is the sum of an exact form on R ×M and a closed
form that comes from M. The preceding discussion makes this easy: we have
that α̃ := α − dᾱ is equal to α ′ − dMᾱ and hence is a form in which dt does not
occur. We may therefore think of it as a k-form on M that depends on t. We have
dα̃ = dα− ddᾱ = 0 and from the decomposition

0 = dα̃ = dMα̃+ dt∧
∂α̃

∂t

we see that α̃ is constant in t and closed, when regarded as a form on M. So
α̃ := α− dᾱ is the pull-back of a closed k-form onM. �

PROOF OF THE POINCARÉ LEMMA. With induction we see that the constant
map Rm → {0} induces an isomorphism on De Rham cohomology. The assertion
follows from this. �

The De Rham cohomology groups can in fact be identified with the singular
cohomology groups of M with real coefficients. These are vector spaces that are
defined for every topological space (see any course on Algebraic Topology). We
make this plausible for spaces of the homotopy type of a manifold in Exercise 5.5.

EXERCISE 5.1. Prove that for a connected manifoldM, H0DR(M) = R.

EXERCISE 5.2. Prove that Rm+1 − {0} and Sm have the same De Rham coho-
mology.

EXERCISE 5.3. Prove that the closed forms on a manifold M form a subalge-
bra (for the exterior product). Prove also that the exact forms make up a two-
sided ideal in this subalgebra. Conclude that H•DR(M) := ⊕dimM

k=0 HkDR(M) has
the structure of a graded-commutative algebra in the sense that if a ∈ HkDR(M)

and b ∈ HlDR(M), then ba = (−1)klab. (So aa = 0 if a has odd degree.) Prove
also that a map of manifolds f : M → N induces an algebra homomorphism
H•DR(f) : H•DR(N)→ H•DR(M).
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EXERCISE 5.4. Prove that for every differential form α on R×Mwe have

α− π∗i∗0α = dα+ dα.

Show that Proposition 5.3 is a formal consequence of this identity.

EXERCISE 5.5. In part (b) you may use the following approximation theorem:
Let f : M → N be a continuous map between manifolds that is C∞ on an open neighbor-
hood of a closed subset G ⊂M. Then there is a continuous map F : [0, 1]×M→ N such
F0 = f, F1 is C∞ and Ft|G = f|G for all t ∈ [0, 1] (and we call F1 a C∞-representative
of the homotopy class modulo G of f).
(a) We say that two maps of manifolds f, f ′ : M → N are C∞-homotopic if there
exists a C∞-map F : R ×M → N such that Ft = f voor t ≤ 0 and Ft = f ′ voor
t ≥ 1. Prove that this is an equivalence relation and prove that C∞-homotopic
maps induce the same map on De Rham cohomology.
(b) Let f : M → N be a continuous map between manifolds. Prove that any two
C∞-representatives of the homotopy class of f areC∞-homotopic. Conclude that a
homotopy class of mapsM→ N determines a well-defined graded-algebra homo-
morphism H•DR(N)→ H•DR(M) and in particular, that a homotopy-equivalence of
manifolds induces an isomorphism on De Rham cohomology.

6. A generalization of Stokes’ theorem

Integration of volume forms. We shall interpret anm-form on anm-manifold
as an integrand, that is, as an object that can be integrated. For this a bit of extra
structure on the manifold in question is needed, namely an orientation. We do
not want to deal with improper integrals and that is why we confine ourselves to
forms with compact support. (The support of a form on M is the closure of the set
of p ∈Mwhere the form is nonzero.)

We first consider the case of an open U ⊂ Rm. Let α be an m-form on U with
compact support (so α zero outside a compact subset ofU). If α = fdx1∧· · ·∧dxm,
then we define ∫

U

α :=

∫
U

f(x)dx1dx2 · · ·dxm,

where the righthand side has the usual meaning. Is h a diffeomorphism of an open
V ⊂ Rm onto U, then the transformation rule for integrals says that∫

U

f(x)dx1dx2 · · ·dxm =

∫
V

∣∣det((
∂hi

∂yj
)ij)
∣∣f(h(y))dy1dy2 · · ·dym.

The Jacobian of h, det((∂h
i

∂yj
)ij), is of course nowhere zero. Let us say that h is

orientation preserving if it is everywhere positive. This means that for every q ∈ V ,
the derivative Dqh : Rm → Rm has positive determinant, in other words, takes
every basis of Rm to one that defines the same orientation. If this is the case,
then we can omit the absolute value sign in the transformation formula and as
h∗α = det((∂h

i

∂yj
)ij)dy

1 ∧ · · ·∧ dym, that formula takes the elegant form∫
V

h∗α =

∫
U

α.

In other words, integration of m-forms is not sensitive to orientation preserving
diffeomorphisms. This is the point of departure for transfering this notion to man-
ifolds.
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DEFINITION 6.1. An orientation of a manifold M is a choice of an orientation
of every tangent space TpM that is locally constant in the sense that we can cover
M by charts (U, κ) with the property that the orientation at every p ∈ U is defined
by (∂/∂κ1|p, . . . , ∂/∂κ

m|p), or equivalently, by (dκ1∧ · · ·∧dκm)p (such charts are
then called oriented). If M admits an orientation (this need not be the case), then
we say thatM is orientable.

Notice that a coordinate change κ ′κ−1 : κ(U ∩U ′)→ κ ′(U ∩U ′) between two
oriented charts of an oriented manifold has a Jacobian that is positive everywhere.

EXAMPLE 6.2. The m-sphere Sm is orientable: for p ∈ Sm we orient TpSm as
follows: is (v1, . . . , vm) a basis of TpSm, then (p, v1, . . . , vm) is a basis of Rm+1 and
we declare the former to be oriented when the latter is.

EXAMPLE 6.3. The projective plane P2 is not orientable: a point q ∈ P2 corre-
sponds to an antipodal pair {±p} on S2. The projection π : S2 → P2 maps TpS2 and
T−pS

2 isomorphically onto TqP2. The given orientations of TpS2 and T−pS
2 define

different orientations of TqP2 (for the antipodal map does not preserve the orienta-
tion of S2). So if P2 is oriented, then we would find for any q ∈ P2 a prefered point
p in the fiber π−1q that depends continuously on q (namely the point for which
the tangent map to TqPn is orientation preserving). We thus obtain a continuous
section σ of π. But then we obtain a splitting of S2 in σ(P2) and −σ(P2), which
contradicts the connectedness of S2.

EXERCISE 6.1. Show that the Möbius band (which we can obtain from P2 by
omitting a point) is not orientable.

EXERCISE 6.2. For whichm is Pm orientable?

EXERCISE 6.3. Prove that every submanifold of Rm+k of dimension m ob-
tained via the implicit function theorem is orientable: if U ⊂ Rm+k is open and
f : U→ Rk is a submersion, then f−1(0) is orientable.

EXERCISE 6.4. Prove that a connected non-orientable manifoldM has a degree
2 covering π : M̃→Mwith M̃ connected and orientable.

In order to define integrals over manifolds we need:

LEMMA 6.4 (Partition of unity). Let K be a compact subset of a manifold M and
let {Uα}α be a collection of open subsets of M covering K. Then there exist finitely many
functions (φi : M → [0, 1])ni=1, each of which has its support compact and contained in
some Uαi , such that

∑n
i=1φi is constant 1 on K. (We then say that this collection of

functions is a partition of unity for K subordinate to {Uα}α. )

PROOF. For every p ∈ K we choose an index αp with p ∈ Uαp . With the help
of a chart at p it is easy to construct a function fp : M → [0, 1] whose support is
compact and contained in Uαp and such that fp is constant 1 op an open neigh-
borhood Vp of p. The collection {Vp}p∈K covers the compact K and so there exists
a finite subcovering {(Vpi)

n
i=1} of K. Then f :=

∏n
i=1(1 − fpi) is constant zero on

∪Vpi . It is clear that g := f +
∑
i fpi is positive everywhere. Hence the collection

(φi := fpi/g)
n
i=1 is as desired, for

∑
iφi is constant 1 on ∪Vpi . �

Let nowM be an orientedm-manifold and α anm-form onMwhose support
is a compact subspace K ⊂ M. Applying the lemma to the collection domains of
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oriented charts yields a finite collection of functions (φi)
n
i=1 with sum 1 on K and

such that the support of each φi is a compact part of the domain Ui of an oriented
chart κi. Then for every i, (κ−1

i )∗(φi.α) is an m-form on κi(Ui) with compact
support, and hence integrable.

PROPOSITION-DEFINITION 6.5. The sum
∑n
i=1

∫
κi(Ui)

(κ−1
i )∗(φi.α) only depends

on α and the orientation of M. We call this the integral of α over the (oriented) manifold
M and denote it

∫
M
α. This integral depends linearly on α.

PROOF. We must show that if (ψj, Vj, λj)j is another system with which we
can form such a sum, then∑

i

∫
κi(Ui)

(κ−1
i )∗(φi.α) =

∑
j

∫
λj(Vj)

(λ−1
j )∗(ψj.α).

The left hand side equals

∑
i

∫
κi(Ui)

(κ−1
i )∗(

∑
j

ψj.φi.α) (for
∑
j

ψj = 1where α 6= 0)

=
∑
i,j

∫
κi(Ui)

(κ−1
i )∗(ψj.φi.α)

=
∑
i,j

∫
κi(Ui∩Vj)

(κ−1
i )∗(ψj.φi.α) (for supp(ψjφi) is a compact subset of Ui ∩ Vj).

Since κiλ−1
j is a diffeomorphism of λj(Ui ∩ Vj) onto κi(Ui ∩ Vj) which preserves

the orientation, the transformation formula implies that∫
κi(Ui∩Vj)

(κ−1
i )∗(ψj.φi.α) =

∫
λj(Ui∩Vj)

(λ−1
j )∗(ψj.φi.α).

The first part of the proposition then follows after summation over (i, j). Linearity
is obvious. �

Stokes’ theorem. This concerns a manifold with boundary. We will not formally
introduce that notion and get around it using the following set-up: let M̃ be an
m-manifold with m ≥ 1 and M an open subset of M̃ with the property that its
boundary ∂M is a submanifold of M̃ of dimension m − 1. We suppose that the
boundary is two-sided in the sense that M̃ can be covered by charts (U, κ) such
that M ∩ U resp. ∂M ∩ U is given by κ1 < 0 resp. κ1 = 0 (that makes the closure
M̄ a manifold with boundary). So (κ2, . . . , κm) restricted to ∂M ∩ U then yields a
chart κ ′ for ∂M. Suppose now M̃ oriented. We orient the boundary ∂M as follows:
if p ∈ ∂M, then Tp(∂M) is a hyperplane in TpM̃ that is in fact the boundary of the
half space of the tangent vectors that point towardsM. According to the appendix
(A.3) this determines an orientation of Tp(∂M).

The preceding κ need not be oriented, but we can make it so by taking U
connected and replacing κ1 by −κ1 if necessary). ThenM is given by either κ1 ≤ 0
(and that case (κ2, . . . , κm) defines an oriented chart for U ∩ ∂M) or by κ1 ≥ 0 (in
which case (κ2, . . . , κm) defines the opposite orientation of U ∩ ∂M).
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THEOREM 6.6 (Stokes’ theorem). In this situation we have for every (m−1)-vorm
β on M̃ with compact support ∫

M

dβ =

∫
∂M

ι∗β,

where ι : ∂M ⊂ M̃ is the inclusion.

The following simple special case is also the crucial case:

LEMMA 6.7. Let β be a (m−1)-form on Rm with compact support. Then
∫

Rm dβ =

0. If Rm± is the part of Rm defined by ±x1 ≥ 0 and ι1 : Rm−1 → Rm is the map
(y1, . . . , ym−1) 7→ (0, y1, . . . , ym−1), then

∫
Rm±
dβ = ∓

∫
Rm−1 ι

∗
1β.

PROOF. We write β as
∑
i βidx

1 ∧ · · ·∧ d̂xi ∧ · · ·∧ dxm. Then

dβ :=
∑
i

(−1)i−1
∂βi

∂xi
dx1 ∧ · · ·∧ dxm

and so for every block B ⊂ Rm we have∫
B

dβ =
∑
i

(−1)i−1
∫
B

∂βi

∂xi
dx1 · · ·dxm.

We compute the integral of ∂βi/∂xi over Rm resp. Rm± by first integrating over the
ith variable. The latter always yields zero (since βi(x) = 0 when |xi| is sufficiently
large), unless we integrate over Rm± and i = 1: the we get ∓β1(0, x2, . . . , xm).
Integration of the latter with respect to the variables x2, . . . , xm gives ∓

∫
Rm−1 ι

∗
1β

by definition. �

PROOF OF STOKES’ THEOREM. Let K be the support of β. Choose a partition
of unity for K, (φi)

n
i=1, such that support of φi is a compact subset of the domain

Ui of an oriented chart κi, such thatM∩Ui is defined by κ1 ≥ 0 or κ1 ≤ 0. Notice
that the restriction of κi to ∂M∩U− i is in the first case orientation preserving and
in the second case orientation reversing.

Since
∑
iφi equals 1 where β 6= 0, we have β =

∑
iφiβ. Integration is R-

linear, so we only need to check the theorem for φiβ. In other words, we may
assume that the support of β is a compact subset of the domain of an oriented
chart (U, κ) with U ∩M defined by ±κ1 ≥ 0. Then∫

M

dβ =

∫
κ(U∩M)

(κ−1)∗(dβ) =

∫
κ(U)∩(±x1≥0)

d(κ−1)∗(β)

= ∓
∫
κ(U)∩(x1=0)

ι∗1(κ
−1)∗(β) (by Lemma 6.7)

=

∫
U∩∂M

ι∗β (because of the way ∂M has been oriented)

=

∫
∂M

ι∗β.

�

REMARK 6.8. LetM be a compact, nonempty oriented manifold. Then
∫
M

is a
lineair function on the m-forms on M. This function is evidently nonzero. Stokes’
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theorem tells us that it is zero on dEm−1(M) and so
∫
M

factorizes over a nonzero
linear function ∫

M

: HmDR(M)→ R

REMARK 6.9. LetN be an arbitrary manifold and letm ∈ {0, . . . ,dimN|}. IsM
een compact oriented m-manifold and f : M→ N een map, then we have a linear
function

HmDR(N,R)
Hm(f∗)−−−−−→ HmDR(M,R)

∫
M−−−−→ R.

A theorem due to R. Thom (1954) implies that these functions span the dual of
HnDR(M,R). In other words, a if a closed m-vorm α on N fails to be exact, then
there existM and f as above such that

∫
M
f∗α 6= 0.

REMARK 6.10. In the preceding an ‘integrand’ on am-manifoldM required us
to give for every tangent space TpM an orientation and an anti-symmetric multi-
linear form αp : (TpM)m → R. We get the same result if we change the orientation
and at the same time replace αp by −αp. We may merge these two ingredients in
what is perhaps a simpler notion: a Haar measure on a real m-dimensional vector
space V is a function µ : Vm → R with the property that for every linear map
s : V → V we have:

µ(s(v1), . . . , s(vm)) = | det(s)|µ(v1, . . . , vm).

It is clear that µ is determined by its value on a single basis (e1, . . . , em), for if
(v1, . . . , vm) ∈ Vm, then µ(v1, . . . , vm) = | det(s)|µ(e1, . . . , em), where s : V → V

is defined by s(ei) = vi. In particular is µ(v1, . . . , vm) = 0 when (v1, . . . , vm) is
linearly dependent. So if α : Vm → R is the anti-symmetric multilinear form that
takes the same value as µ on (e1, . . . , em), then α and µ agree or are opposite on
every basis according to whether or not that basis defines the same orientation as
(e1, . . . , em). This is just the ambiguity that disappears in our interpretation as
an integrand. We say that µ is positive if µ takes positive values on all bases of
V (there is no such notion for m-forms on V unless V has been endowed with an
orientation).

The Haar measures on V form a one dimensional vector space. Likewise, the
Haar measures of the tangent spaces ofM define a vector bundle of rank one over
M (which is in fact trivial ifM has a countable basis). An integrand (orC∞-measure)
on M is a section µ of this line bundle. If it has compact support, then it is easy to
give

∫
M
µ a sense, but while this notion of integral is perhaps more direct, there is

no reasonable formulation of Stokes’ theorem in these terms.



APPENDIX A

Topics in linear algebra

We shall usually need the results proved in this appendix only for real vector
spaces, although it is sometimes convenient to have them also available in the
complex case. We shall find however that much of the discussion does not even
require our base field to be R or C and hence we fix a field K and assume all vector
spaces to be K-vector spaces and all linear maps between them to be K-linear. Only
at certain loci we make restrictive assumptions regarding K.

1. Dualization

Let V be a vector space. The collection of linear functions l : V → K is a vector
space as well (for subtraction of two functions and multiplication of a function by
a scalar), called the dual of V en denoted V∗. A linear map s : V → W of vector
spaces determines a map s∗ : W∗ → V∗ by composition: s∗(l) := ls. This map is
linear (clear) and is called the dual of s.

EXAMPLES 1.1. We give a couple of infinite dimensional examples borrowed
from functional analysis. These examples arise in the mathematical literature (and
so are not farfetched) and illustrate a point we wish to make, namely that a vector
space and its dual are different things.

(i) Take for V te R-vector space of all (so not necessarily continuous) functions
v : R → R. Then for every a ∈ R, evaluation in a, δa : v ∈ V 7→ v(a) is a linear
function on V .

(ii) Let V be the R-vector space of continuous functions v : [a, b]→ R. Given a
continuous function u : [a, b]→ R, then v ∈ V 7→ ∫b

a
v(t)u(t)dt is a linear function

on V .
(iii) Let I ⊂ R be open and nonempty and V be the R-vector space of Ck-

functions v : I → R. Then for a0, . . . , ak ∈ R and p ∈ I, the map v ∈ V 7→∑k
i=0 akv

(k)(p) is a linear function on V .

LEMMA 1.2. Suppose that V is of finite dimensionm and let (e1, . . . , em) be a basis
of V . Let for i = 1, . . . ,m, xi : V → R be the linear function for which xi(ej) = δij. Then
(x1, . . . , xm) is a basis of V∗ (called the basis dual to the given one on V).

Here δij is the Kronecker delta; it takes the value 1 if the two indices coincide
and is 0 otherwise.

PROOF OF LEMMA 1.2. They are linearly independent: suppose that
∑
i λix

i =

0 for certain scalars λ1, . . . , λm. The value of
∑
i λix

i on ej is λj, hence λj = 0 for
all j.

They generate V∗: for every linear l : V → R,
∑
i l(ei)x

i takes the same value
as l on the basis e1, . . . , em and so these two must be equal: l =

∑
i l(ei)x

i. �

47
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The transpose of a matrix is best (and intrinsically) understood as the matrix
of the dual of a linear transformation: Let s : V → W be a linear map between
finite dimensional vector spaces. Suppose given bases (e1, . . . , em) of V resp.
(f1, . . . , fn) of W. Then the matrix mat(s) := (si

j) of s relative to these bases is
defined by s(ei) =

∑n
j=1 si

jfj. (The column index is always one of a basisvector
of the domain and the row index one of the range, so sij is in the ith column and
the jth row.) Denote by (x1, . . . , xm) resp. (y1, . . . , yn) the bases of V∗ resp. W∗

dual to given bases. Then for i = 1, . . . , n, s∗(yi) = yis is the linear function on V
which takes in ej the value yis(ej) = sj

i. In other words, s∗(yi) =
∑m
i=1 sj

ixj. So
mat(s∗) = mat(s)t.

If we pick a vector v ∈ V , then evaluation in v, l ∈ V∗ 7→ l(v) is a linear function
on V∗. We shall denote it by ιv:

ιv(l) := l(v).

It is clear that ιv is linear in v: ιv+v ′(l) = l(v+ v ′) = l(v)+ l(v ′) = ιv(l)+ ιv ′(l) and
ιλv(l) = l(λv) = λl(v) = λιv(l). So we have a linear map

ι : V → V∗∗, v 7→ ιv

LEMMA 1.3. If V is finite dimensional, then the map ι : V → V∗∗ is an isomorphism
of vector spaces. In fact, it maps any basis of V onto its double-dual (which is indeed a
basis of V∗∗).

PROOF. Let (e1, . . . , em) be a basis of V . We have ιej(x
i) = xi(ej) = δij, which

shows that (ιe1 , . . . , ιen) is the basis of V∗∗ dual to x1, . . . , xn. �

This lemma is reflected by the property that transposing a matrix twice leaves
it unchanged.

EXERCISE 1.1. Let s : V → W and u : W → X be linear maps of vector spaces.
Prove that (us)∗ = s∗u∗. Connect this with the fact that if A and B are matrices
whose sizes are such that the matrix productA·B is defined, then (A·B)t = Bt ·At.

EXERCISE 1.2. Let V and W be vector spaces and B : V ×W → K a bilinear
map. This means that for every v ∈ V , the function w ∈ W 7→ B(v,w) is linear
and that the map b ′ : V → W∗ thus obtained is linear as well. Similarly we find a
linear map b ′′ : W → V∗.
(a) Prove that b ′ and b ′′ are each other’s dual.
(b) Consider the special case that W = V∗ and B(v, l) := l(v) (this is called the
natural pairing between V and V∗). What are b ′ and b ′′ in this case?
(c) Suppose V andW finite dimensional. Prove that b ′ is an isomorphism precisely
when b ′′ is an isomorphism. (We then call B a perfect pairing between V and W.)
Prove also that for every linear transformation s : W → W there is precisely one
linear transformation st : V → V such that B(st(v), w) = B(v, s(w)) for all v ∈ V
and w ∈W. (We call st the adjoint of s relative to B.)



2. THE TENSOR PRODUCT 49

2. The tensor product

Let V,W,X be vector spaces. We recall that a map B : V ×W → X is said to be
bilinear if it is linear in every argument, so

B(λv,w) = λB(v,w), B(v, λw) = λB(v,w)

B(v+ v ′, w) = B(v,w) + B(v ′, w), B(v,w+w ′) = B(v,w) + B(v,w ′).

for all v, v ′ ∈ V , w,w ′ ∈W and λ ∈ K. This motivates the following construction.
Consider the K-vector space K(V×W) spanned by the elements of the set V×W.

This vector space has by definition a basis indexed by the setV×W: (ev,w)v∈V,w∈W

so that an arbitrary element of K(V×W) is a finite sum
∑k
i=1 λievi,wi with λi ∈ K,

vi ∈ V and wi ∈ W. A bilinear map B as above determines a linear map b̃ :

K(V×W) → X by
∑
i λievi,wi 7→∑i λiB(vi, wi). This map has always in its kernel

the elements

eλv,w − λev,w, ev,λw − λev,w,

ev+v ′,w − ev,w − ev ′,w, ev,w+w ′ − ev,w − ev,w ′ ,

where λ ∈ K, v, v ′ ∈ V and w,w ′ ∈W. So if H ⊂ K(V×W) is the subspace spanned
by them, then b̃ : K(V×W) → X will factor through a linear map b : K(V×W)/H →
X. We denote the quotient K(V×W)/H by V ⊗W and call it the tensor product of V
andW; the image of ev,w in V ⊗W is written v⊗w. So we have

(λv)⊗w = λ(v⊗w) = v⊗ (λw),

(v+ v ′)⊗w = v⊗w+ v ′ ⊗w, v⊗ (w+w ′) = v⊗w+ v⊗w ′

where λ ∈ K, v, v ′ ∈ V and w,w ′ ∈W. In other words, the map

⊗ : V ×W → V ⊗W, (v,w) 7→ v⊗w

is bilinear. This bilinear map is universally so in the sense that every bilinear map
B : V ×W → X is the composite of the bilinear ⊗ : V ×W → V ⊗W and a (unique)
linear map V ⊗W → X.

LEMMA 2.1. Suppose V and W are finite dimensional vector spaces that come with
bases (e1, . . . , em) resp. (f1, . . . , fn). Then (ei⊗ fj)i,j is a basis of V ⊗W, in particular,
V ⊗W has (finite) dimensionmn.

PROOF. The elements ei ⊗ fj generate V ⊗W: given v ∈ V en w ∈ W, then
write them out in the bases: v =

∑
i v
iei, w =

∑
jw

jfj and observe that v ⊗ w =

(
∑
i v
iei)⊗ (

∑j
wjfj) =

∑
i,j v

iwj(ei ⊗wj).
The elements ei⊗fj are linearly independent: if (x1, . . . , xm) resp. (y1, . . . , yn)

are their dual bases of V∗ resp. W∗, then for a given pair (i, j), the function Bij :

V×W → K, (v,w) 7→ xi(v)yj(w) is bilinear. For the associated bij : V⊗W → Kwe
have bij(ei ′⊗fj ′) = δii ′δ

j
j ′ , i.e., 1 if (i ′, j ′) = (i, j) and 0 otherwise. This proves that

(ei ⊗ fj)i,j is linearly independent and hence a basis. (This argument also shows
that (bij)i,j is the basis dual to it.) �

We denote the set of linear maps V →W by Hom(V,W). This is a vector space.
A pair (l,w) ∈ V∗ ×W defines a simple kind of linear map V → W, v 7→ l(v)w.
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We thus obtain a map V∗×W → Hom(V,W), which is easily verified to be bilinear
(check!) and hence gives rise to a linear map

ε : V∗ ⊗W → Hom(V,W).

LEMMA 2.2. If V and W are finite dimensional, then ε is an isomorphism of vector
spaces.

PROOF. Pick bases as before. Then ε(xi ⊗ fj) is the linear map that takes ei to
fj and every other basis vector ei ′ to 0. So its matrix has a single nonzero entry (in
the ith column and the jth row) and that entry has value 1. So the set of ε(xi ⊗ fj)
makes up a basis of Hom(V,W). �

EXERCISE 2.1. (a) Prove that if V is finite dimensional with basis e1, . . . , em,
then any element of V ⊗W is uniquely written

∑m
i=1 ei⊗wi withwi ∈W (so that

V ⊗W gets identified withWm).
(b) Prove that ε : V∗ ⊗W → Hom(V,W) is still an isomorphism if only one of V
andW is finite dimensional.
(c) Prove that in general ε : V∗ ⊗W → Hom(V,W) is injective and that its image
consists of the φ ∈ Hom(V,W) with dim(φ(W)) <∞.

EXERCISE 2.2. (a) Let s : V →W and s ′ : V ′ →W ′ be linear maps. Prove that
v⊗ v ′ 7→ s(v)⊗ s ′(v ′) defines a linear map V ⊗ V ′ → W ⊗W ′ (which we usually
denote by s⊗ s ′).
(b) Prove that this construction defines a linear map

Hom(V,W)⊗Hom(V ′,W ′)→ Hom(V ⊗ V ′,W ⊗W ′)

and show that this is an isomorphism if all four vector spaces are finite dimen-
sional.
(c) Suppose all four vector spaces come with a (finite) basis and endow both V⊗V ′
andW ⊗W ′ with the associated bases. If (si

j) is the matrix of s and (ul
k) the one

of u, then determine the matrix coefficients of s⊗ s ′.

EXERCISE 2.3. Let V be a finite dimensional vector space. The map (l, v) ∈
V∗ × V 7→ l(v) ∈ K is bilinear (check this) and hence determines a linear func-
tion V∗ ⊗ V → K. To which familiar function on Hom(V,V) = End(V) does this
correspond?

The tensor product is associative in the sense that for three vector spaces
V,W,X, the iterated tensor products (V⊗W)⊗X and V⊗ (W⊗X) can be identified
via (v⊗w)⊗x↔ v⊗(w⊗x). So we may suppress parentheses: v⊗w⊗x ∈ V⊗W⊗X.
In fact, for a finite number of vector spaces V1, . . . , Vk we have a direct definition
(which we shall not spell out) of the k-fold tensor product V1 ⊗ · · · ⊗ Vk in terms
of (the K vector space spanned by) the set of multilinear mapsM : V1 × · · · × Vk →
W. Such a multilinear map is then the composite of a universal multilinear map
V1 × · · · × Vk → V1 ⊗ · · · ⊗ Vk followed by a linear mapm : V1 ⊗ · · · ⊗ Vk →W.

3. Tensor algebra and exterior algebra

The tensor algebra. If V is a vector space, then we may abbreviate the k-fold
tensor product V ⊗ · · ·⊗V by V⊗k, stipulating that for k = 0 this will stand for the
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base field K. Notice that the multilinear map Vk × Vl = Vk+l → V⊗(k+l) factors
through a bilinear map V⊗k × V⊗l → V⊗(k+l). This makes that the direct sum

T(V) := ⊕k≥0V⊗k

is a ring if we take ⊗ for product. Since this ring contains the base field K as a
subring, it is in fact a K-algebra. We call it the tensor algebra of V .

If (e1, . . . , em) a basis of V (so we here assume V finite dimensional) , then
for k > 0 a basis of V⊗k is indexed by the sequences (i1, . . . , ik) of length k

in {1, . . . ,m}: ei1 ⊗ ei2 ⊗ · · · ⊗ eik . We may regard such expressions as ‘non-
commutative monomials’ in e1, . . . , em. As these are linearly independent, we can
think of T(V) as the ‘free (non-commutative) K-algebra’ generated by e1, . . . , em.

The exterior algebra. Let I(V) ⊂ T(V) be the two-sided ideal generated by the
elements v⊗ v, v ∈ V . So an element of this ideal is a linear combination of tensors
of the form v1 ⊗ v2 ⊗ · · · ⊗ vk, for which the sequence (v1, . . . , vk) ‘stammers’ at
least once: vκ = vκ+1 for some κ. It is clear that I(V) is homogeneous in the sense
that it is the direct sum of its homogeneous parts:

I(V) = ⊕k≥2I(V)k met I(V)k ⊂ V⊗k.

The quotient algebra T(V)/I(V) is called the exterior algebra of V and denoted ∧(V).
The degree k part V⊗k/I(V)k is written ∧kV , so that

∧(V) = ⊕k≥0 ∧k V.

In particular, ∧0V = K and ∧1V = V . The product in ∧(V) is called the exterior
product and denoted ∧. So v1 ∧ · · · ∧ vk is the image of v1 ⊗ · · · ⊗ vk. From the
definition we see that v ∧ v = 0 for all v ∈ V . We have that for all v, v ′ ∈ V ,
v ′ ∧ v = −v∧ v ′, because v ′ ∧ v+ v∧ v ′ = (v+ v ′) ∧ (v+ v ′) − v∧ v− v ′ ∧ v ′ = 0.
With induction we find that for every permutation σ ∈ Sk,

vσ(1) ∧ vσ(2) ∧ · · ·∧ vσ(k) = sign(σ)v1 ∧ v2 ∧ · · ·∧ vk,

where sign(σ) ∈ {±} is of course the sign of σ. In particular is v1 ∧ v2 ∧ · · · ∧ vk
zero when vi = vj for some i 6= j (for we can arrange by means of a permutation
that these vectors become neighbors). In particular, if α ∈ ∧kV and β ∈ ∧lV , then
β ∧ α = (−1)klα ∧ β (for this is true if α resp. β is of the form v1 ∧ · · · ∧ vk resp.
v ′1 ∧ · · ·∧ v ′l).

EXERCISE 3.1. Let V and W be vector spaces and F : Vk → W a multilinear
map. Prove that F factors through a linear map ∧kV →W precisely when F is zero
on any sequence in V of length k that ‘stammers’ (has two adjacent terms equal).

PROPOSITION 3.1. Suppose that V is finite dimensional and comes with a basis
(e1, . . . , em). For any subset I ⊂ {1, . . . ,m}, let

eI :=

{
ei1 ∧ ei2 ∧ · · ·∧ eik when ∅ 6= I = {1 ≤ i1 < i2 < · · · < ik ≤ m};

1 when I = ∅.

Then:
(i) The collection (eI)I, where I runs over the k-element subsets of {1, . . . ,m} is a
K-basis of ∧kV , in particular, dim(∧kV) =

(
m
k

)
.



52 A. TOPICS IN LINEAR ALGEBRA

(ii) The K-algebra ∧(V) is generated as such by e1, . . . , em and subject to the rela-
tions ei ∧ ei = 0 and ei ∧ ej = −ej ∧ ei (i < j).This is a presentation of ∧(V)
(so that any other relation follows from these).

(iii) Finally,

eI ∧ eJ =

{
0 in case I ∩ J 6= ∅ and
±eI∪J otherwise,

where ± is the sign of the permutation that turns the sequence IJ (obtained by
juxtaposition) into an increasing sequence.

PROOF. We only prove (i), because this implies (ii), whereas (iii) is clear. Let us
first show that the eI’s generate ∧(V) as a K-vector space. The tensors ei1⊗· · ·⊗eik
generate T(V) and so the ei1 ∧ · · ·∧ eik generate ∧(V). But ei1 ∧ · · ·∧ eik is zero
unless all indices are distinct in which case it equals ±eI, where I is the index set.

We next verify that the eI’s are linearly independent: given I = (1 ≤ i1 <

· · · ik ≤ m), consider the function Vk → K defined by

(v1, . . . , vk) ∈ Vk 7→ ∑
σ∈Sk

sign(σ)xiσ(1)(v1)x
iσ(2)(v2) . . . x

iσ(k)(vk) ∈ K

Since this function is multilinear, it determines a linear function V⊗k → K. The
latter vanishes on the tensors v1⊗· · ·⊗vk that ‘stammer’ (i.e., for which vκ = vκ+1

for some κ) and as such tensors span I(V)k, this function factors through a linear
function ∧kV → K. It is easily checked that this function (which we denote by xI)
has the property that xI(eJ) = δIJ (i.e., equals 1 if J = I and is 0 otherwise). So the
eI’s are linearly independent. �

EXAMPLES 3.2. For small values ofm, the preceding may look familiar:
(i) Form = 1we get ∧(K) = K[e]/(e2).
(ii) A generator of ∧2(K2) is e12. If we use this generator to identifiy ∧2(K2)

with K, then ∧ is given by:(
a1
a2

)
∧

(
b1
b2

)
= a1b2 − a2b1 = det

(
a1 b1
a2 b2

)
.

(iii) A basis of ∧2(K3) is f1 := e23, f2 := e31, f3 := e12. If we use that basis to
identify ∧2(K3) with K3, thena1a2

a3

∧

b1b2
b3

 =

a2b3 − a3b2
a3b1 − a1b3
a1b2 − a2b1

 ,
which reminds us of the formula for the classical exterior product.

REMARK 3.3. The proof of Proposition 3.1 shows that there is a natural pairing
between ∧kV and ∧k(V∗), which is perfect in case V is finite dimensional. To be
precise, the map

(V∗)k × Vk → K, (l1, . . . , lk, v1, . . . , vk) 7→ ∑
σ∈Sk

sign(σ)lσ(1)(v1) · · · lσ(k)(vk),

is linear in each of its arguments and takes the value zero whenever two two vi’s
or two li’s are equal, hence factors through a bilinear map

∧k(V∗)×∧kV → K.
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Thus an element of ∧k(V∗) can be regarded as a linear function on ∧kV . In case
V is finite dimensional, the map thus obtained ∧k(V∗) → (∧kV)∗ is a linear iso-
morphism, because in the notation of Proposition 3.1 the image of the pair (xJ, eI)

equals δJI: (xI)I may be understood as the basis dual to (eI)I.

EXERCISE 3.2. Show that for a vector space V of (finite) dimension m and
k = 0, . . . ,m, the map

P : ∧kV → Hom(∧m−kV,∧mV), P(a) : b 7→ a∧ b,

is a linear isomorphism.

EXERCISE 3.3. Prove that for finite dimensional vector spaces V and W, the
map V ⊕W → ∧(V) ⊗ ∧(W), (v,w) 7→ v ⊗ 1 + 1 ⊗w is naturally extended to an
isomorphism of (graded) vector spaces ∧(V ⊕W) ∼= ∧(V) ⊗ ∧(W) that takes the
wedge product on the domain to a product on the range with the property that for
homogenenous elements, (a⊗b) · (a ′⊗b ′) = (−1)deg(b) deg(a ′)(a∧a ′)⊗ (b∧b ′).

A linear map s : V → W of vector spaces determines for k = 0, 1, 2, . . . a
linear map s⊗k : V⊗k → W⊗k. These maps are the homogeneous parts of a map
T(s) : T(V) → T(W) that is clearly a homomorphism of algebras. Since this takes
I(V) to I(W), we also find for every k a linear map

∧ks : ∧kV → ∧kW, v1 ∧ · · ·∧ vk 7→ s(v1) ∧ · · ·∧ s(vk)
that is the degree k-part of an algebra homomorphism ∧(s) : ∧(V) → ∧(W). Of
particular interest is the caseW = V :

PROPOSITION 3.4. If V is of finite dimension m, then ∧ms : ∧mV → ∧mV is
multiplication by det(s).

PROOF. Choose a basis e1, . . . , em for V . If s(ei) =
∑
j si

jej, then

∧m(s)(e12...m) = s(e1) ∧ · · ·∧ s(em)

= (
∑
j

s1
jej) ∧ · · ·∧ (

∑
j

sm
jej)

=
∑

j1,j2,...,jm

s1
j1ej1 ∧ s2

j2ej2 ∧ · · ·∧ smjmejm .

In the latter sum only the terms for which (j1, . . . , jm) all differ can contribute.
Such a sequence (j1, . . . , jm) is the image of (1, 2, . . . ,m) under a permutation σ ∈
Sm, and hence this sum equals∑

σ∈Sm

sign(σ)s
σ(1)
1 s

σ(2)
2 · · · sσ(m)

m e1 ∧ · · ·∧ em = det(s)e12...m.

�

This suggests we should define the determinant of s this way: namely as the
scalar by which ∧ms acts on the one dimensional vector space ∧mV , for it is then
a priori clear that this is independent of the choice of a basis.

EXERCISE 3.4. Let V be a vector space of finite dimensionm and let s : V → V

be an endomorphism of V .
(a) Prove that the trace of ∧(s) : ∧(V)→ ∧(V) equals det(s+1V). (Upon replacing
s by λs, λ ∈ K, we then see that the trace of ∧ks : ∧kV → ∧kV is equal to the
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coefficient of λk in the modified characteristic polynomial det(λs+ 1V).)
(b) Choose a generator µ of ∧mV and let Bk : ∧kV × ∧m−kV → K be the bi-
linear map defined by α ∧ β = Bk(α,β)µ. Prove that Bk(∧ks(α),∧m−ks(β)) =

det(s)Bk(α,β). Let (∧m−ks)t : ∧kV → ∧kV be the adjoint of ∧m−ks relative to
Bk (see Exercises 1.2 and 3.2). Prove that the composite (∧m−ks)t◦(∧ks) is scalar
multiplication in ∧kV by det(s). (For k = 1 this is an abstract form of Cramer’s
rule.)

Internal contraction. Recall that every v ∈ V defines a linear function ιv :
V∗ → K, l 7→ l(v).

PROPOSITION 3.5. For every v ∈ V there is precisely one linear map

ιv : ∧(V∗)→ ∧(V∗)

which decreases the degree by one and enjoys the following two properties:
(i) if l ∈ V∗, then ιv(l) = l(v) ∈ K = ∧0V (in other words, ιv agrees on V∗ with

the earlier definition) and
(ii) if α ∈ ∧k(V∗) and β ∈ ∧(V∗), then

ιv(α∧ β) = ιv(α) ∧ β+ (−1)kα∧ ιv(β).

We then have ι2v = 0 and the map V ×∧(V∗)→ ∧(V∗), (v, α) 7→ ιv(α) is bilinear.

PROOF. The value of ιv on l1∧ · · ·∧lk, li ∈ V∗ is determined by the properties
above:

ιv(l1 ∧ · · ·∧ lk) = ιv(l1)l2 ∧ · · ·∧ lk − l1 ∧ ιv(l2 ∧ · · ·∧ lk)
= l1(v)l2 ∧ · · ·∧ lk − l1 ∧ ιv(l2 ∧ · · ·∧ lk),

and with induction we find

ιv(l1 ∧ · · ·∧ lk) =

k∑
κ=1

(−1)κ−1lκ(v)l1 ∧ · · ·∧ l̂κ ∧ · · ·∧ lk,

where as usual the hatted vector must be omitted. This proves the uniqueness
assertion.

On the other hand, we may define ιv this way. To be precise, consider for
k = 1, . . . ,m the map

(V∗)k → ∧k−1(V∗), (l1, · · · , lk) 7→ k∑
κ=1

(−1)κ−1lκ(v)l1 ∧ · · ·∧ l̂κ ∧ · · ·∧ lk.

This map is multilinear (clear) and it is easy to see that it vanishes on (l1, . . . , lk)
whenever the latter stammers. So the map factors through a linear map ιv :

∧k(V∗)→ ∧k−1(V∗) (see Exercise 3.1). It is easy to verify that it has all the claimed
properties. �

REMARK 3.6. By interchanging the role of V and V∗ we find for every l ∈ V∗
a map:

ιl : ∧(V)→ ∧(V)

enjoying similar properties.
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EXERCISE 3.5. Let V be a vector space.
(a) Given (v1, . . . , vk) ∈ Vk, consider the map

ιv1ιv2 · · · ιvk : ∧(V∗)→ ∧(V∗)

Prove that this map only depends on v1 ∧ v2 ∧ · · · ∧ vk and thus defines a linear
map

∧k(V)×∧(V∗)→ ∧(V∗), (a, α) 7→ ιa(α).

(b) Prove that for (v1, . . . , vk) ∈ Vk and (l1, · · · , lk) ∈ (V∗)k we have

ιvk∧vk−1∧···∧v1(l1 ∧ l2 ∧ · · ·∧ lk) =
∑
σ∈Sk

sign(σ)l1(vσ(1)) · · · lk(vσ(k))

and hence equals the image of (l1∧· · ·∧lk, v1∧· · ·∧vk) under the pairing decribed
in Remark 3.3.

Orientation. We here assume K = R. Is V a real vector space of finite dimen-
sionm, then ∧mV is a 1-dimensional real vector space. This is also true form = 0,
because we simply agreed that in that case ∧0V = R. So ∧mV − {0} has two com-
ponents (two elements lie in the same component if their ratio is positive). For
m = 0, there is a privileged component (namely the interval of positive reals). But
for m > 0 this is no longer the case and so if we single one out, then we are in
fact introducing (literally!) one bit of extra structure on V . The choice of such a
component is what we call an orientation of V . To rephrase the preceding: V is not
naturally oriented unless it is zero dimensional.

If m > 0 and V is oriented and (e1, . . . , em) is an (ordered) basis of V , then
either e1∧· · ·∧em or −e1∧· · ·∧em is in the chosen component of ∧mV . In the first
case we say that the basis is oriented relative to the given orientation. Conversely,
the choice of an ordered basis (e1, . . . , em) of V determines an orientation of V as
being the component of ∧mV − {0} that contains e1 ∧ · · ·∧ em. Form = 0 (so V =
{0}) an orientation is simply given by a sign (±) that refers to the corresponding
component of ∧0V − {0} = R − {0}.

EXERCISE 3.6. Prove that two bases (e1, . . . , em) and (e ′1, . . . , e
′
m) of a real vec-

tor space define the same orientation precisely when the matrix (ai
j)i,j which ex-

presses one in the other: e ′i =
∑
j ai

jej, has positive determinant.

Suppose that V is oriented and H ⊂ V is a hyperplane (we assume m > 0

here). If H is given as the boundary of a half space V− ⊂ V (i.e., there is some
l ∈ V∗ − {0} such that H resp. V− is defined by l = 0 resp. l ≤ 0), then H may
be oriented as follows. If m > 1, choose a vector v ∈ V − V− and stipulate that a
basis (e1, . . . , em−1) of H is oriented if (v, e1, . . . , em−1) is an oriented basis of V
(this is indeed independent of the choice of v). If m = 1 (so that the orientation is
a component of V − {0} and H = {0}), then we give H the sign ± that we need to
make ±v lie in the orientation component of V − {0}. In either case we call this the
induced orientation of H.

EXERCISE 3.7. Prove that in the situation above, ιl : ∧mV → ∧m−1H is an
isomorphism of one-dimensional vector spaces that takes the orientation of V to
the induced orientation of H.

EXERCISE 3.8. Let V and W be oriented real finite dimensional vector spaces.
Show that V ⊕W and V ⊗W can be oriented in a natural manner.
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If V is oriented, then there are (at least) two conventions for orienting the dual
V∗. We choose the following one: is (e1, . . . , em) an oriented basis of V , then the
dual basis (x1, . . . , xm) is by definition an oriented basis of V∗. (Another conven-
tion takes (xm, . . . , x1) instead.)

4. Quadratic forms

In this section all vector spaces are finite dimensional and real (so K = R).
Let V be a vector space. A bilinear function g : V×V → R that is symmetric in

the sense that g(v,w) = g(w, v) determines a function q = qg : V → R, v 7→ g(v, v)
satisfying

— q is homogeneous of degree 2: q(λv) = λ2q(v),
— the map (v,w) ∈ V2 7→ q(v+w) − q(v) − q(w) ∈ R is bilinear (and equal

to 2g).

DEFINITION 4.1. We call a quadratic form on V a function q : V → R that
satisfies these two properties.

A quadratic form q defines in turn a symmetric bilinear form g on V by the
formula gq(v,w) := 1

2 (q(v + w) − q(v) − q(w)). The assignments g 7→ qg and
q 7→ gq are each others inverse, so that giving a symmetric bilinear form on V is
equivalent to giving a quadratic form on V .

REMARK 4.2. The notion of a quadratic form makes of course sense for any
field K and not just R. But the correspondence between such forms and symmetric
bilinear functions requires that we can divide by 2 and hence is only valid if the
characteristic of K is 6= 2. It is then usual to use a slightly different convention
that makes the quadratic form the stronger notion in the sense that the associated
bilinear form is given by q(v + w) − q(v) − q(w) (rather than half of this). So in
that case, the quadratic form attached to g : V × V → K is only defined if the
characteristic of K is 6= 2 and then given by q(v) = 1

2b(v, v). It turns out that this
convention (we shall not use) would also be the prefered one in some physical
contexts (as the formula for the kinetic energy shows).

Let g be a symmetric bilinear form on the vector space V . Given a basis
(e1, . . . , em) of V , then we may form the matrix (gij := g(ei, ej))i,j. This ma-
trix is clearly symmetric. If (x1, . . . xm) is the basis of V∗ dual to (e1, . . . , em), then
g(v,w) =

∑
i,j gijx

i(v)xj(w) and hence the associated quadratic form is given by

q =
∑
i,j

gijx
ixj =

∑
i

gi,i(x
i)2 + 2

∑
i<j

gijx
ixj.

LEMMA 4.3 (Diagonalization). There is a basis for V such that the matrix of g is a
diagonal matrix. So if (x1, . . . , xm) is the corresponding dual basis, then q =

∑
i λi(x

i)2.

PROOF. With induction onm := dimV . If g is identically zero, there is nothing
to show. If not, then q is not identically zero either and so there is a e1 ∈ V with
q(e1) 6= 0. Let V ′ ⊂ V be the zero set of the linear function v ∈ V 7→ g(v, e1).
Since that function is nonzero (it is nonzero in e1), dim(V ′) = m − 1. The induc-
tion hypothesis applied to g|V ′ × V ′ yields a basis (e2, . . . , em) of V ′ for which
(g(ei, ej))2≤i,j≤m has the diagonal form. Then (e1, . . . , em) is a basis of V as de-
sired, for g(ei, e0) = g(e0, ei) = 0 voor i = 2, . . . ,m. �
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The real numbers λi that appear in this lemma have no intrinsic meaning for
we may adapt the basis further as follows: if λi 6= 0 then replace ei by |λi|

−1/2ei
such that now all nonzero diagonal coefficients become ±1 and then re-order the
basis elements so that the diagonal begins with 1’s and ends with 0’s. On such a
basis q takes the so-called standard form:

q =

p∑
i=1

(xi)2 −

p+n∑
i=p+1

(xi)2.

Lemma 4.5 below shows that the pair (p, n) does have an intrinsic (basis indepen-
dent) meaning.

DEFINITION 4.4. We call a quadratic form q : V → R (and the associated
symmetric bilinear form) positive definite (resp. negative definite) if q(v) > 0 (resp.
q(v) < 0) for all v ∈ V − {0}.

LEMMA 4.5. The number p resp. n is the maximal dimension of a subspace of V on
which q is positive (resp. negative) definite.

PROOF. Let W ⊂ V be a subspace on which q is positive definite. We prove
that dim(W) ≤ p and that the value p is attained. Let e1, . . . , em be a basis as above,
V+ the span of the basis vectors ei with i ≤ p (so of dimension p) and π : V → V+

the projection on V+ with kernel the span of the remaining basis vectors. It is clear
that q is positive definite on V+ and ≤ 0 op ep+1, . . . , em. So W ∩ Ker(π) = 0. In
other words, π maps W injectively to V+. In particular, dimW ≤ p. On the other
hand, the value p is attained forW = V+.

The analogous statement for n follows by applying the preceding to −q. �

It is clear that q is positive definite precisely when p = m.
Let g : V ×V → R be symmetric bilinear. Every v ∈ V defines a linear function

gv : V → R by gv(v ′) = g(v, v ′). There results a map g̃ : V → V∗, v 7→ gv,
which satisfies g̃(v)(v ′) = g(v, v ′) and which is obviously lineair. We say that g is
a pseudo-inner product if gv = 0 implies v = 0, in other words, if g̃ is injective. Since
V and V∗ have the same dimension this amounts to: g̃ is an isomorphism. If we
substitute v ′ = g̃−1(l) in the formula g̃(v ′)(v) = g(v ′, v), then we see that

l(v) = g(g̃−1(l), v).

We may also use g̃ to transfer g to V∗:

ǧ : V∗ × V∗ → R, ǧ(l, l ′) := g(g̃−1(l), g̃−1(l ′)) = l(g̃−1(l ′)).

This is perhaps easier understood in terms of a basis (e1, . . . , em): g̃ is then given
by g̃(ei) =

∑
j gijx

j and so g is a pseudo-inner product precisely when the matrix
(gij)ij is nonsingular. The matrix Ǧ := (gij := ǧ(xi, xj)) is then simply the inverse
of the matrix G := (gij), because it follows from

gij = g(ei, ej) = ǧ(g̃(ei), g̃(ej))

= ǧ(
∑
k

gikx
k,
∑
l

gjlx
l) =

∑
k,l

gikg
klglj,

thatG = GǦG so that Ǧ = G−1. For this reason the quadratic form ǧ is often called
(by a slight abuse of language) the inverse of g.
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Things simplify considerably if g is diagonalized by the basis (e1, . . . , em):
g(ei, ej) = λiδij, for then g̃(ei) = λix

i, and so g is a pseudo-inner product precisely
when λi 6= 0 for all i. In that case is ǧ(xi, xj) = λ−1

i δ
ij. This makes it plain that ǧ

has the same signature as g.

Inner products. A symmetric bilinear form g on V is called an inner product
when it is positive definite. We then refer to the vector space V endowed with
such a g as an inner product space. According to the preceding there exists a basis
(e1, . . . , em) of V such that g(ei, ej) = δi,j (and hence g̃(ei) = xi). Such a basis is
called orthonormal.

If g is merely a pseudo-inner product, then we call the pair (V, g) a pseudo-
inner product space. The linear transformations s : V → V which preserve such a
pseudo-inner product, i.e., which satisfy g(sv, sv ′) = g(v, v ′), are called orthogonal
and form a group, the orthogonal group of (V, g), under composition. We denote
that group by O(V, g). Suppose (e1, . . . , em) is a basis of V on which g takes the
standard form: if (p,m − p) is the signature of g, then (g(ei, ej))i,j is the diago-
nal matrix Ip,m−p which has on the diagonal (1, . . . , 1,−1, . . . ,−1). Assigning to
s ∈ O(V, g) its matrix on this basis identifies O(V, g) with a matrix group that is
usually denoted by O(p,m−p). The latter consists of the matrices Xwhich satisfy
XtIp,m−pX = Ip,m−p. In the case of an inner product: p = m this is the standard
orhogonal group O(m), and in case (p,m−p) = (1, 3), this is known as the Lorentz
group.

LEMMA 4.6. A symmetric bilinear form g on V extends to one ∧(V) such that

g(v1 ∧ · · ·∧ vk, v ′1 ∧ · · ·∧ v ′k ′) =

=

{∑
σ∈Sk sign(σ)g(v1, v

′
σ(1)) · · ·g(vk, v

′
σ(k)) when k ′ = k;

0 otherwise.

This extension is a (pseudo-)inner product when g is. Precisely, is (e1, . . . , em) a basis of
V such that g(ei, ej) = λiδi,j, then g(eI, eJ) = (

∏
i∈I λi)δI,J.

PROOF. The map Vk × Vk → R defined by the formula

(v1, · · · , vk; v ′1, · · · , v ′k) 7→ ∑
σ∈Sk

sign(σ)g(v1, v
′
σ(1)) · · ·g(vk, v

′
σ(k))

is multilinear and zero whenever one of the sequences stammers. An application
of Exercise 3.1 then yields the desired extension. The symmetry follows from the
definition.

The second part is easily checked. �

We emphasized that a quadratic form g on a real vector space V of dimension
m has no other intrinsic invariants than its signature. But if the vector space al-
ready comes with a fixed inner product go, then as the following proposition will
show, things are different and we can speak of the eigen values of g. The propo-
sition in question is equivalent to the fact that for every real symmetric (m ×m)-
matrix there is an orthonormal basis consisting of eigen values.

PROPOSITION 4.7. Let (V, go) be inner product space. Then for every symmtric
bilinear form g on V there is a go-orthonormal basis (e1, . . . , em) of V on which g takes
the diagonal form: g(ei, ej) = λiδij for certain λi. The basis (e1, . . . , em) consists of
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eigen vectors of the transformation (g̃o)
−1g̃ : V → V with eigen values (λ1, . . . , λm).

In particular, these numbers are intrinsic to the triple (V, go, g) (and are called the eigen
values of g on (V, go)).

PROOF. We show the existence of the basis with induction on m. For m = 0

there is nothing to prove. So suppose thatm > 0 and that the proposition has been
proved in dimension< m. Let S ⊂ V be the unit sphere defined by qo(v) = 1. This
is a compact subset of V , and so q|S has a minimum, that is taken in em ∈ S, say.
With the method of Lagrange multiplyers it follows that the derivatives of the
functions q and qo are proportional in em. This means that there is a λm ∈ R such
that g(em, v) = λmgo(em, v) for all v. Applying the induction assumption to the
go-orthogonal complement of em, gives a basis (e1, . . . , em) orthonormal for go
on which g takes the a diagonal form.

The last assertion follows from the fact that g̃o(ei) = xi and g̃(ei) = λix
i. �

EXERCISE 4.1. Show that every linear map V → V which preserves a pseudo-
inner product has determinant ±1.

EXERCISE 4.2. Prove that two quadratic forms g, g ′ on an inner product space
(V, go) can be transformed into each other by an orthogonal transformation (i.e.,
there is some s ∈ O(V, go) such that g ′(v,w) = g(sv, sw) for all v,w ∈ V) precisely
when they have the same eigen values up to order relative to (V, go).

EXERCISE 4.3. An analogue of Proposition 4.7 no longer holds if go is merely
a pseudo-inner product. Illustrate this by proving that the quadratic forms x2−y2

and xy on R2 cannot be simultaneously diagonalized.

EXERCISE 4.4. Let (V, g) be a pseudo-inner product space of signature (p, n).
Show that the line ∧mV is positive definite if n is even en negative definite if n is
odd.

Is g an inner product, then we write ‖v‖ :=
√
g(v, v). Note that then for all

v, v ′ ∈ V and λ ∈ R:
(i) ‖v‖ ≥ 0with ‖v‖ = 0 precisely when v = 0,

(ii) ‖λv‖ = |λ|.‖v‖,
(iii) ‖v+ v ′‖ ≤ ‖v‖+ ‖v ′‖.

These properties amount to saying that ‖ ‖ is a norm for V . This makes V a metric
space if we let ‖v− v ′‖ be the distance between v and v ′.

In a pseudo-inner product space (V, g) the notion of a gradient makes sense:
For U ⊂ V open, we have TU = U × V and since g defines an isomorphism
g̃ : V → V∗ we may identify TU = U × V with U × V∗ = T∗U. The gradient of
a function f : U → R is then the vector field grad(f) on U that under this isomor-
phism corresponds to df. So if (e1, . . . , em) is a basis on which g takes the form∑
i λi(x

i)2, then g̃makes the basis vector field ∂/∂xi correspond to the differential
λidx

i and hence

grad(f) =

m∑
i=1

λ−1
i

∂f

∂xi
∂

∂xi
.

Is g an inner product and is (e1, . . . , em) orthonormal (so then λi = 1 for all i),
then we get the familiar form.
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5. The star operator

Let (V, g) be a pseudo-inner product space of finite dimension m and of sig-
nature (m − n,n) and suppose V endowed with an orientation. In the previous
section we extended the pseudo-inner product to all of ∧(V). By Exercise 4.4 this
extension is on the line ∧mV positive or negative according to whether n is even
or odd. In either case we have on this line two generators on which the quadratic
form is 1 in absolute value. These generators are each other antipode and so the
given orientation of V singles out one of them: we let µ be the unique generator
which is in the priviliged component and for which |g(µ, µ)| = 1. We call this gen-
erator the oriented volume element of V . Concretely: is (e1, . . . , em) an oriented basis
for V for which g(ei, ej) = λiδi.j, then

µ = |λ1λ2 · · · λm|−
1
2 e1 ∧ · · ·∧ em.

Let be given β ∈ ∧kV and consider the linear map

α ∈ ∧kV 7→ g(α,β)µ ∈ ∧mV.

This map is according to Exercise 3.2 obtained by wedging with a unique element
of ∧m−kV . We denote that element by ?β. So the map

? : ∧kV → ∧m−kV

thus defined is characterized by the property that

α∧ ?β = g(α,β)µ for all α,β ∈ ∧kV.

This formula shows that ? is linear and that ?(1) = µ. Let us compute ?(eI), where
I ⊂ {1, . . . ,m} is a k-element subset. We must have

eJ ∧ ?(eI) = g(eJ, eI)µ

for all k-element subsets J ⊂ {1, . . . ,m}. The right hand side is nonzero only if
J = I. If we write ?(eI) out on the basis (eK)|K|=m−k of ∧m−kV , then we see that
?(eI) is proportional to eI ′ , where I ′ = {1, . . . ,m}−I: ?(eI) = cIeI ′ for some cI ∈ R.
Substitution then yields cIeI ∧ eI ′ = g(eI, eI)µ or

cI = sign(I, I ′)λI|λ12···m|−
1
2 .

(Here (I, I ′) is the permutation which puts the juxtaposed sequence II ′ in increas-
ing order (1, 2, . . . ,m).) In particular, ? is an isomorphism of ∧kV onto ∧m−kV .
If (e1, . . . , em) happens to be a standard basis (so one for which λi is 1 or −1 ac-
cording to whether i ≤ p or i > p), then we see from this formula that cI =

sign(I, I ′)(−1)n(I) ∈ {1,−1}, where n(I) := |I ∩ {p+ 1, . . . ,m}|.
The formula also shows that cI ′ = sign(I ′, I)λI ′ |λ12···m|−

1
2 so that

cI ′cI = sign(I ′, I) sign(I, I ′)
λI ′λI

|λ12···m|
= (−1)k(m−k).

λ12···m

|λ12···m|
= (−1)k(m−k)+n.

This implies that ?? acts on ∧kV as multiplication by (−1)k(m−k)+n.

EXAMPLE 5.1. Ism = 3 and is g an inner product, then the map ? : V ∧V → V

yields a product on V : v × v ′ := ?(v ∧ v ′). This is in fact a basis independent
characterization of the classical exterior product, for if (e1, e2, e3) is an oriented
orthonormal basis, then e1 × e2 = e3 etc.



5. THE STAR OPERATOR 61

EXAMPLES 5.2. Many familiar differential operators can be expressed in terms
the exterior derivative and the star operator. Suppose (V, g) is an oriented pseudo-
inner product space. If U ⊂ V is open, then we let ? act pointwise on the tangent
bundleU×V and the cotangent bundleU×V∗ and thus on the space of differential
forms Ek(U). Many familiar differential operators can be expressed in terms of ?
and the exterior derivative. Let (e1, . . . , em) be an oriented standard basis so that
g(ei, ej) = λiδi,j with λi equaling ±1 depending on whether i ≤ p or i > p. We
denote by (x1, . . . , xm) the dual basis of V∗.

(i) The divergence of a vector field W op U: We have a volume element µ :=

?(1) = dx1 ∧ · · ·∧ dxm and hence a divergence div(W) : U→ R defined by

div(W) ? (1) := dιW ? (1).

The right hand side is
∑
i ∂W

i/∂xi. So this recovers the usual definition.
(ii) The composite div grad yields the Laplace operator acting on functions up

to sign. We let it be ?d ? d:

?d ? df = ?d
(∑
i

(−1)i−1λ−1
i

∂f

∂xi
dx1 ∧ · · · d̂xi · · ·∧ dxm

)
= ?
(∑
i

λ−1
i

∂2f

∂xi∂xi
dx1 ∧ · · · · · ·∧ dxm

)
=
∑
i

λ−1
i

∂2f

∂xi∂xi
,

For the case (p,m − p) = (1, 3), this operator plays an important the role in the
theory of special relativity and is known as the Alembertian.

In both cases (i) and case (ii), the ?-oprator appears twice in the definition and
so neither the divergence nor the Laplace operator depends on the orientation.
This is different in the next example.

(iii) For the case m = 3 with g an inner product, we have the operator rot that
acts on vector fields. The inner product turns vector fields into differentials and
vice versa and so if we use this to regard rot as an operator on differentials, then

rot(α) = ?dα,

because

?d(fdx+ gdy+ hdz) = ?
(
(
∂h

∂y
−
∂g

∂z
)dy∧ dz+ · · ·

)
= (

∂h

∂y
−
∂g

∂z
)dx+ · · · .

Hermitian forms. We mentioned in Remark 4.2 that the notion of a quadratic
form makes sense over other fields than R, so in particular over C. But in the
complex setting there is another notion that is more like an inner product.

DEFINITION 5.3. Let V be a complex vector space. A map h : V × V → C is
called a Hermitian form if it is C-linear in the first variable and H(v, v ′) = H(v ′, v)
for all v, v ′ ∈ V .

Notice that then H is C-antilinear in the second variable, because H(v, λv ′) =

H(λv ′, v) = λ̄H(v ′, v) = λ̄H(v, v ′) and H(v, v ′ + v ′′) = H(v ′ + v ′′, v) = H(v ′, v) +

H(v ′′, v) = H(v, v ′) +H(v, v ′′). It is clear that H(v, v) is always real.
For every v ′ ∈ V , the function h( v ′) defines a linear form on V . We thus get

a map h̃ : V → V∗. This map is C-antilinear and we therefore like to write this a
map h̃ : V → V∗. Here V has the same underlying real vector space as V , but the
multiplication by complex scalars has changed: multiplication by λ ∈ C in V is by
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definition multiplication by λ̄ in V . This makes h̃ : V → V∗ a complex-linear map.
We say h is nondegenerate or that h is a pseudo-inner product if h̃ is injective.

We say that h is positive (resp. negative) definite if h(v, v) > 0 resp. h(v, v) < 0

for all v ∈ V − {0}. A positive Hermitian form is also called an inner product;
‖v‖ :=

√
h(v, v) is then a norm on V (it satisfies the same properties of the norm in

the real case; the difference is now that in the property ‖λv‖ = |λ|.‖v‖, we may take
λ ∈ C. If V is finite dimensional, then V is complete for this norm (which means
that every Cauchy sequence converges). In general this need not be the case, but
if so, then we say that V is a Hilbert space.

If e1, . . . , em is a complex basis of V , then h(ei, ej) is a Hermitian matrix: its
transpose equals its complex conjugate. We can always find a basis (e1, . . . , em)
for which this matrix takes the (diagonal) form: h(ei, ej) = λiδi,j. We can even ar-
range that the sequence (λ1, . . . , λm) begins with 1’s, is followed by −1’s and ends
with 0’s. The number of 1’s (resp. −1’s) is the dimension of a maximal positive
(resp. negative) definite subspace and the pair (p, n) is called the signature of h.

There is an analogue of Lemma 4.6 which we will not bother to state.

6. Affine spaces, Euclidian spaces and Minkowski space

An affine space is essentially a vector space without an origin: its points are
not vectors, but the two points of such space differ by one. In other words we can
translate the space over a vector.

DEFINITION 6.1. Let V be a vector space. An affine space over V is a set V on
which the additive group of V acts freely and transitively: in other words for any
pair O,P ∈ V there is precisely one v ∈ V that takes O into P. The dimension of V
will be that of V .

We denote the action by a +: P = v + O; we also write P − O ∈ V for v so
that P = (P − O) + P, but a sum like O + P is not defined. For a given v ∈ V , the
map P ∈ V 7→ v + P ∈ V is called the translation over v. We therefore call V the
translation space of V.

For a given O ∈ V, the map v ∈ V 7→ v + O ∈ V is a bijection and via this
bijection, V becomes a vector space with origin O.

Clearly, a vector space is an affine space over itself.

EXAMPLE 6.2. Is f : V → W a linear map of vector spaces, then for every
w ∈ W, Vw := f−1(w) is not a linear subspace (unless w = 0), but is an affine
space over V0 = Ker(f) (because the difference of two vectors in Vw lies in V0).

We have obvious notions of affine subspace and affine-linear map: is V an
affine space over V , then a subset W ⊂ V is called an affine subspace if it is the orbit
of a linear subspace W ⊂ V (so W = O +W for any O ∈ W). A map F : V → W
of affine spaces is called affine-linear if there is a linear map of translation spaces
f : V →W such that F(v+O) = f(v)+F(O) for all v ∈ V andO ∈ V (or equivalently,
for which F(Q) − F(P) = f(Q − P) for all P,Q ∈ A). This linear map is of course
unique and is called thelinear part of F (we might also call it the derivative of F).
Notice that if we identify V with V via v 7→ v+O andW with W viaw 7→ w+F(O),
then F becomes the linear map f : V →W. If F is a bijection, then its inverse is also
affine-linear: f is bijective, hence its inverse f−1 is linear and so if O ′ = F(O)
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and w = f(v), then applying F−1 to F(v + O) = f(v) + F(O) = w + O ′ yields
f−1w+ F−1(O ′) = v+O = F−1(w+O ′).

An automorphism of V is a of course a bijective affine-linear map F : V → V.
These form a group Aut(V) under composition. This group contains V as the
subgroup of translations. If we fix some O ∈ A, then any automorphism of V
that fixes O is of the form P 7→ s(P − O) + O for some s ∈ GL(V) and thus we
find an injective group homomorphism jO : GL(V)→ Aut(V) whose image is the
Aut(V)-stabilizer of O. If F ∈ Aut(V), then −F(0) + F stabilizes O and hence is of
the form jO(s) for some s ∈ GL(V). We thus find a bijection GL(V)×V → Aut(V),
(v, s) 7→ v+jO(s) (the latter sends P to v+s(P−O)+O). In these terms, composition
is:

(v ′ + jO(s ′)) ◦ (v+ jO(s))(P) = v ′ + s ′(v+ s(P −O)) +O =

= v ′ + s ′(v) + s ′s(P −O) +O = (v+ s ′v) + jO(s ′s)(P).

and hence composition is given by (v ′, s ′) ◦ (v, s) = (v ′ + s ′(v), s ′s). Since this
deviates from a componentwise product, we refer to this as a semi-direct product.
The notation V o GL(V) is in use to indicate this.

If K = R and V is finite dimensional, then we may regard V as a manifold. Its
tangent bundle is just the projection V× V → V.

EXERCISE 6.1. Let V be an affine space with translation space V . Prove that
for any linear subspace W ⊂ V , the set of orbits V/W of W in V has the structure
of an affine-linear space over V/W.

EXERCISE 6.2. Let V be an affine space of finite dimension n with translation
space V . Prove that the set Aff(V, K) of affine-linear functions φ : V → K is a
vector space of dimension n + 1. This space contains as a special element the
constant 1 : V → K. We now have a map Aff(V, K) × V → K, (φ, P) 7→ φ(P).
Prove that the map from V to the dual of Aff(V, K) that is thus defined is an affine-
linear injection and show that the image is the hyperplane in Aff(V, K)∗ of linear
functions Aff(V, K)→ K that take on 1 the value 1.

EXERCISE 6.3. Here V is an affine space with translation space V .
(a) For P,Q ∈ V and λ, µ ∈ K such that λ+µ = 1, we define λP+µQ := P+µ(Q−P).
Show that this also equals Q + λ(P − Q) and prove that the collection of all such
points is an affine subspace with translation space spanned by Q− P.
(b) Generalize the preceding to an interpretation of a finite linear combination∑n
i=1 λiPi with Pi ∈ A, λi ∈ K and

∑
i λi = 1 as an element of V. (If K ⊃ Q,

dan heet then
∑
i
1
nPi is called the barycenter of (Pi)i.)

(c) Suppose now K = R. If in (b) we let run every λi only over [0, 1], then we de-
note the corresponding set by [P1, . . . , Pn]. We call this the convex hull of (Pi)i. Try
to show that for every Q ∈ V − [P1, . . . , Pn] there exists an affine-linear function
φ : V→ R with φ(Pi) ≥ 0 and φ(Q) < 0 (this is harder than it seems).

Euclidean spaces. A Euclidean space is an affine space E of which the transla-
tion space E is a real finite dimensional vector space endowed with an inner prod-
uct g. Classical Euclidean geometry concerns the case of dimension two, (we then
speak of the Euclidean plane) and the space we seem to live in is one of dimensie
three.
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Such a space E is a metric space with distance d(P,Q) :=
√
g(P −Q,P −Q).

There is also a notion of angle: if O,P,Q ∈ E are such that P 6= O 6= Q, then the
angle ∠(OP,OQ) ∈ [0, π] is characterized by

cos(∠(OP,OQ)) =
g(P −O,Q−O)

d(P,O)d(Q,O)
.

An affine-linear transformation in E whose linear part is orthogonal preserves the
distance and vice versa. These make up a subgroup of Aut(E). The choice of an
origin gives this subgroup the structure of a semi-direct product of E and O(E).
An automorphism of E whose linear part is orthogonal and of determinant one is
called a Euclidean motion.

Minkowski space. This is a four dimensional real affine space M whose trans-
lation spaceM (which we prefer to call the Lorentz space) is endowed with a pseudo-
inner product g of signature (1, 3). We usually also insist that this Lorentz space
be oriented and that we have singled out a connected component (the future cone)
of the set of v ∈ M with g(v, v) > 0. The hypersurface defined by g(v, v) = 1 has
also two connected components, one of which lies in the future cone. This is the
hypersurface of velocity vectors.

The Lorentz group L(M) is the group of linear transformations of M that pre-
serve the pseudo-inner product, the orientation (so is of determinant one) and
the future cone. We can always choose an oriented basis (e0, e1, e2, e3) for M
such that g(ei, ej) takes the diagonal form with (1,−1,−1,−1) on the diagonal.
If (t, x0, x1, x3) is the dual basis, then g(v, v) > 0 is defined by t2 > (x0)2 + (x1)2 +

(x3)2. Then on the future cone either t > 0 or t < 0. Upon replacing our basis by
(−e0,−e1, e2, e3), we can also arrange that t > 0 on the future cone. The Poincaré
group P(M) is the group of affine-linear transformations of M whose linear part
lies in the Lorentz group. If we are in addition given an origin O ∈ M, then the
chart M → R4, P 7→ (t(P − O), x1(P − O), x2(P − O), x3(P − O)) is called in the
special theory of relativity an inertia system. The Poincaré group acts on the collec-
tion of inertia systems and does so transitively. In fact, for any other inertia system
(O ′; t ′, x ′1, . . . , x ′3), there is precisely one element of the Poincaré group that takes
it to (O; t, x1, x2, x3). A tenet of the special theory of relativity is that physical laws
must be invariant under the Poincaré group. This we can now understand in more
geometric terms as saying that these laws must pertain to Minkowski space (so
that their formulation does not require the choice of an inertia system!).

A particle with positive mass mo defines curve γ : I → M for which γ̇(τ) is a
velocity vector for all τ ∈ I (this is a way of saying that nothing goes faster than
light) and the forces f governing its behaviour (via Newton’s law: f = moγ̈) can
be described intrinsically in terms of M (so without reference to a specific inertia
system; this amounts to saying that these laws are independent of the observer).
Perhaps more important than the velocity vector is the energy-momentum vector
p := moγ̇, as it carries more information (it allows us to recover γ̇ as the unit
vector along p). It is clear that Newton’s law becomes ṗ = f.) We illustrate the
preceding with the Maxwell equations without bothering too much about their
physical interpretation.
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The Maxwell equations. These are in vacuum (and in a suitable system of
units) as follows:

rot(E) +
∂

∂t
B = 0, div(B) = 0,(1)

rot(B) −
∂

∂t
E = I, div(E) = ρ.(2)

Here E, B and I are time dependent vector fields on R3 equal to the electrical field,
the magnetic field and the electrical current respectively, and ρ is a time dependent
function on R3, called the charge density. We rewrite these formulas in terms of the
exterior derivative and the star operator, not in R3, but in Minkowski space M. In
terms of an inertia system (O; t, x1, x2, x3), the star operator acts on typical 1-forms
and 2-forms as follows

?dt = dx1 ∧ dx2 ∧ dx3, ? dt∧ dx1 = −dx2 ∧ dx3,

?dx1 = dt∧ dx2 ∧ dx3, ? dx1 ∧ dx2 = dt∧ dx3

We combine electrical and magnetic field in a single 2-form on M, the electromag-
netic field (a 2-form on M):

F := B1dx
2 ∧ dx3 + B2dx

3 ∧ dx1 + B3dx
1 ∧ dx2 +

3∑
i=1

Ei(−dt) ∧ dxi

and we combine charge density and current in the relativistic charge density (a 3-
form on M):

j := ρdx1∧dx2∧dx3+I1(−dt)∧dx
2∧dx3+I2(−dt)∧dx

3∧dx1+I3(−dt)∧dx
1∧dx2.

(We combined the minus sign with dt only in order to make these formulae easier
to remember.) Now the equations (1) and (2) come down to

dF = 0,(1 ′)

d ? F = j.(2 ′)

This formulation is clearly basis independent; this reflects a requirement of spe-
cial relativity that the model be observer independent. The force that this system
exerts on a charged particle (the Lorentz force) can also be expressed that way: a
particle with velocity vector v at p ∈ M and charge qo feels a force fL(v) (per-
ceived by an acceleration defined by Newton’s law: fL(v) equals its contribution
to the particle’s acceleration times the particle’s rest mass), that is characterized by
fL(v) = qog̃

−1(ιvFp).
IsΩ ⊂M a compact 3-dimensional submanifold of M with boundary ∂Ω, then

according to Stokes ∫
∂Ω

F = 0,

∫
∂Ω

?F =

∫
Ω

j.

(If Ω is ‘space-like’ is in the sense that g is negative definite on the tangent spaces
TpΩ, then the right hand side of the second equation can be interpreted as the
charge carried byΩ.)
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REMARK 6.3. According to the Poincaré lemma we have F = dA for some 1-
form A. Such an A is not unique, because for any function f on A, A + df also
has that property. A choice for A is called a potential for F. In terms of a potential
the Maxwell euquations reduce to the single equation: d ? dA = j. The Yang-Mills
theory regards the potential A (rather than F) as the primary object.

Maxwell’s equations are not invariant under Galileo transformations: in the
Galileo model two inertial observers who think they are at rest, but have neverthe-
less have constant nonzero velocity with respect to each other, will find different
equations. So in hindsight one might say that these equations were discovered
prematurely and were waiting for the theory of special relativity to acquire their
proper formulation. Indeed, it is their incompatibility with the Galileo model that
lead to the development of special relativity.

EXERCISE 6.4. What happens to the Maxwell equations under the transforma-
tion (t, x1, x2, x3) 7→ (−t,−x1,−x2,−x3) which preserves both orientation and g,
but interchanges past and future?


