
Kähler Manifolds and Hodge theory 1

These notes were made using handwritten notes by E. Looijenga that ap-
peared in the fall of 1992. They will be used during a mini-seminar on Kähler
manifolds and Hodge theory at the University of Nijmegen in the fall of 2001.
They are definitely not meant to fully cover the whole theory, many proofs and
details have been omitted. I only wrote these to get everything clear for myself,
and therefore they might be useful for other participants in the seminar.

Some references are:

1. R.O. Wells, Differential Analysis on Complex Manifolds, Springer 1980.

2. P. Griffiths and J. Harris, Principles of Algebraic Geometric, Wiley and sons
1978.

3. A. Weil, Variétés Kähleriennes, Hermann 1971.

4. S. Kobayashi, Differential Geometry of Complex Vector Bundles, Iwanami
Shoten / Princeton University Press 1987.

1. is closest to these notes, while 2. (which has a more analytic approach) can be
used as a reference guide for complex algebraic geometry in general (covering far
more than only the subject this seminar). 3. is in French, which makes it quite
unreadable for me. . . I have never seen 4. actually, but others may want to use it
as a reference.

1 Analytic functions in several variables

We identify Cn with R2n via z = (z1, . . . , zn) ↔ (x, y) = (x1, . . . , xn, y1, . . . , yn)
where zν = xν + iyν. We give Cn the norm ‖z‖ = maxn

ν=1 |zν| where |zν| =
√

x2
ν + y2

ν. If p ∈ Cn, ε > 0 then we define B(p, ε) = {Z ∈ Cn : ‖z − p‖ < ε}

Definition. Let Ω ⊆ C
n be open, p ∈ Ω, f : Ω → C. We say that f is analytic

or holomorphic at p if for some ε > 0 B(p, ε) ⊆ Ω and f is given at B(p, ε) as a
power series

f(z) =

∞∑

k1=0

· · ·

∞∑

kn=0

ak1,...,kn
(z1 − p1)

k1 · · · (zn − pn)kn

such that for 0 ≤ r < ε
∑

k1,...,kn

|ak1,...,kn
|rk1+···+kn <∞

These notes are available through http://www-math.sci.kun.nl/math/˜grooten/kahler.shtml
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Lemma 1.1 (Osgood). Let f : Ω→ C continuous and analytic in every variable.
Then f itself is analytic.

Let Ω ⊆ Cn be open, f : Ω → C a C1-function. Write f(z) = f(x + iy),
considered as a function from some open subset of R2n to C and define for ν =
1, . . . , n:

∂f

∂zν

=
1

2

(
∂f

∂xν

− i
∂f

∂yν

)

∂f

∂z̄ν

=
1

2

(
∂f

∂xν

+ i
∂f

∂yν

)

then we have

Proposition 1.2 (Cauchy-Riemann criterion). Let f be as above. Then f is
analytic on Ω if and only if ∂f

∂z̄ν
= 0 for ν = 1, . . . , n.

Two other important properties of analytic functions are

Proposition 1.3 (Uniqueness of analytic continuation). Let Ω ⊆ C
n be open

and connected and let f : Ω → C be analytic. If for some p ∈ Ω all the partial
derivatives (of arbitrary order) vanish, then f ≡ 0 on Ω.

Proposition 1.4 (Maximum principle). Let Ω ⊆ Cn be open and connected and
let f : Ω → C be a non-constant analytic function. Then f is an open mapping
and hence |f | has no local maximum.

2 Smooth and complex manifolds

Definition. For an open subset Ω of Rn (resp. Cn) we denote by E(Ω) (resp.
O(Ω)) the R-algebra (resp. C-algebra) of C∞ (resp. analytic) functions Ω → R

(resp. Ω→ C).

Definition. A topological n-manifold (n = 1, 2, 3, . . .) is a Hausdorff-space
which admits a countable basis for its topology and which is locally homeomorphic
to Rn.

We will treat the C∞ and analytic cases at the same time. Therefore, let K
stand for R or C, S stand for E and O respectively and m stand for n resp. 1

2
n

(thus, in the latter case, n should be even!).
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Definition. Let1 M be a topological n-manifold. An S-structure on M consists
of a sheaf SM of K-valued functions on M , such that the ‘coordinate transforma-
tions’ (which are functions between open subsets of Km) are in S and furthermore
for small open subsets U , SM(U) is isomorphic to the space of S-functions on the
corresponding open subset of Km. An n-manifold with an S-structure is called a
smooth (or real) resp. complex manifold.

Nothing deep here so far, and we can define the notions of S-morphism, iso-
morphisms and S-submanifolds in a straightforward way. If you have only seen
real manifolds so far: the analytic case is completely analogous to the C∞ case,
but one should be aware that not every smooth 2m-manifold can be given the
structure of a complex m-manifold! For example, the Cauchy-Riemann criterion
implies that complex manifolds are always oriented.

Easy examples of S-manifolds are (open subsets of) Kn, Pn(K), real and com-
plex tori, smooth submanifolds of these etc. Of course, since Cm ∼= R2m, any
complex manifold has a natural smooth structure.

Due to the maximum principle (which is a local statement and therefore also
valid for complex manifolds), the only connected compact submanifolds of Cn are
the single point sets. However, there are several examples of compact submanifolds
of P

n(R).

3 Vector bundles

Definition. A K-vector bundle of rank r (or Kr-bundle) ξ consists of a con-
tinuous mapping π : E → B of topological spaces such that every fiber Ep = π−1(p)
had been given the structure of an r-dimensional K-vector space. Furthermore,
for every p ∈ B, there exists and open neighborhood U of p and a continuous
h : EU = π−1(U)→ Kr such that

(i) for every q ∈ U h|Eq
: Eq → Kr is an isomorphism of vector spaces.

(ii) the map h̃ = (h, πU) : EU → Kr × U is a homeomorphism.

A pair (U, h) as above is called a local trivialisation of ξ. If U = B can be
chosen, ξ is called trivial. The spaces E and B are called the total space resp.
base of ξ.

If U ⊆ B is open, then a section of ξ over U is a continuous mapping
s : U → E such that π ◦ s = 1U . The sections clearly form a sheaf of K-algebras
on B, denoted by C(ξ) or, with a little abuse of notation, simply by ξ.

1Although it works, the definition is a bit confusing: it mixes up two possible definitions.
However, since I assumed most of the readers have seen this before, I use this definition as it is
quite short
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It follows easily that if ξ is trivial over U , then C(U, ξ) ∼= CU(K)r where CU(K)
is the sheaf on continuous functions to K. From this we see that the notions of
Kr-bundle and locally free C(K)-modules of rank r are equivalent.

Given two trvivializations (Uα, hα) and (Uβ, hβ) of ξ, we define Uαβ = Uα ∩ Uβ

and then we get a map

Kr × Uαβ

h̃−1

β // EUαβ

h̃α // Kr × Uαβ

which is trivial on the first coordinate and the first coordinate gives a continuous
mapping gαβ : Uαβ → GLr(K). These so-called transition functions enjoy the
properties:

(i) gαα = 1r

(ii) gαβ · gβγ · gγα = 1r

Conversely, given an open covering {Uα} of B and continuous functions gαβ :
Uαβ → GLr(K) satisfying (i) and (ii), the we can glue the trivial bundles Kr×Uα

via the gαβ’s to get a Kr-bundle over B.
If B has the structure of an S-manifold, we can define holomorphic (S =

O, K = C) resp. smooth (S = E, K = R) vector bundles by demanding the
space E to be an S-manifold and all the maps being S-morphisms. Similarly as
above, we get an equivalence between holomorphic resp. smooth Kr-bundles and
locally free S(K)-modules of rank r.

Since vector bundles can be seen as vector spaces varying continuously (holo-
morphically, smoothly) with the base, we can extend several procedures on vector
spaces to vector bundles and thus get vector bundles

• ξ ⊕ η

• ξ ⊗ η

• Hom(ξ, η)

• ξ∗ = Hom(ξ, K × B) (the dual bundle of ξ)

•
∧k ξ (the k-th exterior product of ξ)

• Skξ (the k-th symmetric product of ξ)

Now if ξ and η are vector bundles over the same base space B, a vector bundle
homomorphism from ξ to η (simply denoted as f: ξ → η) is continuous mapping
f : E → F such that f(Ep) ⊆ Fp and f |Ep

: Ep → Fp is K-linear for all p. If ξ and
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η are vector bundles with an S-structure, f is called an S-homomorphism if the
defining map f : ξ → η is an S-morphism.

Given a Kr-bundle ξ = (π : E → B), a sub(vector)bundle of rank s (0 ≤ s ≤
r) is a subspace E ′ ⊆ E with the property that for every p ∈ B there exists a local
trivialisation (U, h : EU → Kr = Ks×Kr−s) with p ∈ U and E ′

U = h−1(Ks×{0}).
It follows easily that ξ ′ = (π|E′ : E ′ → B) has the natural structure of a vector
bundle. If ξ is an S-bundle and the (U, h) can be chosen to be S-morphisms, then
ξ′ is called an S-subbundle.

Finally, given a vector bundle ξ = (π : E → B) over a space B and a continuous
map f : A → B of topological spaces, we can pull back the bundle ξ to get a
bundle f ∗ξ = (f ∗π : f ∗E → B) over A where

f ∗E

f∗π

��

= {(x, a) ∈ E × A : π(x) = f(a)} 3 (x, a)
_

��
A a

If ξ has an S-structure and f is an S-morphism, then f ∗ξ has an S-structure.

Tangent bundles

Let’s conclude this paragraph with some important examples of vector bundles
that are essential for the remainder. For a real m-manifold M and p ∈ M , we
define the real tangent space at p, TR,p(U) to be the vector space of R-linear
derivations on the ring of germs of real-valued C∞-functions near p. Clearly, if
(x1, . . . , xm) are coordinates on U , we have that { ∂

∂x1
|p, . . . ,

∂
∂xm
|p} is a basis for

TR,p(U).
These vector bundles glue via the chain-rule for derivations to get a vector-

bundle TR,M = TR(M) of rank m over M . This is called the tangent bundle
over M . To be a bit more precise: if (x1, . . . , xm) and (y1, . . . , ym) are two sets of
coordinates with y = F ◦x for some diffeomorphism F , then ∂

∂xi
=
∑m

j=1(JF )i,j
∂

∂yj
,

where (JF ) is the Jacobian matrix of F .
Now if M is a complex m-manifold, we still have the R2m-bundle TR,M over

M , but we can also look at C-linear derivations on complex-valued C∞-functions.
This gives a smooth vector bundle, called the complexified tangent bundle
over M and is denoted by TC(M) or2 TC,M . Since TC,M = TR,M ⊗R C, we see that if
(z1, . . . , zm) (with zν = xν +iyν) are local coordinates near p ∈ M , then we see that
TC,p has { ∂

∂x1
|p,

∂
∂y1
|p . . . , ∂

∂xn
|p,

∂
∂yn
|p} as a basis, but also { ∂

∂z1
|p,

∂
∂z̄1
|p . . . , ∂

∂zn
|p,

∂
∂z̄n
|p}.

2I want to be consequent in my notation and write between brackets the space on which the
thing ‘is defined on’, while I write all other things on which it depends as subindices. However,
in some cases there would be too much subindices and I have to abuse notation a bit.
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Now let M be a real manifold and TM its (real) tangent bundle. We take a look
at (smooth) sections of

∧r T ∗
M , which are called r-forms on M and on an open

U ⊆M we write Er
M(U) = Er(U) for these sections. We also have the sheaf of skew

commutative EM -algebras E•
M(U) = ⊕m

r=0E
r(U), called the algebra of differential

forms on M (note that Er(U) = 0 if r > m). The multiplication in E•
M(U)

sends (α, β) ∈ Ea(U) × Eb(U) to α ∧ β ∈ Ea+b(U), where α ∧ β = (−1)abβ ∧ α.
Furthermore we have that if f : M → N is a smooth mapping between manifolds,
then f defines a vector bundle homomorphism f∗ : TM → f ∗TN , which on its way
defines homomorphisms f ∗ : f ∗Er

N → Er
M .

Another important notion is that we have R-linear mappings d : Er(U) →
Er+1(U) for all r, satisfying

(a) d2 = 0,
(b) d(α ∧ β) = dα ∧ β + (−1)aα ∧ dβ (where α ∈ Ea(U)),
(c) If f : M → N is a smooth mapping and α ∈ Ea(N), then df ∗α = f ∗dα,
(d) If ϕ is a smooth function on (an open subset of) Rm, so ϕ ∈ E0

Rm(U), then
dϕ =

∑m
k=1

∂ϕ

∂xk
dxk.

These properties characterize d. We say that a differential form α is closed if
dα = 0, it is called exact if it is of the form α = dβ.

4 Differential forms on a complex manifold

We will start with some linear algebra.
A real vector space W can be complexified to get a complex vector space

WC = C⊗C W . Elements of WC can be uniquely written as x + iy, with x, y ∈ W .
We have an R-linear involution x+ iy 7→ x− iy called complex conjugation. W
can be recovered as the fixed point subspace {y = 0}.

We could also start with a complex vector space V and regard it as a real vector
space of twice its dimension. Multiplication by i becomes an R-linear transforma-
tion J : V → V , with the property J2 = −1V . Conversely, given a real vector-space
V with an R-linear map J : V → V such that J2 = −1V , we can give V the struc-
ture of a complex vector space via (a + ib)x = ax + bJ(x). We therefore say that
J defines a complex structure on V . Also −J defines a complex structure on
V , called the conjugate of V .

If we have a R-vector space V with a complex structure J , we can extend
J to to VC and get a C-linear map JC : VC → VC by defining JC(x + iy) =
J(x) + iJ(y) and it of course still satisfies J2

C
= −1V . For example, let M be a

complex manifold and p ∈ M . If we choose local coordinates (z1, . . . , zm) where
zν = xν + iyν then { ∂

∂x1
, ∂

∂y1
. . . , ∂

∂xm
, ∂

∂ym
} is a basis for TR,p. We have a R-linear
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map J on TR,p, such that J( ∂
∂xν

) = ∂
∂yν

and J( ∂
∂yν

) = − ∂
∂xν

. This J clearly satisfies

J2 = −1TR,p
. Now if we look at the complexified tangent space at p TC,p, we

now have { ∂
∂x1

, ∂
∂y1

. . . , ∂
∂xm

, ∂
∂ym
} as a C-basis for this vector space, but besides the

complex structure from JC we now also have a complex structure coming from the
multiplication by i.

Since all coordinate transformations on M were required to be holomorphic,
JC extends to an automorphism of the complexified tangent bundle of M , which
is independent of the choice of coordinates (See Wells, p. 28-29 for the details).
Therefore, we may apply the above local theory to tangent bundles of complex
manifolds. However, we first need to go into the linear algebra some more and
need a useful lemma.

Lemma 4.1. Let V be a real vector space with complex structure J . Then

(i) The eigenvalues of JC are i and −i
(ii) If V 1,0 ⊂ VC and V 0,1 ⊂ VC denote the i resp. −i eigenspaces of JC. Then

VC = V 1,0 ⊕ V 0,1 and complex conjugation interchanges these summands.
(iii) The maps α : V → VC, x 7→ x − iJ(x) and ᾱ : V → VC, x 7→ x + iJ(x)

map V isomorphically onto V 1,0 resp. V 0,1. Moreover α is C-linear with
regard to the complex structure coming from J (i.e. α(J(x)) = iα(x)) and ᾱ
is C-anti-linear (i.e. ᾱ(J(x)) = −iᾱ(x))

Proof. This is an easy excercise using elementary linear algebra.

Of course, a complex structure J on V determines a transformation J ∗ in V ∗ =
Hom(V, R) still satisfying (J∗)2 = −1V ∗, so it determines a complex structure
on V ∗. Since HomR(V, C) = Hom(V, R) ⊗R C, we can apply the lemma to get a
decomposition

HomR(V, C) = (V ∗)1,0 ⊕ (V ∗)0,1

where

(V ∗)1,0 = {f ∈ HomR(V, C) : f(Jx) = if(x)}

(V ∗)0,1 = {f ∈ HomR(V, C) : f(Jx) = −if(x)}

Using the well-known isomorphism
∧r(A⊕ B) ∼= ⊕p+q=r

∧p A⊗
∧q B we get

r∧

C

HomR(V, C) =
⊕

p+q=r

p
∧

C

(V ∗)1,0 ⊗

q
∧

C

(V ∗)0,1 =: (V ∗)p,q

We may regard
∧r

C
HomR(V, C) as the complexification of

∧r
R

HomR(V, R) =
∧r V ∗.

We therefore have complex conjugation defined on
∧r

C
HomR(V, C) and the ele-

ments fixed by it can be viewed as elements of
∧r V ∗, they are said to be real.
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It follows easily that complex conjugation interchanges (V ∗)p,q and (V ∗)q,p, so if
p 6= q, there are no real elements in (V ∗)p,q.

The following important theorem is easy to prove:

Theorem 4.2. Let {z1, . . . , zn} be a C-basis for (V ∗)1,0. Then

{zi1 ∧ · · · ∧ zip ∧ z̄j1 ∧ · · · ∧ z̄jq
: 1 ≤ i1 < . . . < ip ≤ n, 1 ≤ j1 < . . . < jq ≤ n}

is a C-basis for (V ∗)p,q

An important notion is the fact that the above discussion is functorial. If (V, J)
and (W, K) are real vector spaces with a complex structure, and f : V → W is
R-linear such that f ◦ J = K ◦ f (so that f is in fact C-linear with the complex
structures). Then the natural map fC has the property that fC(V 1,0) ⊆ W 1,0

etcetera and therefore also f ∗
C
((W ∗)p,q) ⊆ (V ∗)p,q.

Let M again be a complex manifold of complex dimension n. As we saw above,
the local complex structures on the complexified tangent bundles glue to get a
vector bundle homomorphism J : TR,M → TR,M with J2 = −1TM

. We therefore
get splittings TC,M = T 1,0

C,M ⊕ T 0,1
C,M and

∧r T ∗
C,M = ⊕p+q=r(T

∗
C,M)p,q. We usually

denote
∧r T ∗

C,M by Er
C,M (which is the complexification of Er

R,M) and (T ∗
C,M)p,q by

E
p,q
M . Sections3 of this latter space are called (p, q)-forms or forms of type (p, q)

on M .
If we choose local coordinates (z1, . . . , zn) near a point P ∈M with zν = xν +iyν

then we get the following spaces:

TR,P = R

〈
∂

∂x1
, . . . ,

∂

∂xn

,
∂

∂y1
, . . . ,

∂

∂yn

〉

TC,P = C

〈
∂

∂x1

, . . . ,
∂

∂xn

,
∂

∂y1

, . . . ,
∂

∂yn

〉

(TC,P )1,0 = C

〈
∂

∂x1
− i

∂

∂y1
, . . . ,

∂

∂xn

− i
∂

∂yn

〉

= C

〈
∂

∂z1
, . . . ,

∂

∂zn

〉

(TC,P )0,1 = C

〈
∂

∂x1
+ i

∂

∂y1
, . . . ,

∂

∂xn

+ i
∂

∂yn

〉

= C

〈
∂

∂z̄1
, . . . ,

∂

∂z̄n

〉

(T ∗
C,P )1,0 = C 〈dx1 + idy1, . . . , dxn + idyn〉 = C 〈dz1, . . . , dzn〉

(T ∗
C,P )0,1 = C 〈dx1 − idy1, . . . , dxn − idyn〉 = C 〈dz̄1, . . . , dz̄n〉

3We will usually consider E
p,q

M as a locally free EM -sheaf of certain rank, rather than as a
vector bundle of the same rank. As mentioned before, these two notions are in fact equivalent
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Therefore a (p, q)-form near P can be uniquely written as

ω =
∑

i1<···<ip,j1<···<jq

ωi1,··· ,ip,j1,··· ,jq
dzi1 ∧ . . . ∧ dzip ∧ dz̄j1 ∧ dz̄jq

which will usually be abbreviated to
∑

i,j ωi,jdzi ∧ dz̄j. Here the ωi,j are C∞-

functions.
We can extend our operator d linearly to complex-valued r-forms. Here we write

for a complex-valued function f near P df = ∂f + ∂̄f where ∂f =
∑

ν
∂f

∂zν
dzν ,

∂̄f =
∑

ν
∂f

∂z̄ν
dz̄ν . Applying this to ω above, we get

dω =
∑

i,j

∂ωi,j ∧ dzi ∧ dz̄j

︸ ︷︷ ︸

+
∑

i,j

∂̄ωi,j ∧ dzi ∧ dz̄j

︸ ︷︷ ︸

=: ∂ω =: ∂̄ω

We thus may conclude:

Proposition 4.3. On a complex manifold M , we have d(Ep,q
M ) ⊆ E

p+1,q
M ⊕ E

p,q+1
M .

Furthermore we may write d = ∂ + ∂̄ where ∂ and ∂̄ are the projections on the
first resp. second summand

Corollary 4.4. We have ∂2 = 0, ∂̄2 = 0 and ∂∂̄ + ∂̄∂ = 0.

Proof. Using d2 = 0, we get for α ∈ E
p,q
M (U) for some open U ⊆ M :

0 = d2α = (∂ + ∂̄)2α = ∂2α + (∂∂̄ + ∂̄∂)α
︸ ︷︷ ︸

+ ∂̄2α

∈ E
p+2,q
M (U) ∈ E

p+1,q+1
M (U) ∈ E

p,q+2
M (U)

As a final remark, we notice that of the bundles of (p, q)-forms, only the (p, 0)-
forms for arbitrary p have a natural analytic structure. We will prove this for
(T ∗

C,M)1,0, which suffices, since (T ∗
C,M)p,0 =

∧p(T ∗
C,M)1,0.

If we have a local chart (h1, . . . , hn) on an open subset U ⊆M then (dh1, . . . , dhn)
is a local trivialisation of (T ∗

C,M)1,0. If h′ : U → C
n is another chart, then we have

dh′
j =

n∑

k=1

gjkdhk, with gjk =
∂h′

jh
−1

∂zk

◦ h

and thus the gjk are analytic functions.
We have the following proposition which is easy to prove:

Proposition 4.5. A (p, 0)-form ω defines an analytic section if and only if ∂̄ω = 0.
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We will denote the sheaf of analytic (p, 0)-forms on M by Ωp
M . Those forms

are called holomorphic of analytic p-forms and from the proposition it follows
that they can be written locally as

∑

i ωi · dzi where all the ωi are holomorphic
functions.

Remark 4.5.1. Instead of assuming M to be a complex manifold, we could also
have assumed that M is a real manifold of even dimension, with a vector bundle
automorphism J : TR,M → TR,M satisfying J2 = −1. A real manifold with this
property is called an almost complex manifold, while J is called the almost
complex structure. Some (but not all!) of the above theory still holds for
almost complex manifolds. However, one should be aware that there are examples
of almost complex structures that don’t arise from complex structures. See also
the book of Wells.

5 Grothendieck’s Lemma

An important tool in the study of manifolds is the following lemma, which is also
known as the ∂̄-Poincaré lemma or as Dolbeaults theorem:

Lemma 5.1 (Grothendieck). Let 0 < r ≤ ∞ and consider ∆r = B(0, r). If
q ≥ 1 and α ∈ Ep,q(∆r) satisfies ∂̄α = 0, then α = ∂̄β for some β ∈ Ep,q−1(∆r).

Proof. I will not give the proof, since it is quite technical and not really inter-
esting (the idea is to integrate α locally and then using limits). Its methods will
not be used in the remainder of these notes.

An analogue statement for smooth functions is the following

Lemma 5.2 (Ordinary Poincaré Lemma). Let 0 < r ≤ ∞ and Br = {x ∈
Rn : |xj| < r, j = 1, . . . , n}. If α ∈ Eq(Br) for some q ≥ 1 satisfies dα=0, then
α = dβ for some β ∈ Eq−1(Br).

Since smooth (resp. complex) manifolds can be covered by open subsets dif-
feomorphic to the unit ball in Rn (resp. Cn), these lemmas imply that that sheaf
homomorphisms d : Eq−1 → Eq and ∂̄ : Ep,q−1 → Ep,q are exact. This is an
important property which will be used in the following sections.

Remark 5.2.1. Although we will not use it, the equivalent of Grothendieck’s
Lemma with ∂ instead of ∂̄ is also true. This follows immediately from the fact
that ∂ is the conjugate of ∂̄.
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6 Resolutions

In this and the following sections we will study sheaf cohomology. Hereto we will
develop the important tool of resolutions of sheaves. Therefore of course, some
sheaf theory should be known. There are several good introductions to these, for
example the book of Wells. We will assume all sheaves to be sheaves of a so-called
abelian category, that is a category A with the following properties

• For all objects A and B of A, Hom(A, B) has the structure of an abelian
group with the composition law being linear

• Finite direct sums exists

• Every morphism has a kernel and a cokernel in A

• Every monomorphism is the kernel of its cokernel

• Every epimorphism is the cokernel of its kernel

• Every morphism can be factored into an epimorphism followed by a monomor-
phism

Such sheaves are called abelian sheaves.
Examples of abelian categories are the category of abelian groups and the cat-

egory of vector spaces over some field k (these are in fact the only two examples
we will use). Be aware that rings and k-algebras do not form an abelian category
(the kernel of a homomorphism of rings is not a ring anymore!), at least not if we
assume them to have a unit element for the multiplication. If X is some topological
space and A some abelian category, we write A(X) for the category of A-sheaves
on X, it is easy to see that A(X) is also an abelian category.

Definition. Let X be a topological space. A sequence of sheaves and homomor-
phisms

C• = (· · · // Cq−1 dq−1
// Cq dq

// Cq+1 dq+1
// · · · )

is called a sheaf complex if dqdq−1 = 0 for all q. If in fact Ker(dq) = Im(dq−1)
for all q, then we say that the sheaf complex is exact. We define H q(C(X)), the
q-th cohomology group4 of the sequence C to be Ker(dq)/ Im(dq−1)(X), which
is the global sections of the sheaf Ker(dq)/ Im(dq−1).

If C• and D• are sheaf complexes on X, the a homomorphism from C• to
D• is a sequence of sheaf homomorphisms f q : Cq → Dq such that dqf q = f q+1dq

for all q. From this property it follows that the f q induce homomorphisms of the
corresponding cohomology groups.

4Be aware of a little abuse of notation: if the sheaves are all C-vector spaces, which they
usually will be in our case, then so are the cohomology ‘groups’ !
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Given a sheaf F on X, then a right resolution of X is an “embedding” of F

into an exact sheaf complex

0 // F // C0 // C1 // C2 // · · ·

If F → C• and F → D• are both right resolutions of F, then a homomorphism
of the first resolution to the second is a homomorphism C• → D• such that

F //

  A
A

A

A

A

A

A

A

C•

��
D•

commutes.

The reason for introducing resolutions is that they play an important role in
the computation of cohomology for sheaves. However, it turns out to be useful to
work with resolutions with one extra property.

Definition. A sheaf F is called flabby (resp. soft) is for every nonempty open
(resp. closed) subset A ⊆ X the restriction map F(X) → F(A) is surjective. We
have similar notions of flabby and soft sheaf complexes and resolutions F → C•,
with the important notion that all the Cq’s need to be flabby (resp. soft), not
necessarily F!

Remark 6.0.2. Since for a closed subset A ⊂ X, F(A) is defined as

F(A) = lim−−−→
U⊇A

F(U)

where the U is taken over the open subsets, we have that flabby implies soft.

On smooth manifolds, we have many soft sheaves:

Lemma 6.1. Let ξ = (π : E → M) be a smooth vector bundle over a smooth
manifold. Then its sheaf of smooth sections E(ξ) is soft.

Proof. Let A ⊆ M be a closed subset and s ∈ E(ξ)(A), which means that s
can be represented by a smooth section of ξ over some open neighborhood U of
A. Using so-called ‘bump-functions’5 together with a partition of the unity, it is
easy to construct another representative of s, defined on the whole M , which is 0
outside a smaller open neighborhood of A.

5that is, a C∞-function that is constant 1 on some closed subset and constant 0 outside a
neighborhood of that closed subset
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Remark 6.1.1. This lemma can easily be generalized as follows: Let F be some
sheaf of EM -modules. Then F is a soft sheaf.

Remark 6.1.2. From the maximum principle (proposition 1.4) it follows easily
that holomorphic bump-functions don’t exist, so the analogue statement for holo-
morphic vector bundles is not true! For example, take M = P

1(C) (which has no
non-constant holomorphic functions), A some small closed subset and F the sheaf
OM of holomorphic functions.

We already have many important examples of (soft) resolutions:

(i) (the De Rham complex) Let M be a smooth manifold of dimension m
and RM be the constant sheaf R on X, then we have a soft resolution of RM :

0 // RM
// E0

M
d // E1

M
d // E2

M
d // · · · d // Em

M
d // 0

The exactness at E
q
M (q ≥ 1) follows from the ordinary Poincaré lemma, the

exactness at E0
M follows from the fact that for some C∞-function f we have

df = 0⇐⇒ f locally constant.
(ii) (the Dolbeault complex) We have a complex

0 // Ωp
M

// E
p,0
M

∂̄ // E
p,1
M

∂̄ // E
p,2
M

∂̄ // · · · ∂̄ // E
p,n
M

∂̄ // 0

By Grothendieck’s lemma, this complex is exact in degrees ≥ 1 and by an
easy exercise it also is exact in degree 0.

(iii) (the Holomorphic De Rham complex) Let M be a complex manifold
of complex dimension n, then using a holomorphic version of the Poincaré
lemma, we have a resolution

0 // CM
// Ω0

M
d // Ω1

M
d // Ω2

M
d // · · · d // Ωn

M
d // 0

However, it is easy to see that the sheaves Ωp
M are not soft, so this is not a

soft resolution of CM .
(iv) We can combine the situations of (ii) and (iii). Hereto we mention that

(−1)p∂ defines a homomorphism of complexes E
p,•
M → E

p+1,•
M , since ∂∂̄ = −∂̄∂.

This homomorphism is compatible with d : Ωp
M → Ωp+1

M , i.e.

E
p,•
M

// E
p+1,•
M

Ωp
M

d //

OO

Ωp+1
M

OO
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commutes. We therefore obtain a so-called double complex

...
...

...

E
0,2
M

∂ //

∂̄

OO

E
1,2
M

∂ //

∂̄

OO

E
2,2
M

∂ //

∂̄

OO

· · ·

E
0,1
M

−∂ //

∂̄

OO

E
1,1
M

−∂ //

∂̄

OO

E
2,1
M

−∂ //

∂̄

OO

· · ·

E
0,0
M

∂ //

∂̄

OO

E
1,0
M

∂ //

∂̄

OO

E
2,0
M

∂ //

∂̄

OO

· · ·

0 // CM
// Ω0

M
d //

OO

Ω1
M

d //

OO

Ω2
M

d //

OO

· · ·

0

OO

0

OO

0

OO

where all horizontal and vertical complexes are exact. This is an example
of a soft resolution (namely E

•,•
M ) of a resolution (namely Ω•

M ). Note that if
we take down-right-diagonal direct sums, we get the complexified De Rham
Complex (Er

C,M = ⊕p+q=rE
p,q, ∂̄ + ∂ = d).

(v) The above example can be generalized as follows: Let η be a holomorphic
vector bundle over M of rank r. Let Ep,q(η) be the sheaf of smooth sections
of (T ∗

M)p,q ⊗ η. If U ⊆ M is open and {s1, . . . , sr} is a basis of holomorphic
sections of η(U) (this means that for all x ∈ U {s1(x), . . . , sn(x)} is a basis
for the vector space ηx), then every s ∈ Ep,q(η)(U) can be written uniquely
as

s =
r∑

ν=1

ων ⊗ sν with ων ∈ Ep,q(U)

Now we with to define ∂̄s ∈ Ep,q+1(η)(U) by
∑r

ν=1 ∂̄ων ⊗ sν, but we should
first check that this is independent of the chosen basis. This is indeed the case
and follows from the easy fact that the natural homomorphisms Ep,q ⊗ η →
Ep,q(η) are in fact isomorphisms. Now we can act as above and we see that
the sequence

0 // η // E0,0(η)
∂̄ // E0,1(η)

∂̄ // · · · ∂̄ // E0,n(η) // 0

is a resolution for η, since η is locally just the direct sum of r copies of the
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structure sheaf OM and the exactness may be checked locally. For η = (T ∗
M)p,0

we get the Dolbeault resolution of Ωp
M .

Remark 6.1.3. The reason why this last example worked (and why it doesn’t
work with ∂ instead of ∂̄) is that ∂̄ is OM -linear. This means that if f is a
holomorpic function on some open subset of X and ω is a smooth section of some
OM -module (e.g. ω ∈ Ep,q(U)), then by the chain-rule: ∂̄(fω) = ∂̄(f)ω + f ∂̄ω =
f ∂̄ω. Of course this does not hold with ∂ instead of ∂̄.

7 Cohomology of sheaves

To start this section we will repeat some of the main properties of sheaf coho-
mology. There are several introductions to cohomology theory in the context of
algebraic geometry. The famous book of Hartshorne6 contains a precise introduc-
tion to the subject, but it is quite abstract, without much explaining why things
are done. Better for our purpose are the books of Wells and Griffiths-Harris.

We will repeat the main properties of sheaf cohomology:

(I) For q ≥ 0 Hq(X, ·) is a covariant functor from A(X) to A, where again A is
an abelian category. This means that for every abelian sheaf F on X we have
defined objects Hq(X, F) (q ≥ 0) and for each homomorphism f : F → G a
morphism Hq(X, f) : Hq(X, F)→ Hq(X, G) such that Hq(X, 1F) = 1Hq(X,F)

and Hq(X, f ◦ g) = Hq(X, f) ◦Hq(X, g).
The object Hq(X, F) is called the q-th cohomology group of F, again with
a little abuse of notation.

(II) H0(X, F) is equal to the object of global sections of F with H0(X, f : F → G)
being the natural morphism induced by f .

(III) A short exact sequence of abelian sheaves

0 // F
f // G

g // H // 0

gives rise to a long exact sequence of cohomology groups

0 // H0(X, F)
H0(X,f) // H0(X, G)

H0(X,g) // H0(X, H)
δ0

//

// H1(X, F)
H1(X,f) // H1(X, G)

H1(X,g) // H1(X, H)
δ1

// · · ·

6R. Hartshorne, Algebraic Geometry, Springer 1977.
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where the homomorphisms δq : Hq(X, H)→ Hq+1(X, F) are functorial in the
sense that homomorphisms of short exact sequences induce homomorphisms
of the corresponding long exact sequence.

(IV) For a flabby sheaf F on X we have that Hq(X, F) = 0 for all q ≥ 1.

Remark 7.0.4. One possible way to define a cohomology theory for sheaves on
some topological space X is the following method, due to Godement:

Let for a sheaf F on X C0(F) be the sheaf which asserts to each open U ⊆ X
the product

∐

x∈U Fx (where Fx is the stalk of F at x). Furthermore, let for n ≥ 1
Cn(F) = C0(Cn−1(F)). We then get a sheaf complex

0 // F // C0(F) // C1(F) // · · ·

and we define Hn(X, F) := Hn(C•(F)(X)).

A sheaf F with the property Hq(X, F) = 0 for all q ≥ 0 is called acyclic. Acyclic
sheaves might help us to compute cohomology of general sheaves, for example using
the following propositions:

Proposition 7.1 (‘Abstract De Rham Theorem’). Let 0 → F → C• be a
resolution of an abelian sheaf. Then there are natural homomorphisms

γq : Hq(C(X))→ Hq(X, F) (q ≥ 0)

which are isomorphisms if C• consists of acyclic sheaves.

Proof. For q = 0 this is easily verified.
Let G := Ker(C1 → C2), then we have a short exact sequence

0 // F // C0 // G // 0

which gives rise to a long exact sequence

0 // F(X) // C0(X) // G(X) // H1(X, F) // H1(X, C0) // · · ·

Now use G(X) = Ker[C1(X)→ C2(X)] so that we get an exact sequence

0 // H1(C(X))
γ1

// H1(X, F) // H1(X, C0) // · · ·

which settles the case q = 1.
For q ≥ 2 we proceed with induction: write C̃• for the complex C2 → C3 → · · · ,

which gives rise to a resolution G → C2 → C3 → · · · of G. By the induction
hypothesis we have a homomorphism

γ̃q−1 : Hq−1(C̃)→ Hq−1(X, G)
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which is an isomorphism if C̃• is acyclic. Notice that Hq−1(C̃) = Hq(C(X)). From
the first exact sequence above we get a homomorphism δq−1 : Hq−1(X, G) →
Hq(X, F), which is an isomorphism if C0 is acyclic. Now take γq := δq−1◦ γ̃q−1.

Proposition 7.2. Let X be a paracompact7 Hausdorff space, then every soft
abelian sheaf on X is acyclic.

Proof. See Wells, p. 55. The idea behind the proof is that the global sections
functor is exact for soft sheaves, while the Hq measure the ‘non-exactness’ of this
functor.

Using these propositions and the examples of the previous section, we have some
concrete descriptions of certain cohomology groups:

(i) Let M be a smooth manifold of dimension m. Then the De Rham complex
E•

M is a soft hence acyclic resolution of the constant sheaf RM on M . We
therefore get

Hq(M, RM) = Hq(E•
M(M), d) =

global closed forms

global exact forms
in degree q

In particular: Hq(M, RM) = 0 for q > m.
(ii) Let M be a complex manifold of complex dimension n. Let η be a holomor-

phic vector bundle over M . We saw that E0,•(η) is a soft resolution of η,
hence

Hq(M, η) = Hq(E0,•(η)(M), ∂̄)

and in particular Hq(M, η) = 0 if q > n.

Remark 7.2.1. The cohomology groups Hq(M, RM) are sometimes called the De
Rham cohomology groups. If we want to distinguish them from several other
possible cohomology groups, we will denote them by H q

dR(M, R). The cohomology
groups Hq(M, η) are called the Dolbeault cohomology groups of η.

8 Hodge and De Rham theory on compact ma-

nifolds

Let us return to some linear algebra. Let V be a real m-dimensional vector space.
A nondegenerate positive definite inner product S : V × V → R on V determines

7Every open covering of X has a locally finite subcovering. It is easy to show that topological
manifolds are paracompact
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one on its dual V ∗ and on all the exterior algebras of V and V ∗. They can be
characterized as follows:

Let {e1, . . . , em} be an orthonormal basis for V (which fully determines S), then
the dual basis {x1, . . . , xm} is orthonormal for the induced form on V ∗ and {ei}i
resp. {xi}i are orthonormal bases for the forms on the exterior algebras. The two
elements of the form x1 ∧ · · · ∧ xm of

∧m V ∗ that arise in this manner are the
two elements of the one-dimensional vector space

∧m V ∗. Picking out one of them
(which will call µ) is the same as choosing an orientation of V . µ gives rise to an
isomorphism det :

∧m V ∗ ∼
−→ R sending µ to 1.

The inner product S and the orientation on V enable us to define the so-called
star operator

∗ :

q
∧

V ∗ →

m−q
∧

V ∗

characterized by the property that S(α, β)µ = α ∧ ∗β. In terms of an oriented
orthonormal basis {x1, . . . , xm} of V ∗ we get:

∗xi = ±xi′

where i′ is the complementary set of i in {1, . . . , n} and the sign is the sign of the
permutation (1, . . . , m) 7→ (i, i′). From this it follows easily that ∗∗ is multipli-
cation by (−1)q(m−q) in

∧q V ∗. In particular, ∗ is an isomorphism of
∧q V ∗ onto

∧q−m V ∗.
Now suppose that V has a complex structure J (so that m = 2n is even!). This

determines an orientation of V since we can choose a complex basis {e1, . . . , en}
of V and then {e1, Je1, . . . , en, Jen} is an oriented basis. This construction is
independent of the chosen complex basis.

A Hermitian form on V is an R-linear mapping H : V × V → C such
that H(Ja, b) = iH(a, b) (C-linearity in the first variable) and H(b, a) = H(a, b)
(hence C-anti-linearity in the second variable). We can write H = S + iA, with
S, A : V × V → R both R-linear and then these properties become:

(i) A(a, b) = −S(Ja, b)
(ii) S(a, b) = S(b, a)
(iii) A(a, b) = −A(b, a)

It follows that both S and A are J-invariant (S(Ja, Jb) = S(a, b), A(Ja, Jb) =
A(a, b)). Conversely, given a J-invariant symmetric form S : V × V → R, we can
define a Hermitian form H on V by H(a, b) := S(a, b)− iS(Ja, b) and similarly, a
J-invariant anti-symmetric form A defines a Hermitian form on V via H(a, b) :=
A(Ja, b) + iA(a, b).
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We may regard A as an element of
∧2 V ∗ via the projection V ∗⊗V ∗ → V ∗∧V ∗

(α⊗β 7→ α∧β) 8, and
∧2 V ∗ as a subspace of

∧2
C

V ∗
C
. The J-invariance of A then

means that A ∈ (V ∗)1,1. We see that it is equivalent to give

(i) a Hermitian form on V
(ii) a J-invariant symmetric form on V
(iii) a J-invariant anti-symmetric form on V
(iv) an element of

∧2 V ∗ of type (1,1) (i.e. an element of (V ∗)1,1 ∩
∧2 V ∗)

Now suppose the H is positive definite, so H(a, a) > 0 if a 6= 0 (this is equivalent
to S being positive definite). Then there exists an orthonormal basis (for S) of
V of the form {e1, Je1, . . . , en, Jen}. Let {x1, y1, . . . , xn, yn} be the corresponding
dual basis and let {zν = xν + iyν}ν=1,...,n be the associated basis of (V ∗)1,0. It is
easy to see that H is given by

H(a, b) =
n∑

k=1

zk(a)zk(b)

and hence

A(a, b) =
1

2i

n∑

k=1

zk(a)zk(b)− zk(a)zk(b) =
1

i

n∑

k=1

zk ∧ z̄k(a, b)

since the images of zk ⊗ z̄k and −z̄k ⊗ zk in
∧2

C
V ∗

C
are the same. This shows once

more that A is of type (1, 1). In terms of the x’s and the y’s, this 2-form becomes

A =
1

i

n∑

k=1

(xk + iyk) ∧ (xk − iyk) = −2

n∑

k=1

xk ∧ yk

We will later consider Ω := − 1
2
A =

∑n

k=1 xk ∧ yk.
We transport the Hermitian form to V ∗

C
as follows. The real part S of H is a

positive definite inner product on V which is invariant under J and hence defines a
positive definite inner product on V ∗, which is again invariant under J . We extend
this inner product to a Hermitian form on V ∗

C
via

〈α + iβ, γ + iδ〉 = (S(α, γ) + S(β, δ)) + i(S(β, γ)− S(α, δ))

(Note that this is the only possible choice!). The orthonormal basis {x1, y1, . . . , xn, yn}
of V ∗ for S is also orthonormal for 〈 , 〉. Another orthonormal basis for 〈 , 〉 is

{
1√
2
z1, . . . ,

1√
2
zn, 1√

2
z̄1, . . . ,

1√
2
z̄n

}

8This gives in fact an isomorphism between
∧

2
V ∗ and the space of anti-symmetric forms on

V
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so we see that (V ∗)1,0 and (V ∗)0,1 are perpendicular. We can apply the same
construction to

∧• V ∗ and define a Hermitian form 〈 , 〉 on
∧• V ∗

C
which has as

orthonormal basis
{

1√
2
zi1 ∧ · · · ∧

1√
2
zip ∧

1√
2
z̄j1 ∧ · · · ∧

1√
2
z̄jq

}

i,j

and we see that all the summands (V ∗)p,q of
∧• V ∗

C
are mutually perpendicular

with respect to 〈 , 〉.
We can also extend our star operator ∗ :

∧r V ∗ →
∧2n−r V ∗, which is defined

by S, to
∧• V ∗

C
in an anti-linear9 way:

∗(α + iβ) = ∗α− i∗β

We want to know the effect of ∗ on the above basis. Hereto we first consider
the one-dimensional case: we have {x, y} as an oriented orthonormal basis, and
∗x = y, ∗y = −x so we get

∗1 = x ∧ y = 1
−2i

z ∧ z̄

∗z = ∗x− i∗y = y + ix = i(x− iy) = iz̄

∗z̄ = ∗x + i∗y = y − ix = −i(x + iy) = −iz

∗( 1
2i

z ∧ z̄) = ∗(x ∧ y) = −1

In order to generalize this, we first adapt some notation:

ω0,0
ν := 1, ω1,0

ν := zν, ω0,1
ν := z̄ν, ω1,1

ν := 1
2i

zν ∧ z̄ν (= xν ∧ yν)

Then every element of the above basis can be uniquely written, up to a sign and
multiplication by some constant, as

ωp1,q1

1 ∧ · · · ∧ ωpn,qn

n

If we denote by ∗ν the 1-dimensional star operator in the ν-th coordinate, then an
easy computation shows that

∗(ωp1,q1

1 ∧ · · · ∧ ωpn,qn

n ) = ±(∗1ω
p1,q1

1 ) ∧ · · · ∧ (∗nωpn,qn

n )

where the sign is in fact
(−1)

P

j<k(pj+qj)(pk+qk)

We therefore see

9some authors extend ∗ in a linear way, but this appears to be more natural.
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Proposition 8.1. ∗ defines an isomorphism of
∧p,q V ∗

C
onto

∧n−q,n−p V ∗
C
.

Let us return to a smooth manifold M of dimension m, which we from now
on assume to be compact. We suppose that M is oriented (that is, every tangent
space TpM has been oriented and this orientation is locally constant). We have a
bilinear map

( | ) : Er(M)× Em−r(M)→ R

(α|β) :=

∫

M

α ∧ β

(here we already need M to be oriented!). We extend this map to E•(M)×E•(M)
by putting it zero if the degrees do not add up to m. If α ∈ Er(M) and β ∈
Em−r−1(M) then we have

(dα|β) =

∫

M

dα ∧ β

=

∫

M

{d(α ∧ β)− (−1)rα ∧ dβ}

= (−1)r+1

∫

M

α ∧ dβ (by Stokes’ theorem)

= (−1)r+1(α|dβ)

From this it follows that if α and β are closed forms, then (α|β) only depends on
their cohomology classes, so that ( | ) induces a pairing

( | ) : Hr(M, R)×Hm−r(M, R)→ R

This is a so-called perfect pairing in the sense that the involved vector spaces
are finite dimensional and that

Hr(M, R)→ Hm−r(M, R)∗, α 7→ (α| · )

is an isomorphism. This is in fact a topological result (a consequence of Poincaré
duality), but will shall give an analytic proof below.

Give M a Riemannian metric S. Since M is oriented, we can extend the local
operator ∗ to get a sheaf homomorphism ∗ : Er

M → Em−r
M . The element ∗1 ∈

Em(M) is called the volume element of M , it will be denoted by dµ 10. We

10This notation is standard but confusing: in general dµ need not to be exact. In fact: if M

is compact it is not, by Stokes theorem
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can extend S in a natural way to Er(M) and we get for α, β ∈ Er(M): α ∧ ∗β =
S(α, β)dµ. We define

〈α, β〉 := (α|∗β) =

∫

M

α ∧ ∗β =

∫

M

S(α, β)dµ

which is R-bilinear. The latter equality shows that 〈α, α〉 > 0 unless α = 0, so
that 〈 , 〉 is a positive definite inner product on E•(M).

Lemma 8.2. Let d∗ : Er
M → Er−1

M be defined by d∗ := (−1)r ∗−1 d∗. Then for
α, β ∈ E•(M) we have 〈dα, β〉 = 〈α, d∗β〉. (We say that d∗ is a formal adjoint
of d.)

Proof. Let α ∈ Er(M), β ∈ Er+1(M). Then 〈dα, β〉 = (dα|∗β) = (−1)r+1(α|d∗
β) = (−1)r+1〈α, ∗−1d∗β〉 = 〈α, d∗β〉.

Definition. We define the Laplace operator to be ∆ := dd∗ + d∗d : Er
M → Er

M .

Remark 8.2.1. If we take M = Rm with the standard metric (dx1)
2+· · ·+(dxm)2,

then even though M is not compact, we can define d∗ and ∆. Now if f : M → R

is a smooth function, then an easy exercise shows that ∆(f) = −
∑m

ν=1
∂2f

∂x2
ν
, which

explains the name of the Laplace operator.

The following lemma gives an important property of the Laplace operator:

Lemma 8.3. For α ∈ Er(M), the following are equivalent

(i) dα = 0 and 〈α, dβ〉 = 0 for all β ∈ Er−1(M).
(ii) dα = d∗α = 0
(iii) ∆α=0

Moreover, ∆ commutes with both d and ∗, hence also with d∗.

Proof. (i) ⇐⇒(ii) follows from the above discussion, while (ii) =⇒(iii) is trivial.
If ∆α = 0, then

0 = 〈α, ∆α〉 = 〈α, d∗dα〉+ 〈α, dd∗α〉 = 〈dα, dα〉+ 〈d∗α, d∗α〉

and since 〈 , 〉 is positive definite, this implies dα = d∗α = 0. The second statement
is trivial from the definition of ∆.

We call a global r-form α ∈ Er(M) harmonic if it satisfies ∆α = 0. The
harmonic r-forms form a linear subspace Hr(M) of Er(M). According to the
lemma, this is just the orthogonal complement relative to 〈 , 〉 of the exact forms
in the space of closed forms. In particular we have an injection

Hr(M)→ Hr(E•(M), d) ∼= Hr(M, R) , α 7→ [α]

We have the following important but highly nontrivial theorem:
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Theorem 8.4 (Hodge-Kodaira). Hr(M) is a finite dimensional vector space
and Hr(M)→ Hr(M, R) is an isomorphism.

Proof. See Wells or Griffiths-Harris.

Corollary 8.5 (Poincaré duality). The pairing

( | ) : Hr(M, R)×Hm−r(M, R)→ R

is perfect.

Proof. From the lemmas it follows that ∗ defines an isomorphism of Hr(M)
∼
−→

Hm−r(M), so ([α]|[∗α]) = (α|∗α) = 〈α, α〉 6= 0 if α 6= 0. Therefore, if ([α]|[β]) = 0
for all [β] 6= 0, then [α] must be 0, showing that the pairing is perfect.

For the remainder of this section, we assume M to be a compact complex man-
ifold of complex dimension n, while η is a holomorphic vector bundle over M of
rank k. We will discuss the analogue of the above for the (Dolbeault) cohomology
groups of η.

If we denote by η∗ the holomorphic dual bundle of η, we can define a sheaf
homomorphism

∧ : Ep,q(η)⊗ En−p,n−q(η∗)→ E
n,n
M , (α⊗ s)⊗ (β ⊗ σ) 7→ σ(s) · α ∧ β

Lemma 8.6. If ω ∈ Ep,q(η)(U) and ζ ∈ En−p,n−q−1(η∗)(U) for some open U ⊆M
then d(ω ∧ ζ) = ∂̄ω ∧ ζ + (−1)p+qω ∧ ∂̄ζ.

Proof. Write ω =
∑

αj ⊗ sj and ζ =
∑

βk ⊗ σk. Then

d(ω ∧ ζ) = ∂̄(ω ∧ ζ) (since ω ∧ ζ ∈ E
n,n−1
M )

= ∂̄

[
∑

j,k

σk(sj)αj ∧ βk

]

=
∑

j,k

σk(sj)∂̄(αj ∧ βk)

=
∑

j,k

σk(sj)
{
∂̄αj ∧ βk + (−1)p+qαj ∧ ∂̄βk

}

= ∂̄ω ∧ ζ + (−1)p+qω ∧ ∂̄ζ
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Now define
( | ) : Ep,q(η)(M)× En−p,n−q(η∗)(M)→ C

(ω|ζ) :=

∫

M

ω ∧ ζ

which is C-bilinear. We can extend it to a bilinear form on E•,•(η)(M)×E•,•(η∗)(M)
by putting it zero if the bidegrees do not add up to (n, n). From the lemma and
Stokes’ theorem, it follows that ( | ) induces a pairing on the Dolbeault cohomology
groups

( | ) : Hp,q(M, η)×Hn−p,n−q(M, η∗)→ C

(where Hp,q(M, η) = Hq(Ep,•(M, η), ∂̄) ∼= Hq(M, Ωp
M ⊗ η)). Just as in the smooth

case, we will show that this is a perfect pairing of finite dimensional vector spaces.
Let us be given smooth Hermitian metrics HM and Hη on the bundles TM resp.

η.11. The Hermitian form Hη on η defines an anti-linear homomorphism uH : η →
η∗, s 7→ H(·, s), which is smooth but not necessarily holomorphic. Together with
the anti-linear star operator on E•,•, this defines an anti-linear operator

Ep,q(η)→ En−p,n−q(η∗)

∑

j

αj ⊗ sj 7→
∑

j

(∗αj)⊗ uH(sj)

which we will also denote by ∗.
Now define

〈 , 〉 : E•,•(η)(M)× E•,•(η)(M)→ C

〈α, β〉 := (α| ∗β)

One can easily check that 〈 , 〉 is C-linear in the first variable, that 〈α, β〉 = 〈β, α〉
and that 〈α, α〉 > 0 unless α = 0. So we see that 〈α, β〉 is a positive definite
Hermitian form. This makes E•,•(η)(M) a so-called pre-Hilbert space12.

We now can proceed as in the real case and define ∂̄∗ := (−1)p+q ∗−1 ∂̄∗ :
Ep,q(η) → Ep,q−1(η). Then we again have that 〈∂̄ω, ζ〉 = 〈ω, ∂̄∗ζ〉. We further
define the Laplace ∂̄-operator ∆∂̄ to be

∆∂̄ := ∂̄∂̄∗ + ∂̄∗∂̄ : Ep,q(η)→ Ep,q(η)

and just as above we see that the following are equivalent:

11A smooth Hermitian form on a smooth bundle ξ is simply a positive definite Hermitian
form in every fiber, which varies smoothly with the base point. Using a partition of the unity,
one can show that such forms always exist.

12that is, a complex vector space with a positive definite Hermitian form on it.



Kähler Manifolds and Hodge theory 25

(i) ∂̄α = 0 and 〈α, ∂̄β〉 = 0 for all β ∈ Ep,q−1(η)(M).
(ii) ∂̄α = ∂̄∗α = 0
(iii) ∆∂̄α=0

The subspace of Ep,q(η)(M) consisting of the forms α with ∆∂̄α = 0 is denoted by
Hp,q(M, η). We have the following theorem which follows from the same general
result as the Hodge-Kodaira theorem:

Theorem 8.7. The space Hp,q(M, η) is finite-dimensional and the natural map
Hp,q(M, η)→ Hp,q(M, η) is an isomorphism.

Corollary 8.8 (Serre Duality). dim Hp,q(M, η) <∞ and the pairing

( | ) : Hp,q(M, η)×Hn−p,n−q(M, η∗)→ C

is perfect.

Proof. Similar as the proof of 8.5.

9 The exterior algebra of a Hermitian vector space

Just as before, we start with some linear algebra. Let V be again some real vector
space of dimension m = 2n with complex structure J : V → V and a positive
definite Hermitian form H on it. Let {x1, y1, . . . , xn, yn} be an orthonormal basis
of V ∗ as in the previous section (so we have Jxν = yν). We saw there that
H(a, b) =

∑n
ν=1 zν(a)zν(b), where zν = xν + iyν and that the imaginary part A of

H corresponds to the 2-form
∑n

ν=1 zν ∧ z̄ν. We define

Ω = −
1

2
A =

n∑

ν=1

xν ∧ yν =

n∑

ν=1

ω1,1
ν

and we notice that

Ωn = Ω ∧ · · · ∧ Ω
︸ ︷︷ ︸

n

= n! · x1 ∧ y1 ∧ · · ·xn ∧ yn = n! · µ

We define an operator L on
∧• V ∗

C
by

L(ω) := Ω ∧ ω

(so L maps r-forms to (r + 2)-forms). Recall from the previous section that we
have a natural Hermitian form 〈 , 〉 on

∧• V ∗
C

and an anti-linear star operator
∗ :
∧r V ∗

C
→
∧2n−r V ∗

C
such that

〈α, β〉µ = α ∧ ∗β
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Let L∗ be the adjoint of L with respect to 〈 , 〉, which means by definition that
for all α, β

〈Lα, β〉 = 〈α, L∗β〉

Since 〈Lα, β〉µ = Ω∧α∧ ∗β = α∧Ω∧ ∗β = 〈α, ∗−1L(∗β)〉µ it follows that in fact
L∗ = ∗−1L∗. Note that L∗ maps r-forms to (r − 2)-forms.

Proposition 9.1. L∗L− LL∗ acts on
∧r V ∗

C
as scalar multiplication by n− r.

Proof. Let ω be a basis element of
∧r V ∗

C
of the form ω = ωp1,q1

1 ∧ · · · ∧ ωpn,qn
n .

Then

L∗L(ω) = ∗−1L ∗ (Ω ∧ ω)

= ∗−1L ∗




∑

ν:(pν ,qν)=(0,0)

ωp1,q1

1 ∧ · · · ∧ ω1,1
ν ∧ · · · ∧ ωpn,qn

n





= ∗−1L




∑

ν:(pν ,qν)=(0,0)

±(∗1ω
p1,q1

1 ) ∧ · · · ∧ ω0,0
ν ∧ · · · ∧ (∗nωpn,qn

n )





= ∗−1




∑

ν:(pν ,qν)=(0,0)

±(∗1ω
p1,q1

1 ) ∧ · · · ∧ ω1,1
ν ∧ · · · ∧ (∗nω

pn,qn

n )





=
∑

ν:(pν ,qν)=(0,0)

ωp1,q1

1 ∧ · · · ∧ ω0,0
ν ∧ · · · ∧ ωpn,qn

n = n0,0 · ω

where n0,0 = #{ν : (pν, qν) = (0, 0)}. Similarly, if n1,1 = #{ν : (pν, qν) = (1, 1)},
then LL∗(ω) = n1,1 · ω. So (L∗L− LL∗)(ω) = (n0,0 − n1,1)ω.

We finally observe that n0,0 − n1,1 =
∑n

ν=1(1 − pν − qν) (this is far more easy
than it appears to be!), so that n0,0 − n1,1 = n− total degree of ω = n− r.

Let B :
∧• V ∗

C
→
∧• V ∗

C
be defined as multiplication by n− r in degree r. The

preceding proposition then says

[L∗, L] = B

and the fact that L increases the degree by 2 and L∗ decreases it by 2 can be
expressed as:

[B, L] = −2L

[B, L∗] = 2L∗
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so the C-linear span of these three operators within End(
∧• V ∗

C
) is closed under

[ , ], which makes it a subalgebra of the Lie algebra End(
∧• V ∗

C
). This subalgebra

is isomorphic13 to the Lie algebra sl2(C) of complex 2×2 matrices with zero trace.
The isomorphism is in fact given by

L∗ 7→ X =

(
0 1
0 0

)

L 7→ Y =

(
0 0
1 0

)

B 7→ H =

(
1 0
0 −1

)

It can be checked easily that [X, Y ] = H, [H, X] = 2X and [H, Y ] = −2Y .
We will now discuss some representation theory, and since we are only interested

in the case of sl2(C) we will restrict to this special case, of course there is a far
more general theory behind this.

Definition. A representation of sl2(C) is a finite dimensional complex vector
space W with a homomorphism of Lie algebras sl2(C)→ End(W ). In other words,
we have three operators X, Y and H in W satisfying

[X, Y ] = H, [H, X] = 2X, [H, Y ] = −2Y

An example of a representation is of course the case W = C2 with ordinary
matrix multiplication. This is called the tautological representation. The
standard operations on vector spaces (such as ⊗, ⊕, Hom, Symk, dual) can be
used to make new representations from existing ones. For example, if W1 and W2

are representations of sl2(C), then W1⊗W2 is a representation defined by sending
σ ∈ sl2(C) to the endomorphism:

x⊗ y 7→ σ(x)⊗ 1 + 1⊗ σ(y)

We are especially interested in symmetric powers of the tautological represen-
tation. Note that we have

Symk
C

2 ∼= C-span of {ej
1e

k−j
2 }

k
j=1 ( = polynomials of degree k in e1 and e2)

13isomorphic as Lie algebras, which means an isomorphism of vector spaces, leaving the Lie
bracket invariant. So we will disregard multiplication that we may have: H2 is multiplication by
(n− r)2 in degree r, while B2 is the identity
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We define the representation Symk C
2 by sending σ =

(
a b

c d

)
∈ sl2(C) to the endo-

morphism which sends ej
1e

k−j
2 to

b
j
· ej−1

1 ek−j+1
2 + a

j(k−j)
· ej

1e
k−j
2 + c

k−j
· ej+1

1 ek−j−1
2

where e−1
1 = e−1

2 = 0. The case k = 0 gives the representation which sends every
σ ∈ sl2(C) to 0 ∈ End(C). This is called the trivial representation.

It can be shown that the action of H on W is diagonalizable. If you do not want
to belief this: it is trivially true in our cases, so you may assume we restrict to the
cases in which it is true. If we denote by Wλ = Wλ(H) ⊆ W the λ-eigenspace of H
within W , then this yields W =

⊕

λ Wλ (of course, only finitely many summands
are 6= 0).

We need some technical but not really deep lemmas:

Lemma 9.2. X maps Wλ to Wλ+2 and Y maps Wλ to Wλ−2.

Proof. For w ∈ Wλ we have HX(w) = (XH + 2X)(w) = X(λw) + 2X(w) =
(λ + 2)X(w) and similarly HY (w) = (λ− 2)Y (w).

Definition. We call an eigenvector v ∈ Wλ primitive (of weight λ) if Xv = 0.
The space of primitive vectors of weight λ is denoted by Pλ.

Lemma 9.3. If v ∈ Wλ is nonzero then there is an integer k ≥ 0 such that Xku
is nonzero and primitive (of weight λ + 2k).

Proof. The elements X, Xv, X2v, . . . are eigenvectors of H with eigenvalues λ, λ+
2, λ + 4, . . . and hence are all different (as long as they are nonzero). Since W is
finite dimensional, for some k ≥ 0 we have Xk+1v = 0, while Xkv 6= 0.

Lemma 9.4. If v ∈ Pλ, then XY k(v) = k(λ + 1− k)Y k−1(v).

Proof. Using induction on k. The case k = 0 is trivial. For k > 0 we have

XY k(v) = XY · Y k−1(v)

= (Y X + H)Y k−1(v)

= Y ·XY k−1(v) + HY k−1(v)

= Y · (k − 1)(λ + 1− (k − 1))Y k−2(v) + (λ− 2(k − 1))Y k−1(v)

= {(k − 1)(λ + 2− k) + (λ− 2k + 2)}Y k−1(v)

= k(λ + 1− k)Y k−1(v)

using induction and lemma 9.2.
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Corollary 9.5.

(i) If Wλ 6= 0, then λ ∈ Z and if Pλ 6= 0 then λ ∈ N.
(ii) If v ∈ Pλ − {0}, then Y λ+1(v) = 0 and {v, Y (v), . . . , Y λ(v)} is a basis of a

subspace W (v) ⊆ W which is invariant under the action of sl2(C).

(iii) If v ∈ Pλ, then Xk

k!
Y k

k!
(v) =

(
λ

k

)
v for 0 ≤ k ≤ λ.

Proof. If v ∈ Pλ − {0}, then Y lv ∈ Wλ−2l for l ∈ N by lemma 9.2. So for some
k ∈ N, we have Y k(v) 6= 0 and Y k+1(v) = 0. By lemma 9.4 we then have

0 = XY k+1(v) = (k + 1)(λ− k)Y k(v)

and since both k + 1 and Y k(v) are nonzero, we should have λ = k ∈ N. This
proves the second part of (i), while the first part then follows from this and lemma
9.3.

Now we also have proven the first part of (ii). For the second part, we mention
that since Y lv ∈ Wλ−2l, the Y l for l = 0, . . . , λ are linearly independent and
nonzero. From lemma 9.4 it follows that their span is invariant under X, Y and
H, hence under sl2(C).

Finally, (iii) follows with induction from lemma 9.4.

Proposition 9.6.

(i) Wλ is the direct sum of the subspaces {Y kPλ+2k}k≥max{0,−λ
2
}

(ii) Pλ = {v ∈ Wλ : Y λ+1v = 0} (λ ≥ 0).

Proof. We first show that Wλ ⊆
∑

k≥0 Y kPλ+2k (the other inclusion is clear). Let

v ∈ Wλ and define the integer k(v) ≥ 0 by the property Xk(v)(v) 6= 0, Xk(v)+1(v) =

0. With induction on k(v) we prove that v ∈
∑k(v)

l=0 Y lPλ+2l. If k(v) = 0 there
is nothing to prove, so assume k = k(v) ≥ 1. Then Xk(v) ∈ Pλ+2k. If we take

c := (k!)−2
(

λ+2k

k

)−1
, then it follows from the third part of the corollary that

Xk(v − c · Y kXk(v)) = (1 − c ·XkY k)(Xkv) = 0

Since v−c·Y kXk(v) ∈ Wλ it follows by the induction hypothesis that this element is
in
∑k−1

l=0 Y lPλ+2l. So v ∈ Y kPλ+2k+
∑k−1

l=0 Y lPλ+2l ⊆
∑k

l=0 Y lPλ+2l. This completes
the induction.

To prove that the sum is in fact a direct sum assume we have

0 =
∑

k

Y kvk



Kähler Manifolds and Hodge theory 30

where vk ∈ Pλ+2k. Let l be the largest l such that vl 6= 0. Then 0 = Y λ+l0 =
Y λ+2lvl by (ii) of the corollary (apply Y k on both sides of the above equation) and
applying (ii) again, it follows that vl = 0.

For (ii), we remark that if v ∈ Pλ, then by (ii) of the corollary Y λ+1v = 0. If
on the other hand v ∈ Wλ for some λ ≥ 0, then by (i) we can write v uniquely as

v = vλ + Y vλ+2 + Y 2vλ+4 + · · · (vλ+2l ∈ Pλ+2l)

so if Y λ+1v = 0, then Y λ+2vλ+2 + Y λ+3vλ+4 + · · · = 0, which implies (since Y k|Pλ+l

is injective if k ≤ λ + l) that vλ+2 = vλ+4 = . . . = 0 and thus v = vλ ∈ Pλ.

Corollary 9.7.

(i) For k = 0, 1, 2, . . . we have that W [k] := Pk ⊕ Y Pk ⊕ · · · ⊕ Y kPk is a sl2(C)-
invariant subspace of W and W =

⊕

k≥0 W [k] as sl2(C)-representations.

(ii) Y k maps Wk isomorphically onto W−k.

Proof. Using W =
⊕

λ∈Z
Wλ and Wλ =

⊕

k≥max{0,−λ
2
} Y kPλ+2k we see by re-

ordering the terms that W [k] := Pk ⊕ Y Pk ⊕ · · · ⊕ Y kPk. The fact that this is
sl2(C)-invariant is just an easy computation using lemma 9.4.

(ii) follows from the direct sum in (i) of the previous proposition: Y k(Y lPk+2l) =
Y k+lP−k+2(k+l) and Y l|Y k(Y lPk+2l) is injective as long as l ≥ 0, which is always
true.

We now have developed enough tool for the sl2(C)-action on
∧• V ∗

C
. Recall that

X, Y and H correspond to L∗, L and B respectively. Using the above notation,
we find (with 2n = dimR V ):

Proposition 9.8.

• (
∧• V ∗

C
)λ =

∧n−λ V ∗
C

• Pλ := {α ∈
∧n−λ V ∗

C
: L∗α = 0} = {α ∈

∧n−λ V ∗
C

: Lλ+1α = 0}

•
∧• V ∗

C
=
⊕
{LkPλ; λ = 0, . . . , n, 0 ≤ k ≤ λ}

• Lk :
∧n−k V ∗

C
→
∧n+k V ∗

C
is an isomorphism.

Below is a picture in which this is illustrated in the case n = 3. Here numbers
indicate dimension.
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6

14

14

1 ←− P3
∧0

←− P2
∧1

LP3 → 1 ←− P1
∧2

LP2 → 6 ←− P0
∧3

L2P3 → 1 14 ←− LP1
∧4

L2P2 → 6
∧5

L3P3 → 1
∧6

Remark 9.8.1. If W is a sl2(C)-representation, then the elements of Wλ are said
to have weight λ. If we take W =

∧• V ∗
C
, then we have W =

⊕

r

∧r V ∗
C

and then
elements of

∧r V ∗
C

are said to have degree r. So we see that weight λ corresponds
to degree n− λ.

Since Pλ ⊆
∧n−λ V ∗

C
we shall write P n−λ for this space. Note that

∧• V ∗
C

is an
N×N-graded C-algebra and that L and L∗ are homogeneous operators (of bidegrees
(1, 1) and (−1,−1) respectively). This implies that if α ∈ P n−λ = Ker(L∗|Vn−λ V ∗

C

)

then all the bihomogeneous components of α are also in this kernel, so that we
have a decomposition

P r =
⊕

p+q=r

P p,q (0 ≤ r ≤ n)

As was mentioned before, the operator J : V → V induces an operator J ∗ on
∧• V ∗

C
as follows:

J∗(zi1 ∧ · · · ∧ zip ∧ z̄j1 ∧ · · · ∧ z̄jq
) = J∗zi1 ∧ · · · ∧ J∗zip ∧ J∗z̄j1 ∧ · · · ∧ J∗z̄jq

= ip−q · zi1 ∧ · · · ∧ zip ∧ z̄j1 ∧ · · · ∧ z̄jq

and we thus see that J∗ is multiplication by ip−q on (V ∗)p,q. This automorphism
is called the Weil operator and therefore sometimes denoted by w. Since (J ∗)2

on (V ∗)p,q is multiplication by (−1)p−q = (−1)p+q to that (J∗)2 = ∗∗.

Lemma 9.9. If α ∈ P r(0 ≤ r ≤ n), then ∗Lk

k!
α = (−1)

1

2
r(r+1) Ln−r−k

(n−r−k)!
J∗ᾱ

Proof. The proof is just a long and boring (hence not so interesting) computa-
tion, so we refer to the book of Weil.

If α, β ∈ P r, then by the lemma we have

α ∧ ∗β = α ∧ (−1)
1

2
r(r+1) Ln−r

(n− r!)
J∗β̄ = (−1)

1

2
r(r+1) Ωn−r

(n− r)!
∧ α ∧ J∗β̄
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Therefore we introduce a mapping Q : P r × P r → C defined by

Q(α, β)µ = (−1)
1

2
r(r+1) Ωn−r

(n− r)!
∧ α ∧ β

Note that we have
〈α, β〉 = Q(α, J∗β̄)

To conclude this section, let us state some properties of Q

Proposition 9.10.

(i) Q is bilinear and Q(β, α) = (−1)rQ(α, β) where α, β ∈ P r.
(ii) The restriction of Q to P p,q×P p′,q′ is the zero mapping, unless (p′, q′) = (q, p)

and Q : P p,q × P q,p → C is a perfect pairing.
(iii) (α, β) ∈ P r × P r 7→ Q(α, J∗β̄) is a positive definite Hermitian form on P r.

Proof. (i) follows immediately, using (−1)r2

= (−1)r. The first part of (ii)
follows by looking at bidegrees, which should add up to (n, n). The second part
of (ii) and (iii) follows by the above formulas and the properties of 〈 , 〉.

10 Kähler manifolds

In this (final) section, we will apply the theory of the previous one to come to the
definition of a Kähler manifold and its most important properties. So let M be
complex manifold of complex dimension n, equipped with a Hermitian metric H.
H defines the anti-linear star operator ∗ : E

p,q
M → E

n−p,n−q
M . Recall that we have a

positive definite Hermitian form

〈 , 〉 : E
•,•
M × E

•,•
M → C

and we have formal adjoints

d∗ = (−1)r ∗−1 d∗ : Er
M → Er−1

M 〈dα, β〉 = 〈α, d∗β〉

∂̄∗ = (−1)p+q ∗−1 ∂̄∗ : E
p,q
M → E

p,q−1
M 〈∂̄α, β〉 = 〈α, ∂̄∗β〉

∂∗ = (−1)p+q ∗−1 ∂∗ : E
p,q
M → E

p−1,q
M 〈∂α, β〉 = 〈α, ∂∗β〉

There is much analogy between these three cases and we will treat them all at
once.

We have corresponding Laplacians

∆d = dd∗ + d∗d

∆∂̄ = ∂̄∂̄∗ + ∂̄∗∂̄

∆∂ = ∂∂∗ + ∂∗∂
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We have that ∆∂ = ∆∂̄ and both ∆∂ and ∆∂̄ respect the bidegrees (which ∆d a
priori does not in general).

Remark 10.0.1. Note that d, ∂ and ∂̄ are defined independent of the metric H,
but since the star operator is defined using H, we see that d∗, ∂∗ and ∂̄∗, and
therefore also the corresponding Laplacians depend on this metric. It is important
to be aware of this during the sequel.

Definition. Let M be as complex manifold (not nessecarily compact), equipped
with a Hermitian metric on M and let Ω be the (1, 1)-form associated to− 1

2
Im(H).

We say that H is a Kähler metric if Ω is closed. M , or more precisely the pair
(M, H), is called a Kähler manifold.

If M is a compact manifold with Kähler metric H, then the class [Ω] ∈ H2(M, R)
must be nontrivial: [Ω]n = [Ω∧· · ·∧Ω] ∈ H2n(M, R) is n! times the volume element
dµ and since

∫

M
dµ = vol(M) > 0, Ω∧ · · ·∧Ω cannot be exact by Stokes theorem.

So [Ω]n 6= 0, hence [Ω] 6= 0.

Remark 10.0.2. One can define a complex manifold Hm(λ) (where m ≥ 0, λ ∈
C−{0} |λ| 6= 1) by Cm−{0}/ ∼ where z ∼ z′ ⇐⇒ z = λkz for some k ∈ Z. This
is an example of a so-called Hopf manifold and it can be checked that Hm(λ) ∼=
S1 × S2m−1 as real manifolds. Therefore H2(Hm(λ), R) = H2(S1 × S2m−1, R) = 0
by Künneths formula, hence Hm(λ) does not admit a Kähler metric.

If N is a complex submanifold of a Hermitian manifold (M, H), then the re-
striction HN of H to the tangent bundle of N is a Hermitian metric on N . The
(1, 1)-form defined by − 1

2
Im(HN) on N is the restriction of the (1, 1)-form defined

by −1
2
Im(H). So if (M, H) is a Kähler manifold, then so is (N, HN).

Although we saw above that not every complex manifold admits a Kähler metric,
we have quite some examples of Kähler manifolds:

(i) If M is a 1-dimensional complex manifold with an Hermitian metric H, then
dΩ is a 3-form which is therefore 0 and so H is a Kähler metric.

(ii) If V is a complex vector space (or more generally a real vector space with a
complex structure), then it follows easily that the Fubini-Study metric, as is
defined in proposition 10.1 below is a Kähler metric on P(V ).

(iii) From this an the above it follows that every complex manifold that can
be embedded into some complex projective space admits a Kähler metric.
Furthermore, we see that Hopf manifold cannot be embedded into complex
projective space.

Proposition-definition 10.1. Let V be a real vector space with complex structure
J and positive definite Hermitian form H : V ×V → C. Then P

V admits a Kähler
metric, called the Fubini-Study metric.
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Proof. Denote by π : P(V ) − {0} → V the natural projection. Let U ⊂ P(V )
be an open set and Z : U → V − {0} a lifting of U , i.e. a holomorphic map with
π ◦ Z = 1U . Consider the differential form

ω =
−1

2πi
∂∂̄ log H(Z, Z)

If Z ′ : U → V −{0} is another lifting, then Z ′ = f ·Z for some nonzero holomorphic
function f on U , so that

−1

2πi
∂∂̄ log H(Z ′, Z ′) =

−1

2πi
∂∂̄(log H(Z, Z) + log f + log f̄)

= ω +
−1

2πi
(∂∂̄ log f − ∂̄∂ log f̄)

= ω

so that the definition of ω is independent of the chosen lifting. Since liftings always
exist locally, ω defines a global (1,1)-form on P(V ), which clearly satisfies dω = 0.
so it defines a Kähler metric. To see that ω is positive definite, note that the
unitary group U(n + 1) acts transitively on P(V ), leaving ω invariant, so it is
positive definite everywhere if it is at one point.

Let U0 be the open set {Z0 6= 0} in P(V ) and {zj = Zj/Z0} be coordinates on
U0. Use the lifting Z = (1, z1, . . . , zn) on U0. We get

ω =
−1

2πi
∂∂̄ log(1 +

∑

j

zj z̄j)

=
−1

2πi
∂

( ∑

j zjdz̄j

1 +
∑

j zj z̄j

)

=
−1

2πi






∑

j dzj ∧ dz̄j

1 +
∑

j zj z̄j

−

(
∑

j z̄jdzj

)

∧
(
∑

j zjdz̄j

)

(

1 +
∑

j zj z̄j

)2






so at the point [1, 0, . . . , 0] on P(V ), we have

ω =
−1

2πi

∑

j

dzj ∧ dz̄j

which is indeed positive definite.

Now let (M, H) be a Kähler manifold. We define L : E
p,q
M → E

p+1,q+1
M to be

α 7→ Ω ∧ α, and L∗ := ∗−1L∗ : E
p,q
M → E

p−1,q−1
M , the formal adjoint to L with
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respect to 〈 , 〉. Let for 0 ≤ r ≤ n, Pn−r
M ⊆ En−r

C,M be defined as the kernel of

Lr+1 : En−r
C,M → En+r+2

C,M . From the results of the previous section it follows that

2n⊕

s=0

Es
C,M =

n⊕

r=0

r⊕

k=0

LkPn−r
M

We need a rather technical proposition that has important consequences:

Proposition 10.2. [L, ∂∗] = i∂̄ and [L, ∂̄∗] = −i∂

Proof. It suffices to prove the first formula, as the second one is just the complex
conjugate of the first one. Conjugating this formula with ∗ gives the equivalent
formula

[L∗, ∂] = −i ∗ ∂̄ ∗ (= i∂̄∗)

By the previous section it suffices to prove this on elements of the form α = Lkβ
with β primitive of degree r ≤ n and k ≤ n − r. Then we have Ln−r+1β = 0
and so we have 0 = ∂Ln−r+1β = Ln−r+1∂β. Here we use that L and ∂ commute
since dΩ = 0, hence also ∂Ω = 0, and Ω has degree 2. Since ∂β has degree r + 1,
it follows from proposition 9.8 that ∂β is of the form β0 + Lβ1, with β0 and β1

primitive of degrees r + 1 resp. r − 1 (use Ln−r+1∂β = 0). We see

L∗∂α = L∗Lk∂β
= L∗Lk(β0 + Lβ1)
= k(n− (r + 1)− k + 1)Lk−1β0 + (k + 1)(n− (r − 1)− (k + 1) + 1)Lkβ1

= k(n− r − k)Lk−1β0 + (k + 1)(n− r − k + 1)Lkβ1

whereas

∂L∗α = ∂L∗Lkβ
= ∂

[
k(n− r + 1− k)Lk−1β

]

= k(n− r + 1− k)Lk−1∂β
= k(n− r + 1− k)(Lk−1β0 + Lkβ1)

using lemma 9.4 at both parts.
Combining these two results leads to

[L∗, ∂](α) = −k · Lk−1β0 + (n− r + 1− k)Lkβ1 (1)

and it remains to show that the right hand side equals −i ∗ ∂̄ ∗α. Thereto we will
make use of lemma 9.9.
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Since L is of type (1, 1) and J∗ equals multiplication with ip−q in bidegree (p, q)
we have that J∗ and L commute and that ∂̄J∗ = −iJ∗∂̄. Since ∗ sends E

p,q
M to

E
n−p,n−q
M we also have J∗∗ = (−1)r ∗ J∗ in degree r. So we get

−i ∗ ∂̄ ∗ α = −i ∗ ∂̄ ∗ Lkβ

= −i ∗ ∂̄(−1)
1

2
r(r+1) k!

(n− r − k)!
Ln−r−kJ∗β (by lemma 9.9)

= (−1)
1

2
r(r+1) k!

(n− r − k)!
·
(
−i ∗ ∂̄Ln−r−kJ∗β

)

= (−1)
1

2
r(r+1) k!

(n− r − k)!
·
(
(−1)rJ∗ ∗ Ln−r−k∂β

)

= (−1)
1

2
r(r+1) k!

(n− r − k)!
·
(
(−1)rJ∗ (∗Ln−r−kβ0 + ∗Ln−r−k+1β1

))
(2)

Applying lemma 9.9 again yields

∗Ln−r−kβ0 = (−1)
1

2
(r+1)(r+2) ·

(n− r − k)!

(k − 1)!
Lk−1J∗β0

∗Ln−r−k+1β1 = (−1)
1

2
(r−1)r ·

(n− r − k + 1)!

k!
LkJ∗β1

and substituting these two equations into the last term of (2) gives

−i ∗ ∂̄ ∗ α = (−1)r+1k ·
(
(−1)rJ∗Lk−1J∗β0

)
+ (−1)r(n− r + 1− k) ·

(
(−1)rJ∗LkJ∗β1

)

= −k · Lk−1 · (J∗)2β0 + (n− r + 1− k)Lk · (J∗)2β1

= (−1)r+1 ·
(
−k · Lk−1β0 + (n− r + 1− k)Lkβ1

)

which indeed equals the right hand side of (1) (up to that (−1)r+1 that I do not
know how to get of. . . ).

Corollary 10.3. ∆d = 2∆∂ = 2∆∂̄ , in particular ∆d respects the bidegree.

Proof. We will first show that ∂∂∗ + ∂∗∂ = 0:

∂̄∂∗ + ∂∗∂̄ = −i[L, ∂∗]∂∗ − ∂∗i[L, ∂∗] (by the proposition)

= −iL∂∗∂∗ + i∂∗L∂∗ − i∂∗L∂∗ + i∂∗∂∗L

= −i[L, ∂∗∂∗] = 0

since ∂∗∂∗ = ± ∗−1 ∂ ∗ · ∗−1 ∂ ∗ = ± ∗−1 ∂2 ∗ = 0.
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Hence we have

∆∂ = ∂∂∗ + ∂∗∂

= i[L, ∂̄∗]∂∗ + i∂∗[L, ∂̄∗] (again by the proposition)

= iL∂̄∗∂∗ − i∂̄∗L∂∗ + i∂∗L∂̄∗ − i∂∗∂̄∗L

Since ∂̄∗∂∗ = −∂∗∂̄∗, the right hand side of this equality does not change under
complex conjugation (L is a real operator), so that ∆∂ = ∆∂ = ∆∂̄.

We therefore get

∆d = dd∗ + d∗d

= (∂ + ∂̄)(∂∗ + ∂̄∗) + (∂∗ + ∂̄∗)(∂ + ∂̄)

=
(
∂∂∗ + ∂̄∂̄∗)+

(
∂∗∂ + ∂̄∂̄∗)

= ∂∂∗ + ∂∗∂ + ∂̄∂̄∗ + ∂̄∗∂̄

= ∆∂ + ∆∂̄ = 2∆∂

This corollary shows that, up to a constant 2, ∆d, ∆∂ and ∆∂̄ are the same
operators. We will therefore write ∆ instead of ∆d as we already did before. Note
that ∆, ∆∂ and ∆∂̄ do depend on the Hermitian form H, so they depend on the
Kähler metric.

Corollary 10.4. L commutes with ∆d

Proof. We have

[L, ∆∂] = L∂∂∗ + L∂∗∂ − ∂∂∗L− ∂∗∂L

= ∂L∂∗ + (∂∗L + i∂̄)∂ − ∂(L∂∗ − i∂̄)− ∂∗L∂ (by the proposition)

= i(∂̄∂ + ∂∂̄) = 0

which suffices since 2∆∂ = ∆.

We now have developed enough tools for some nice theory.
Suppose M is a compact Kähler manifold. Let Hr(M) denote the space of har-

monic r-forms (that is the r-forms α satisfying ∆∂(α) = 0). By the Hodge-Kodaira
theorem (8.4) we have an isomorphism Hr(M)

∼
−→ Hr(M, R). Its complexification

Hr(M)C is the kernel of ∆ acting on ⊕p+q=rE
p,q
M and by corollary 10.3 it is also the

kernel of ∆∂̄ acting on this space. But ∆∂̄ sends E
p,q
M to itself and its kernel, which

we will denote by Hp,q(M), maps isomorphically to Hp,q(M) = Hq(M, Ωp
M). In

particular we see that Hr(M)C = ⊕p+q=rH
p,q(M)
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According to corollary 10.4 ∆ commutes with L and since ∆ clearly commutes
with ∗, we see that ∆ commutes with L∗ = ∗−1L∗. This implies that H•(M, C) ∼=
H•(M)C is a representation of sl2(C) (via X 7→ L, Y 7→ L∗, H 7→ [L∗, L] =: B).
The primitive part in degree n− r is just

P n−r
C

= Ker
[
Lr+1 : Hn−r(M)C → Hn+r+2(M)C

]

Note that if α ∈ P n−r, then its value at every point x of M is an element of the
primitive part

∧• T ∗
x,CM , since L is defined ‘pointwise’. We therefore get the main

theorem for Kähler manifolds:

Theorem 10.5. Let M be a compact Kähler manifold of complex dimension n
and let [Ω] ∈ H2(M, R) be the class of − 1

2
times the imaginary part of the Kähler

metric. Denote by L : Hr(M, R)→ Hr+2(M, R) taking the wedge product with [Ω]
(so L[α] = [Ω ∧ α]). Then the following hold

(i) (Hodge decomposition) We have

Hk(M, C) =
⊕

p+q=k

Hp,q(M)

with Hp,q(M) = Hq,p(M) and the pairing

( | ) : Hp,q(M)×Hp′,q′(M)

being perfect if (p′, q′) = (n− p, n− q) and zero otherwise.
(ii) (Lefschetz decomposition) Let for (0 ≤ r ≤ n)

P n−r := Ker[Lr+1 : Hn−r(M, R)→ Hn+r+2(M, R)]

The ⊕k≥0L
k maps ⊕k≥max{0, r−n

2
}P

r−2k isomorphically onto Hr(M, R).

(iii) (Hodge-Riemann bilinear relations) The decomposition in (i) induces one of
P k

C
: P k

C
=
∑

p+q=k P p,q where P p,q = P p+q ∩Hp,q(M) and if we define

Q : P k × P k → C, Q(α, β) = (−1)
1

2
k(k+1)

(
Ln−k

(n− k)!
α
∣
∣
∣β

)

then Q is bilinear and

(a) Q(α, β) = (−1)kQ(β, α) if α, β ∈ P k.
(b) QC : P p,q × P p′,q′ → C is perfect if (p′, q′) = (q, p) and zero otherwise.
(c) P p,q × P p,q 3 (α, β) 7→ Q(α, J∗β) is a positive definite Hermitian form

on P p,q.
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Proof. All of this follows from the above discussion and the previous section.
Most of (i) has been done already in a previous section. The fact that Hp,q(M) =
Hq,p(M) follows from the fact that ∆ is a real operator so it commutes with com-
plex conjugation. Since complex conjugation interchanges E

p,q
M (M) and E

q,p
M (M) it

therefore also interchanges Hp,q(M) and Hq,p(M).
(ii) is in fact a reformulation of the theory of the previous section, since H•(M, C)

is a representation of sl2(C). (iii) finally is just proposition 9.10.

Remark 10.5.1. To see how powerful the Hodge decomposition is, look at the
below diagram (for the case n = 3), which is called the Hodge diamond. Here
Hp,q = dimC Hp,q(M) and br = dimC Hr(M, C), the r-th Betti number of M .
We see that this diagram is symmetric in the central vertical line, and point-
symmetric in the center. Furthermore the horizontal lines add up to the Betti
numbers.

�

�

�

h3,3

�

�

�

�

�

�

�

//______ b6

h2,3 h3,2
//______ b5

h1,3 h2,2

�

�

�

�

�

�

�

h3,1
//______ b4

h0,3 h1,2 • h2,1 h3,0
//______ b3

h0,2 h1,1

�

�

�

�

�

�

�

h2,0
//______ b2

h0,1 h1,0
//______ b1

h0,0

�

�

�

//______ b0

Note that a priori both the Lefschetz and the Hodge decomposition seem to
depend on the Kähler metric. However, we will show that the Hodge decomposition
is independent of the chosen metric. We have to do some work first.
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Proposition 10.6. Let F pHk(M, C) denote the space of classes in Hk(M, C) that
admit a representative in ⊕l≥pE

l,k−l(M). Then F pHk(M, C) = ⊕l≥pH
l,k−l(M).

Proof. Since H l,k−l(M, C) is just the kernel of ∆ acting on El,k−l(M), the in-
clusion ⊇ is clear. So assume α ∈ ⊕l≥pE

l,k−l(M) is closed. We will prove using
descending induction on p that there exists an α′ ∈ ⊕l≥pH

l,k−l(M) with α − α′

exact. If p = k, then α ∈ Ek,0(M), so clearly ∂̄∗α = 0. Since dα = 0 and thus
∂̄α = 0, we have ∆α = 0, so we may take α′ = α.

For arbitrary p, write

α = αp + · · ·+ αk with αl ∈ El,k−l(M)

Since ∂̄αp is the (p, k+1−p)-part of dα (which we assumed to be 0), it follows that
∂̄αp = 0. Hence using theorem 8.7 we can write αp = α′

p+∂̄β with α′
p ∈ Hp,k−p(M)

and β ∈ Ep,k−p−1(M). It follows that

α− α′
p − dβ = −∂β + αp+1 + αp+2 + · · ·+ αk

and since ∂β ∈ Ep+1,k−p−1(M) we can apply our induction hypothesis on α−α′
p−dβ

and we find that this element is modulo an exact form in ⊕l≥p+1H
l,k−l(M). This

completes the induction step.

Corollary 10.7. The Hodge decomposition is independent of the Kähler metric.

Proof. Using Hodge decomposition and the proposition we see that

Hp,q(M) = F pHp+q(M, C) ∩ F qHp+q(M, C)

here the complex conjugation is with respect to the real subspace Hp+q(M, R).
Now use that the F pHk(M, C) are defined independent of the metric.

A remarkable consequence the above discussion is the following

Proposition 10.8. Let M be a compact complex Kähler manifold. Then every
holomorphic differential form on M is closed, but never exact, unless it is the zero
form.

Proof. A differential-form ω is holomorphic if and only if it is of type (r, 0) for
some r and ∂̄ω = 0. Since it is of type (r, 0) also ∂̄∗ω = 0, hence ∆ω = 0, so that ω
is harmonic and therefore closed. If it would be exact, say ω = dη, then η should
also be holomorphic and therefore closed, implying that ω = 0.
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For 1 ≤ r ≤ n, we consider H2r−1(M, R). By Hodge-decomposition we see
that its complexification is the direct sum H2r−1,0(M) ⊕ · · · ⊕ H0,2r−1(M). Put
Vr := Hr−1,r(M)⊕ · · · ⊕H0,2r−1(M). Then it follows that

H2r−1(M, R)C = Vr ⊕ Vr

so that this decomposition defines a complex structure I on H2r−1(M, R) charac-
terized by the fact that Vr and Vr are the i resp. −i eigenspaces of IC. In particular
we see that H2r−1(M, R) has even dimension.

From the universal coefficient theorem it follows that Hk(M, R) may be identi-
fied with Hk(M, Z) ⊗Z R. Here Hk(M, Z) is the k-th singular cohomology group
with integer coefficients or equivalently, the k-th cohomology group of the con-
stant sheaf ZM on M . The inclusion Z ⊂ R defines a homomorphism Hk(M, Z)→
Hk(M, R) and the theorem then tells us that the resulting map Hk(M, Z)⊗ R→
Hk(M, R) is an isomorphism. So if Hk(M, Z) ∼= (finite abelian group)⊕ Zs, then
Hk(M, R) ∼= Rs.

We see that the cokernel Coker[Hk(M, Z)→ Hk(M, R)] is a torus Rs/Zs where
s = dim Hk(M, R). We conclude that for k = 2r − 1 this torus has a complex
structure (for Hk(M, R) has and the action of Zs is holomorphically with discrete
orbits). It is called the rth (Griffiths) intermediate Jacobian14 of M and
is denoted by Jr(M). We may view the Jr(M) as ‘continuous invariants’ of the
manifold M .

The composition

H2r−1(M, R) �

� // H2r−1(M, C) = Vr ⊕ Vr

proj // Vr

is an isomorphism of real vector spaces, and the complex structure on H2r−1(M, C)
is such that this is also an isomorphism of complex vector spaces. We therefore
may regard Jr(M) as the cokernel of the composition

H2r−1(M, Z) // H2r−1(M, C)
proj // Vr

Two cases deserve a special attention:
If r = 1, we get V1 = H0,1(M) ∼= H1(M, OM ) and the map H1(M, Z) →

H1(M, OM) comes from the inclusion ZM ⊂ OM .

14There is another intermediate Jabocian, named after Weil. Hereto one takes Wr = H2r−1,0⊕
H2r−3,2⊕· · ·⊕H1,2r−2, so that also H2r−1(M, R)C = Wr⊕Wr. The Weil intermediate Jacobians
are projective, which the Griffiths intermediate Jacobians are not in general, but the advantage
of the Griffiths intermediate Jacobians is that they depend holomorphically on M . However, in
the two most interesting cases, namely r = 1 and r = n, both intermediate Jacobians coincide.
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If r = n, we have Vn = Hn−1,n(M) as all the other summands are zero. This
space is complex dual to H1,0(M) ∼= H0(M, Ω1

M ) via Serre duality. The integral
form of Poincaré duality identifies H2n−1(M, Z) with the homology group H1(M, Z)
and the map H2n−1(M, Z) → Vn corresponds to the natural map i : H1(M, Z) →
H0(M, Ω1

M)∗ given by

Z 7→

(

ω 7→

∫

Z

ω

)

Hence we see
Jn(M) ∼= Coker[H1(M, Z)→ H0(M, Ω1

M)∗]

This manifold is also called the Albanese manifold, denoted by Alb(M).
Now suppose that M is connected and fix a point p0 ∈M . Given p ∈M , choose

a piecewise differentiable path γp from p0 to p and define µ̃(γp) ∈ H0(M, Ω1
M )∗ by

ω 7→
∫

γp
ω. If γ′

p is another such path, then γp followed by γ′
p in the opposite

direction is a closed, piecewise differentiable path and hence a 1-cycle Z on M .
This shows that µ̃(γp)− µ̃(γ′

p) is given by ω 7→
∫

Z
ω and is therefore equal to i(Z).

We conclude that the image of µ̃(γp) in Alb(M) is independent of the chosen path
γp and therefore µ̃ defines a map

µ = µp0
: M → Alb(M)

called the Albanese map.

Lemma 10.9. µ is analytic.

Proof. Let U be a polycylindrical neighborhood of p in M . If ω ∈ Ω1(M), then
dω = 0 by proposition 10.8. So by the Poincaré lemma (applied to ω|U) we find
that ω|U = df for some C∞-function f : U → C. Since ∂̄f = ω0,1 = 0 it follows
that f is in fact holomorphic.

If q ∈ U , let γq be the path γp followed by a piecewise differentiable map δq

from p to q in U . Then

µ̃(γq)(ω) = µ̃(γp)(ω) +

∫

δq

ω = µ̃(γp)(ω) + f(q)− f(p)

so that µ̃(γq)(ω) is an analytic function of q ∈ U . If we let ω run over a basis
{ωj} of H0(M, Ω1

M), then the mapping q ∈ U 7→ (µ̃(γq)(ωj))j is analytic, in other
words, µ̃(γq) is analytic for q ∈ U . The composition of this map with the projection
Ω1(M)∗ → Alb(M) is then also analytic.

The Albanese map plays an important role in the classification of compact
analytic manifolds. We summarize some of the properties:
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• If M and N are compact, connected Kähler manifolds and f : M → N is
holomorpic, then f ∗ : H•(N, C) → H•(M, C) sends Hp,q(N) to Hp,q(M).
Furthermore f ∗ induces an analytic homomorphism of complex tori Jr(f) :
Jr(N)→ Jr(M).

• f∗ induces an analytic homomorphism Alb(f) : Alb(M)→ Alb(N).

• If p0 ∈M and q0 = f(p0) ∈ N , then the diagram

M
f //

µp0

��

N

µq0

��
Alb(M)

Alb(f)
// Alb(N)

commutes.

• If N is a complex torus with origin q0, then µq0
is an isomorphism of analytic

tori.

• Every analytic map M → N where N is a complex torus can be factored as

M
µp0 // Alb(M) // N

therefore Alb(M) is also called the universal solution of M into a complex
torus.


