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Chapter 1

Introduction

Tides play an important role in the lives of many coastal communities. Due to res-
onance huge tidal ranges occur in particular bays whose natural (eigen-)period of
oscillation is close to the tidal period. A well-known example is the Bay of Fundy
where the highest tides in the world occur with tidal ranges up to 16 m at the end
of the basin. But also in other places like the Dutch coast moderate tides still range
2–3 m. These ranges are larger than the equilibrium tide, which would occur if the
Earth were completely covered by water in instantaneous balance with the forcing by
the moon (54 cm) and the sun (26 cm). The change in water depth can have impor-
tant consequences for docking ships and for navigation. Moreover tidal changes in the
water level are accompanied by (strong) tidal currents, that do not only transport wa-
ter, but also sediment (causing the morphology of the basin to change), nutrients and
pollution (with important ecological consequences). An important property of tides
is that they are highly predictable and tide tables are routinely prepared for years in
advance and are consulted on a daily basis by mariners all around the world. Accord-
ing to Cartwright (1999), therefore the theory of tides is fully developed and finished
by now. Although this may be true for the linear theory, describing many important
characteristics of the (regular) tidal motion, some questions regarding the nonlinear
dynamics of tides can still be raised. In fact, theoretical studies suggest “sudden”

(a) Docked at high tide (b) Docked at low tide

Figure 1.1: Tanker at its berth in the Bay of Fundy
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2 Chapter 1. Introduction

changes may occur in the resonance characteristics (amplification and phase lag) of
coastal basins co-oscillating with the tide in an adjacent sea/ocean (Miles, 1981; Maas,
1997, and chapter 5 in this thesis). Moreover, under certain conditions those changes
in tidal amplitude can be mathematically proven to occur in a chaotic way, such that
tidal amplitudes and phases would become unpredictable (Maas & Doelman, 2002;
Doelman et al., 2002). And indeed, spurious reports on the locally occurring irregular
nature of tides are quite old (Honda et al., 1908) and more recently attempts have
been made to reveal the chaotic nature of tides by Vittori (1992) and Frison et al.
(1999).

The focus of this PhD thesis is on nonlinear effects on the resonance character-
istics of co-oscillating tidal basins. In section 1.1.1 this introductory chapter begins
with an overview of the generation of tides by the gravitational interaction of the
Earth with the moon and the sun and of the response of the Earth’s oceans to be
described as one global resonator. Next two tide prediction techniques, which are
based on linear principles, are considered in sections 1.1.2 and 1.1.3. The concept
of co-oscillation, which is responsible for the tide in most coastal basins, is discussed
in section 1.2. In particular, section 1.2.4 deals with radiation damping, the feed-
back from the co-oscillating basin on its forcing tide in the adjacent sea. Because
this generally diminishes the amplitude of the tide at sea it effectively has a damping
effect on the co-oscillating tide. Finally, three sources of nonlinearity are considered
in section 1.3: quadratic friction, advective accelerations and water-level feedback on
mass fluxes. Three aspects of nonlinear effects are distinguished: distortion of the
tidal curve (mean tidal signal during the tidal period), changes to the response curve
(amplification and phase lag between tidal response and forcing) and modulation of
tidal amplitudes (slow changes of tidal phase and amplitude over time). The effects
of quadratic friction are discussed separately in section 1.3.1. Advection and conti-
nuity effects distorting the tidal wave are treated in section 1.3.2. Their influence
on response curves and modulation of tidal amplitudes is discussed in section 1.3.3.
Obviously, section 1.3 does not treat nonlinear dynamics comprehensively. Finally,
section 1.4 gives an overview of the respective chapters of this thesis that touch those
topics in nonlinear tidal resonance.

1.1 The global tide

The apparent relation between the tide and the moon is so obvious that it was noted
already early in history (from 300–400 BC, see Cartwright, 1999, page 6). Expla-
nations of the phenomenon ranged from expansion due to lunar heating to dragging
behind the moon through the moon’s influence on atmospheric winds or aetheric “vor-
tices”. It was Newton (1687) who first put forward the modern view on the generation
of tides, being caused by the spatial imbalance between the gravitational attraction of
celestial bodies (most notably the sun and the moon) and the centrifugal acceleration
by the rotation around their common centre of gravity.

1.1.1 The equilibrium tide

Figure 1.2 shows the tidal forces exerted on the Earth by a celestial body. At the centre
of the Earth, the gravitational attraction towards the body balances the centrifugal
acceleration due to the rotation around their common centre of gravity. The rotational



1.1. The global tide 3

Figure 1.2: Sketch of tidal forcing (scales are exaggerated). Bold vectors represent
the gravitational attraction by the celestial body like the moon. It differs in direction
and magnitude over the globe. Slender vectors represent the centrifugal acceleration
due to the revolution of the Earth around the common centre of gravity. It is the
same over the entire globe. The resultant force drives the tide (dotted vectors), which
would be as indicated if the Earth were entirely covered by water, responding to the
tidal forces instantaneously. Due to the rotation of the Earth two high tides per day
pass a specific point on the Earth, one higher than the other because of the declination
of the celestial body.

motion being the same for the entire Earth, the centrifugal acceleration does not
change over the Earth’s surface. The gravitational attraction however, is stronger
at the zenith point, near the celestial body, than at the nadir point, away from it.
Therefore, net tidal forces occur. The vertical component of those tidal forces is
small compared to gravity at the Earth’s surface, hence is usually neglected and the
equilibrium tide ζeq is introduced to describe the horizontal components such that the
gradient g∇ζeq equals the horizontal tidal accelerations. In fact, this is the tide that
would occur if the Earth were completely covered by water and neither friction nor the
inertia of the water masses would play a role. Of course, there happen to be continents
dividing the Earth’s water masses in separate oceans. Moreover, friction cannot be
neglected and the ocean’s water depth is not deep enough to sustain tidal waves
travelling fast enough to have inertia be neglected. Nevertheless, the equilibrium tide
is still a useful concept to describe the direct forcing of the tide.

Because of the daily rotation of the Earth around its axis, the tidal forcing travels
around the world at the same speed. This implies that high equilibrium tide at the
zenith and nadir points passes a fixed location on the Earth’s surface twice daily with
low tides in between. This is called the semi-diurnal tide. However, because of the
declination of the celestial body with respect to the equator (i.e. the latitude of the
zenith point), the zenith and nadir do not pass at the same distance. Therefore, there
is a daily inequality between the two high tides. At some locations this difference can
be so profound that the diurnal component of the tide (the so-called diurnal species)
of one high and one low tide per day dominates the tidal signal.

Up to this point, the specific celestial body responsible for the tidal signal was
not taken into account. The main contributions to tidal forcing are from the sun and
the moon. The equilibrium tide of the sun has a semi-diurnal period of 12 hours (the
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S2-tidal constituent) and an amplitude of about 13 cm. Because the moon revolves
around the Earth in the same direction as the Earth’s rotation, the semi-diurnal
period of the lunar tide is about 12 hours and 25 minutes (the M2-tidal constituent),
with an amplitude of about 27 cm. Both the sun and the moon contribute to the
K1-tidal constituent at the period of one sidereal day, 23 hours and 56 minutes, one
of the main diurnal components. Despite its mass, the tide produced by the sun is
less than that by the moon, because it is much farther away from the Earth. Hence
the M2-tide is the dominant tidal constituent in most locations, but it is modulated
by the S2-tide; at new and full moon the sun and the moon cooperate to create a
stronger (spring) tidal signal, whereas at half-moon the two counteract producing
weaker (neap) tides.

However, spring and neap tides do not usually coincide with these lunar phases
exactly. This is due to the retarding effects of inertia, friction and the barriers formed
by land masses. The oceans and all adjacent seas should be considered as one large
oscillator with many degrees of freedom, which responds to the forcing represented
by the equilibrium tide. The direct tidal forcing on small closed basins is unable to
produce large tidal amplitudes. Only the oceans themselves are large enough to show
some resonance and seriously respond to the tidal forcing. From the oceans the tidal
signal propagates to adjacent coastal seas through co-oscillation. A tidal signal that
exists at the open boundaries of a coastal sea can be amplified due to resonance if the
basin’s natural modes of oscillation coincide with the frequency components of the
tidal signal. Because it takes time for the tidal wave to travel from the ocean into the
coastal seas, the age of the tide, i.e. the time-lag between lunar phase and subsequent
spring/neap tide, increases when progressing into complex tidal systems. In the North
Sea for example, the tidal wave comes in from the north, between Scotland and
Greenland, propagates along the East Coast of the United Kingdom and gets reflected
back to the north from the English Channel, producing a resonating standing wave
pattern of about 7 quarters of a wavelength (figure 1.6(d)). The change of tidal phase
along the East Coast has nothing to do with the equilibrium tide, which has almost
the same phase over the entire basin. Actually the “age of the tide” can even be
negative in some locations (Garrett & Munk, 1971), illustrating the fact that the
entire world of connected water basins should be considered as one global resonator.
Even the concept of the tide being generated in the oceans to be subsequently spread
out into connected seas appears to be an incomplete description of the problem.

1.1.2 Harmonic analysis

When considering the observed time series of tidal water-level elevations, its spectrum
is typically similar to the one shown in figure 1.3(a). It consists of a continuum
part which tends to decrease for increasing frequency and a number of conspicuous
discrete peaks. Most (if not all) of these peaks can be related to certain periods in
the expansion of the forcing equilibrium tide. We already mentioned the M2- and
S2-constituents and the influence of the declination leading to both diurnal (e.g. K1)
and monthly/yearly constituents. Other important modulations (hence additional
constituents) arise due to the fact that the orbit of the moon is an ellipse instead of a
circle and the precession of the moon’s orbit due to gravitational perturbations by the
sun. The tidal forces exerted by the moon are larger when it is closest to the Earth (at
perigee) and smaller when it is farthest from the Earth (at apogee), which causes the
M2-tide to modulate on a monthly time scale, or equivalently the introduction of an
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(a) Fourier spectrum of tidal water-level elevations at Harlingen,
the Netherlands. Frequency on horizontal axis is in cycles per
day. A number of important constituents have been identified
by their Darwin symbol.

(b) Harmonic decomposition of
a tidal signal in two semidiurnal
constituents (M2 and S2) and
one diurnal (K1).

Figure 1.3: 1.3(a): Tidal power spectrum for Harlingen, in the Dutch Wadden Sea,
calculated from ten-minutes data downloaded from www.waterbase.nl, which pro-
vides public access to the measurements by the Dutch National Institute for Coastal
and Marine Management (RIKZ), shows the peaked structure of the tidal spectrum.
1.3(b): an illustration of the harmonic decomposition in the important components
M2, S2 and K1 in order to illustrate the influence of the two beating semidiurnal
frequencies leading to the spring-neap tidal cycle and one diurnal frequency causing
a daily inequality between successive high or low tides.

additional tidal constituent one cycle per month apart from M2. As a consequence,
so-called perigean spring tides are exceptionally large when constructive interference
of the solar and lunar forcing coincides with lunar perigee, followed by significantly
smaller apogean spring tides half a month later. Other periods of interest are the
regression of the lunar perigee in 8.85 years and the precession of the lunar orbit,
changing its angle with the equator and the season in which perigean spring tides
occur, with a period of 18.61 years (Munk & Cartwright, 1966).

The continuum part of the spectrum is related to nonstationary (i.e. aperiodic)
motion. It is often attributed to disturbances of meteorological nature. Apart from
a smooth decay for increasing frequencies, the continuum spectrum shows cusp-like
peaks around the strong spectral lines (Munk & Cartwright, 1966, p. 534), which may
be related to nonstationary modulations of the principal tidal constituents. They are
to be distinguished from the periodic modulations of astronomical origin, because
the latter produce distinct (discrete) side-peaks. Nonlinear processes that may be
responsible will be discussed in section 1.3.3.

It was sir William Thomson (Lord Kelvin) who first capitalized on the peaked
structure of the tidal spectrum by expanding time series of tidal water-level eleva-
tions into a sum of harmonic functions at a number of distinct tidal frequencies. By
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analysing the tidal record at one spot, the so-called harmonic constants for that par-
ticular location can be obtained, i.e. the amplitudes and phases of the sinusoids at
the tidal frequencies that are taken into account. This is similar to a Fourier series
expansion except that, instead of using a regular grid of frequencies without consid-
ering the tidal origin of the time series, the frequencies of the sinusoids are chosen
according to the ones occurring in the forcing equilibrium tide. In such manner, the
harmonic constants for many locations have been determined. Having determined the
harmonic constants, one can use the harmonic sum for tide prediction. An illustra-
tion of the decomposition in the three usually most important constituents is given
in figure 1.3(b). The two semi-diurnal constituents M2 and S2 interfere, yielding
the spring-neap tidal cycle. The diurnal K1-constituent causes the daily inequality
between consecutive high and low waters.

Harmonic analysis is still the most widely used method for constructing tide tables.
However, in order to accurately capture all processes in the tidal signal, the required
number of tidal constituents can become quite large, especially in complex coastal
areas where not only constituents directly forced by the equilibrium tide, but also
compound frequencies arising from nonlinear interactions (see also section 1.3.2 and
references therein) need to be included. Moreover, the harmonic constants appear
not to be constant on a longer timescale (Doodson, 1924; Gutiérrez et al., 1981).
Partly, this is explained by the restriction of the expansion to the most important
constituents. Changes due to the nodal cycle (the precession of the moon’s orbit in
18.6 years) could be incorporated by including the consequent side-peaks, one cycle
every 18.6 years apart from the principal constituents in the spectrum, but would
imply a very large number of constituents. By not including them, the harmonic
constants for the constituents that are taken into account vary from year to year.
These changes are quite predictable and usually accounted for by using so-called
“nodal factors” to correct the harmonic constants. However, Doodson (1924) reports
that not all changes of the harmonic constants can be explained in this way. Moreover,
the continuum part of the tidal spectrum cannot be captured by the harmonic analysis
at all and is often considered as residual noise.

1.1.3 Response method

Another way to tackle the problem of tide prediction was introduced by Munk &
Cartwright (1966). They criticized harmonic analysis for using astronomical (Kepler-
Newtonian) tidal theory only for determining the frequencies at which tidal energy
is expected. Harmonic constants are determined solely from observed tidal records;
the theoretical information about the amplitude of the different tidal components in
the equilibrium tide is not used at all. This not only weakens the description from a
physical point of view, but also means that potentially useful information is dismissed
while the determination of harmonic constants is contaminated by measurement noise.
Munk & Cartwright (1966) proposed to write the tide prediction directly in terms of
the equilibrium tide (expanded in spherical harmonics) with time lags and weighing
factors:

ζ(t) = Re

∑
j

∫ ∞

0

c̄j(t− τ) wj(τ) dτ

 , (1.1)

in which c̄j(t) is an input function calculated from the global equilibrium tide at time t
(e.g. the coefficient of the expansion of the equilibrium tide in spherical harmonics)
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Figure 1.4: Admittances derived by Munk & Cartwright (1966) for Honolulu: by
comparing the observed tidal signal at Honolulu with the corresponding components
in the equilibrium tide, the complex amplification factor between the response at
Honolulu and the astronomical forcing can be obtained as a function of frequency. It
can be visualized either by the real and imaginary part or by the modulus and argu-
ment, the latter representing the amplification factor and phase lag at the respective
frequency. This figure is a reproduction of Figure 1 (lower two panels) from their
paper.

and wj(τ) is a weighing function describing the tidal response at the particular lo-
cation to unit tidal forcing, to be found empirically. The Fourier transform of the
weights wj(τ) corresponds with the admittance of the tidal resonator as a function of
frequency, i.e. the amplification factor and phase difference between the observed tide
and the equilibrium tide at the respective frequency. By discretising and truncating
the integral (1.1) to a discrete and finite set of time lags τs, Munk & Cartwright
(1966) effectively imposed a “credo of smoothness”, limiting the resolution of possible
variability in the admittance as a function of frequency. This “credo of smoothness”
is equivalent to stating that there are no sharp resonance peaks in the response of
the global tidal resonator. In fact, their results for Honolulu show no indications of
abrupt changes in the admittance, see figure 1.4. This implies that subsidiary con-
stituents experience essentially the same admittance as nearby principal constituents.
Consequently, nodal modulations can be easily incorporated into the theory by mod-
ulating the input functions, whereas the number of independent harmonic constants
to be determined from the observations becomes very large using harmonic analysis.
However, the improvement in predictive accuracy is limited, so the response method
has never been commonly used, except for research purposes.

Like harmonic analysis, the response method is basically a linear method in the
sense that it describes the response of the global tidal resonator to tidal forcing at
specific frequencies by oscillating at the same frequencies. Harmonic analysis can
be adapted to accommodate weak nonlinear perturbations by introducing nonlinearly
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generated compound constituents. Likewise, the response method can be extended by
adding bilinear input functions c̄j(t−τ)·c̄′j(t−τ ′) to the formalism (1.1). Simon (1991)
basically applied this nonlinear extension of the response method when developing the
species concordance method for the prediction of the tide in complex estuaries along
the French coast. He first reduced the tidal signal into “reduced vectors”, which are
the complex amplitudes of the species of the tide (the diurnal, semidiurnal, terdiurnal,
etc. component of the tide). Then the response method was applied to predict the
reduced vectors at a certain location, using as input functions the reduced vector in
some nearby reference port for which the tide (hence the reduced vectors) can be
easily predicted by linear methods. By including products of reduced vectors as input
vectors, the nonlinear distortion of the tide (see also section 1.3.2) progressing into the
tidal basin is accounted for. But using either harmonic analysis, the response method
or the species concordance method, the response remains limited to a discrete set of
frequencies, unable to explain the continuum part of the spectrum associated with
nonstationary modulations of response amplitudes.

1.1.4 Classification of the tide

Figure 1.5 shows the actual distribution of the amplitudes of the diurnal K1-constituent
and the semi-diurnal M2-constituent. White lines are the cotidal lines connecting lo-
cations where high tide occurs simultaneously. The tidal amplitudes are represented
by colour contours. The equilibrium tide discussed in section 1.1.1 is deformed by the
presence of the continents. In the structure of the tide within e.g. the Atlantic Ocean,
one can recognize the normal mode of that basin, with the largest tidal amplitudes
occurring at the coastal boundaries (see also section 1.2 on resonance, section 1.2.1
in particular, and Platzman, 1991). By comparing figure 1.5(a) and 1.5(b) the type
of the tide can be inferred: where the M2-tide is dominant and K1 is hardly present,
the tide is mainly semi-diurnal with two high and two low tides occurring each day. If
the M2-tide is weak, whereas the K1-constituent is important, a diurnal tide with one
period each day is found. Mixed tides occur if both the diurnal and the semi-diurnal
species are significant. In a pre-dominantly semi-diurnal mixed tide, high and low tide
occur twice a day one being much higher/lower than the other (the daily inequality).
A pre-dominantly diurnal mixed tide is characterized by a one-day period at spring
tides, but when the diurnal amplitude is small at neap tides, the semi-diurnal signal
with two high tides and two low tides each day becomes more important.

Around the world, large semi-diurnal tides are more common than large diurnal
tides. The diurnal tide is important along the Antarctic, in Southeast Asia and the
Sea of Okhotsk (between Kamchatka and the Russian mainland) and in the Caribbean
Sea/Gulf of Mexico, where the semi-diurnal tide is particularly weak. Moreover, due
to local resonance conditions, which depend on the frequency of the tidal constituents,
the character of the tide can even be different in adjacent reaches of a single bay
(Burling et al., 2002). Extremely large tides are of interest not only as an impressive
natural phenomenon but also because of the possibility to harvest the tidal energy as a
sustainable source of electricity. The feasibility of constructing power plants for com-
mercial exploitation has been studied for a number of locations where large tides
are found (see http://www.worldenergy.org/wec-geis/publications/reports/
ser/tide/tide.asp). Using the locations that have been identified as potential spots
for tidal power plants as a guideline, an overview of the world’s largest tides will be
given in the remainder of this section.
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(a) Global distribution of K1-amplitude (cm) and K1-cotidal lines

(b) Global distribution of M2-amplitude (cm) and M2-cotidal lines

Figure 1.5: Distribution of the diurnal K1-constituent and the semi-diurnal M2-
constituent. Colours denote amplitude in cm, white cotidal lines connect loca-
tions at which high tide occurs simultaneously. A diurnal tide is found at lo-
cations where K1 dominates, a semi-diurnal tide if M2 is much larger. Mixed
tides occur when both are significant. These figures were obtained combin-
ing a finite element model with observations from satellite altimetry and in
situ measurements by Lefèvre et al. (2002), and have been downloaded from
http://www.jason.oceanobs.com/html/applications/marees/200010 uk.html.
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In the 1960’s, a barrage was built across the Rance tidal estuary in Brittany,
France, which houses 24 two-way turbines with a total capacity of 240 MW, to gen-
erate electricity from the flood and ebb-tidal currents. With 13 m tidal range, this
location has one of the world’s largest tides. The Bay of Fundy is another likely
candidate with the world’s largest tides up to 16 m tidal range and the geography of
the upper part, the Minas basin, that could be closed relatively easily, but Canada
has chosen to focus on the development of conventional hydropower plants. In the
northwestern region of Australia, large tides of about 7 metres tidal range occur as
well. A two-basin tidal power plant was considered here, one basin filled at high
tide, one emptied at low tide, with a channel driving conventional one-way turbines
in between. With this scheme, around-the-clock power could be generated as needed
circumventing the inherent variability of tidal power, but it has not been implemented
at this large scale yet. A number of small scale tidal power plants were built along the
southeast coast of China, from 1958 onwards; in the East China Sea large semi-diurnal
tides occur, in the South China Sea, large diurnal tides are present. The majority of
these early tidal power plants have now been decommissioned, for a variety of reasons.
In the Northeast of the Russian federation (Sea of Okhotsk), large diurnal and semi-
diurnal tides occur. Design studies for tidal plants in this area have been conducted
since the 1930’s. Apart from a (successful) pilot plant near Murmansk at the White
Sea in northwest Russia, the plans have not progressed beyond the design phase.
Other locations with large tides that have been considered as potential spots for tidal
power plants are in Mexico (Gulf of California), Chile, Argentina (Patagonian Coast),
Korea (East China Sea) and India (both in the northeast and northwest corners of
the country. Note that, although the use of tidal energy reduces carbon-dioxide emis-
sions, the local environmental effects on the habitats of fish, birds and other animals
can be damaging. The reduction of tidal flow reduces flushing of the basin and a loss
in water quality, species that depend on intertidal flats may lose their feeding grounds
and fish may be blocked from upstream waters by the barrage, amongst other things.

1.2 Local resonance

Tides in coastal basins are often much larger than the equilibrium tide mentioned
in section 1.1.1. Depending on the shape and dimensions of the basin, the tide can
be amplified. This is not primarily caused by cumulation of the tidal wave into
shallowing and narrowing waters, but mainly by resonance of the tidal frequencies
with the natural frequencies of the basin’s free oscillations. The eigen-oscillations of
the basin are determined by its dimensions. The response characteristics may be as
diverse as the number of different coastal basins on the Earth. The potential success of
the response method lies in the fact that the quality or Q-factor, defined as resonance
frequency divided by peak width1 measuring the sharpness of the resonance peak, of
the global tidal resonator is low, so the response characteristics do not change much
with frequency. For highly resonant coastal basins, such as the famous Bay of Fundy
with tidal amplitudes up to 8 m, the response characteristics may be more sharply
peaked around the eigenfrequencies of the basin. In this section two types of coastal
resonance are discussed: quarter wavelength resonance in narrow rectangular basins
such as the Bay of Fundy and Helmholtz resonance in almost enclosed basins such as

1This is one of several definitions that can be found in the literature. For a harmonic oscillator
with linear friction those different definitions are equivalent.
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many basins in the Dutch Wadden Sea, behind inlet between barrier islands. Next,
section 1.2.3 briefly introduces secondary undulations at periods of several minutes
accompanying the primary tidal signal. Finally, the connection between the tides in
coastal basins with the global tidal resonator is discussed in section 1.2.4 which deals
with the boundary condition at the open boundary between the co-oscillating basin
and the adjacent sea.

1.2.1 Quarter-wavelength resonance

Consider a rectangular basin of width B, length L and depth H, which co-oscillates
with the tide of period T (usually about either 12 or 24 hours) in an adjacent sea or
ocean, as shown in figure 1.6(a). The tidal wavelength λ =

√
gHT is usually much

larger than the water depth H (λ ≈ 450 km for H = 10 m and T ≈ 12 hours). In
that case, the basin can be treated as shallow. Furthermore, if the basin is sufficiently
narrow and the tidal amplitude is small compared to the water depth, the water
motion is essentially one-dimensional directed along the longitudinal axis of the basin.
Under those conditions the linear shallow water equations reduce to a simple wave
equation. The tide in such a basin will be a standing wave illustrated in figure 1.6(b),
where L = 0.67λ. Because of the linearity of this model, the vertical axis can be
scaled with the exterior tide at the open boundary, which is chosen to be 1 m for
the purpose of illustration. During each tidal period the water level oscillates back
and forth between this curve and its antipode. The tide is amplified within the basin
up to a factor of 2 on the crests, whereas the water level does not change at all at
the knots, although the corresponding tidal currents are maximal at those locations.
Resonance occurs if the length of the basin is an odd number of times a quarter
of a wavelength, hence the name quarter-wavelength resonance. Without dissipation
of energy, the amplification would become infinite in this case. Radiation damping
would cause the tidal amplitude to become zero at the open boundary, such that the
knot of the standing wave would be exactly at the entrance of the basin and a finite
response is possible despite infinite amplification, see also section 1.2.4. Dissipation
of energy is possible due to bottom friction which attenuates the tide decreasing the
amplification factor and introducing additional phase lag.

The rotation of the Earth becomes important if the width B is not much smaller
than the Rossby radius of deformation

√
gH/f , in which the Coriolis parameter f =

2Ω sin(θ) is the local vertical component of the rotation vector of the Earth, with
Ω = 7.3 · 10−5 rad s−1 the angular velocity of the Earth around its axis and θ the
latitude. In that case, the Coriolis force causes currents to deflect to the right (on
the northern hemisphere) and a travelling tidal wave to be stronger at the coast on
the right side relative to the direction of propagation. Because the standing wave
pattern described above is composed of an incoming and reflected travelling wave,
its structure changes. The incoming wave is dominant at the right hand side of the
basin (seen from the sea) and the reflected wave is dominant at the other side. The
two have equal amplitude at the central axis of the basin only, so the knots from
figure 1.6(b) which would be lines of zero amplitude in the two-dimensional setting,
collapse into single amphidromic points at the central axis. Due to the Coriolis force
the tidal wave rotates around these amphidromic points in a counterclockwise fashion.
A clear example of such an amphidromic system can be found in the Adriatic sea, for
which the tidal amplitudes and phases are shown in figure 1.6(c). Another example is
offered by the North Sea. Even though the North Sea is certainly not rectangular nor
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(a) Quarter-wavelength resonator: top view
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(b) Snapshot of spatial structure of the tide

(c) Tidal maps of the Adriatic Sea, iso-range
and co-tidal lines for the semidiurnal (M2) and
diurnal (K1) components respectively

(d) The North Sea interpreted as a 7
4
λ-resonator

Figure 1.6: Quarter-wavelength resonators: a rectangular basin of depth H, length
L and width B. The tide in such a basin is a standing wave, illustrated for length
L = 0.67λ in 1.6(b). It shows a snapshot of the tide’s spatial structure at low tide
at the entrance (high tide at the end of the basin). The water level oscillates up
and down between plus and minus this value during one tidal period. Two geo-
physical examples that can be considered as quarter-wavelength resonators are shown
in 1.6(c) and 1.6(d). In the Adriatic Sea the wavelength of the diurnal tide is longer
than four times the basin length and behaves as a quarter-wavelength mode with
hardly any cross-sectional differences. The semidiurnal tide has a shorter period
and wavelength, so an amphidromic point with the tidal wave rotating around it is
found. The tide in the North Sea is clearly affected by the Earth’s rotation as well.
1.6(c) is reproduced from Cushman-Roisin & Naimie (2002), the results being ob-
tained from coastal observations by Polli (1960). 1.6(d) has been downloaded from
www.met.ed.ac.uk/ganes/finalr/report7.
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of constant depth, the structure of amphidromic systems can clearly be identified in
figure 1.6(d). As such, it makes sense to try to interpret the North Sea as a quarter-
wavelength resonator as well. The solid and dashed lines drawn in figure 1.6(d) denote
the approximate positions of the crests and knots, according to which it contains seven
quarters of a wavelength, explaining the large tides in the English Channel and the
German Bight.

1.2.2 Helmholtz resonance

For the eigenfrequencies of quarter-wavelength resonators to be comparable to the
tidal frequencies, the length of the basin must be quite large (& 100 km). In smaller
basins the eigenfrequencies are much higher, such that the slow tidal oscillations are
not amplified. However, in a particular class of basins, which are connected with the
exterior sea or ocean through a narrow inlet only (see figure 1.7), the lowest eigenmode
can be particularly slow. The wavelength of this Helmholtz or pumping mode is much
larger than the dimensions of the basin. Hence the spatial structure of the mode is
characterized by a uniform tide within the basin, with all dynamics taking place along
the channel between the basin and the exterior sea. The oscillator is forced by the
water-level (hence pressure) difference between the sea and the basin. Its inertia is
caused by the water mass flowing through the channel. The flux through the channel
causes the water level in the basin to rise (or fall) constituting the restoring force
sustaining the oscillator.

Because the water level within the basin can be captured by a single value, a
relatively simple model can be used to describe the Helmholtz mode. The continuity
equation (1.2b) covers mass conservation; the flux of water flowing into the basin
accounts for the water-level rise within the basin. The momentum equation (1.2a) is
Newton’s law equating the acceleration of fluid particles in the channel to the pressure
gradient due to water-level differences, counteracted by friction. The corresponding
equations are

du

dt
=

g

L
(ζe − ζ)− τf , (1.2a)

A
dζ

dt
= O u, (1.2b)

in which u is the velocity of the current into the basin, ζ and ζe are the water-level
elevation within the basin and at sea, respectively, and τf is the contribution of friction
(see section 3.2 for more details). The basin parameters of interest are the length and
cross-sectional area of the channel, L and O respectively, and the area of the basin A.
Combining the two equations, one finds the Helmholtz frequency ω0

2 = gO
AL , which

is typically much lower than the higher (sloshing) modes for which the water level is
not uniform within the basin.

1.2.3 Secondary undulations

The configuration of a narrow channel connecting an almost enclosed basin to the ex-
terior sea or ocean, is common to many (man-made) harbours as well. However, their
dimensions are usually much smaller than the geophysical examples mentioned in the
previous section. As mentioned before, this increases the basin’s eigenfrequencies.
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(a) Helmholtz resonator: top view

6
ζ

6ζe

O

��
��
��u

(b) Snapshot of Helmholtz mode at high tide

(c) Interpretation of the Dutch Wadden Sea as a number of separate Helmholtz resonators

Figure 1.7: Helmholtz resonators: an almost-enclosed basin of area A, connected to
the exterior sea by a narrow inlet of length L and cross-section O = BH, where
B is its width and H the depth. The lowest eigenfrequency corresponds with the
Helmholtz mode with almost uniform water level within the basin, as illustrated in
1.7(b). Water level elevations within the basin (ζ) and at sea (ζe) are measured
relative to the water level in rest. Examples can be found in the Dutch Wadden Sea,
where the basins behind the backbarrier islands can be considered as a number of
Helmholtz resonators separated by their watersheds (Maas, 1997).
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Consequently, harbour oscillations with periods of several minutes to hours occur in
many harbours, where they may pose a threat to ships docked at the quay to be
(un)loaded. Explanations for the origin of these oscillations are diverse: atmospheric
pressure perturbations (Hibiya & Kajiura, 1982), internal wave activity (Giese &
Chapman, 1990), seismic activity (tsunamis), current shear (Fabrikant, 1995) or non-
linear setup/setdown by wave groups (Bowers, 1977; De Girolamo, 1996). In the
presence of tides, the oscillations on this timescale are often called secondary undu-
lations accompanying the primary tidal signal, which has a larger amplitude over a
longer timescale. However, observations of the corresponding currents show that the
secondary currents can be of the same order of magnitude as those corresponding
to the primary tidal signal (Golmen et al., 1994). Based on observations of water-
level elevations in over 50 bays adjacent to Japan, Honda et al. (1908) and Nakano
(1932) speculate on some nonlinear coupling of the secondary undulations to the tide
(Honda et al., 1908; Nakano, 1932), because their persistence seems to indicate an
ever-present source.

The emphasis in this thesis is mainly on tides, both in its use of terminology
and focus on forcing at a discrete set of frequencies. However, many of the results
are equally applicable to the infragravity waves (Okihiro & Guza, 1995), with much
smaller periods of a few minutes to hours, that are discussed in this subsection.
Historically, secondary undulations have been studied less extensively, because they
are less important for water-level elevations. Therefore, unexpected observational
results are more likely when focusing on secondary undulations than when considering
tidal records that have been studied much better already.

1.2.4 Radiation damping

In principle the entire Earth should be considered as one global tidal resonator. When
trying to focus on one particular coastal basin, care has to be taken with respect to the
open boundary with the adjacent ocean/sea that connects it to the rest of the world’s
water masses. Tidal motion in such a single basin is partly due to direct astronomical
forcing through the equilibrium tide and partly due to co-oscillation with the tide
that propagates into the basin from adjacent oceans/seas. The contribution of direct
(local) tidal forcing is usually negligible compared to the co-oscillating tide. Garrett
(1975) decomposed the tidal water-level elevation ζb in a basin and ζe in the exterior
sea into three terms, ζb = ζ

(1)
b + ζ

(2)
bb + ζ

(2)
be and ζe = ζ

(1)
e + ζ

(2)
ee + ζ

(2)
eb , see figure 1.8.

Following his notation, ζ
(1)
b is the tide in the basin generated by the local tidal forces

within the basin if the boundary between the basin and the exterior sea were closed.
ζ
(2)
bb denotes the correction to the locally generated tide because of the open boundary,

whereas ζ
(2)
be is the co-oscillating tide within the basin generated by the tidal forces

outside of it. Similarly ζ
(1)
e denotes the tide at the exterior sea if the basin were

closed, ζ
(2)
ee is the scattered wave due to the interaction of ζ

(1)
e with the basin, and

the radiated wave ζ
(2)
eb contains part of the energy that was locally forced by the

equilibrium tide within the basin. This is an improvement on the decomposition by
Defant (1961).The latter defined the local tide ζ

(loc)
b to be the tide in the presence

of local tidal forces and ζ
(loc)
b = 0 at the open boundary. The co-oscillating tide

ζ
(co)
b was defined as the tide neglecting local tidal forces and ζ

(co)
b = ζe to be the

observed tide at the open boundary. Although this decomposition is possible from a
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Figure 1.8: Garrett’s (1975) decomposition of the tide in a co-oscillating tidal basin.
(a) shows the situation if the astronomical forcing were confined within the basin. It
forces ζ

(1)
b if the boundary with the exterior sea were closed. The interaction through

the boundary causes some energy to radiate outwards as ζ
(2)
eb and a correction ζ

(2)
bb

to the tide within the basin. These contributions are usually negligible compared to
the contributions depicted in (b), which would occur if the astronomical forcing were
confined to the exterior. In that case ζ

(1)
b were forced in the exterior sea if the basin

were closed and the interaction through the open boundary causes the co-oscillating
tide ζ

(2)
be and the scattered wave ζ

(2)
ee .

mathematical point of view, it means that if the tidal forces were confined to the basin,
the resulting tide (ζ(1)

b + ζ
(2)
bb in Garrett’s (1975) notation) would still be interpreted

as partly co-oscillating, because it is non-zero at the open boundary.
Neglecting the locally generated tide in Garrett’s (1975) decomposition, in order to

focus on the co-oscillation problem, leads to ζb = ζ
(2)
be in the basin and ζe = ζ

(1)
e +ζ

(2)
ee

at the exterior sea. The externally generated tide at sea ζ
(1)
e , if the basin were closed,

does not depend on the response in the basin, so when investigating the basin’s
response characteristics (amplification factor and phase lag of the tide in the basin
with respect to the tide at the exterior sea) as a function of basin geometry such
as depth, width and length scales, ζ

(1)
e will remain constant. Hence, it makes sense

to prescribe ζ
(1)
e when developing a model for the co-oscillating tide. The boundary

conditions between the basin and the exterior sea then require a match of both ζb = ζe

and the flux through the open boundary. This differs from directly prescribing the
water level ζb at the open boundary, which would be the relevant boundary condition
from Defant’s (1961) definition, because of the unknown contribution to ζe by the
scattered wave ζ

(2)
ee . The open connection between the basin and the exterior sea

leads to the scattered wave ζ
(2)
ee back into the sea and changes the actual water-level

elevations at the boundary. This has a damping effect on ζe, hence on the tidal
oscillations in the basin, so-called radiation damping. The actual boundary condition
is the requirement that ζ

(2)
ee radiates outwards into the open sea, with no energy flux

coming into the system from infinity.
From a mathematical point of view there is no difference prescribing the actual

tide ζe = ζ
(1)
e + ζ

(2)
ee at the boundary or the independent part ζ

(1)
e only, but under
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changing conditions one should consider consequential changes in actual tidal ampli-
tudes at the boundary as well: when considering the influence of engineering projects
in a tidal basin, Garrett’s (1975) method is preferred. In such cases it makes sense to
have ζ

(1)
e remain the same. However, when considering the response of one specific

basin to exterior forcing at different frequencies, the choice between prescribing either
the actual tide ζe or the hypothetical tide with a closed basin is somewhat arbitrary.
Actually, when comparing theoretical results with observations, one can only measure
the amplification and phase difference with respect with the actually observed tide ζe

at the mouth of the basin. Moreover, the scattered wave ζ
(2)
ee depends on the exterior

sea, so in Garrett’s (1975) approach one needs to specify the adjacent sea to which
the basin is connected. A common choice is to describe “the rest of the world” as a
half plane extending to infinity with constant depth. This may not be appropriate
either. Therefore, the use of Defant’s (1961) approach, prescribing the actual tide ζe

at the open boundary, is more convenient when focusing on the changes to the tidal
signal within arbitrary coastal basins.

In the context of the Helmholtz resonator, radiation damping leads to some coun-
terintuitive results. Upon closing the basin by narrowing the entrance channel, one
would expect the basin to become better shielded from the water-level oscillations
at sea, so the amplification factor between basin and sea would decrease. However,
the maximum and mean square response appear to increase, due to the fact that the
radiation of energy is less through a constricted entrance. This is called the har-
bour paradox. It is resolved by including the effect of head loss (pressure drop) due
to flow separation at the inlet (Hayashi et al., 1966; Terrett et al., 1968; Ito, 1970;
Mei et al., 1974). Using hydraulic theory they show that the head loss term depends
quadratically on the fluid velocity, which increases upon narrowing the entrance width.
Therefore shielding works indeed and the amplification factor decreases.

Finally, note that the reasoning behind the decomposition of both Defant (1961)
and Garrett (1975) is linear, in the sense that they rely on the fact that a linear
combination of two solutions is again a solution. If nonlinear effects are to be taken
into account, the problem of properly prescribing the open boundary conditions be-
comes much more intricate and beyond the scope of this thesis. We choose to simply
prescribe the actual tide ζe and neglect local forcing by the exterior tide.

1.3 Nonlinear dynamics

Up to this point linear theoretical concepts have been discussed. Linear theory is well
understood and does in general provide a good description and prediction of the tide
(see e.g. chapter 2). There are however a number of nonlinear processes that play
a role in tidal motion, especially in coastal areas, where the relatively small depth
of the water enhances their significance. Basically, three nonlinear processes can be
identified, quadratic friction/dissipation, advective accelerations and the feedback of
water-level changes on mass flux. Bottom friction is commonly parameterized by the
quadratic Chezy law (e.g. Prandle, 1991). Sometimes a linear friction law is used,
for simplicity or by using Lorentz’s linearization procedure (see section 1.3.1 and
references therein). Moreover, the dissipation of energy by turbulent eddies and head
loss (a pressure drop) due to flow separation at sharp edges, can best be described by
the same quadratic dependence on current velocities (Mei et al., 1974). The effects of
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this nonlinearity are discussed in more detail in section 1.3.1 and chapter 3. Advective
accelerations, accelerations of fluid particles due to their movement into areas with
different velocities, also lead to a nonlinear term in the hydrodynamic equations as the
product of the fluid velocity and the velocity gradient. Finally, the mass flux through
a given vertical cross-section of the basin, is the product of the fluid velocity and water
depth. If one takes into account only the reference water depth for the fluid in rest,
this leads to a linear term depending on the velocity only. This is sufficient if tidal
water-level changes are small compared to total water depth. Taking into account the
change in total water depth due to water-level changes leads to a nonlinear term as
well. Because this term occurs in the continuity equation describing conservation of
water mass, it is also referred to as the nonlinear continuity effect.

For the purpose of this thesis, the results of the nonlinear processes can be classified
in three aspects:

1. Distortion of the tidal curve,

2. Changes of the response curve,

3. Modulation of tidal oscillations.

The tidal curve at a particular location is the average graph of water-level elevation
(or current) as a function of time within each tidal period. In a simple linear world
with monochromatic forcing this would be a sinusoidal signal. Nonlinear effects lead
to overtides at exact multiples of the principal tidal frequency, changing the aver-
age shape of the tidal curve into e.g. a seesaw or block-wave and introducing tidal
asymmetry with (most commonly) shorter flood period, longer ebb period and conse-
quently stronger flood than ebb currents (section 1.3.2). The change of the response
curve, the amplification and phase lag between the co-oscillating tide in the basin and
the forcing tide in the exterior sea, can have a larger overall impact. Friction tends to
both damp the peak amplification factor and smooth out the resonance peak increas-
ing the width of the corresponding frequency band. The quality or Q-factor of the
resonator is often used to describe the sharpness of the resonance peak, see the begin-
ning section 1.2. The quadratic friction law causes the influence of friction to increase
with increasing amplitude, hence the resonator’s quality to go down. The nonlinear
effects of advection and continuity may also lead to quite dramatic changes of the
response curve, introducing the possibility of multiple equilibria, if multiple response
regimes are possible under the same exterior conditions. The nonlinear interaction
between different tidal components may even lead to modulations of the amplitudes
and phases (the harmonic “constants”) of the tidal oscillations. Those modulations
may occur in a regular predictable way, but could also evolve in a chaotic manner, for
instance between the different states in the case of multiple equilibria (section 1.3.3).
This puts forward the question of long-term predictability of the tidal signal. Some
recent studies on this subject will be discussed in section 1.3.4.

1.3.1 The quadratic friction law

Chezy’s law represents bottom friction by cD |u|u, where cD is the drag coefficient and
u the velocity of the fluid (Prandle, 1991). The dissipation of energy due to vortices
separating from the flow out of a narrow constriction such as a tidal inlet can also
by described by f |u|u (Hayashi et al., 1966; Terrett et al., 1968; Mei et al., 1974;
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Maas, 1997), in which f is an empirical constant depending on the geometry of the
constriction (see Ito, 1970, and chapter 3). Because of the absolute value occurring in
the quadratic friction law, its impact is different from ordinary quadratic interactions.
In fact, it has the character of a cubic interaction: developing the quadratic friction
term in a complete expansion of harmonic components, one can show that it leads to
odd overtides (Dronkers, 1962, 1964; Le Provost, 1973; Kabbaj & Le Provost, 1980),
distorting the response signal into a seesaw wave, with corresponding block wave
currents. It does not lead to tidal asymmetry, different behaviour of the flood and
ebb phase of the tidal motion, because odd overtides change sign when shifted over
half a tidal period in synchrony with the principal component.

The nonlinear friction term poses a problem for analytically solving the equa-
tions of tidal motion, which was first addressed by the Dutch physicist H.A. Lorentz
(1922, 1926). At the beginning of the previous century, he had already ended his
career when he was asked to supervise the senate committee investigating the effect
of closing the Zuiderzee by a long dyke. This tidal inlet system covering the centre
of the Netherlands was characterized by a dissipating tidal wave propagating into the
basin. In order to predict the new tidal motion on the seaward side of the proposed
dyke, he had to properly account for the nonlinear nature of friction and devised an
ingenious method to resolve this problem. Lorentz’s linearization method amounts
to replacing the quadratic bottom friction term by a linear one in which the friction
coefficient is chosen such that the average dissipation of energy per tidal cycle is the
same irrespective of the (linear or quadratic) friction law that is used (Lorentz, 1922,
1926). Consequently, the friction coefficient depends on the amplitude of the solu-
tion. Iteratively improving the solution and the friction coefficient, he found that the
amplitude of the tide in the Wadden Sea would increase significantly upon closure
of the Zuiderzee. His calculations were found to be in good correspondence with
the observed tide after closure in 1932, although he did not live to see this (Thijsse,
1972). Lorentz’s linearization method has become widely accepted for its ability to
provide accurate prediction of the observed tide incorporating the quadratic friction
law; Mei (1989) mentions it under the commonly used name “equivalent lineariza-
tion”. Alternative perturbative approaches lead to equivalent results up to first or-
der. Zimmerman (1982, 1992) interprets Lorentz’s linearization as a renormalization
procedure and the first term in the expansion of the quadratic friction term in higher
harmonics by Dronkers (1962, 1964), Le Provost (1973) and Kabbaj & Le Provost
(1980) is readily seen to correspond with it as well.

Despite or perhaps because of its common use and validation in theoretical and ob-
servational studies, a literature search for laboratory experiments validating Lorentz’s
linearization method leads to virtually no results. The structure of the linear eigen-
modes in circular (McNown, 1952) and rectangular (Apté & Marcou, 1954) laboratory
models have been studied. Linear response curves have been shown for almost en-
closed circular basins and a half open channel (Lee, 1971), for a more complex model
of Long Beach Harbour (Lee, 1971; Lee & Raichlen, 1971) and for harbours with
multiple connected basins (Lee & Raichlen, 1972), but all of these without consider-
ing the influence of the tidal amplitude, i.e. of nonlinearity. Lepelletier & Raichlen
(1987) performed laboratory experiments focussed on the nonlinear distortion of the
tidal curve. Horikawa & Nishimura (1970) studied the effect of breakwaters reducing
the entrance width of a basin. Although they do present response curves for different
incident wave amplitude, they rate the higher amplitude results as “inaccurate ow-
ing to the deformation of waves”. Bowers (1977) and De Girolamo (1996) consider
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the generation of harbour oscillations due to the nonlinear setup/setdown by wave
groups. Their preparatory measurements show the dependence of the response curve
on tidal amplitude but they do not compare the apparent increase of the frictional
importance with a theoretical model either. Martinez & Naverac (1988) do mention
equivalent linearization, but the analysis of their good quality data is based on insuf-
ficiently developed theory neglecting inertia. As a consequence, they conclude that
the coefficient in the nonlinear friction law would depend on tidal amplitude, which
renders predictions on the effect of changing amplitude out of reach. The experiments
presented in chapter 3 fill this lack of experimental validation by comparing the re-
sponse curves of a tidal resonator at different amplitudes with an idealized model
using Lorentz’s linearization procedure. The decreasing quality of the resonator with
increasing amplitude appears to be captured very well by the linear increase of the
effective friction coefficient predicted by the theory.

1.3.2 Distortion of the tidal curve

Whereas the expansion of the nonlinear friction term leads to odd overtides, the
quadratic interactions caused by advection and continuity terms produce overtides at
sums and differences of the principal frequencies, including the even ones (Gallagher
& Munk, 1971; Aubrey & Speer, 1985; Le Provost, 1991). Hence additional peaks at
exact multiples of the principal frequencies emerge in the tidal spectrum, preserving
the periodicity of the tidal motion, but introducing asymmetry between the ebb and
flood tidal phase. Parker (1991b) discusses the distortion of the tidal wave due to
various nonlinear mechanisms, focusing on the physical processes. Because the mass
flux is larger through deeper water and the tidal current adds up to the wave velocity
due to nonlinear advective accelerations, the propagation speed of a high tide crest is
enhanced and the low tide trough is slowed down. Hence the tidal wave steepens such
that the duration of the flood period decreases and that of the ebb period increases.
In extremis this can lead to tidal bores, when high tide progresses into a tidal basin
or river as a steep wall of water.

Because the reduction of the flood period is accompanied by an intensification of
the flood currents due to mass conservation, this type of tidal asymmetry is called
flood dominance. According to Speer et al. (1991) ebb dominance results from the
presence of tidal flats that are flooded and store water at high tide, which is released
during the ebb phase (see also Speer & Aubrey, 1985; Friedrichs & Aubrey, 1988).
This is different for the Helmholtz mode in almost enclosed basins where the tide is
uniform within the basin, in which case tidal flats do lead to a reduction of the low tide
period and increasing high tide period but the phase of the overtide is such that the
symmetry between the ebb and flood period is conserved. Speer et al. (1991) provide
a diagram indicating flood or ebb dominance as a function of the two parameters a/h,
the ratio of the tidal amplitude over total water depth and Vs/Vc, the ratio between
the intertidal storage and volume of channels at mean water level. From a bird’s-eye
view, increasing Vs/Vc leads to ebb dominance, whereas increasing a/h favours flood
dominance. Like Godin (1991b) they relate flood dominance to frictional effects. The
latter is able to explain most of the aforementioned effects from bottom friction as
well, by taking into account the influence of water depth; in shallow water bottom
friction is relatively more important. Therefore a high tide crest is attenuated (both
in amplitude and phase retardation) less than a low tide trough.
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Figure 1.9: Conceptual model for the asymmetry of the flow pattern into and out
of the narrow entrance of a basin according to Stommel & Farmer (1952). Due to
inertia the outflow is a strong jet of width b and length L, whereas the same amount
of water is drawn back radially uniform from a semicircle of radius R, leaving behind
the volume ∆V .

The distortion of the tidal curve for the currents is usually even stronger than
that of the water-level elevation. The reasons for this are threefold: (a) Because
tidal currents through inlets must provide the water flux corresponding with water
level changes inside the estuary, it is basically related to the time derivative of water
elevation. Hence the relative amplitude of (higher frequency) overtides is enhanced in
the currents (see also the Helmholtz model, section 3.5.2). (b) Moreover, an internal
tidal asymmetry of the vertical structure of the tidal current between the ebb and
flood phase, allows for the currents at specific depth to be different whereas the
depth-averaged flux remains the same (Jay, 1991). (c) Finally, currents are more
easily affected by local effects near changes in the bathymetry, such as channel bends
(Dronkers, 1996), headlands (Geyer & Signell, 1991) and constrictions (Fujiwara et al.,
1994). These may cause vortices and residual circulation with a rotational component
but zero divergence, hence no influence on water level changes.

The changes to tidal currents have major implications for the transport of water,
salt, heat, nutrients and sediment between different parts of the basin and the adjacent
sea. For example, the spatial structure of the flow out of and into the narrow entrance
of many bays is different during the ebb and flood phase. As the water flows out of
the narrow entrance a jet forms due to the advective accelerations causing the water
trajectories to remain relatively straight, whereas the water is sucked into the entrance
radially according to a potential sink, as indicated in figure 1.9. Based on this simple
sketch Stommel & Farmer (1952) came up with the equations describing the exchange
between the basin and the adjacent sea, assuming the tidal excursion is much larger
than the entrance width:

P = bHL = 1
2πR2H ≈ bHR + ∆V, (1.3)

where P is the tidal prism (total volume of water through the inlet during either
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the ebb or flood phase), H the (uniform) water depth, b the entrance width, L the
length of the jet and R the radius of the semicircle from which water is drawn into
the entrance by the potential flow. ∆V is the net volume of water that is exchanged
through the inlet during one tidal cycle and equals the tidal prism minus the water
in the jet that is drawn back into the inlet after reversal of the flow. By eliminating
the radius R one can find ∆V in terms of the tidal prism and inlet dimensions

∆V = P − b

√
2PH

π
. (1.4)

Stommel & Farmer (1952) used this simple model for the flow to derive the steady-
state salinity within the estuary by adding a constant flux of freshwater to the ebb
flow and assuming the water is well-mixed within both the basin and in the sea (see
also Fischer et al., 1979, p. 239). Observations performed at the mouth of San Diego
Bay confirm this mechanism to be important (Chadwick & Largier, 1999a,b).

The flow pattern sketched in figure 1.9 leads to a residual circulation because
the mean flow in the jet area is directed away from the inlet and towards it in the
withdrawal area outside the jet. This is enhanced by the formation of vortices during
the jet-phase due to barotropic shear instability at the edges of the jet. At either
side of the jet a vortex forms, constituting a dipole of two counter-rotating vortices.
Their interaction causes their inherent movement away from the inlet. Kashiwai
(1984) describes three types of life-history for such tidal vortices: (I) the inherent
movement of the vortex-pair is large enough to escape from the inlet even when
the tidal current reverses, (II) the vortices are drawn back into the inlet after flow-
reversal, but return on the same side in the next period of the tide, or (III) the
vortices are drawn through the inlet after flow-reversal and remain there indefinitely.
With laboratory experiments and a point-vortex model Kashiwai (1984) shows that
the two parameters that determine the type of behaviour are the Strouhal number
(UT/b, where UT ∼ L is the tidal excursion with U the current amplitude and T
the tidal period) and the horizontal aspect ratio of inlet length over width. The
overall view is that type-I occurs at lower Strouhal numbers, whereas the subsequent
distinction between type-II and type-III is based on the length over width ratio with
increasing ratio favouring type-II. A similar study was performed by Wells & van
Heijst (2003), but they did not distinguish between type-II and type-III behaviour.

The ebb-flood asymmetry of the tidal currents with strong currents during a short
period and weak currents carrying the same amount of water during a longer period
does not change the residual circulation, but is very important for transport of sed-
iment in particular. The bedload transport of sediment (when the sediment remains
on or near the bottom) is usually parameterized by a power law dependence on the
current, i.e. strong currents are more effective in transporting sediment than weak
currents. Therefore more sediment is moved during the short period of strong cur-
rents than during the longer period of weak currents. For suspended load transport
(when the sediment is brought in suspension and advected with the fluid flow), the
turbulent action of the current on the bottom bringing the sediment in suspension
introduces a similar nonlinear emphasis on strong currents.

Because of the importance of the tidal distortion for transport processes, the
focus of research on nonlinear effects in tidal dynamics has been on the nonlinear
generation of overtides and compound tides (see e.g. the respective chapters in Parker,
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1991b, Part 3 in particular). Especially in observational studies, evidence of nonlinear
interactions is provided through the occurrence of peaks in the tidal spectrum at
frequencies that are not present in the astronomical forcing. As a dynamical system
however, this response does not differ much from that of a linear system. The tidal
motion described here is still (quasi-)periodic, a sum of a discrete number of harmonic
constituents, even though some of them are nonlinearly generated. This aspect of the
nonlinear processes is not the primary focus of this thesis.

1.3.3 Modulation of the response

The key topic of this thesis is the overall effect of the nonlinear mechanisms on
tidal response such as the amplitude and phase of the primary tidal component.
The harmonic constants, the amplitudes and phases of the tidal constituents, found
from harmonic analysis of tidal records appear to modulate on several timescales. A
number of reasons can be distinguished. First, the linear sum of components at nearby
frequencies not taken into account separately by the analysis cause interference. In
the species concordance method this is very explicit by restricting to a frequency
resolution level up to different (diurnal, semidiurnal, terdiurnal, etc.) species. Hence
the spring-neap tidal cycle, which results from the interference between the lunar M2

and solar S2 semidiurnal constituents, causes the reduced vectors (complex amplitudes
of the tidal species) to modulate on a 14 day period, even though the M2 and S2

amplitudes could be considered constant on that timescale. Similarly, yearly tidal
analyses modulate on the 18.6 year nodal cycle, due to the the revolution of the lunar
node. Assuming that the amplification and phase lag of the response of the tidal
resonator to the unresolved nodal components near resolved tidal constituents is the
same (cf. the “credo of smoothness” in section 1.1.3), the nodal corrections to the
amplitude and phase of the resolved constituents can be predicted theoretically from
the expansion of the astronomical forcing, as explained e.g. by Doodson (1924). This
leads to “nodal factors” that are commonly applied to correct the amplitudes and
phases found from yearly harmonic analyses.

In order to resolve all frequencies up to nodal cycle resolution tidal records of
a complete 18.6 year nodal cycle must be analysed2. At many locations, the basin
itself changes within this timescale. Engineering works may be constructed by man
or bathymetric changes of a natural origin may occur. In tidal flat systems like the
Wadden Sea for example, the pattern of channels and shoals undergoes significant
changes on a yearly basis due to the transport of sediment by tidal currents, wind
waves, storm surges or river flux. Because the response of tidal basins depends on
their (changing) dimensions, the harmonic constants may consequently vary as well.
On a shorter timescale, meteorological forcing causes the water level to differ from
harmonic predictions. From a strictly hydrodynamic point of view these modulations
are again based simply on modulations of the forcing and are not related to nonlinear
hydrodynamics.

Intrinsic nonlinear interactions within tidal basins can be responsible for mod-
ulating harmonic constants as well. They lead to additional forcing at sums and

2As Munk & Cartwright (1966) pointed out, such a lengthy timescale is not necessary in principle
under the assumption that one knows exactly what frequencies occur in the tidal spectrum, which is
the basis of harmonic analysis. However, such a length is required for the significance of the results
to exceed the noise level.
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differences of the principal tidal frequencies. Generically, this leads to a slaved re-
sponse at these frequencies, determined by the amplitude of the nonlinear term and
the response characteristics (amplification and phase lag) of the tidal resonator at the
respective frequencies. If the nonlinearly generated frequency is close enough to one
of the principal frequencies, it cannot be distinguished by the (harmonic) analysis and
will show itself as a modulation of that component as well. In fact, Godin & Gutiérrez
(1986) show that nodal factors are unable to fully account for the modulation of some
of the semidiurnal tidal constituents at St. John, New Brunswick, in the Bay of
Fundy. They relate it to the fact that nonlinear friction contributes to spectral peaks
exactly at some nodal frequencies. Therefore, the nodal corrections, that are based on
the assumption that the response of the basin at the nodal frequencies is proportional
to their occurrence in the astronomically forced equilibrium tide, are inappropriate.
They suggest to replace the common nodal factors based on the equilibrium tide by
a set of “frictional-nodal” corrections, see also Le Provost (1991), section 6 and refer-
ences therein. Amin (1991) uses the harmonic constants of constituents that can be
resolved by the harmonic analysis to derive nonlinear interaction coefficients for both
quadratic and cubic interactions in the shallow water equations. By interpolating the
coefficients found in this way for compound frequencies that are not resolved, he is
able to predict the amplitude and phase of those components as well. This allows him
to obtain the nonlinear correction to the nodal factors, i.e. to predict the resulting
nonlinear modulation of the harmonic constants, from a relatively short time series.

The studies mentioned in the previous paragraph assume the nonlinear response to
be slaved in the sense that the compound components are generated by the principal
tidal tide but have no dynamics of their own. However, in the particular case that an
eigenmode of the basin is excited by the nonlinear interactions, it may lead to even
more interesting behaviour. In chapter 4 of this thesis amplitude evolution equations
are derived that govern the evolution of the amplitudes of the tide in such a case.
They were derived by performing a weakly nonlinear analysis on the two-dimensional
depth-averaged shallow-water equations, assuming small tidal amplitudes compared
to the total water depth and strong resonance. The nonlinear processes involved
are the advective accelerations and nonlinear continuity terms in the shallow water
equations. In the present context strong resonance is meant to specify the condition
of weak friction and forcing frequency near one of the basin’s eigenfrequencies, such
that the amplification of the response is huge. The model derived in chapter 4 is
a generalization of previous work by Miles (1981) and Maas (1997) that considered
the Helmholtz mode in almost enclosed basins. Miles (1981) dealt with the feedback
of water-level elevation on the inlet channel cross section: at high tide the flux is
increased because the channel cross section through which it flows is larger, at low
tide it is reduced. Maas (1997) discussed the influence of non-uniform hypsometry,
the dependence of the horizontal basin area on water level. In tidal flat systems the
basin area at low tide can be much less than at high tide, when the tidal flats are
flooded. Hence the change of water level induced by the same flux through the channel
is less at high tide, because the water spreads over a larger area in that case. In both
cases, the dependence between the current through the channel and the change of
the basin’s water level, hence the restoring pressure gradient of the tidal resonator,
becomes nonlinear, see section 6.3.2 for more details. Basically, both mechanisms deal
with the continuity effect as they relate directly to mass conservation.

The shape of the response curve can be changed by these nonlinear effects. In
section 1.3.1 the influence of the quadratic friction law on the response curve by de-
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creasing the quality of the resonator as a function of forcing amplitude, was discussed.
In chapters 4 and 5 it will be shown that advection and continuity can produce a bent
resonance curve by creating dependence of the effective eigenfrequency on the ampli-
tude. The bending of the response curve eventually may lead to multiple equilibria:
under the same forcing conditions at the exterior sea, different tidal responses are
possible inside the basin. Bifurcations can occur upon changing conditions, when the
present branch of solutions ceases to exist and the system “suddenly” (on the slow
timescale of several periods) has to adjust to a completely different response. The am-
plitude evolution equations derived in chapter 4, describe the adjustment of the tidal
response to changing forcing conditions. The response they describe is the tidal oscil-
lation at the dominant (tidal) forcing frequency, with amplitude and phase evolving
on a longer timescale. Modulation of the amplitudes in a periodic or quasi-periodic
fashion expresses itself in the tidal spectrum by generating sidepeaks near the princi-
pal tidal frequencies, just like the nonlinear interaction in the case of slaved response.
However, in chapter 5 it will be shown that the solutions to the amplitude equations
can even be chaotic, if the exterior conditions change on the same time scale as that
of the adjustment of the amplitudes to the new equilibrium response. In that case
the system keeps readjusting to the ever changing steady state. Chaotic modulation
of the amplitudes expresses itself by increasing the width of the spectral peaks into a
continuum spectrum. Indeed, Munk & Cartwright (1966) describe such a continuum
spectrum around the tidal frequencies. It is usually interpreted as the footprint of
chaotic dynamics in the meteorological forcing, but the models presented in this thesis
suggest that chaotic tidal dynamics may also result from intrinsic nonlinear processes
in the hydrodynamics of tidal resonators.

1.3.4 Predictability of the tide

The mathematical theory of chaos deals with systems that are deterministic (i.e. pre-
dictable) in principle but whose dynamics are so complex that predictability is limited
in practice. The most well-known example of a system that appears to behave chaot-
ically is the weather. It is generally thought to be described by models based on the
Navier–Stokes equations, so it would be completely predictable if the initial conditions
of each molecule on the Earth were known. However, as Lorenz (1993) illustrated by
his famous “butterfly example”, small disturbances can have enormous consequences:
he remarked that a butterfly flapping its wings in the Brazilian rain forest might cause
a tornado in Texas. This does not imply that we should be afraid of butterflies for this
reason: its next flap of the wing might again stop the tornado’s formation, as could
any other perturbation. The point is that small changes in the initial conditions, far
below the level of resolution one could ever hope to obtain measurements on, can
change the outcome of the behaviour dramatically. Therefore, although the system is
deterministic in principle if all knowledge on the initial conditions were available, the
validity of predictions is still limited to the timescale on which the chaotic dynamics
enables small disturbances to grow to large-scale changes.

In the case of tidal dynamics the conclusion of chapter 5 that chaotic dynamics
may play a role in tidal resonance, would be a contradiction in terms. The etymology
of the word “tides” stems from the fact that they were always conceived to be periodic
and predictable. Still, tides are commonly considered to be predictable for decades in
advance by harmonic analysis, as long as no engineering works or natural changes to
the basin’s bathymetry are involved. Of course, nodal corrections must be applied to
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harmonic constants derived from one-year records, in order to account for the nodal
changes in the lunar orbit and nonlinearly generated (slaved) compound components
have to be dealt with properly, but otherwise deviations would be attributed to ex-
ternal forcing. The results in chapter 5 suggest that the amplitudes and phases (say
the harmonic constants) of tidal oscillations in specific tidal basins may evolve in a
chaotic way, not because of meteorological forcing or changes in the basin’s geome-
try, but because of intrinsic nonlinear interactions in the hydrodynamics of the tidal
resonator. This would make the possibility to predict the tide for decades in advance
questionable.

Indeed, recent studies have revealed the footprints of chaotic dynamics within tidal
signals. Vittori (1992) investigated the water-level oscillations ζ(t) in the Lagoon of
Venice by techniques that have been developed for the analysis of chaotic time series.
A central concept in the process is the reconstruction map that amounts to forming a
vector (ζ(t), ζ(t−∆t), ζ(t−2∆t), . . . , ζ(t−N∆t)) ∈ RN+1 of subsequent values of the
time series (see Takens, 1981). If N is large enough, the trajectories in the “recon-
structed phase space” are topologically equivalent to the attractor of the underlying
deterministic (but chaotic) system, if it exists. In that case the dimension of the re-
constructed attractor converges to a constant upon increasing the dimension N of the
reconstructed phase space. It is a measure for the degrees of freedom in the underlying
dynamical system. In the case of stochastic dynamics such a finite number of degrees
of freedom is not expected to be found. For the time series of water-level elevations
Vittori (1992) found the (fractal) dimension of the attractor to be near 6. She also
considered the time series of water-level maxima and found a fractal dimension near
2 in that case, which she explained to be much less (than 6) because a number of
degrees of freedom related to the astronomical tide were removed by extracting the
envelop of maxima. Next, Lyapunov exponents were calculated that measure the rate
of divergence of nearby trajectories, hence (the inverse of) the timescale on which
small disturbances grow and beyond which predictions are no longer reliable. Finally,
she showed how a prediction method based on the trajectories in reconstructed phase
space (Farmer & Sidorowich, 1987), can be used to efficiently predict future water lev-
els from present and past observed values. Its success again confirms the assumption
that the oscillations in the Lagoon of Venice arise from a chaotic system characterized
by a few degrees of freedom. However, it still remains an observational challenge to
determine if the chaos arises within the basin from the nonlinear hydrodynamics or
is simply the footprint of chaotic behaviour in the meteorological forcing. A simi-
lar study was performed by Frison et al. (1999) for a number of locations along the
American East Coast. Interestingly, they find that the dimension of the attractor,
hence the number of degrees of freedom of the reconstructed dynamics, increases when
moving further into complex estuaries. This does suggest that the chaotic dynamics
is produced by the co-oscillating response of the basin, although one may also argue
that meteorological effects are more pronounced over relatively shallow areas.

Irregularity of secondary tides have been reported by Honda et al. (1908), but
at that time chaos theory had not been developed yet, so their report can only give
qualitative conclusions. They present time series of water-level measurements at over
50 locations along the coast of Japan and conclude that they vary from inconspic-
uous (at the Pacific coast) to conspicuous (near the Japan Sea) and from regular
to irregular. Their persistence suggests an ever-present source, such as due to tidal
motion in the adjacent sea. The study of secondary undulations has received less
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attention historically, because they are of minor importance for the water level and
require a high temporal resolution of measurements. Nowadays automatic tide gauges
are available that record water levels at six minutes intervals, which allows secondary
undulations of longer period to be studied. Because of the shorter period, the rel-
atively weak signal of the secondary undulations in the water level is boosted when
considering the corresponding currents. Measurements by Golmen et al. (1994) show
that the currents accompanying the secondary undulations can be of the same order
of magnitude as the currents related to the principal tide. Perhaps the limited pre-
dictability of currents as compared to water level (Godin, 1991a) is not only caused
by their susceptibility to meteorological influences, but also to nonlinear dynamics of
secondary undulations.

The analyses by Vittori (1992) and Frison et al. (1999) were performed on the time
series of tidal water-level elevations. The theoretical results in chapters 4 and 5 of
this thesis describe a mechanism that causes the evolution not of the water level itself
but of the amplitudes and phases of water-level oscillations to become chaotic. This
suggests to consider the evolution of the harmonic “constants”. Using the methods
of reduced vectors (Simon, 1991) to obtain the evolution of the complex amplitudes
of the tidal species, one could study their evolution on a 14-day timescale to inves-
tigate whether or not it is completely determined by the astronomical spring-neap
tidal cycle. Doodson (1924) discussed time series of 33 years of harmonic constants
derived from yearly tidal records for St. John, New Brunswick (Bay of Fundy). He
concluded that only part of the variation he found could be explained from long-term
astronomical signals, another part was not accounted for. Gutiérrez et al. (1981)
used several methods of analysis both on tidal observations at Puntarenas (Pacific
coast of Costa Rica) and Trieste (Adriatic Sea) and on a synthetic record to find that
the variability of harmonic constants is not caused by nonperfect selectivity of the
method applied to obtain them. They do not provide time series of the variation of
the harmonic constants however and condense all the information in a single value
for their standard deviation. Godin & Gutiérrez (1986) do show time series of the
harmonic constants for St. John, New Brunswick in their paper showing the inappro-
priateness of nodal factors to predict the variation of a number of semidiurnal and
diurnal tidal constituents. They are reasonably successful trying to explain this from
the (slaved) response due to frictional nonlinear interactions, although their method
cannot capture irregular behaviour. For that purpose a combination of the study of
time-varying harmonic constants with the approach of Vittori (1992) and Frison et al.
(1999) could be profitable. Unfortunately, new analyses of tidal observations will not
be presented in this thesis.

1.4 In this thesis

The ultimate goal that the work presented in this thesis hopes to get closer to is to
answer the question about long-term predictability of the tide, in the absence of basin
changes and meteorological influences. The fact that the weather behaves as a chaotic
system is widely recognized. Moreover, the morphodynamics of (tidal) basins with
erodible bottoms leads to complex fractal patterns of channels and shoals (Cleveringa
& Oost, 1999) of which the larger structures evolve on decadal timescales in a highly
nonlinear fashion. Tides on the other hand are commonly associated with periodicity
and predictability, not with chaos. Still, this thesis discusses a possible connection
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between the two. The focus of the thesis will be on the changes due to nonlinear
effects on the response curves of co-oscillating tidal resonators.

Chapter 2 is basically an extension of the introduction. It shows an example of
the use of a simple linear model for the tide in the Adriatic Sea. In fact, the model
can be seen as an application of Prandle (1991, section 3.1), which gives the solutions
to the linearized one-dimensional shallow-water equations for basins whose depth and
width vary with a power of the longitudinal coordinate. In chapter 2 the bathymetry
of the Adriatic Sea is approximated by a number of pieces along which the depth
varies linearly and the solutions in the different pieces are matched at the boundaries
by continuity of water level and flux. Despite the simplicity of the model, the present
distribution of the amplitudes of the K1 and M2-tidal constituents along the central
axis of the Adriatic Sea are captured quite well. The model is used to comment on
the tide in the Adriatic Sea in past ages when the mean sea level was much lower,
in order to support a geological study that found distinct sediment layers possibly of
tidal origin at specific locations on the bottom of the Adriatic Sea.

When setting out to measure nonlinear bending of the resonance curve in a lab-
oratory experiment, it appeared to be necessary to establish the effect of quadratic
friction first. Although Lorentz’s (1922) linearization principle to account for the re-
sulting dependence of the resonator’s quality on forcing amplitude was developed at
the beginning of the previous century already and has been successfully used in many
observational studies, its validity had not been tested in the laboratory before. Exper-
imental validation of Lorentz’s linearization principle in the context of the Helmholtz
mode is shown in chapter 3.

Response curves describe the steady state of amplitude and phase of the tidal
response to exterior forcing. In chapter 4 the evolution of the complex amplitude
towards this steady state is studied in a weakly nonlinear setting, assuming small
tidal amplitudes (compared to total water depth) and strong resonance (i.e. weak
friction and forcing near one of the basin’s eigenfrequencies, such that amplification
of the tidal oscillation is huge), based on the two-dimensional depth-averaged shallow-
water equations, that describe the tide in co-oscillating basins. The nonlinear effects
of advection and continuity are incorporated in the analysis. The ultimate result
is the Landau equation (4.30), that describes the weakly nonlinear evolution of the
complex amplitudes of the basin’s eigenmodes.

In chapter 5 the behaviour of solutions to the Landau equation (4.30) is inves-
tigated. It appears that previous results by Maas & Doelman (2002) apply in this
more general setting as well: By considering steady states the nonlinear changes to
the response curves are identified. It appears that bent resonance occurs because the
effective eigenfrequency now depends on amplitude. This may even lead to multiple
equilibria: under the same forcing conditions at the exterior sea, different tidal re-
sponses are possible inside the basin. This means that one cannot predict the tide
within the basin just from knowing the tide in the adjacent sea, because the tide in
the basin also depends on the basin’s history. Under changing conditions, “sudden”
changes may occur during which the amplitude and phase in the basin change over
a few tidal periods. If conditions keep changing continuously, for instance due to the
spring-neap tidal cycle, those sudden amplitude changes can even occur chaotically.
The results in section 5.5 suggest that many different mechanisms may be responsi-
ble for this behaviour. In particular, the influence of the Earth’s rotation may allow
chaotic dynamics to occur even if the forcing is a single sinusoid of constant amplitude.
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Finally, laboratory results showing the occurrence of multiple equilibria in a tidal
resonator are presented in chapter 6. They were predicted to occur by the weakly
nonlinear theory for an almost enclosed basin with sloping sidewalls, but small scale
effects proved to render it impossible to have their impact be significant compared
to friction. The multiple equilibria were actually found using vertical sidewalls and a
curved trumpet-shaped entrance to the basin. The latter appears to be most impor-
tant. Note that in geophysical reality many tidal basins have funnel-shaped entrances,
so the phenomenon might occur in such basins indeed. Multiple equilibria are a pre-
requisite for the development of chaotic behaviour along the lines of the mechanisms
described in chapter 5, so this is a first step towards the investigation of “chaotic
tides” in the laboratory. However, more research is needed to draw conclusions on
the predictability of the tide, in particular because the range of conditions under
which multiple equilibria were found, was very small. Moreover, there still is need for
evidence of chaotic dynamics not only in laboratory experiments but also from the
field by analysis of geophysical observations.



30 Chapter 1. Introduction



Chapter 2

Linear model for the tide in
the Adriatic Sea

There is hardly any tide in the Mediterranean Sea, because it is too small to resonate with
direct astronomical forcing and the narrow passage through the Strait of Gibraltar chokes
the co-oscillating tide. Even so the tides in the northern part of the Adriatic Sea are
significant. Apparently, the tide from the Mediterranean is amplified when it propagates
into the Adriatic Sea. Over the past ages, the mean sea level has been much lower than the
present level. Therefore the water depth and also the length of the Adriatic Sea has been
different. Geological studies reveal deposits of possibly tidal origin at particular locations
along the bottom of the Adriatic Sea. The question arises if these can be explained from
the resonance characteristics of the Adriatic Sea that may have been different at past
ages when the mean sea level was lower. In this thesis on nonlinear tidal resonance, this
problem serves as an example of linear tidal modelling, which appears to capture many
facets of the tide already.1

2.1 Mathematical model

In this section the one-dimensional depth-averaged linear shallow-water equations are
introduced as a mathematical model for co-oscillating tides in geophysical basins.
In particular, direct astronomical forcing is not taken into account (see also sec-
tion 1.2.4). Without narrowing the scope to the Adriatic Sea the general solutions to
these equations for a rectangular basin of uniform depth and with a sloping bottom
are presented. Actually, they can be considered as a special case of the solutions
described by Prandle (1991, section 3.1) for basins whose depth and width vary with
some power of the longitudinal distance. The results will be applied to the Adriatic
Sea in the next section.

1The model discussed in this chapter is used for theoretical support of a geological study that
is presented in the paper “Stratigraphic forward modelling of isolated sandbodies in the Holocene
transgressive systems tract of the Northern Adriatic shelf, Italy by Joep E.A. Storms, Gert Jan
Weltje, Guido M. Terra and Antonio Cattaneo, in preparation.
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2.1.1 One-dimensional linear shallow-water equations

The wavelength of tidal waves are usually much larger than the depth of the water
(typically 400 km wavelength in 10 m water depth), justifying the term long waves.
Under such circumstances, the shallow-water equations can be used. By averaging
over the depth of the water a model for the horizontal currents without considering
their vertical structure is derived:

∂ζ

∂t
+∇·[DU] = 0, (2.1a)

∂U
∂t

+ [U·∇]U + f k̂×U = −g∇ζ − τb

ρD
, (2.1b)

where ζ is the vertical displacement of the water level, D = H + ζ is the total
water depth, which differs from the water depth in rest H by the tidal water-level
elevations, U = (u, v) is the horizontal current vector and τb is the bottom friction
stress, to be parameterized. Equation (2.1a) is the continuity equation describing
mass conservation (sea surface rises if water flux converges); (2.1b) is the momentum
equation which is basically Newton’s law relating the acceleration of fluid particles
(including the nonlinear advection of momentum and the Coriolis acceleration due
to the rotation of the Earth) to the pressure gradient due to the sloping sea surface
and friction. The vector k̂ is the vertical unit vector: k̂×U = (−v, u) describing the
Coriolis force which deflects moving objects to the right on the northern hemisphere.
When the basin is narrow compared to both the tidal wavelength and the Rossby
radius of deformation

√
gH/f , which is a length scale related to the Coriolis force,

transversal variations can be ignored and the one-dimensional shallow-water equations
can be used. Furthermore, if the tidal amplitude is small with respect to the water
depth, the nonlinear terms in (2.1) are negligible as well and (2.1) reduce to the
one-dimensional depth-averaged linear shallow-water equations

∂ζ

∂t
+

∂

∂x
[H u] = 0, (2.2a)

∂u

∂t
= −g

∂ζ

∂x
, (2.2b)

in which we finally neglected frictional effects as well (bottom friction is relatively
unimportant at 100 m water depth). Boundary conditions have to be appended to
these equations to complete the model. At coastal boundaries one usually prescribes
a no-flux condition DU·n̂ with n̂ the (outward) normal to the coast. If the water
depth D tends to zero at the coast, this condition should be interpreted to require U
to remain finite at the boundary. At open boundaries, connecting the model area to
adjacent seas, it is less clear what to prescribe. Specifying the observed water-level
variations at the boundary should be sufficient to obtain a correct description, but
the tide in the adjacent sea may be influenced by changes in the basin (leading to
radiation damping). Although a boundary condition taking into account the effect of
radiation damping would be more accurate, the simple boundary condition assuming
the water-level elevations at the open boundary to be known is used here. It can be
convenient to split the model area in different parts and find solutions to (2.1) or (2.2)
in each part separately. In that case the respective solutions have to be matched at
the boundaries between the parts by requiring both the water-level elevations ζ and
the water flux DU·n̂ through the boundary to be continuous.
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2.1.2 Solution for constant depth or straight slope

The linear shallow-water equations can be written completely in terms of a wave equa-
tion (with varying coefficients) for the water-level elevation ζ by differentiating the
continuity equation (2.2a) with respect to t and substituting u from the momentum
equation (2.2b) to obtain

∂2ζ

∂t2
=

∂

∂x
[g H(x)

∂ζ

∂x
]. (2.3)

Prescribing a single sinusoidal forcing at the open boundary ζe = αee
iωt + c.c. the

response of the basin will be at the same frequency ζ(x, t) = ζ̂(x)eiωt + c.c. which is
governed by the equation

ω2ζ̂ +
d
dx

[g H(x)
dζ̂

dx
] = 0. (2.4)

For basins with constant depth the general solution to this equation is given by

ζ̂ = A cos(κ (x− xc)) + B sin(κ (x− xc)), (2.5)

in which one is free to choose the reference point xc conveniently and the wave number
κ = ω/

√
gH is given in terms of the fixed depth H. For basins with a straight slope

from depth H1 at x = x1 to H2 at x = x2 with depth profile

H(x) =
(x− x1)H2 + (x2 − x)H1

x2 − x1
=

H2 −H1

x2 − x1

(
x− x1H2 − x2H1

H2 −H1

)
,

the solution can be written in terms of Bessel functions

ζ̂ = CJ0(2κ
√

x− x0) + DY0(2κ
√

x− x0), (2.6)

where x0 = (x1H2 − x2H1)/(H2 −H1) is the point at which the water depth H(x) is
zero and should not lie within the interval between x1 and x2. If the depth vanishes
at one of the boundary points x1 or x2, the integration constant D should be zero for
the solution to remain finite.

Note that Prandle (1991) gives the solutions to (2.3) more generally when H(x) ∝
xn for some power n, in terms of Bessel functions of different (fractional) order. In
his formula the Bessel function of the second kind does not occur because he chooses
the origin of the longitudinal coordinate x at the point where H vanishes.

2.2 Application to the Adriatic Sea

The bathymetry of the Adriatic sea is characterized by a deep (about 1 km) southern
part from its mouth at Brindisi connecting it to the Mediterranean Sea to halfway
the basin and a shallower (≤ 200 m) shelf in the northern end. This depth profile
is sketched in figure 2.1(b), which shows a cross-section through the central axis of
the basin along the line indicated in the contour plot in figure 2.1(a). Although
the structure of the M2-tide in the Adriatic Sea is influenced by the rotation of the
Earth (note the amphidromic structure in figure 2.2(a)), the simplest approach is to
ignore transversal variations and describe the basin as a one-dimensional channel, such
that the results in the previous section can be applied. The depth along the central
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(a) Contour plot of bathymetry
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Figure 2.1: Bathymetry of the Adriatic Sea, relatively deep in the southern part and
a sloping shelf in the northern part. The data have been provided by Dr. Richard
Signell, United States Geological Survey. A longitudinal cross-section along the cen-
tral axis indicated by the line in the top view is used for the one-dimensional model
of the Adriatic Sea neglecting transversal variations.

axis of the basin is not representative for the mean depth along transversal cross-
sections. The proper value would be the mean depth, weighted by the magnitude
of the tidal currents such that the water flux through transversal cross-sections is
properly represented. Because this cannot be evaluated within the context of the
one-dimensional model, we simply decrease the depth in figure 2.1(b) by a factor of
75 %.

In order to model the shape of the depth profile, the Adriatic Sea is cut into
a number of pieces on which the bottom is described by a straight slope. For the
results presented here eight pieces are used, see figure 2.1(b). Within those pieces the
solution to the wave equation (2.3) is given by (2.6), or (2.5) if the bottom happens
to be flat. The solution in the entire basin is obtained by matching these solutions
in the different pieces, determining the respective constants C and D from the fact
that water level and water flux should be continuous at the transitions. At the
northern end, the water depth tends to zero, so the coefficient Dend should be zero
there. The matching conditions requiring ζ̂ and dζ̂

dx (determining u, hence water flux)
to be continuous allow us to express the coefficients Ci and Di in the other pieces
of the basin in terms of the remaining integration constant Cend for the end of the
basin. In fact, the linearity of the model implies that multiplying the solution by any
constant yields a solution again. This final freedom is removed by prescribing the
tidal amplitude at the open (southern) end of the basin to equal the observed tide in
the Mediterranean Sea. The computer algebra package Maple was used to perform
these simple but tedious calculations.



2.2. Application to the Adriatic Sea 35

2.2.1 Present situation

In figure 2.2 the solution ζ̂(x) describing the spatial distribution of tidal amplitude is
compared with tidal observations along the central axis of the Adriatic Sea, obtained
from figures 2.2(a) and 2.2(b). The amplification of the M2-tide from 8 cm at the
Mediterranean Sea to 22 cm at the northern end of the basin is captured well by
the model. In the deep southern part of the basin, the tidal amplitude appears
to be fairly constant, both in the model and in observations. The standing wave
described by the model has a knot at which there is no vertical tidal motion at
all about 625 km from the southern connection with the Mediterranean Sea, which
is slightly further inside the shelf than observed. In the realistic two-dimensional
setting, it is an amphidromic point on the central axis of the basin around which
the tidal wave rotates counterclockwise through the basin. Still, this simple model
gives a reasonable approximation of the tide along the central axis. North from the
amphidromic point, the amplitudes ζ̂ are indicated to be negative. In view of the
formulation ζ(x, t) = ζ̂(x)eiωt + c.c. this means that the tides are in the opposite
phase from the tide at the Mediterranean mouth of the Adriatic Sea.

For the K1-tide the period, hence the wavelength, is much larger. As a conse-
quence, the spatial distribution of this component’s amplitude is different and there
is no amphidromic point for this component of the tide. Near the amphidromic point
of the M2-component, the amplitude of the semidiurnal tide is relatively weak, so the
tide in this region is predominantly diurnal, with one high tide and one low tide a
day instead of twice a day in regions where the semidiurnal tide prevails. The am-
plification of the K1-component is strong, from 2 cm amplitude at the entrance to
18 cm amplitude at the end of the basin, because the length of the basin is close to a
quarter of a wavelength, the condition for resonance. Part of the amplification occurs
at the mouth which is relatively narrow. This is not captured by the present model
because it does not take into account the changes in the width of the basin. From
Brindisi, where the tide’s amplitude is approximately 4 cm, the width of the Adriatic
Sea doesn’t change much and the amplification of the K1-component is also described
reasonably well by the one-dimensional model.

2.2.2 Past tides

With the present tide predicted quite well by this simple one-dimensional linear model,
one may consider the changes to the tide if the mean sea level were lower, such as it has
been in previous ages. Figure 2.3(a) shows the longitudinal depth profile that has been
used and the past sea levels for which the consequences for the tide in the Adriatic
Sea have been evaluated. Assuming that the bottom profile has not changed much,
the reduction in sea level results in lower water depth as well as a reduction of the
length of the basin. This may not be good description, especially near the vanishing
depth at the northern end of the basin where the action of wind waves and tidal
currents may move sediment and change the bathymetry, but the morphodynamics
involved is another field of research outside the scope of this thesis. The reduction in
water depth causes the tidal wavelength to decrease, but the reduction of the basin
length is larger so the relative basin length with respect to the wavelength decreases.
The remaining subfigures in Figure 2.3 show the resulting amplitudes of the M2- and
K1-component of the tide under the assumption that the tide at the Mediterranean
entrance remained the same.
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(a) Spatial structure of present M2-tide (b) Spatial structure of present K1-tide
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Figure 2.2: (a) and (b) show the structure of the present lunar semidiurnal M2

(12h25m period) and the diurnal K1-tide (23h56m period), after Cushman-Roisin
& Naimie (2002, Fig. 2) (originally Polli, 1960). The dashed curve denotes the cen-
tral axis along which the values have been used for comparison with the model. (c)
and (d) compare the tidal elevation amplitude (m) obtained from the one-dimensional
linear model (solid line) with those from tidal observations (circles).
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Figure 2.3: The modelled amplitude of the past tide in the Adriatic Sea when
the mean sea level was lower, for the lunar semidiurnal M2-tide and for the
diurnal K1-component. The results are shown for a mean sea level which is
0, 19.5, 39, 58.5, 78, 97.5 and 117 m less than present, with corresponding reduction
in basin length to 840, 791, 743, 694, 645, 596 and 548 km respectively.

For the M2-tide we see that, as the basin gets shorter, the amphidromic point
shifts towards the basin entrance and the amplitude at the end of the basin increases
strongly, because the basin length gets closer to quarter wavelength resonance. In this
model, the amplification increases indefinitely when the mean sea level was 109 m
below present corresponding with a basin length of 567 km. This singular behaviour
is caused by the fact that no damping is taken into account. Radiation of wave
energy from the Adriatic Sea back into the Mediterranean Sea would cause the tide
at the entrance to vanish exactly at resonance such that the amplitude at the end
remains finite, despite the infinite amplification predicted by the inviscid linear model.
Dissipation of energy due to bottom friction would also cause the amplitudes to
remain bounded as well as introduce phase differences along the basin. However, one
still expects increased resonance near the resonant basin length, largest amplification
occurring at slightly shorter basin length due to the retarding effect of friction (cf. the
discussion on response curves in chapter 3). Note that the estimates for the resonant
basin length differ by about 20 km when moderately different depth profiles are used
and is typically about 10 km less for the solar semidiurnal S2-tide whose frequency is
slightly above the M2-frequency.

For the K1-tide there is no amphidromic point within the Adriatic Sea, corre-
sponding to the fact that the K1-frequency is below the present eigenfrequency of the
Adriatic Sea. Consequently the reduction of the basin length brings the Adriatic Sea
farther away from resonance and amplification of the K1-tide must have been less in
past ages at lower mean sea level. This conclusion does not depend critically on the
precise depth profile, because it relies solely on the absence of an amphidromic point,



38 Chapter 2. Linear model for the tide in the Adriatic Sea

which is derived from present-day tidal observations for the K1-tide. The amplitudes
of tidal currents are shown as well. For K1 the currents are much less (0.045 m/s
maximum) than the M2-currents (0.113 m/s maximum under present conditions) be-
cause its frequency is much lower, so the water motion is spread over a larger period
of time. Another conspicuous feature is the fact that the currents are considerably
larger over the sill of relatively little depth at the beginning of the shallow shelf where
the entire flux water moving towards the shelf is forced through a relatively small
cross-section.

2.3 Conclusions

In this chapter linear tidal modelling has been illustrated by considering an inviscid
one-dimensional linear shallow-water model for the tide in the Adriatic Sea. The
linearity of the model allows us to consider the different tidal frequencies separately
and compose the final water-level elevations from the sum of the solutions for the
different tidal constituents. In particular, the lunar semidiurnal M2-tide (12h25m

period, amplitude ranging from 7 cm at Otranto, the Mediterranean entrance to 26 cm
at Trieste, the northern end) and the diurnal K1-tide (23h56m period, amplitude
ranging from 2 cm at Otranto to 20 cm at Trieste) have been considered. Another
important constituent is the solar semidiurnal S2-tide (12h00m period, amplitude
ranging from 4 cm at Otranto to 15 cm at Trieste) but it behaves similar to the
M2-component. Other tidal constituents are small compared to these three. The
tide is forced by co-oscillation with the tide in the Mediterranean Sea. Its resonant
amplification due to the basin length being close to a quarter wavelength, is described
quite well by the linear model. A quarter wavelength of the K1-component of the tide
is larger than the length of the Adriatic Sea. Hence the K1-tide was not so close to
resonance in previous ages when the mean sea level was lower and the basin length
smaller. The M2-tide has an amphidromic point within the Adriatic Sea. In previous
ages with lower mean sea level and shorter length of the basin, it must have been closer
to the entrance implying that the amplification of the tide must have been larger. The
inviscid linear model presented in this chapter fixes the resonant basin length at about
570 km when the mean sea level was 110 m below the present level. Although the
conclusion that the M2 must have been more resonantly amplified than today does
not depend much on the particular model, the precise value of the resonance length
may differ from this number due to the influence of damping or changes in the depth
profile.



Chapter 3

Experimental validation of
Lorentz’s linearization
procedure

Having considered a linear model for the amplification of the co-oscillating tide in a
tidal basin at specific forcing frequencies in the previous chapter, this chapter focuses on
the response curve (amplification and phase lag of the tide in the basin relative to the
tidal signal at sea as a function of forcing frequency) of such a basin. In particular the
dependence of the response curve on the tidal amplitude due to the nonlinear influence
of dissipation is observed. Although Lorentz’s linearization procedure for coping with
this nonlinear effect was already developed at the beginning of the previous century,
quantitative experimental validation in this context had not yet been provided. In this
chapter results from laboratory experiments in a ‘tidal tank’, demonstrating the resonant
response of the so-called Helmholtz mode in an almost enclosed basin, are presented. The
experimental results show good agreement with theory. 1

3.1 Introduction

Tidal motion is a key feature (for navigation, economy, flushing, morphodynamics,
ecology, . . . ) in many coastal areas, with tidal ranges of 1–3 m (Dutch Wadden Sea)
up to 8 m (Bay of Fundy). At those locations, it by far exceeds the equilibrium tide
which represents direct gravitational forcing (if the Earth were completely covered
by water, neglecting inertia) by the moon (54 cm) and the sun (26 cm). The am-
plification is a result of resonance when the directly driven ocean tide propagates
into co-oscillating coastal seas. Linear theory describing this is well established and
is reviewed in several publications (Defant, 1961; Raichlen, 1966; LeBlond & Mysak,
1978).

Resonance occurs if the tidal period is close to one of the eigenmodes of the
basin, such as the quarter wavelength modes in half open channel-like basins, or the

1This chapter is based on the paper “Experimental verification of Lorentz’ linearization procedure
for quadratic friction” by Guido M. Terra, Willem Jan van de Berg and Leo R.M. Maas, Fluid Dyn.
Res. (2005), Vol. 36, pp. 175–188.
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Helmholtz or pumping mode in almost-enclosed basins. For example, Garrett (1974)
shows that the eigenperiod of the Bay of Fundy together with the adjacent Gulf
of Maine is 13.3h, in near resonance with the dominant M2-tide from the Atlantic
Ocean. The Bay of Fundy itself, like the Adriatic Sea considered in the previous
chapter, can be described as a quarter wavelength resonator in which the tidal am-
plitude increases into the basin. The Helmholtz mode is a relatively simple mode
characterized by uniform water-level elevation within basins that are small compared
to the tidal wavelength and co-oscillate with an adjacent sea/ocean through a narrow
inlet. The balance between the inertia of the flow through the inlet and the restoring
force due to the water-level difference between that at sea and in the basin determines
the oscillation (see e.g. Miles, 1974; Carrier et al., 1971b; Maas, 1997).

Dissipation of energy in resonant Helmholtz basins, which is the main interest in
this chapter, is through radiation damping, bottom friction and head loss (pressure
drop) due to flow separation. Radiation damping is adequately described linearly
(e.g. Miles, 1971; Garrett, 1975; Zimmerman, 1992; LeBlond & Mysak, 1978) but
leads to the so-called harbour paradox (Carrier et al., 1971a; Miles, 1974): intuitively
one would expect suppression of the response to external forcing when decreasing
the width of the inlet, due to increased screening. However, the maximum and mean
square response appear to increase, because radiation of energy is reduced. By includ-
ing the effect of head loss due to flow separation at the inlet this paradox is resolved
(Hayashi et al., 1966; Terrett et al., 1968; Ito, 1970; Mei et al., 1974). Using hydraulic
theory they show that the head loss term depends quadratically on the fluid velocity.
Actually this has the same form as Chezy’s law, commonly used to model bottom
friction.

In order to evaluate the influence of the quadratic (bottom) friction term Lorentz
(1922, 1926) proposed to replace it by a linear term with the friction coefficient chosen
such that the energy dissipation per tidal cycle would be the same as when the non-
linear law were used. Zimmerman (1982) interpreted the method as a renormalization
procedure. Mei (1989) mentions Lorentz’s linearization method under the name of
equivalent linearization. Zimmerman (1992) applied the method to the special case
of the Helmholtz mode, in which case the results are particularly simple. A more
elaborate exploration without assuming the tide to be uniform inside the basin is
performed by Ünlüata & Mei (1975) and Gerber (1986), thus including the sloshing
modes as well. They conclude that the Helmholtz mode is affected most by the head
loss effects. Dronkers (1962, 1964) and Le Provost (1973) give a complete asymptotic
expansion of the quadratic friction term, which is used in a perturbation method by
Kabbaj & Le Provost (1980). All of these methods are virtually equivalent, at least
to first order. Hence the simplest approach of Zimmerman (1992) is followed in this
chapter.

The calculations of Lorentz (1926) have been confirmed quite well by field observa-
tions in the Dutch Wadden Sea (Thijsse, 1972). Nonlinear aspects express themselves
in the generation of higher harmonics distorting the tidal curve to become asymmetric
(see section 1.3.2 and references therein).

Besides field observations, laboratory experiments have been performed as well.
First, linear theory has been tested: McNown (1952) studied the structure of the
eigenmodes in circular basins. Similar experiments have been performed for rectan-
gular basins (Apté & Marcou, 1954; Falconer & Guoping, 1991). Lee (1971) measured
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the response curves of almost enclosed circular basins, a half open channel and a more
complex model of Long Beach Harbour. Harbours with multiple basins were stud-
ied in more detail by Lee & Raichlen (1972). All of them found the linear response
curves for these basins without considering the influence of the tidal amplitude, i.e.
of nonlinearity.

Lepelletier & Raichlen (1987) investigate the nonlinear distortion of the sinusoidal
tidal curve by both laboratory and numerical experiments, but they do not consider
the influence of the forcing amplitude on the response curves. Experiments to cor-
roborate Lorentz’s linearization theory, by comparing the response curves at different
forcing amplitudes, seem to be missing. Although Horikawa & Nishimura (1970) do
present results for different amplitudes, they rate them as less accurate owing to the
deformation of the waves and do not provide an adequate quantitative comparison
with theory. Both Bowers (1977) and De Girolamo (1996) state qualitatively that the
head loss effect is found to cause the amplification factor to decrease with increasing
amplitude in their preliminary experiments. However, their main focus is on the gen-
eration of harbour oscillations due to the nonlinear setup/setdown by wave groups.
Although they do mention the quadratic dependence of the energy loss on velocity, no
quantitative analysis is given by them either. In particular, no reference to Lorentz’s
linearization principle is made. Equivalent linearization is mentioned by Martinez &
Naverac (1988). They provide good quality experimental data, but their focus is on
the effect of changing the entrance width to their basins. Their analysis of the data
is based on insufficiently developed theory neglecting inertia. As a consequence the
dependence on forcing amplitude is not captured well and they conclude that the
coefficient in the nonlinear friction law strongly depends on the forcing amplitude.

In order to fill the lack of experimental validation of Lorentz’s linearization princi-
ple, we present a quantitative comparison between our measurements and the results
of a simple model for the Helmholtz mode with Lorentz’s linearized friction, which
does predict the dependence of the response curves on the forcing amplitude. After
a brief overview of the theory in section 3.2 and a description of the experimental
setup in section 3.3, the results are discussed in section 3.4. The chapter is concluded
with an estimation of the domain of validity of Lorentz’s linearization theory using a
renormalization method and numerical integration and a discussion of the relevance
in the geophysical context.

3.2 Theory

Consider an almost enclosed basin with horizontal area A connected to the sea by a
channel of length L, width B and depth H, as shown in Fig. 3.1, which is forced by a
tidal signal at sea with angular frequency ω. Its dimensions are assumed to be much
smaller than the tidal wavelength λ = 2π

√
gH/ω, such that the tidal wave traverses

the basin “instantaneously”. Hence the water level in the basin can be described
by a single value ζ, the elevation relative to the still water level. Water flows into
the basin through the channel with velocity u. All dynamics are concentrated in
the channel, where the elevation difference between sea and basin drives the flow,
balanced by the inertia of the water in the channel and bottom friction/head loss.
Actually, the channel length L in (3.1a) measures the inertia of the system. The
(relatively small) contribution of flow outside the channel causes the effective length
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Figure 3.1: Top view sketch of an almost enclosed tidal basin with horizontal area A,
co-oscillating with the tide at sea through an inlet channel of width B, length L and
depth H.

Leff , which determines the eigenfrequency ω0 defined below, to be slightly longer
than the physical length of the channel, the “added mass effect”. From here on each
occurrence of L relates to effective length, the notation Leff is used only if confusion
with physical length might occur. Bottom friction is commonly described by Chezy’s
law (cD/H) |u|u, with drag coefficient cD ≈ 0.0025 determined empirically (Parker,
1991a). The head loss due to flow separation is parameterized by (f/L) |u|u and
differs only in the formulation of the coefficient; f has to be determined empirically
as well. Indeed, based on computer simulations Ito (1970) reports that the harbour
paradox is resolved by including this term and the vulnerability of the Port of Ofunato
to tsunamis decreased considerably due to the partial closure of the entrance by
a breakwater. He found that f ≈ 1.5 gave the best results when comparing the
numerical simulations with observations from tide gauges. The dynamics of the system
can be described by the equations for momentum and mass conservation:

du

dt
=

g

L
(ζe − ζ)− f̃

L
|u|u, (3.1a)

A
dζ

dt
= O u, (3.1b)

where ζe = αe cos(ωt) = Re
[
αe eiωt

]
is the prescribed elevation at sea and O = BH

is the channel cross-section. The head loss coefficient f̃/L is considered to include
bottom friction as well (f̃/L = f/L + cD/H). Note that radiation damping is not
modelled here explicitly but is assumed to be already incorporated in ζe, i.e. ζe is
considered to be the tidal signal at the seaward entrance with the basin present. In
analysing the experimental results we will also compare the measurements inside the
basin with the forcing signal at sea as it is measured simultaneously.

The Lorentz’s linearization principle amounts to replacing the nonlinear head loss
term (f̃/L) |u|u by ru, with effective linear friction coefficient r to be determined. In
that case the system (3.1) is linear and the response will be of the form ζ = |α| cos(ωt+
ϕ) = Re

[
α eiωt

]
, where α = |α|eiϕ, and consequently u = −(A/O) ω|α| sin(ωt + ϕ).

Lorentz’s energy principle states that the energy dissipation per tidal cycle should be
the same for both formulae: 〈ru2〉 = 〈(f̃/L) |u|u2〉, in which 〈·〉 denotes averaging
over a tidal cycle. Evaluation of the corresponding integrals leads to

r = ν0 ω|α|, with ν0 = 8
3π

f̃A
OL , (3.2)
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i.e. effective friction increases linearly with tidal amplitude in the basin. Using the
linear expression for friction, (3.1) can be simplified to

d2ζ

dt2
= ω0

2 (ζe − ζ)− ν0 ω|α| dζ

dt
,

in which ω0
2 = gO/(AL) is the eigenfrequency of the Helmholtz mode. Substituting

ζ = Re
[
α eiωt

]
the complex response equation is found:

(ω0
2 − ω2) α + i ν0 ω2 |α|α = ω0

2 αe. (3.3)

By taking the square modulus of this equation it is possible to solve for |α| and find

|α|
|αe|

=

√√√√√(1− ( ω
ω0

)2)4 + 4ν0
2( ω

ω0
)4|αe|2 − (1− ( ω

ω0
)2)2

2ν0
2( ω

ω0
)4|αe|2

, (3.4)

which can be combined with (3.3) to find the phase lag ϕ ∈ (−π, 0) as well, from
ϕ = arccos((1− ( ω

ω0
)2) |α|αe

). Differentiating the square modulus of (3.3) with respect
to ω, equating the derivative of |α| to zero and using the result to eliminate either ω
or αe, one can maximize (3.4) with respect to ω. As a function of forcing amplitude
αe maximum amplification is given by

|α|max

αe
=

√
1
2

+
1
2

√
1 +

4
ν0

2αe
2
. (3.5)

As a function of ω one has |α|max/αe = (1 − ( ω
ω0

)2)−1/2, which will be indicated by
a dotted line in the response diagram (Fig. 3.4(a)).

3.3 Experimental setup

A sketch of the experimental setup is shown in Fig. 3.2. The area of interest is the
“basin” of 0.916 m2. Instead of a channel, a completely submerged pipe is used to
connect the basin to the forcing tide at “sea”. In this way, the cross-section O does
not depend on the water-level elevation ζ, which would otherwise introduce (addi-
tional) nonlinear effects (Miles, 1981). The experiments presented in this chapter
were performed using a circular pipe with a length of 441 mm and 76.4 mm diameter.
Without the “added mass effect” increasing the effective pipe length, the Helmholtz
frequency is expected to be ω0 = 0.33 rad s−1 = 53 · 10−3 Hz (18.8 s period). The
water depth at rest was set to be about 15 cm above the bottom of the basin and was
checked not to influence the measurements as long as the pipe remains completely
submerged. A forcing tank is immersed in the water and is lifted and lowered by
a properly counterbalanced servomotor. The control signal can be generated by the
computer. In principle the forcing signal may consist of many frequency components,
but harmonic forcing only is considered in this chapter. The water expelled by the
forcing tank, moves through the conduit underneath the basin area towards the sea.
A grating was inserted in order to help the water level at sea to be uniform, but
it did not prevent the occurrence of a standing wave: depending on the forcing fre-
quency amplitudes are higher at the far end of the sea. The amplitude of the control
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Figure 3.2: Sketch of the experimental setup, dimensions in mm are indicated. The
forcing tank is set into motion by a servomotor. The water expelled by the tank moves
through the conduit underneath the basin area to the “sea”. The tidal signal thus
generated at sea, propagates into the basin through a completely submerged pipe.
The water-level elevation is measured by acoustic sensors at the indicated positions.
Because the tide in the basin is nearly uniform, the measurements for the sensors in
the basin are virtually the same.

signal is adjusted to obtain the desired forcing amplitude at the mouth of the basin
(cf. the discussion at the end of this section), so this has no influence on the mea-
surements. Acoustic sensors are used for nonintrusive measurements of water-level
elevation. They are located above the tank and emit an acoustic signal at 300 kHz
down to the water surface and measure the return time of the reflected signal, like
an echo sounder. Their resolution is 0.36 mm, the standard deviation of the noise
is similar. Significant outliers of some centimetres occur and are dismissed from the
analysis.

No dissipators have been installed at the sidewalls of the sea. Raichlen & Ippen
(1965) warn that consequent reflections have a dramatic effect on the response curves.
They define the amplification factor as the ratio of the tidal response amplitude in
the basin over the amplitude at the seaward entrance if the basin were closed, i.e. not
present. Indeed, radiation damping effects changing the actual tidal forcing signal at
the seaward entrance, are quite different in a finite reflective sea than in a semi-infinite
reflectionless sea. We however choose to correct the motion of the forcing tank such
that the amplitude at the seaward entrance is the same for all frequencies and define
the amplification factor as the ratio of the response amplitude in the basin over the
amplitude at sea with the basin connected to it, as it is measured simultaneously. This
effectively boils down to eliminating the effect of radiation damping and circumvents
the problems mentioned by Raichlen & Ippen (1965).
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Figure 3.3: Sample time series of measurements at forcing frequency 0.0420 Hz and
forcing amplitude approximately 2 mm. Dots indicate measurements from the sensor
at sea, pluses and crosses indicate measurements at the entrance and end of the basin
respectively. Solid curves show harmonic fits to the respective time series. The two
curves inside the basin are nearly indistinguishable, consistent with a Helmholtz mode
of uniform basin tide.

3.4 Results

A sample time series from our measurements is shown in Fig. 3.3. This measurement
was performed at a forcing frequency ω = 0.0420 Hz = 0.264 rad s−1 and forcing
amplitude αe approximately 2 mm. Measurements at the seaward pipe entrance are
indicated by dots. Pluses and crosses are used for the measurements in the basin.
Amplification and phase lag between the tide at sea and in the basin are clearly
visible. Note that the signals of both sensors inside the basin are virtually the same,
so the assumption of uniform tide within the basin is satisfied indeed. Harmonic
analysis has been used to fit the measurements to a sum of sinusoids at the forcing
frequency and significant overtides, if any. In most cases, no significant overtides
were found. Only for particular frequencies, if one of the overtides was resonant with
the eigenfrequency ∼ 0.45 Hz of the entire system (sea and forcing tank), secondary
oscillations were found at sea. They appeared not to extend into the basin though
and there are no indications of their influence on the response curves for the main
component. The harmonic fits are shown in Fig. 3.3 as well.

From the amplitudes found this way, the amplification factor and phase lag of
the forcing frequency component are calculated. By plotting them as a function of
forcing frequency, the response curves are determined, see Fig. 3.4, for three different
forcing amplitudes αe ≈ 1, 2, 5 mm. The theory according to (3.3) has been fitted
to the measurements minimizing the least square error in the complex α/αe-plane.
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Figure 3.4: Response curves: amplification factor |α|/αe and phase lag φ between the
tide at sea and in the basin as a function of forcing frequency ω/(2π). Three series of
measurements with forcing amplitudes αe ≈ 1, 2, 5 mm are shown, for each of which
results for two sensors in the basin have been obtained. Slight amplitude differences
between both basin sensors can be noted, in particular at 1 mm forcing amplitude.
Solid curves show the fit to the theory (3.4). The Helmholtz frequency ω0 = 0.0505 Hz
is indicated by a dotted vertical line, a dotted curve connects the maxima according
to (3.5). Note that one fit is used to describe all three curves. Apparently the decrease
of the resonator’s quality is adequately described by Lorentz’s linearization theory.

Because the effective length differs from the actual pipe length due to the added mass
effect it has to be determined empirically. The same holds good for the head loss
parameter f̃ . Therefore, ω0 and ν0 are used as fitting parameters. The curves shown
in Fig. 3.4 are for the best fit with ω0 = 50.5± 0.9 · 10−3 Hz = 0.317± 0.006 rad s−1,
ν0 = 374± 9 m−1. So the effective pipe length Leff = 48.9± 1.7 cm is 4.8 cm longer
than the actual length of the pipe. Furthermore, f̃ = 0.97±0.02 has the same order of
magnitude as Ito (1970) found for motion on real geophysical scale (f ≈ 1.5). Hence
our experiments give validation to his numerical/empirical value.

Although the use of effective instead of physical pipe length amounts to adjusting
the theoretical curves to the measurements, note that only one fit is used for all
three curves. For a (hypothetical) linear system there would be no dependence of
the response curve on the forcing amplitude. Instead the experiments show that the
height and sharpness of the resonance peak decrease for increasing amplitudes, due to
the fact that effective friction r increases, as was already noted qualitatively by Bowers
(1977), De Girolamo (1996) and Martinez & Naverac (1988). This decrease of the
resonator’s quality (resonance frequency divided by peak width) is captured well by
Lorentz’s linearization theory. The curves for different forcing amplitude are similar
to those for different opening width, in which case the effective friction is increased
due to an increase of ν0 in our terminology (cf. Martinez & Naverac, 1988, Fig. 6).
Note that quadratic friction not only causes the response curves to be different for
different forcing amplitudes but also changes the shape of the curves, because the
effective linear friction coefficient r ∼ ωα is not constant along the individual curves
either. Although this effect is hardly visible at first sight it causes the curves to drop
off slightly steeper to the right of the peak frequency. A conspicuous feature of the
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phase lag curves is the fact that the phase lag is −π/2 for ω = ω0 irrespective of
forcing amplitude. It is immediately clear from (3.3) that this is predicted by the
theory as well.

3.5 Domain of validity

The correspondence between theory and measurements in figure 3.4 is very good. In
the present laboratory setup, conditions for which Lorentz’s linearization theory does
not perform well have not been found. In order to investigate the domain of validity
of Lorentz’s linearization theory the model (3.1) has been studied in more detail, both
analytically and numerically.

First of all, it is worthwhile to note that the variables in (3.1) can be rescaled to
obtain a more simple dimensionless model by scaling

ζ = OL
Af̃

ζ ′, ζe = OL
Af̃

ζ ′e, u = ω0
L
f̃
u′, t = t′

ω0
, (3.6)

which leads to the dimensionless model

du′

dt′
= ζ ′e − ζ ′ − |u′|u′, (3.7a)

dζ ′

dt′
= u′. (3.7b)

The only parameters that still determine the behaviour of this system are those that
determine the forcing water-level elevation ζ ′e at sea, the (dimensionless) forcing fre-
quency ω′ = ω/ω0 and amplitude α′e = Af̃

OLαe. Hence the shape of the response
curves is completely determined by the dimensionless parameter α′e that measures
the relative importance of friction.

3.5.1 First-order corrections to Lorentz’s linearization theory

Zimmerman (1992) showed that Lorentz’s linearization procedure can be considered
as a renormalization method. Introducing a formal expansion parameter ε, (3.7a) is
replaced by

du′

dt′
= ζ ′e − ζ ′ − ε|u′|u′ − r′u′, (3.8a)

which equals (3.7a) for ε = 1, r′ = 0. Writing ζ ′ = ζ̄ ′ + εz′ + O(ε2), u′ = ū′ + εv′ +
O(ε2), r′ = r̄′ + ερ′ +O(ε2) and consistently collecting terms of the same order in ε
one finds the model with linearized friction to first order. At the next order one has

dv′

dt′
+ r̄′ v′ + z′ = −|ū′| ū′ − ρ′ū′, (3.9a)

dz′

dt′
= v′. (3.9b)

Truncating at this order, the consistency condition r′ = 0 for ε = 1 implies that
ρ′ = −r̄′. The renormalization condition, requiring the first order solution ζ̄ ′, ū′

to correctly capture the behaviour at the forcing frequency ω′, consequently leads
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to r̄′ = 8
3π ω′|ᾱ′|, where ζ̄ ′ = Re

[
ᾱ′ eiω′t′

]
, ū′ = Re

[
iω′ᾱ′ eiω′t′

]
is the Lorentz’s

linearized solution (to be found from (3.4) with ν0 = 8
3π ). This is consistent with

Lorentz’s energy principle. For the correction z′ on the Lorentz’s linearized results
we thus have (writing ᾱ′ = |ᾱ′| eiϕ̄′)

d2z′

dt′2
+ r̄′

dz′

dt′
+ z′ = r̄′ ū′ − |ū′| ū′

= − 8
3π ω′

2|ᾱ′|2 sin(ω′t′ + ϕ̄′)± ω′
2|ᾱ′|2 sin2(ω′t′ + ϕ̄′),

(3.10)
with the plus-sign if sin(ω′t′+ϕ̄′) is positive and the minus-sign if it is negative, hence
on the intervals, indexed by integer k, [k 2π

ω′ −
ϕ̄′

ω′ , (k + 1
2 ) 2π

ω′ −
ϕ̄′

ω′ ] or [(k + 1
2 ) 2π

ω′ −
ϕ̄′

ω′ ,

(k+1) 2π
ω′ −

ϕ̄′

ω′ ]. Up to this point the procedure from Zimmerman (1992) was followed,
but he solved (3.10) using a truncated Fourier sum whereas matching exact solutions
on the latter intervals is performed here. The solution on the respective intervals is
given by

z′
(k)
± = |ᾱ′|

1+δ1
2

(
cos(ω′t′ + ϕ̄′)− δ1 sin(ω′t′ + ϕ̄′)

)
± 1

2ω′
2|ᾱ′|2 ∓ 3π

32
|ᾱ′|

1+δ2
2

(
δ2 cos(2ω′t′ + 2ϕ̄′) + sin(2ω′t′ + 2ϕ̄′)

)
+B

(k)
± e−

r̄′
2 (t′−t

(k)
± ) cos(

√
1− ( r̄′

2 )2 (t′ − t
(k)
± ))

+D
(k)
± e−

r̄′
2 (t′−t

(k)
± ) sin(

√
1− ( r̄′

2 )2 (t′ − t
(k)
± )),

(3.11)

where we abbreviate δ1 = 3π
8 (1 − ω′

2)/(ω′2|ᾱ′|), δ2 = 3π
16 (1 − 4ω′

2)/(ω′2|ᾱ′|), r̄′ =
8
3π ω′|ᾱ′| and t

(k)
+ = k 2π

ω′ −
ϕ̄′

ω′ , t
(k)
− = (k+ 1

2 ) 2π
ω′ −

ϕ̄′

ω′ are the points at which sin(ω′t′+ϕ̄′)
changes sign. By matching z′ and dz′

dt′ at t
(k)
± , we can relate the integration constants

B
(k)
± , D

(k)
± in subsequent intervals:

FX
(k)
− = e−

4
3 |ᾱ

′|FRX
(k)
+ + d, and (3.12a)

FX
(k+1)
+ = e−

4
3 |ᾱ

′|FRX
(k)
− − d, hence (3.12b)

X
(k+1)
+ = δ2 R2X

(k)
+ + δ RF−1d− F−1d, (3.12c)

in which X
(k)
± =

(
B

(k)
±

D
(k)
±

)
is the vector containing the integration constants,

F =

(
1 0

− r̄′

2

√
1− ( r̄′

2 )2

)

is a skew matrix incorporating phase differences between currents and water level due
to friction,

R =

 cos( π
ω′

√
1− ( r̄′

2 )2) sin( π
ω′

√
1− ( r̄′

2 )2)

− sin( π
ω′

√
1− ( r̄′

2 )2) cos( π
ω′

√
1− ( r̄′

2 )2)


is the rotation matrix over angle π

ω′

√
1− ( r̄′

2 )2 related to the eigenoscillation, the
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Figure 3.5: Response curves: amplification factor and phase lag between the tide at
sea and in the basin as a function of forcing frequency. Numerical results (symbols)
for the dimensionless system (3.7) are shown. The dimensionless Helmholtz frequency
ω′0 = 1 is indicated by a dotted vertical line, a dotted curve connects the maxima
according to (3.5). The theoretical (solid) curves are calculated from (3.4),(3.5), with
ω0 = 1, ν0 = 8

3π .

factor δ = e−
4
3 |ᾱ

′| accounts for frictional damping of the oscillation and

d =

(
9π2

64(1+δ2
2)

(4ω′
2 + r̄′2 − 1)

−3πω′|ᾱ′|
8(1+δ2

2)

)

is the vector representing the forcing at this order. The stationary solution (indepen-
dent of k) to these equations is found by solving [I − δ2R2]X+ = −[I − δR]F−1d,
hence X+ = −[I + δR]−1 F−1d. The complete expression for the water level and cur-
rent oscillation up to this order is obtained by adding ζ ′± = ζ̄ ′ + εz′±, u′± = ū′ + εv′±,
setting ε = 1.

Performing an harmonic analysis, fitting a sum of sinusoids with frequencies nω′,
with n = 0, 1, 2, . . . to ζ ′, the correction has no influence on the harmonic fit at
the forcing frequency, due to the renormalization condition. So the response curves
found using Lorentz’s linearization procedure need not be changed to this order of
approximation. Still, one can use the results from this section to estimate the changes
in the tidal curve due to the nonlinear friction term, see figure 3.6.

3.5.2 Numerical results

The dimensionless model (3.7) has been integrated using the numerical dynamical
systems package DsTool (Guckenheimer et al., 1992) for several values of α′e between
0.1 and 30. They were subsequently processed in the same manner as the experimen-
tal results. In line with the observation at the end of the previous section the response
curves are not noticeably different from the prediction by Lorentz’s linearization the-
ory over this entire range, see figure 3.5. Deviations from Lorentz’s linearization
theory appear when considering the tidal curves. Figure 3.6(a) shows the tidal curve
for one of the numerical runs for which the correspondence between the numerical
integration of (3.7) and the theoretical calculations using (3.11) is the worst, with
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α′e = 2.5, ω′ = 0.377. One can see that the deviations from a single sinusoid are still
predicted quite well by the asymptotic correction (3.11). Note that the current (which
has not been measured during the laboratory experiments) is influenced more strongly
by the quadratic nature of friction than the water level itself. Subtracting the single
sinusoid at the forcing frequency one is left with the deviation from Lorentz’s theory
in figure 3.6(b), in which it is more clear that the correction (3.11) overestimates the
amplitude of the tertiary overtide. This can be seen as well in figure 3.6(c), which
shows the maximum deviation relative to the amplitude of Lorentz’s sinusoidal re-
sponse as a function of the forcing frequency for α′e = 0.1, 1 and 30 (asterisks, pluses
and crosses). Moreover, it shows the relative change of the high water level (open
circles, squares and diamonds), which is less than the maximum deviation because
the latter need not be synchronized with high tide. The maximum deviation and the
deviation of the maxima according to the asymptotic correction (3.11) is plotted as
well, by dashed and dotted curves respectively. Actually, we find peaks of resonant
behaviour at forcing frequencies ω′ = 1/n, with n odd, n = 3 in particular. The
amplitude of the peak is overestimated however, because up to this order of approx-
imation the effective friction coefficient r̄′ = 8

3π ω′|ᾱ′| is normalized for the dominant
(forcing) frequency only. The resonant motion at the eigenfrequency is damped more
strongly because its frequency is three times the forcing frequency in this case. The
main conclusion to be drawn from this figure though, is the fact that Lorentz’s theory
is correct within 7% even for α′e = 30, for which the response curve figure 3.5 shows
damping for almost all frequencies.

3.5.3 Geophysical context

When extending the model result (3.4) from the laboratory setting to the geophysical
context, the main lack of knowledge is in the relative strength of friction. In the labo-
ratory setting, the dominant dissipative effect is the head loss due to the constriction.
This clearly depends on the shape of the entrance. Although the quadratic depen-
dence of friction on the velocity should still be valid, the appropriate value of the
coefficient f̃ is somewhat uncertain. However, because the value f̃ = 0.97 found by
our laboratory experiments compares well with Ito’s (1970) numerical value f = 1.5,
one is inclined to use this value in the geophysical context as well. For example, the
Amelander Inlet in the Dutch Wadden Sea can be considered to be a Helmholtz basin
with the following (approximative) characteristics:

A = 2.5·108 m2, B = 3·103 m, H = 10 m, Leff = 5·103 m, αe = 1 m,

which leads to

ω0 = 4.9 · 10−4 rad s−1, ω′M2
= 0.29, α′e = 1.62, hence

|α|
αe

= 1.082.

This compares reasonably well with the observed tide with range 1.4–2.5 m at sea and
1.7–2.8 m on the mainland at neap and spring tide respectively. Abusively extending
the results for a Helmholtz basin to a quarter wavelength resonator, the famous Bay
of Fundy leads to surprisingly comparable results as well. Considering only the Bay
of Fundy by itself, it has a total length of 270 · 103 m and an average width of about
50 · 103 m leading to A = 1.35 · 1010 m2. The entrance, 80 · 103 m wide, on average
50 m deep, is estimated with cross-section O = 4 · 106 m2. For the effective length of
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Figure 3.6: Numerical results integrating (3.7) versus theoretical corrections using
(3.11): (a) shows a sample tidal curve for α′e = 2.5, ω′ = 0.377. In (b) the dominant
signal at the forcing frequency is subtracted. The maximum deviation from this signal
(the maximum of the basin’s water-level response in (b), asterisks, pluses and crosses)
is plotted as a function of forcing frequency ω′ in figure (c), as well as the deviation of
the maxima (high tide in (a), circles, squares and diamonds) from the single sinusoid’s
amplitude predicted by Lorentz’s linearization theory, both relative to the amplitude
of the single sinusoid. Results are obtained by numerical integration using DsTool
for α′e = 0.1, 1 and 30. The dashed lines approximate the maximum deviation, the
dotted ones the deviation of the maxima, according to (3.11). The peak at ω′ = 1

3 is
predicted well, although the amplitude is overestimated.
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the entrance we take Leff = 100 · 103 m. Actually, the effective “channel” length for
which the Helmholtz frequency corresponds with the first quarter wavelength mode, is
found by dividing the total basin length by π2/4. The tidal amplitude at the mouth
of the Bay of Fundy is 3 m, hence we find, ω0 = 1.7 · 10−4 rad s−1, ω′M2

= 0.82,
α′e = 0.098 and |α|

αe
= 2.8, which compares well with the amplification up to 8 m

amplitude within the Bay of Fundy.

3.6 Conclusion

Although the theoretical foundations of Lorentz’s linearization method were already
put forward in Lorentz (1922, 1926), no quantitative high-accuracy experimental val-
idation is found in literature yet. The theory has been developed further (Mei, 1989;
Kabbaj & Le Provost, 1980; Zimmerman, 1992), comparison with observations have
been made (Ito, 1970; Thijsse, 1972), but studies using laboratory experiments have
been restricted to validating linear theory mainly (McNown, 1952; Raichlen & Ip-
pen, 1965; Lee, 1971). Experimental papers in which the effect of nonlinear friction
on the response curves has been measured, did not provide an explicit quantitative
comparison with theory, mainly because the focus was on another topic (Horikawa &
Nishimura, 1970; Bowers, 1977; De Girolamo, 1996; Martinez & Naverac, 1988). The
experiments discussed in this chapter give a clear validation of Lorentz’s linearization
principle to describe the influence of quadratic friction on the response curves for
the Helmholtz mode in an almost enclosed basin. A good fit between theory and
experiment was found. In particular the observed decrease of the resonator’s quality
with increasing amplitude corresponds perfectly with the theoretical increase of the
effective friction coefficient.

Further research has been focused on improving the quality of the resonator and
measuring nonlinear effects from non-uniform hypsometry (Maas, 1997) or continu-
ity/advection (Miles, 1981). The first goal may be achieved by smoothing the pipe
ends in order to reduce flow separation or decreasing the basin area, hence the tidal
prism. For the second goal, artificial topography can be introduced into the basin
mimicking intertidal flats causing the basin area to depend on the water level. Ac-
cording to the theory this may lead to bending of the response curve, multiple equi-
libria and chaotic behaviour of tidal amplitudes, possibly explaining observational
reports of drifting harmonic “constants” (Doodson, 1924; Gutiérrez et al., 1981) and
chaotic tidal records (Vittori, 1992; Frison et al., 1999). These topics are investigated
theoretically in the forthcoming chapters 4 and 5. Experimental results are presented
in chapter 6.
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Chapter 4

Derivation of the amplitude
evolution equations

In this and the next chapter the qualitative nonlinear influence of advection and continuity
on the resonance characteristics of co-oscillating coastal basins is investigated. For this
purpose a weakly nonlinear analysis is carried out on the shallow-water equations describing
a coastal basin resonating with exterior water-level oscillations. It extends previous work
(Maas, 1997; Maas & Doelman, 2002; Doelman et al., 2002) on an almost-enclosed
basin with one single (Helmholtz) mode to arbitrarily shaped ‘shallow’ basins with an
infinite number of modes. In line with that work, it is necessary to assume friction to be
sufficiently weak such that it is in balance with the nonlinear effects, instead of occurring
in the linearized equations. The main result of this chapter is the system of Landau
equations describing the slow evolution of the amplitudes of the oscillatory eigenmodes of
the basin, disregarding a zero-frequency eigenmode, should it exist. The dynamics of the
zero-frequency mode neglecting oscillatory eigenmodes have been discussed by others, but
a consistently balanced model for small amplitudes incorporating both the zero-frequency
and oscillatory modes is not yet available. The behaviour of this system, describing the
dynamics of the oscillatory eigenmodes only, is analysed in chapter 5. On the longer time
scale, it gives rise to a ‘bent resonance curve’, multiple equilibria (several tidal regimes
under the same tidal forcing), sudden regime changes and even chaotic dynamics (when
these regime changes occur in an irregular way).1

4.1 Introduction

Tides are generated by the gravitational forces exerted by astronomical objects,
mainly the sun and the moon. The direct gravitational forcing accounts for a global
tidal amplitude of merely 0.27 m for the lunar and 0.13 m for the solar component
(LeBlond & Mysak, 1978, p. 517). In order to explain the strong tidal signal of
several metres in many coastal areas, amplification due to resonance is required. A
tidal basin connected to a neighbouring ocean or sea can co-oscillate with the tide at
sea with increased amplitude if the basin’s geometry is such that the period of one

1This chapter is based on (the first half of) the paper “Weakly nonlinear cubic interactions in
coastal resonance” by Guido M. Terra, Arjen Doelman and Leo R.M. Maas, J. Fluid Mech. (2004),
vol. 520, pp. 93–134.
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of its eigenmodes corresponds to that of the tidal motion. The amplification by itself
has been described quite well with linear theory (Defant, 1961; LeBlond & Mysak,
1978; Mei, 1989). In this thesis nonlinear corrections to this linear picture are inves-
tigated. The nonlinear effects addressed now are due to advective accelerations and
to feedback on the water depth. Besides modifying the shape of the tidal curve by
generating higher harmonics, they can change the response curve (amplification as
a function of forcing frequency) of the basin, which may have dramatic qualitative
effects. In this chapter weakly nonlinear evolution equations for the tidal response
amplitudes are derived, the steady states of which constitute the response curves.

Traditionally the term coastal resonance is used to describe the response of certain
large-scale bays to forcing at one of the tidal frequencies. This response is typically
classified by the nature of the response, ranging from microtidal (when the coastal tide
is choked, i.e. has an amplitude less than that of the tide at open sea), via meso- to
macrotidal (coastal tide moderately amplified). Yet, in its strictest sense the term is
reserved to designate a so-called megatidal response, the severe amplification such as
encountered e.g. in the famous Bay of Fundy (amplitudes ranging up to 8 m), Sea of
Okhotsk, or near the coast of Normandy (amplitudes over 6 m). The nonlinear model
for coastal resonance which we will present, is, by the approach it takes, particularly
of relevance to the latter, megatidal case. It predicts that in certain circumstances
the tidal response might be irregular on the longer (e.g. fortnightly) time scale.

Resonance in smaller-scale coastal basins is called harbour resonance. These in-
fragravity waves (Okihiro & Guza, 1995) are pronounced oscillations in near-shore
sea areas and harbours with periods of a few minutes to hours, which are longer than
those associated with surface wind waves, but of shorter duration than a typical tidal
period. It can be considered as a special kind of coastal resonance. It is related
again to an eigenmode, typical of the particular geomorphology of the area under
consideration, resonating due to some forcing mechanism. In this case, the corre-
sponding eigenfrequencies are much higher than the tidal frequencies. Although the
terminology in this thesis is adapted to the tidal case, the analysis goes through for
the infragravity regime as well. If the infragravity waves are the dominant oscillation
in the basin, one only needs to change the time scale from the tidal period to the
period of the harbour oscillations.

A model aimed at describing nonlinear tidal resonance has been developed previ-
ously by assuming the spatial structure of the response in the bay to be as simple as
possible (namely spatially uniform), see Miles (1981), Green (1992) and Maas (1997).
Such a uniform spatial structure is a property of the so-called Helmholtz (or pumping,
or breathing) mode, and requires a specific geographic setting: an almost-enclosed,
relatively deep and small basin, such that the length of the basin is much shorter
than the tidal wavelength. Although this allows the nonlinear temporal response to
be understood (Maas & Doelman, 2002; Doelman et al., 2002), the stringent require-
ments on the shape of the resonator render it less applicable to describe the response
of a large number of (half open) bays. The derivation in the present chapter forms
a direct generalization of Maas (1997), Maas & Doelman (2002) and Doelman et al.
(2002) for the Helmholtz mode in almost-enclosed basins to the case of eigenoscilla-
tions in half-open, quarter-wavelength basins. Note that the term quarter-wavelength
is used here to describe modes in a two-dimensional basin with non-uniform depth as
well, i.e. to denote modes with spatial structure, in contrast to the Helmholtz mode.
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In line with the observations, we will assume the resonating oscillation to be nearly
absent outside the bay. As will be shown here, one can derive amplitude equations
that govern the evolution of the quarter-wavelength-type eigenmodes, the simplest of
which is identical to the equation governing the Helmholtz mode in the more specific
setting of an almost-enclosed basin.

The analysis of the nonlinear quarter-wavelength resonances, starts from the
shallow-water equations (section 4.2). Assuming small amplitudes of the oscillations a
perturbation analysis similar to the one employed by Pratt & Llewellyn Smith (1997),
is carried out in section 4.3. Starting from the basic state at rest, the first-order equa-
tions are linear and yield the quarter-wavelength modes of a half-open basin. Realness
of eigenvalues and orthogonality of these first-order eigenmodes can be established,
but the amplitude of the resonating mode is still undetermined at this level of de-
scription. The linear modes interact at the next (second) order, non-resonantly in our
case, leading amongst others to the generation of a zero-frequency component. The
eigenmodes are assumed to be forced (and damped) and interact resonantly2 only at
the next order. It is thus at third order that closed-form equations governing the slow
evolution of the amplitudes of the quarter-wavelength modes are finally obtained,
in the form of Landau equations. This is in contrast with the analysis in Pratt &
Llewellyn Smith (1997). Whereas the focus of this thesis is on the oscillatory modes,
their paper deals primarily with the zero-frequency (in rotating systems: geostrophic)
mode. Hence their basic first-order modes are the eigenmodes of an entirely closed
basin. Moreover, the presence of the zero-frequency eigenmode causes resonant inter-
actions to occur at second order. In the half-open oscillatory case, one is forced to
continue up to higher order to find the amplitude equations and assume friction to be
still weaker. On the other hand, by the choice of focusing on the oscillatory modes
only, we were able to evaluate the qualitative form of the amplitude equation more
explicitly.3 However, although circumstances can be indicated for which there is no
zero-frequency eigenmode, it is likely to exist in many basins. A proper description
would combine the approach of Pratt & Llewellyn Smith (1997) for the zero-frequency
mode and the one presented here for oscillatory modes. At present, the mathematical
problems involved with it remain a challenge to be solved. In this thesis, the zero-
frequency eigenmode is simply ignored in order to focus on the interaction between
the oscillatory eigenmodes.

The depth-averaged two-dimensional shallow-water equations for a co-oscillating
tidal basin are formulated in section 4.2. The derivation of the amplitude evolution
equations takes place in three steps. The first-order equations lead to a linear eigen-
value problem whose properties are discussed in section 4.3.1. The next section deals
with the generation of compound components by the quadratic interaction between
eigenmodes due to advection and continuity. In section 4.3.3 the application of a
solvability condition leads to the goal of this chapter, the Landau equation (4.29) or
the reduced version (4.30). In order to provide order of magnitudes for the coefficients
in the Landau equation, three examples for one-dimensional basins are discussed in
section 4.4. The concluding section 4.5 includes a discussion of the relevance of the
results to natural basins, and points out a few deficiencies in the theory.

2Note that resonance is used in its mathematical meaning here: exact correspondence of forcing
frequency and eigenfrequency in the frictionless limit, hence giving rise to infinite amplification, i.e.
the necessity to remove secular terms.

3Compare the final equation (4.30) in this chapter with the amplitude equation (3.5) in Pratt &
Llewellyn Smith (1997). In fact, the latter is the second-order equivalent of (4.23) in this work.
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(a) Top view

∂Ωs

∂Ωc

Ω

(b) Side view

Figure 4.1: Sketch of the tidal basin.

4.2 Formulation of the model

A tidal basin as shown in figure 4.1 is considered in this chapter. The top view,
figure 4.1(a), shows Ω, the area of interest. It is connected to the sea. The seaward
boundary of the area Ω is denoted by ∂Ωs, the coastal boundary by ∂Ωc. The choice
of the precise location of the seaward boundary ∂Ωs is somewhat arbitrary and is fixed
in time. In the side view, figure 4.1(b), a reference depth H is introduced, chosen to
be the undisturbed water depth at sea. The bathymetry is measured relative to this
depth level by h(x), where x = (x, y) is the horizontal position. The free-surface ele-
vation from the undisturbed water level is denoted by ζ(x, t). The total instantaneous
water depth is thus given by D(x, t) = H−h(x)+ζ(x, t). In fact, the area Ω depends
on time. When the water level rises, part of the coast is flooded, increasing the area
Ω. The coastal boundary ∂Ωc is defined by the condition that the total water depth
D is zero, hence is moving in time.4

The water motions are described by the depth-averaged two-dimensional shallow-
water equations. They describe the depth-averaged flow of water when the horizontal
scales of the motion are much larger than the vertical scale (depth) of the water.
Depth-averaged velocities are denoted by U = (u, v). In vectorial form the equations
are

∂ζ

∂t
+∇·[DU] = 0, (4.1a)

∂U
∂t

+ [U·∇]U + f k̂×U = −g∇ζ − τb

ρD
, (4.1b)

where τb is the bottom friction stress, to be parameterized. Equation (4.1a) is the
continuity equation, (4.1b) is the momentum equation. The vector k̂ is the vertical
unit vector: k̂ × U = (−v, u). These equations are completed with the boundary
conditions

4In principle this gives rise to a slight mismatch between the fixed boundary ∂Ωs and the moving
boundary ∂Ωc, so ∂Ωs should be lengthened and shortened respectively to keep the connection with
∂Ωc. These notational futilities do not play a role in this derivation however, because the location
of ∂Ωc is fixed as well to first order of approximation.
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∂D

∂t
+ [U·∇]D = 0, at ∂Ωc. (4.2a)

ζ = ζe(x, t), at ∂Ωs. (4.2b)

At the seaward boundary the free-surface elevation is prescribed to follow the exterior
tide ζe(x, t), i.e. radiation damping is not taken into account explicitly. If one intends
to properly incorporate this effect, the following considerations could be helpful: (a)
Including radiation damping effectively boils down to correcting the exterior tide
ζe(x, t) for the waves leaving the basin. Although this correction is important when
trying to model the response of a particular basin to a certain exterior forcing, our
model still describes the processes in the basin subject to the (possibly corrected)
exterior tide ζe(x, t) accurately. In other words, ζe describes the water level at sea
when the basin is present (i.e. after correcting for radiation damping, although it is
not done in this thesis), not the tide that would be present if the basin were not there
at all. (b) Radiation damping usually leads to linear damping terms in the seaward
boundary condition see e.g. Miles (1971), Garrett (1975), LeBlond & Mysak (1978),
Zimmerman (1992) and Nycander & Döös (2001). Because the focus of this work is
on nonlinear dynamics, a detailed investigation of radiation damping is beyond the
scope of this project. In the present weakly nonlinear context, it would simply lead
to an additional contribution to the linear friction term in the Landau equations.

The condition at the coastal boundary states that ∂Ωc is a material boundary, i.e.
∂Ωc is a moving boundary whose location varies due to the motion of the fluid. The
condition is that particles forming the boundary, which is defined by the condition
D = 0, remain at the boundary. For vertical sidewalls, the local gradient of the depth
profile D is infinite. In that case, the appropriate condition is to require the normal
component of the velocity to vanish. In the presented derivation condition (4.2a) is
used. The alterations for vertical sidewalls are straightforward and do not influence
the nature of the results.

A common parametrization for the bottom friction is the quadratic Chezy law
τb = ρcD|U|U, in which cD ∼ 0.0025 is a dimensionless drag coefficient (Parker,
1991a, p. 247). This parametrization could be used here as well. However, in order
to simplify the calculations a linear parametrization τb = ρr∗U will be used. In this
so-called Lorentz-linearization the friction parameter r∗ should be chosen such that
the tidally averaged dissipation of energy is the same for both parameterizations, see
Lorentz (1922) and Zimmerman (1992). Note that the results of this chapter would
be the same if the Chezy law were used. In that case the Taylor series expansion
for |U|U must be used, in which the even powers are absent (Dronkers, 1962, 1964;
Le Provost, 1973; Kabbaj & Le Provost, 1980). The first term in this expansion
corresponds to the linear friction law used for the derivation in this chapter, whereas
the cubic term enters the calculation only at higher order.

4.3 Formal asymptotic expansion of the solution

A weakly nonlinear analysis is carried out, so the amplitude of the motion is assumed
to be small. This is incorporated in the equations by scaling the hydrodynamic
variables with a small parameter. It is convenient to bring (4.1) and (4.2) into non-
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dimensional form first. The scalings that are used read

ζ = Zζ ′, D = HD′, h = Hh′,
x = Lx′, y = Ly′, t = T

2π t′, U = 2πL
T

Z
H U′.

(4.3)

In these expressions, Z is a measure of the amplitude of the free-surface elevation, α =
Z/H, the non-dimensional amplitude, is assumed to be small. The non-dimensional
depth is D′ = 1− h′ + αζ ′. L and T are the length and time scale of the motion. A
sensible choice for L would be the length of the basin and for T the period of the main
component of the exterior tide, in the tidal case. In the case of secondary undulations,
the eigenperiod of the basin would be a more appropriate time scale.

Apart from assuming small amplitude α � 1, some additional assumptions are
necessary in order to obtain a tractable, consistently balanced model. The parameter
α will be used as a scaling parameter to reflect these assumptions. For mathematical
convenience a single small parameter is used without implying a physical relationship
with basin amplitude Z. The scaling assumptions are equivalent to the ones used
in Maas & Doelman (2002) and Doelman et al. (2002) for Helmholtz basins and
correspond to significant degeneration: under these conditions all processes enter the
equation at the same order of approximation. First, the system is assumed to be in
resonance. Hence the exterior tide will be amplified in the interior. The exterior tide
is scaled by α3, assuming an amplification factor of α−2. This assumption implies
that non-resonant components will not play a role at first order. Secondly, the friction
parameter r∗ = α2σH r is assumed to be O(α2), i.e. very small as well. Note that,
in view of Lorentz’s linearization principle, r∗ is expected to depend linearly on the
velocity amplitude. The scaling with α2 instead of α is obtained when assuming the
drag coefficient cD to be O(α). The main motivation is mathematical though: this
choice leads to the significant degeneration in which friction enters the equation to
balance the nonlinear terms.

After removing the primes, the scaling (4.3) leads to

∂ζ

∂t
+∇·[DU] = 0, (4.4a)

∂U
∂t

+ α[U·∇]U + F k̂×U = −γ∇ζ − α2r
U
D

, (4.4b)

where F = f/σ is the scaled Coriolis parameter and γ = gH/(σ2L2), acting as the
non-dimensional gravitational acceleration, is (the square of) the ratio between the
free tidal wavelength and the length scale of the basin. The scaled version of the
boundary conditions is

∂ζ

∂t
+ α[U·∇]ζ = [U·∇]h, at ∂Ωc, (4.5a)

ζ = α2ζe(x, t), at ∂Ωs. (4.5b)

The equations (4.4), with (4.5), will be solved by an asymptotic multiple-time-scale
expansion in terms of the small amplitude α � 1: substitute{

ζ(x, t) = ζ(1)(x, t, τ) + αζ(2)(x, t, τ) + α2ζ(3)(x, t, τ) + . . . ,

U(x, t) = U(1)(x, t, τ) + αU(2)(x, t, τ) + α2U(3)(x, t, τ) + . . . ,
(4.6)

in (4.4). The functions ζ(n) and U(n) depend on the spatial variable x, time t and
a slow time scale τ = α2t. The equations for the evolution of those functions will
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be derived in the subsequent sections by collecting terms of equal order in α in (4.4)
and (4.5). It will be found in section 4.3.2 that the derivatives are zero on the time
scale αt, so the time scale τ is the first slow time scale on which evolution is possible,
due to the (scaling) assumptions in this section.

4.3.1 First-order solutions

The first-order equations are

∂ζ(1)

∂t
+∇·[D(0)U(1)] = 0, (4.7a)

∂U(1)

∂t
+ F k̂×U(1) = −γ∇ζ(1), (4.7b)

where the notation D(0)(x) = 1 − h(x) has been introduced. The corresponding
boundary conditions are

∂ζ(1)

∂t
= [U(1)·∇]h, at ∂Ωc

(0), (4.8a)

ζ(1) = 0, at ∂Ωs
(0). (4.8b)

The boundary ∂Ωc
(0) is the fixed boundary at which the still water depth D(0) van-

ishes, ∂Ωs
(0) is the fixed seaward boundary. Note that ∂Ωs

(0) could be replaced by
∂Ωs since the location of this part of the boundary is fixed anyway.

The linear equations (4.7) and (4.8) allow separation of the temporal and spatial
behaviour of the solutions. Thus, we write{

ζ(1)(x, t, τ) =
∑

j Aj(τ)ζj(x)eiωjt,

U(1)(x, t, τ) =
∑

j Aj(τ)Uj(x)eiωjt,
(4.9)

in which summation is over all eigenmodes of the system (4.10) below. The functions
ζj ,Uj are the eigenfunctions corresponding to the eigenvalues ωj . The eigenvalues
ωj will be shown to be real-valued, hence correspond to the angular frequency of
the jth eigenmode. The amplitudes Aj are constant to first order; the temporal
behaviour of (4.9) on the fast time scale t is determined by the eigenfrequencies
ωj . On the slow time scale τ = α2t however, the amplitudes Aj are still allowed
to vary. Their evolution depends on higher-order nonlinear interactions between the
eigenmodes. In section 4.3.3 the evolution equations (4.30), which form the central
goal of this chapter, for the amplitudes Aj on the slow time scale τ are derived.

The eigenmodes ζj ,Uj , ωj should satisfy

iωjζj +∇·[D(0)Uj ] = 0, (4.10a)

iωjUj + F k̂×Uj = −γ∇ζj , (4.10b)

together with the boundary conditions

iωjζj = [Uj ·∇]h, at ∂Ωc
(0), (4.11a)

ζj = 0, at ∂Ωs
(0). (4.11b)
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Instead of trying to solve these equations for explicit examples of tidal basins (shape
Ω and depth profile D(0), see section 4.4 however), more general results will be de-
rived here, based on the assumption that we have solved (4.10), (4.11). Moreover, a
few generic assumptions (4.14) on the set of eigenmodes and eigenvalues are made.
Because it is easier to formulate those assumptions having gathered some basic infor-
mation about the solutions of the eigenvalue problem (4.10), (4.11), their formulation
is postponed till the end of this section.

Let ζj ,Uj be eigenfunctions of (4.10) with eigenvalue ωj , and ζk,Uk be eigen-
functions with eigenvalue ωk. Following Pratt & Llewellyn Smith (1997), consider
the following ‘generalized inner product’5 with the equations

γζ∗k cont(1)j + γζj cont(1)∗k + D(0)U∗
k · mom(1)

j + D(0)Uj · mom(1)∗
k ,

where cont(1)j denotes the continuity equation (4.10a) for the jth eigenmode, cont(1)∗k

is its complex conjugate for the kth eigenmode. Analogously, mom(1)
j and mom(1)∗

k

denote the (complex conjugate) momentum equation (4.10b), for eigenmodes j and k
respectively. This leads to

i(ωj − ω∗k)
(
γζ∗kζj + D(0)U∗

k·Uj

)
+∇·

[
γD(0)(ζ∗kUj + ζjU∗

k)
]

= 0.

Integrating this over the still water area Ω(0) of the basin, yields the interesting ‘inner
product equation’

(ωj − ω∗k)
∫∫

Ω(0)

(
γ ζ∗kζj + D(0) U∗

k·Uj

)
dxdy = 0. (4.12)

The divergence term results in an integral over the boundary ∂Ω(0) of γD(0)(ζ∗kUj +
ζjU∗

k)·n̂, with n̂ the outward normal along ∂Ω(0). Using the boundary condition (4.11)
for ζj and its complex conjugate for ζ∗k we see that this integral vanishes. Note that
D(0) = 0 on ∂Ωc

(0).
In analogy with the arguments in Pratt & Llewellyn Smith (1997), some important

conclusions can be drawn from (4.12). First, choosing k = j implies that ωj = ω∗j ,
hence the eigenfrequencies ωj are real. Because the temporal behaviour of the eigen-
modes is eiωjt, it is purely periodic without decay. Note that the eigenfunctions cannot
be chosen to be real-valued, i.e. there will be phase differences within the basin. This
is a consequence of the Coriolis acceleration. Moreover, comparing (4.10), (4.11) with
their complex conjugate counterparts, it can be concluded that if ζj ,Uj are eigenfunc-
tions corresponding to eigenvalue ωj , then ζ∗j ,U∗

j are eigenfunctions corresponding to
eigenvalue −ωj . Therefore, it is possible to distinguish the eigenfrequencies ωj ≥ 0
and consider the negative ones as complex conjugates of the positive eigenvalues. If
the positive eigenvalues are indexed by positive j, it is convenient to let ω−j = −ωj

denote the conjugate eigenvalue. Moreover, they can be numbered in increasing order,
ωk ≥ ωj if k ≥ j.

The second conclusion to be drawn from (4.12) is that the eigenfunctions corre-
sponding to different eigenvalues are orthogonal with respect to the following inner
product: 〈(

ζk

Uk

)
;
(

ζj

Uj

)〉
=
∫∫

Ω(0)

(
γ ζ∗kζj + D(0) U∗

k·Uj

)
dxdy. (4.13)

5This becomes an inner product only after integrating the integrand over Ω(0).
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Hence, the set of eigenfunctions can be chosen orthonormal. Physically this inner
product is just the dimensionless measure of the energy related to the respective
eigenmode; the eigenfunctions are normalized with respect to their energetic content.
We assume that they form a complete set. This implies that the expansion (4.9) is
indeed the general form in which all solutions ζ(1),U(1) to (4.7), (4.8) can be written.
Note that, although (4.10), (4.11) is not a classical Sturm–Liouville problem because
of the boundary conditions, the conclusions drawn in the preceding paragraph are the
same.

The analysis in this chapter is carried out for the generic situation. In order to
exclude some degenerate cases the following assumptions on the set of eigenmodes
and eigenfrequencies are made:

• the eigenfunctions (ζj(x),Uj(x)) form a complete set; (4.14a)
• there are no degenerate eigenvalues: ωk 6= ωl; (4.14b)
• there are no second-order resonances: ωk − ωl − ωm 6= 0; (4.14c)
• there are no non-trivial third-order resonances: ωk − ωl − ωm ± ωn 6= 0; (4.14d)

where the eigenfrequencies ωj should be ordered as described before and k > l ≥
m ≥ n ≥ 1. Note that (4.14b) is implied by (4.14d) through considering it for m
equal to n. Trivial third-order resonances exist for k = l (contrasting with k > l in
the assumption) and m = n. Generically the conditions (4.14) are met: situations in
which second or third-order resonances are present are exceptional in the sense that
slight changes of the basin, hence the eigenfrequencies, would cause the resonances to
disappear. In particular cases for which the assumptions are not satisfied, the forth-
coming analysis should be carried out more carefully. In section 4.4 three examples
are given for which the assumptions are checked.

Remark (zero-frequency mode): The eigenvalue problem (4.10), (4.11) may have
a continuum of solutions for ω0 = 0. For F 6= 0 the momentum equation shows
that γζ0/F serves as a streamfunction. From the continuity equation it subsequently
follows that ζ0 should be constant along depth contours. Because of the boundary
condition at ∂Ωs

(0), ζ0 = 0 along depth contours that intersect ∂Ωs
(0), whereas the

boundary condition at ∂Ωc
(0) implies that U0 = 0 (whence ∇ζ0 = 0) along those

intersecting ∂Ωc
(0). So ωj = 0 is not an eigenvalue unless there are closed depth

contours (in the case of a separate crest or trough) in the interior Ω of the basin. On
the other hand, if the Coriolis acceleration is negligible, i.e. if F = 0 at this order,
then ζ0 ≡ 0 everywhere, whereas U0 is completely free as long as D(0)U0 has zero
divergence.

The calculations are much more elaborate if this zero-frequency mode consisting
of a continuum of solutions is present. A method to analyse the evolution of this mode
by considering circulation integrals is developed by Pratt & Llewellyn Smith (1997)
and Pratt (1997). In their work the geostrophic mode (with ω0 = 0, for F 6= 0) is
considered, whereas the oscillatory modes play a minor role. The evolution equations,
with quadratic nonlinearities, essentially amount to quasi-geostrophic theory for the
zero-mode.

Because the focus is on the oscillatory modes and the interactions between them,
the zero-mode is omitted in this work without further justification. Combining the
zero-mode and oscillatory modes in a single theory leads to a fundamentally different
regime, beyond the scope of this thesis. For the terms to balance at the right order,
one can argue that the zero-mode should appear only at O(α2), resonantly forced by
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quadratic self-interaction of oscillatory modes (note that non-resonant forcing at zero
frequency is taken into account in section 4.3.2). Moreover it could potentially cause
much richer (chaotic) behaviour because it interacts quadratically with the oscillatory
modes, effectively introducing parametric forcing terms in the Landau equation (4.30)
for those modes; this is similar to the effect of the Earth’s rotation (see section 5.5.2)
in that it invalidates the arguments in section 5.2.

Remark (vertical sidewalls): The only change for the case of vertical sidewalls
is the boundary condition at ∂Ωc. Instead of (4.5a), (4.8a) and (4.11a) one has
U·n̂ = 0, U(1)·n̂ = 0 and Uj ·n̂ = 0 respectively. Apart from modifying the eigen-
value problem to be solved, this has no influence on the analysis leading to the Landau
equations (4.30). The boundary condition at ∂Ωc

(0) was used in the argument follow-
ing (4.12) showing the integral of γD(0)(ζ∗kUj + ζjU∗

k)·n̂ over the boundary ∂Ωc
(0) to

be zero because D(0) = 0. For vertical sidewalls, D(0) 6= 0 at ∂Ωc
(0), but Uj ·n̂ and

its complex conjugate are zero, which leads to the same conclusion.
The boundary ∂Ωc is not moving, but fixed at vertical sidewalls. The moving

boundary causes additional terms in the boundary conditions at higher order. They
do not play a role however in the analysis in the remainder of this chapter either.
At higher order integrals over ∂Ω(0), similar to the one found in this section, appear.
The integrals over ∂Ωc

(0) are zero because D(0) = 0. For vertical sidewalls, when this
is not the case, the boundary condition U·n̂ = 0 implies that the integrals are zero in
that case as well.

4.3.2 Second-order corrections

Having solved the first-order equations (4.7), (4.8) by specifying the general solu-
tion (4.9), the next step towards the evolution equation for the amplitudes Aj(τ) is
to find the second-order corrections to this approximation. The second-order equa-
tions are

∂ζ(2)

∂t
+∇·[D(0)U(2)] = −∇·[ζ(1)U(1)], (4.15a)

∂U(2)

∂t
+ F k̂×U(2) + γ∇ζ(2) = −[U(1)·∇]U(1). (4.15b)

Boundary conditions should be added to these equations. They are different from (4.8)
because of the nonlinear terms and due to correction terms for the moving boundary.
Because we will expand ζ(2),U(2) in terms of the first-order eigenmodes and take the
inner-product (4.13), it appears that the second-order boundary conditions are not
needed. Hence they are omitted. Again it makes sense to take the ‘inner product’6

with the equations in the form

γζ∗k cont(2) + γζ(2) cont(1)∗k + D(0)U∗
k· mom(2) + D(0)U(2)· mom(1)∗

k ,

where cont(2) and mom(2) stand for the continuity and momentum equation (4.15a,b);
cont(1)∗k and mom(1)∗

k refer to the complex conjugate of (4.10a,b) as before. This leads

6Again this becomes an inner product only after integrating over Ω(0).
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to the equation[
∂

∂t
− iωk

]
(γζ∗kζ(2) + D(0)U∗

k·U(2)) +∇·
[
γD(0)(ζ∗kU

(2) + ζ(2)U∗
k)
]

= −γζ∗k∇·[ζ(1)U(1)]−D(0)U∗
k·[U(1)·∇]U(1).

(4.16)

Because the eigenfunctions of (4.10) were assumed to form a complete set, the second-
order corrections ζ(2),U(2) can be expanded in terms of those eigenfunctions, i.e.{

ζ(2)(x, t, τ) =
∑

j B̃j(t, τ)ζj(x),
U(2)(x, t, τ) =

∑
j B̃j(t, τ)Uj(x).

(4.17)

The dependence of the amplitudes B̃j on the fast time scale t can be found by inte-
grating (4.16) over the still water basin area Ω(0) to obtain the ordinary differential
equation[

∂

∂t
− iωk

]
B̃k = −

∫∫
Ω(0)

(
γζ∗k∇·[ζ(1)U(1)] + D(0)U∗

k·[U(1)·∇]U(1)
)

dxdy

= −
∑
l,m

(kCl,m + kAl,m)AlAmei(ωl+ωm)t,

(4.18)
where

kCl,m =
∫∫

Ω(0)
γζ∗k∇·[ζlUm] dxdy, (4.19a)

kAl,m =
∫∫

Ω(0)
D(0)U∗

k·[Ul·∇]Umdxdy, (4.19b)

are coefficients which can be regarded as inner products of the (normalized) kth
eigenvector with the nonlinear terms. Note that the divergence term on the left-hand
side of (4.16) integrates to zero again by the same reasoning (following equation (4.12))
as before because ζ(2) = 0 on ∂Ωs

(0) as well and D(0) = 0 on ∂Ωc
(0). This equation

can be solved assuming the non-resonance condition (4.14c): ωk 6= ωl + ωm, ∀k, l,m.
Under this assumption the solution of (4.18) is given by

B̃k(t, τ) = Bk(τ)eiωkt − i
∑
l,m

kCl,m + kAl,m

ωk − ωl − ωm
Al(τ)Am(τ)ei(ωl+ωm)t, (4.20)

with Bk(τ) some unknown second-order amplitudes. This expression should be sub-
stituted into (4.17) to find the second-order corrections. The non-resonance condition
implies that the second-order corrections remain slaved and second order and do not
lead to secularities. If the non-resonance condition is not satisfied, then the amplitudes
B̃k(t, τ) would increase linearly in time t, violating the regularity of the asymptotic
expansion (4.6). In that case a solvability condition should be applied at this order
already (as is next done in section 4.3.3) leading to free dynamics of the first-order
amplitudes by quadratic interactions (instead of cubic). In general however, the non-
resonance condition will be met.
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4.3.3 Third-order: evolution

Finally, the equations at third order in α are given by

∂ζ(1)

∂τ
+

∂ζ(3)

∂t
+∇·[D(0)U(3)] = −∇·[ζ(1)U(2) + ζ(2)U(1)], (4.21a)

∂U(1)

∂τ
+

∂U(3)

∂t
+ F k̂×U(3) + γ∇ζ(3) = −[U(1)·∇]U(2) − [U(2)·∇]U(1)

−r
U(1)

D(0)
. (4.21b)

As before, boundary conditions should be added, but they are not needed and hence
omitted, because we will not actually try to solve for ζ(3),U(3) and merely use (4.21) to
derive a solvability condition. In addition to the contributions of the nonlinear terms
on the right-hand side of these equations, the slow evolution of the first-order solutions
appears. In order to find bounded solutions for ζ(3),U(3), a solvability condition must
be satisfied. This condition yields the slow evolution of the amplitudes Ak(τ) of the
first-order solution, which is determined by friction and the nonlinear interactions.
To derive the equation for the slow evolution, consider the ‘inner product’

γζ∗k cont(3) + γζ(3) cont(1)∗k + D(0)U∗
k· mom(3) + D(0)U(3)· mom(1)∗

k ,

which yields

∂

∂τ
(γζ∗kζ(1) + D(0)U∗

k·U(1)) +
[

∂

∂t
− iωk

]
(γζ∗kζ(3) + D(0)U∗

k·U(3))

+∇·
[
γD(0)(ζ∗kU

(3) + ζ(3)U∗
k)
]

= −γζ∗k∇·[ζ(1)U(2) + ζ(2)U(1)]−D(0)U∗
k·
(
[U(1)·∇]U(2) + [U(2)·∇]U(1)

)
−rU∗

k·U(1).

(4.22)

When integrating this expression over the still water basin area Ω(0) to obtain the
global energy balance the divergence term on the left-hand side requires special at-
tention: it integrates to ∮

∂Ω(0)
γD(0)(ζ∗kU

(3) + ζ(3)U∗
k)·n̂ ds,

which can be divided into an integral over ∂Ωc
(0) and an integral over ∂Ωs

(0). The
integrand is zero on ∂Ωc

(0) as before, see the discussion following (4.12), but along
∂Ωs

(0) more care has to be taken. In fact, the boundary condition (4.5b) leads to
ζ(3) = ζe at ∂Ωs

(0) at third order. Using the fact that ζ∗k = 0 at ∂Ωs
(0), we see that

the first part of the integrand still vanishes on ∂Ωs
(0). Therefore, integration of (4.22)

over Ω(0) leads to[
∂

∂t
− iωk

]〈(
ζk

Uk

)
;
(

ζ(3)

U(3)

)〉
+

∂

∂τ

〈(
ζk

Uk

)
;
(

ζ(1)

U(1)

)〉
+
∫

∂Ωs
(0)

γD(0)ζeU∗
k·n̂ ds

= −
∫∫

Ω(0)
γζ∗k∇·[ζ(1)U(2) + ζ(2)U(1)] dxdy

−
∫∫

Ω(0)
D(0)U∗

k·
(
[U(1)·∇]U(2) + [U(2)·∇]U(1)

)
dxdy −

∫∫
Ω(0)

rU∗
k·U(1) dxdy.
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A solvability condition must be satisfied in order for this equation to yield bounded
third-order corrections: all terms for which the temporal behaviour on the fast time
scale t is given by eiωkt must cancel, otherwise

〈(
ζk

Uk

)
;
( ζ(3)

U(3)

)〉
will grow due to res-

onance. For an efficient evaluation of this condition, the expansions (4.9), (4.17)
and (4.20) are substituted. Because of the orthonormality of the eigenfunctions the
derivative with respect to τ evaluates to dAk

dτ eiωkt, whose t-temporal behaviour is
clearly resonant. Consequently, the solvability condition reads

dAk

dτ
= −

∫
∂Ωs

(0)
γD(0){ζe}kU∗

k·n̂ ds

−
{∫∫

Ω(0)
γζ∗k∇·[ζ(1)U(2) + ζ(2)U(1)] dxdy

}
k

−
{∫∫

Ω(0)
D(0)U∗

k·
(
[U(1)·∇]U(2) + [U(2)·∇]U(1)

)
dxdy

}
k

−
{∫∫

Ω(0)
rU∗

k·U(1) dxdy

}
k

,

(4.23)

where {·}k denotes the operator that selects the Fourier component with frequency
ωk, i.e. {eiωt}k ∼ δ(ω − ωk). Next, each term on the right-hand side of (4.23) will be
studied.

For the forcing term, we define

Fk(τ) = −
∫

∂Ωs
(0)

γD(0){ζe(x, t, τ)}kU∗
k·n̂ ds. (4.24)

For single-frequency forcing at one of the resonant frequencies ωk (i.e. ζe = αe eiωkt)
{ζe}k = αe is constant, hence Fk(τ) ≡ Fk is constant as well. For nearly resonant
forcing, Fk(τ) will be periodic, see section 5.3 for more details.

Defining

Rk,j =
∫∫

Ω(0)
U∗

k·Uj dxdy (4.25)

the frictional term in (4.23) can be rewritten as

∑
j

rRk,jAj{eiωjt}k. (4.26)

The summation is over all eigenvalues of (4.10) like in the expansion (4.9). Because
friction was linearized in this model, this expression is linear in the amplitudes Aj .
Note that {eiωjt}k = δjk, with δjk the Kronecker delta, because of the assumed non-
degeneracy: ωj 6= ωk if j 6= k. This simplification will be used shortly. For a quadratic
or cubic friction law, the calculations would be more elaborate, but in principle no
more difficult than those for the quadratic nonlinear terms considered in this thesis.

Substituting the expansions (4.9), (4.17) and (4.20) into the nonlinear terms
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of (4.23) leads to

−
{∫∫

Ω(0)
γζ∗k∇·[ζ(1)U(2) + ζ(2)U(1)] dxdy

}
k

=

i
∑

j

∑
n,l,m

Ajeiωjt nCl,m + nAl,m

ωn − ωl − ωm
AlAmei(ωl+ωm)t

∫∫
Ω(0)

γζ∗k∇·[ζjUn + ζnUj ] dxdy


k

= i
∑

j,n,l,m

nCl,m + nAl,m

ωn − ωl − ωm
(kCj,n + kCn,j)AjAlAm{ei(ωj+ωl+ωm)t}k

(4.27)
for the continuity term and for the advection

−
{∫∫

Ω(0)
D(0)U∗

k·
(
[U(1)·∇]U(2) + [U(2)·∇]U(1)

)
dxdy

}
k

= i
∑

j,n,l,m

nCl,m + nAl,m

ωn − ωl − ωm
(kAj,n + kAn,j)AjAlAm{ei(ωj+ωl+ωm)t}k,

(4.28)

in which each of the indices j, n, l and m runs over all eigenvalues. Note that the
contributions with Bn(τ)eiωnt are omitted because they lead to the selection criterion
{ei(ωj+ωn)t}k which is zero due to the assumption (4.14c). Combining (4.24), (4.26),
(4.27), (4.28) with (4.23) we find the so-called Landau (or amplitude) equation for
the slow evolution of the first-order amplitudes:

dAk

dτ
= Fk(τ)−

∑
j

rRk,j{eiωjt}kAj

+ i
∑

j,n,l,m

nNl,m

ωn − ωl − ωm
(kNj,n + kNn,j){ei(ωj+ωl+ωm)t}kAjAlAm,

(4.29)
where the shorthand notation kNl,m = kCl,m + kAl,m was used. Note that the op-
erator {·}k effectively selects the terms in the summation for which ωj = ωk or
ωj + ωl + ωm = ωk respectively. Our final step is to evaluate these conditions using
the assumptions in (4.14).

First, it has been noted already that the non-degeneracy of the eigenfrequencies
implies that {eiωjt}k = δjk, so the friction term reduces to∑

j

rRk,jAj{eiωjt}k = ckAk,

defining ck = rRk,k, which is clearly positive for all k, in view of (4.25).
Secondly, (4.14d) helps evaluate the condition ωj + ωl + ωm = ωk. There are ‘triv-

ial’ solutions ωj +ω−j +ωk = ωk to this condition in view of the chosen order of num-
bering ω−j = −ωj , see the discussion following (4.12). These ‘trivial resonances’ stem
from symmetry in the eigenvalue problem (4.10). The assumption (4.14d) amounts
to assuming that these ‘trivial resonances’ are the only ones, apart from permuta-
tions. In fact, by reformulating the condition in terms of positive eigenfrequencies
only, and reordering in such a way that ωk ≥ ωj ≥ ωl ≥ ωm, the condition reads
ωk ± ωj ± ωl ± ωm = 0 without loss of generality. The cases + + +, + + −, + − +
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n j l m Corresponding term
+ +k +m −m i 1

ωn
nNm,m̄ (kNk,n + kNn,k) AkAmA∗

m

− +k +m −m −i 1
ωn

n̄Nm,m̄ (kNk,n̄ + kNn̄,k) AkAmA∗
m

+ +k −m +m i 1
ωn

nNm̄,m (kNk,n + kNn,k) AkA∗
mAm

− +k −m +m −i 1
ωn

n̄Nm̄,m (kNk,n̄ + kNn̄,k) AkA∗
mAm

+ +m +k −m i 1
ωn+ωm−ωk

nNk,m̄ (kNm,n + kNn,m) AmAkA∗
m

− +m +k −m −i 1
ωn−ωm+ωk

n̄Nk,m̄ (kNm,n̄ + kNn̄,m) AmAkA∗
m

+ −m +k +m i 1
ωn−ωm−ωk

nNk,m (kNm̄,n + kNn,m̄) A∗
mAkAm

− −m +k +m −i 1
ωn+ωm+ωk

n̄Nk,m (kNm̄,n̄ + kNn̄,m̄) A∗
mAkAm

+ +m −m +k i 1
ωn+ωm−ωk

nNm̄,k (kNm,n + kNn,m) AmA∗
mAk

− +m −m +k −i 1
ωn−ωm+ωk

n̄Nm̄,k (kNm,n̄ + kNn̄,m) AmA∗
mAk

+ −m +m +k i 1
ωn−ωm−ωk

nNm,k (kNm̄,n + kNn,m̄) A∗
mAmAk

− −m +m +k −i 1
ωn+ωm+ωk

n̄Nm,k (kNm̄,n̄ + kNn̄,m̄) A∗
mAmAk

Table 4.1: Systematic list of non-zero nonlinear terms assuming ‘trivial resonances’
only.

and − + + are ruled out immediately, because the left-hand side is always strictly
positive (note that we ordered them such that ωk is the largest one and ω0 = 0 is
not considered in this thesis). Similarly, the cases +−− and −+− can only satisfy
the condition in the trivial cases. In the latter case, for example, note that both
ωk−ωj ≥ 0 and ωl−ωm ≥ 0, with equality only if k = j and l = m, i.e. in the trivial
cases. This leaves the cases −−+ and −−−, for which solutions with k > j are ruled
out by (4.14d). For k = j it is clear that ωk − ωj − ωl − ωm < 0 does not constitute
a solution either. Hence one is left with the trivial cases ωk − ωk − ωl + ωl = 0.

In (4.29) all permutations of j, n, l and m occur as well, so twelve situations can
be distinguished in which {ei(ωj+ωl+ωm)t}k 6= 0. The corresponding non-zero terms
in the summation over j, n, l and m are shown in table 4.1. In this table, the indices
j, n, l and m are positive; m̄ is a shorthand notation for −m. Note that ωn̄ = −ωn and
An̄ = A∗

n. The latter follows from equating (4.9) with its complex conjugate, using
the fact that ζ(1),U(1) are real. Note that all terms are proportional to |Am|2Ak.

Summing the terms in table 4.1 finally leads to the following simplified Landau
equation:

dAk

dτ
= Fk(τ)− ck Ak +

∑
m

i Γk,m A∗
mAmAk (4.30)

with coefficient Γk,m in the nonlinear term given by

Γk,m =
∑
n≥1

1
ωn

(kNk,n + kNn,k)(nNm,m̄ + nNm̄,m)
− 1

ωn
(kNk,n̄ + kNn̄,k)(n̄Nm,m̄ + n̄Nm̄,m)

+ 1
ωn+ωm−ωk

(kNm,n + kNn,m)(nNk,m̄ + nNm̄,k)
− 1

ωn−ωm+ωk
(kNm,n̄ + kNn̄,m)(n̄Nk,m̄ + n̄Nm̄,k)

+ 1
ωn−ωm−ωk

(kNm̄,n + kNn,m̄)(nNk,m + nNm,k)
− 1

ωn+ωm+ωk
(kNm̄,n̄ + kNn̄,m̄)(n̄Nk,m + n̄Nm,k).

(4.31)

In (4.30) we have essentially separated the slow evolution of the amplitudes from the
dependence of the hydrodynamic system on the geometry of the basin (from its ‘fast’
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(a) Top view (b) Side view

Figure 4.2: Sketch of the one-dimensional basin. Its width is much smaller than its
length, the bottom profile h(x) depends on the longitudinal coordinate only, hence
the motion is assumed to be restricted to the longitudinal direction.

oscillatory eigenmodes in particular). All information about the geometry of the basin
is contained in the coefficients ck and Γk,m. The geometry of the basin determines the
eigenvalues and eigenfunctions, hence the coupling coefficients Rk,j , kCl,m, kAl,m and
{ei(ωj+ωl+ωm)t}k, which finally give ck and Γk,m. Once these coefficients are fixed,
the dynamical system given by (4.30) can be studied. The analysis of this dynamical
system is postponed till chapter 5. In order to illustrate the procedure and obtain
knowledge about the order of magnitude of the coefficients Γk,m, three relatively
simple one-dimensional examples will be worked out in the next section. From the
definition (4.25) for the coefficient Rk,k it is clear that ck > 0 always. Omitting the
Coriolis acceleration (F = 0), the coefficients Γk,m can be shown to be real-valued.
The reason for this is that the eigenfunctions ζj can be chosen real-valued in that
case, whereas the corresponding velocities Uj will be imaginary. Therefore kNl,m =
kCl,m + kAl,m is imaginary for all indices k, l, m, in view of the definitions (4.19).

4.4 Some example bedforms

In this section the results of the previous section are illustrated by calculating the co-
efficients Γk,m for three basins of simple planform. For simplicity, rectangular basins
are considered for which the width is much smaller than the length of the basin, see
figure 4.2. As a consequence the motion can be assumed to be one-dimensional, uni-
form in the transverse direction; the transverse velocities are zero. Indeed, rescaling
y 7→ δy, v 7→ δv and introducing an asymptotic expansion in terms of the Kelvin
number δF , where δ � 1 is the width over length aspect ratio, it readily follows that
up to first order v = 0 and the equations (4.10), (4.11), describing the linear free
modes of the system, reduce to (see e.g. Krauss, 1973, pp. 154–155)

γ
d
dx

[
(1− h(x))

dζj

dx

]
+ ωj

2 ζj = 0, for x ∈ [0, 1], (4.32a)

ζj = 0, at x = 0, (4.32b)

γ (1− h(x))
d2ζj

dx2
= 0, at x = 1, (4.32c)

after eliminating the longitudinal velocity component uj = i γ
ωj

dζj

dx . Note that the

coastal boundary condition (4.32c) should be interpreted to require d2ζj

dx2 to be bounded
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for vanishing depth (if h(1) = 1). Three examples will be discussed here: a basin with
constant depth, h(x) ≡ 0; a basin with constant slope, h(x) = x; and a basin with a
quadratically sloping bottom, h(x) = x2. This results in standard equations whose
solutions are given by either

ζj(x) = 1√
γ sin((j + 1

2 )π x),

uj(x) = i cos((j + 1
2 )π x),

ωj = (j + 1
2 )π

√
γ,

 (4.33)

for constant depth (with boundary condition dζj

dx = 0, at x = 1, because in this case
the wall is vertical),

ζj(x) =
J0(pj

√
1− x)√

2γ J1(pj)
,

uj(x) = i
J1(pj

√
1− x)√

2 J1(pj)
√

1− x
,

ωj = 1
2

√
γpj ,


(4.34)

for constant slope, where J0 and J1 are Bessel functions of the first kind and pj the
positive roots of J0, or

ζj(x) =
√

4j−1
2γ P2j−1(x),

uj(x) = i
√

(4j−1)(2j−1)
4j

P2j−2(x)− xP2j−1(x)
1− x2

,

ωj =
√

γ
√

2j(2j − 1),

 (4.35)

for the quadratically sloping bottom, where P2j−1 is the Legendre polynomial of
degree 2j − 1. These eigenfunctions are normalized with respect to the inner prod-
uct (4.13).

For these examples, the assumptions (4.14) can be checked. The eigenvalues are
non-degenerate in all cases. The completeness of the eigenfunctions follows from
standard expansion theorems for Fourier series, Bessel functions and Legendre poly-
nomials. The remaining two assumptions need some more attention. For the basin
with constant depth we find that ωk − ωl − ωm = (k − l − m − 1

2 )π
√

γ, which
clearly is non-zero, because k − l − m is an integer. The final condition however,
0 = ωk−ωl−ωm±ωn = (k− l−m±n− 1

2±
1
2 )π

√
γ is fulfilled whenever k = l+m−n

or k = l + m + n + 1 respectively; many non-trivial resonances occur for this basin.
Apparently the special symmetries of this basin cause the resonance condition to be
fulfilled even though they are not generic.

In order to check the non-resonance conditions (4.14c,d) for ωj = 1
2

√
γpj and

ωj =
√

γ
√

2j(2j − 1), for the linear and quadratic bottom respectively, an approxi-
mation of the eigenfrequencies is helpful. In fact, the approximations for both cases
are very similar:

$j = a(j − 1
4 )− 1

4j − 1
+

χj

(4j − 1)3
(4.36)

where $j = −4πωj/
√

γ, a = −2π2 and 0.3089 < χj < 31/(3π2), in the case of
a linearly sloping bottom, or $j = 4ωj/

√
γ, a = 8 and 1

4 < χj < 27
128

√
2, in the
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case of a quadratic bottom. For the linear bottom this approximation is McMahon’s
expansion for zeros of Bessel functions (see Gatteschi & Giordano, 2000, (6) or The-
orem 4), for the second case it follows from a Taylor expansion of

√
2j(2j − 1) =

(2j− 1
2 )
√

1− (4j − 1)−2. The estimate (4.36) is sufficient to prove both non-resonance
conditions (4.14c,d). In fact, one finds $k −$l −$m = a(k − l −m + 1

4 + ε) with ε
strictly within the interval (− 1

4 , 3
4 ) and $k−$l−$m−$n = a(k− l−m−n+ 1

2 +ε)
with ε strictly within (− 1

2 , 1
2 ), by straightforward estimation of the second and third

term in (4.36) using k ≥ 2 and l,m, n ≥ 1. Because k, l,m and n are integer, this
implies that neither $k −$l −$m nor $k −$l −$m −$n can be zero.

Proving $k − $l − $m + $n = 0 only if k = l and m = n is more difficult.
A simple argument based on an estimate as for the other cases cannot be sufficient
because this would rule out the trivial resonances, which we know to exist, as well.
In order to exclude the non-trivial resonances, the fact that k > l must play a role in
the proof. It is given in the Appendix to this chapter.

The friction coefficient ck in (4.30) is proportional to the empirical value r. The
dependence on the mode number k is determined by the interaction integral Rk,k =∫ 1

0
u∗kuk dx. The calculations yield

Rk,k = 1
2 , for constant depth, (4.37a)

Rk,k =
1− J1

2(pk)
2J1

2(pk)
, for constant slope, (4.37b)

Rk,k = k − 1
4 , for the quadratically sloping bottom. (4.37c)

Rk,k is constant for the basin with vertical sidewalls, but increases to infinity for
k →∞ in the other two cases.

In order to calculate the coefficients Γk,m, the interaction integrals

kCl,m =
∫ 1

0

γζ∗k
d
dx

[ζlum] dx,

kAl,m =
∫ 1

0

D(0)u∗kul
dum

dx
dx,

the one-dimensional equivalents of (4.19), must be evaluated. For this purpose the
software packages Maple and Mathematica were used. In the case of constant water
depth, the integrals can be evaluated analytically. These packages even managed to
obtain an (elaborate) analytical expression for the Landau coefficients Γk,m. The
first four values of the coefficients are Γ1,1 = −9.57,Γ1,2 = −12.01, Γ2,1 = −16.79
and Γ2,2 = −16.11. We have already found that the third-order non-resonance condi-
tion (4.14d) is not fulfilled for this basin. Although this implies that additional terms,
not proportional to |Am|2Ak, arise in the amplitude equation (4.30) (cf. (4.29)), these
Γk,m are the proper coefficients in front of the |Am|2Ak-term.

In the cases of a linear or quadratic bottom profile, the corresponding integrals
had to be evaluated numerically. Consequently the infinite sum over n in (4.31),
defining Γk,m, has to be truncated. The results are shown in figures 4.3(a) and 4.3(c)
as a function of the truncation number N . The convergence is quite slow and seems
to be alternatingly too low and too high. On plotting the variations on a doubly
logarithmic scale they appear to converge at a rate 1/

√
N , which might be expected

from the fact that this generally is the rate of convergence in a Galerkin expansion.
The convergence can be improved by taking the average between two subsequent
values. Those averages are shown in figures 4.3(b) and 4.3(d).
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(a) Truncated Γk,m for the linear bottom.
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(b) Smoothed Γk,m for the linear bottom.
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(c) Truncated Γk,m for the quadratic bottom.
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Figure 4.3: Numerical estimation of the interaction coefficients Γk,m for (k,m) =
(1, 1), (1, 2), (2, 1) and (2, 2). The sum of terms in (4.31) are shown as a function of
truncation number N in 4.3(a) for the linear bottom and 4.3(c) for the quadratic
bottom. Because of the oscillatory nature of the convergence, subsequent outcomes
are averaged in 4.3(b) and 4.3(d).
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4.5 Conclusions and discussion

In this chapter a weakly nonlinear analysis was performed on the two-dimensional
depth-averaged shallow-water equations (4.1), (4.2) in a basin co-oscillating with an
adjacent sea. In that respect the scope is fairly general; except for assuming the
aspect ratio (depth over width) to be small enough to ignore vertical differences,
no additional assumptions on the shape of the basin are required for using (4.1).
This system is investigated in the limit of small amplitudes (compared to the depth
of the basin) and strong resonance (amplitude in basin much larger than at sea,
i.e. for forcing frequency close to one of the eigenfrequencies and weak friction).
In this limit, the behaviour of the system is dominated by its linear eigenmodes to
first order. They are found from first-order (linearized) theory, with constant but
unknown amplitudes. Nonlinear interactions between eigenmodes occur at higher
order, causing the amplitudes of the eigenmodes to vary slowly in time. The ultimate
result of the weakly nonlinear analysis is the Landau equation (4.30) describing the
(slow) modulation of the amplitudes.

The corresponding tidal motion is an oscillation of the water level at (or near) the
eigenfrequency, with spatial structure determined by the eigenmode and modulating
amplitude. In practice this would mean that the “harmonic constants” are not con-
stant. Variation of harmonic constants also occurs according to linear theory because
of variations of the astronomical forcing which on long timescales that are not in-
cluded in the harmonic analysis. Because these variations, due to e.g. the precession
of the elliptic orbit of the moon, are known one can correct for them using so-called
nodal factors. The theory presented here suggests that modulation of the harmonic
constants may also originate from intrinsic nonlinear dynamics within the resonating
basin, which cannot be accounted for from astronomical forcing.

Because the focus of this work is on the interaction of the oscillatory modes with
themselves, the zero-mode has been omitted (see the first remark at the end of sec-
tion 4.3.1). Technical aspects are more involved for the zero-mode because it cannot
be described with a single amplitude. Pratt & Llewellyn Smith (1997) provide a
method to deal with the latter aspect, but the incorporation of both the zero- and
oscillatory modes into a consistent theory for small amplitudes still forms a mathe-
matical challenge that remains to be solved. However, the effect of the zero-mode on
the oscillatory modes is expected to cause some interesting behaviour, because the
interaction with the zero-mode may trigger internal excitation of oscillatory modes
that are not excited by the tide at sea directly. This may lead to chaotic behaviour
similar to the results discussed in chapter 5.

In view of the assumptions in this chapter, one might wonder about the geophysical
relevance of the amplitude equation (4.30). The parameter α = Z/H measures the
importance of the nonlinear terms in (4.4). Moreover, it has been used as a scaling
parameter to reflect the assumptions of strong resonance, so α also appears in the
amplification factor, frequency detuning and bottom friction. The slow time scale τ
on which the amplitudes evolve is O(α−2), typically some tens of periods (note that
time was scaled with the eigenperiod T and a factor of 2π according to (4.3)), i.e. tens
of days for tidal systems and one or two days in the case of secondary undulations.
The results in this chapter suggest that the dynamics can be chaotic if modulation
of the exterior tide occurs at the same time scale, due to e.g. the spring-neap tidal
cycle (14 day period) in the tidal case or the basic (semi)diurnal tide in the case of
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secondary undulations.
The assumption of strong resonance may seem to be in contradiction with the

assumption of small amplitudes. In reality however, tidal motion usually is small
compared to the total water depth. Moreover, tides at sea are smaller than those in
the basin due to amplification by resonance. The assumptions in this work pertain to
this limit of the observations. However, the main reason for the assumption of small
detuning and large amplification is to maintain analytical tractability. The nonlinear
effects will be equally important as long as the tidal amplitude in the basin remains
large enough. Physically the important processes are friction and nonlinearity. The
nonlinear effects change the effective eigenfrequency as a function of the tidal ampli-
tude in the basin, i.e. of α, hence bending the resonance curve. Apart from the fact
that friction reduces the tidal amplitude, it tends to smooth the response curve and
thereby hides the nonlinear effects. Still, if α, hence the nonlinear effects, is less small,
friction may not need to be that small either. Although the validity of the results of
the weakly nonlinear analysis may be confined to this limit, it is quite possible that
the processes described here do play a role beyond the small-amplitude limit. After
all, dependence of the effective eigenfrequency on amplitude, multiple equilibria and
other nonlinear effects are generally enhanced for increasing amplitude. No analytical
methods are available yet to substantiate this however.

In order to quantify the balance between friction and the nonlinear effects, one
needs to consider a single equation in which both nonlinear advection and the nonlin-
ear continuity term can be compared with friction. The main effect of the nonlinear
terms considered in this chapter is to change the effective eigenfrequency. This in-
troduces phase differences between the tide in the basin and at sea. Consequently it
changes the absorption of energy from the exterior tide. In line with the analysis in
this chapter the local energy equation can be obtained by forming the ‘inner product’
gζ (4.1a) + DU · (4.1b):

g ζ
∂ζ

∂t
+g ζ∇· (HU)+g ζ∇· (ζU)+DU·∂U

∂t
+DU·([U·∇]U)+gDU·∇ζ+DU· τb

ρD
= 0.

A B C D E F G

(4.38)
The terms in this equation are listed in table 4.2 together with order of magnitude es-
timates based on the scales introduced in (4.3). By considering the dominant balance
in the continuity equation between elevation change (A) and the linear continuity term
(B), one obtains the easily interpretable relationship UHT = 2πLZ, which allows us
to write α = Z/H for the ratio between the nonlinear terms (C and E) and the time
derivative (A resp. D) in both the continuity and momentum equation. The balance
between inertia (D) and the pressure gradient (F) holds if the length scale L is compa-
rable to the wavelength λ = (gH)1/2T . The balance between friction (G) and advec-
tion (E) requires cD ∼ H/L. Because resonant basins are considered, the length of the
basin L is related to H through the dispersion relation L = ελ, where ε = 1/4, 3/4, ...
for a half-open rectangular channel, cf. (4.33), whereas ε � 1 for an almost-enclosed
Helmholtz resonator. Consequently the balance εcD ∼ H/λ = (H/g)1/2/T appears
to hold for reasonable depth only in the case of an almost-enclosed basin. However,
comparing the nonlinear continuity term (C) with friction (G), one finds analogously
ε3cD ∼ H/λ according to which the balance does hold for ε = 1/4 and H ∼ 10–100 m,
so this balance could occur in quarter-wavelength resonators of reasonable depth as
well.
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formula estimate Bay of Fundy Gulf of Nicoya Moldefjord

a. length (km) L 270 40 10
b. depth (m) H 70 20 30
c. elevation (m) Z 6 1 0.1
d. velocity (m s−1) U 1 0.2 0.1

e. time scale (103 s) T
2π

7.1 7.1 0.46

A. elevation (m3s−3) g ζ ∂ζ
∂t

2π
gZ2

T
5.0 · 10−2 1.4 · 10−3 2.1 · 10−4

B. lin. cont. (m3s−3) g ζ∇· (HU) gHZU
L

1.5 · 10−2 9.8 · 10−4 2.9 · 10−4

C. nl. cont. (m3s−3) g ζ∇· (ζU) gZ2U
L

1.3 · 10−3 4.9 · 10−5 9.8 · 10−7

D. inertia (m3s−3) DU· ∂U
∂t

2π
HU2

T
9.8 · 10−3 1.1 · 10−4 6.5 · 10−4

E. advection (m3s−3) DU·([U·∇]U) HU3

L
2.6 · 10−4 4.0 · 10−6 3.0 · 10−6

F. gradient (m3s−3) gDU·∇ζ gHZU
L

1.5 · 10−2 9.8 · 10−4 2.9 · 10−4

G. friction (m3s−3) DU· τb
ρD

cD U3 2.5 · 10−3 2.0 · 10−5 2.5 · 10−6

Table 4.2: Estimates for the order of magnitudes of the terms in the local
energy equation corresponding to (4.1). Summing the terms A–G and inte-
grating over the basin area leads to the global energy. Rough quantitative
scaling estimates for a couple of example basins, that were studied by Doo-
dson (1924), Gutiérrez et al. (1981) and Golmen et al. (1994) respectively.
Numbers have been taken from http://www.town.stgeorge.nb.ca/bay.html,
http://www.bayoffundy.com/tidetables, Godin & Gutiérrez (1986) for the Bay
of Fundy, http://data.ecology.su.se/mnode/CentralAmerica/GulfofNicoya/
nicoyabud.htm, http://ilikai.soest.hawaii.edu/uhslc/htmld/d0396A.html
for the Gulf of Nicoya and Golmen et al. (1994) for the Moldefjord.

Quantitative estimates of the respective scales are given in table 4.2 for a couple of
example basins to which the presented model might be applicable. In view of the ob-
servation that many different processes lead to the same amplitude equations (4.30),
its relevance may be broader, with many processes contributing to Γk,m. Whenever
the effective eigenfrequency depends on the amplitude of the motion, (4.30) describes
the first-order evolution of the amplitudes on a longer time scale, possibly leading
to chaotic behaviour. Obviously, identifying such qualitative effects of nonlinearity
in time series of observed tidal amplitudes would be the best proof of the relevance
of (4.30).

In this chapter the Landau equations (4.30) have been derived. The behaviour of
solutions to this dynamical system will be analysed in the next chapter. Truncation of
the system (4.30) for infinitely many eigenmodes to a finite number of modes appears
to be natural. Truncation to one mode leads to the same equations as the ones found
by Maas (1997), Maas & Doelman (2002) and Doelman et al. (2002) for the Helmholtz
mode in an almost-enclosed basin. In the two-mode system the nonlinear interaction
between modes comes into play. In both cases multiple steady states can be found:
under the same external conditions the tidal response in the basin can be different.
Moreover, the evolution of the amplitudes may become chaotic.
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Appendix. Excluding non-trivial resonances for the
examples in section 4.4.

In this appendix it is shown that the estimate (4.36) implies that there are no non-
trivial resonances for which $k −$l −$m + $n = 0. First of all, direct application
of the estimate leads to

$k −$l −$m + $n = a(k − l −m + n)− 1
4k − 1

+
1

4l − 1
+

1
4m− 1

− 1
4n− 1

+
χk

(4k − 1)3
− χl

(4l − 1)3
− χm

(4m− 1)3
+

χn

(4n− 1)3

= a(k − l −m + n + ε)

with −1 < ε < 1. This does not rule out resonances of this kind, but it does show
that one must have ε = 0 and k + n = l + m for these resonances to occur. Because
0 < χj < χ̄, with χ̄ = 31/(3π2) for the linear, or χ̄ = 27

128

√
2 for the quadratic bottom,

we can estimate∣∣∣∣ χk

(4k − 1)3
− χl

(4l − 1)3
− χm

(4m− 1)3
+

χn

(4n− 1)3

∣∣∣∣ < 2χ̄

(4n− 1)3
,

for k > l ≥ m ≥ n ≥ 1. Next, we introduce

χ = (4n− 1)3
(

1
4k − 1

− 1
4l − 1

− 1
4m− 1

+
1

4n− 1

)
. (4.39)

If it can be shown that χ > 2χ̄ if k > l ≥ m ≥ n ≥ 1 and k+n = l+m, the possibility
that $k − $l − $m + $n = 0 is ruled out. In fact, we will show that χ ≥ 288

77 and
clearly 288

77 > 2χ̄ both for the linear and for the quadratic bottom.
In order to prove that χ ≥ 288

77 , factor (4.39) into

χ = 25 (4n− 1)2(2s− 1)(lm− kn)
(4k − 1)(16lm− 4s + 1)

writing s = k+n = l+m. As a function of lm for fixed k, n (and s), this is minimized
for minimal lm, hence for l = k−1,m = n+1 (note that k > l implies m > n because
k + n = l + m). Therefore

χ ≥ 25 (4n− 1)2(2s− 1)
(4k − 1)

(k − 1)(n + 1)− kn

(16(k − 1)(n + 1)− 4s + 1)
= 25 (4n− 1)2(s− 2n− 1)(2s− 1)

(4n + 3)(4k − 1)(4k − 5)
,

which is minimal with respect to n, k for n = 1, k = s − 1, so χ ≥ 25 9
7

(2s−1)(s−3)
(4s−5)(4s−9) .

For s ≥ 4 (which follows from the fact that s > k > l ≥ m > n ≥ 1) this is minimized
at s = 4, so finally the estimate χ ≥ 288

77 is reached.
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Chapter 5

Analysis of solutions to the
amplitude evolution equations

In the previous chapter the Landau equations (4.30) governing the weakly nonlinear modu-
lation of the amplitudes of co-oscillating tides due to advection and continuity were derived
from the shallow-water equations in the limit of small amplitudes and strong resonance.
In this chapter, the behaviour of the resulting dynamical system is investigated. The
Landau equations (4.30) describe the evolution of the amplitudes for an infinite number
of eigenmodes. However, truncation to a finite number of modes appears to be natural.
For one mode, the equations reduce to the same equations as the ones found in Maas
(1997), Maas & Doelman (2002) and Doelman et al. (2002). Hence the results in those
papers also apply for the present model. They found a ‘bent resonance curve’, multiple
equilibria (several tidal regimes under the same tidal forcing), sudden regime changes
and even chaotic dynamics (when these regime changes occur in an irregular way). On
truncating to two modes, interaction between different eigenmodes comes into play. This
enables the phenomena mentioned above to occur under different circumstances as well.
In section 5.5 a number of mechanisms that may lead to chaos are discussed. In partic-
ular, the Coriolis force (due to the Earth’s rotation) and non-trivial internal resonances
between eigenmodes, may trigger eigenmodes that are not generated by the exterior forc-
ing directly. As a consequence, chaotic dynamics might even occur with harmonic forcing
in the present model, in contrast with the conclusions for one (Helmholtz) mode in earlier
work.1

5.1 Introduction

The response of small-scale coastal basins to direct astronomical forcing by the moon
and the sun is weak. Nevertheless strong tidal oscillations occur in many coastal
basins around the world because they are forced through co-oscillation with adjacent
oceans/seas at one of their natural frequencies. Under such conditions tides can be
amplified to huge amplitudes up to 8 m in the Bay of Fundy between Nova Scotia
and the American/Canadian mainland. Reviews on the linear theory predicting the

1This chapter is based on (the second half of) the paper “Weakly nonlinear cubic interactions in
coastal resonance” by Guido M. Terra, Arjen Doelman and Leo R.M. Maas, J. Fluid Mech. (2004),
vol. 520, pp. 93–134.

77
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resonance behaviour can be found in many publications (e.g. Defant, 1961; LeBlond &
Mysak, 1978; Mei, 1989). In the previous chapter, a weakly nonlinear analysis led to
Landau equations (4.30) describing the modulation of the tidal response amplitudes
in such co-oscillating basins. The behaviour of solutions to those equations will be
analysed in this chapter.

A number of assumptions have been made in order to derive the Landau equa-
tions (4.30) in the previous chapter. First of all, the depth-averaged two-dimensional
shallow-water equations (4.1) have been used as the starting point, with the implicit
assumption that the horizontal scales of the motion are much larger than the vertical
scale (water depth), but small compared to the Earth’s radius. Moreover the small
parameter α was introduced to implement the additional assumptions of small O(α)
amplitude (of water-level elevation relative to total water depth), weak friction O(α3)
and strong O(α−2) multiplication, i.e. small forcing amplitude O(α3). The latter
assumption amounts to assuming near resonance, because non-resonant components
of O(α3) will not be amplified by a factor of O(α−2) to result in water-level elevations
of O(α) within the basin.

The resonant components can be of several origin. The terminology in the previ-
ous chapter 4 has been primarily aimed at the case of coastal resonance in large-scale
basins at tidal frequencies. Harbour resonance in smaller-scale coastal basins oc-
curs at higher frequencies. These infragravity waves (Okihiro & Guza, 1995) are
pronounced oscillations in near-shore sea areas and harbours with periods of a few
minutes to hours, which are longer than those associated with surface wind waves,
but of shorter duration than a typical tidal period. The importance of the more pro-
nounced oscillations of this kind can be inferred from the fact that the phenomenon
is locally often identified by a certain name: e.g. Abiki in Nagasaki Bay (Hibiya &
Kajiura, 1982), Risagga at Menorca (Gomis et al., 1993) and Marrobbio in the Strait
of Sicily (Candela et al., 1999). These oscillations, also called secondary undulations
(small-amplitude, ‘high’-frequency undulations accompanying the tidal, ‘primary’ os-
cillation), are perhaps less spectacular in overall appearance than megatidal oscilla-
tions, but their importance is boosted when one considers the associated currents, of
importance for the flushing of the coastal areas. Observations by Golmen et al. (1994)
show that these ‘perturbation’ currents may in fact be of similar strength to those
associated with the generating, primary tide. Several different forcing mechanisms
have been put forward to explain their origin: atmospheric pressure perturbations
(Hibiya & Kajiura, 1982), internal wave activity (Giese & Chapman, 1990), seismic
activity (tsunamis), or current shear (Fabrikant, 1995).

The derivation in chapter 4, in particular the scaling assumptions following (4.3),
primarily applies to the tidal case, but after a few modifications the analysis can be
adapted to the case of secondary undulations as well. If the infragravity waves are
the dominant oscillation in the basin, one only needs to change the time scale from
the tidal period to the period of the harbour oscillations. Usually however, the in-
fragravity waves will be secondary undulations superimposed on the dominant tidal
oscillation. This case can be studied along the lines of chapter 4 too. The frequency
spectrum of the tide near the bay entrance is then supposed to contain a continuum
part (cf. Munk & Cartwright, 1966) besides the peaks at the (low) tidal frequency,
including a small-amplitude, but resonating frequency that will be picked out by the
bay. Because the tidal oscillation period is much longer than those of the basin’s
eigenmodes, which determine the time scale of the model (4.4), (4.5), the primary
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tidal oscillation amounts to a slow change of the reference water depth D(0). As a
consequence the eigenmodes of the basin change on the tidal time scale. If the tidal
time scale is of the same order of magnitude as the slow time scale τ = α2t, this
change must be incorporated in the amplitude equations. Under the same assump-
tions (4.14) on the eigenmodes as before, this would lead to a parametric forcing term
in the Landau equations (4.30). For the simpler case of the Helmholtz mode in an
almost-enclosed basin this situation has been explored more explicitly by Maas &
Doelman (2002, section 5). Although similar in principle, the technical details be-
come much more involved for the more general approach in the previous and present
chapter.

At present we have no knowledge of field observations analysed to corroborate the
behaviour described in this chapter. However, most certainly there are indications
that the linear picture describing the tide as a sum of harmonic tidal components is
incomplete. Doodson (1924) studied the yearly variations of harmonic constants in
Bombay and St. John, Bay of Fundy (see also Defant, 1961, p. 309). The variation
can be explained partly by long-term astronomical signals, such as the regression of
the moon with a period of about 19 years, but another part is not accounted for.
A similar study by Gutiérrez et al. (1981), investigating year to year variability of
the harmonic constants for Trieste, shows that it cannot be attributed to deficiencies
of the filtering methods. Although the etymology of the word ‘tides’ stems from
their periodicity, reports of irregular tides have been made throughout time. More
recently, Frison et al. (1999) argue that, in a number of tidal areas, the astronomical
constituents account for only 50–70% of water-level variability. The residual spectral
contributions have often been qualified as ‘noise’, due to meteorological influences,
river inflow and tidal interactions. Frison et al. (1999) analysed water-level data
using new data analysis techniques that have been developed for chaotic systems.
They calculate attractor dimensions and Lyapunov exponents for some tidal signals
and conclude that they come from a relatively noise-free but chaotic system. Tidal
predictions based on harmonic constants, describing the tidal signal as a linear sum
of astronomical constituents, do not capture this. The model derived in chapter 4
yields possible chaotic behaviour of the harmonic ‘constants’. Hence it differs from the
observations by Frison et al. (1999) who studied chaotic behaviour in the time series
of water-level elevation itself instead of the amplitudes. In that sense it relates to the
research of Doodson (1924) and Gutiérrez et al. (1981), although they considered the
variability of yearly averaged results whereas the changes described here would occur
on a smaller time scale.

In the case of harbour resonance, reports on irregular behaviour are more common.
Based on the study of surface elevations in over 50 bays adjacent to Japan, Honda
et al. (1908) speculate that this type of coastal resonance is forced by the tide as well,
for which a possible explanation is given by Fabrikant (1995). Regarding the nature
of the secondary undulations these authors conclude that they

• vary from inconspicuous (at the Pacific coast) to conspicuous (near the Japan Sea),
• vary from regular to irregular,
• may often change their periods continuously,
• often appear in phase with the tide,
• often have periods reflecting quarter-wavelength resonance,
• often disappear outside the bay,
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• have the same period as when excited in response to a storm.

Although this does not rule out the possibility of incidental forcing by strong winds
or intense atmospheric pressure disturbances, the persistence of the secondary undu-
lations suggests an ever-present source, such as due to tidal motion in the adjacent
sea. The observations of the secondary undulations accompanying the tide show that
the response of a local eigenoscillation may differ in character from periodic, tidally
phase-locked, to aperiodic (Nakano, 1932). This indicates some kind of nonlinear
coupling to the tide.

Having found the Landau equations (4.30) describing the (slow) evolution of the
amplitudes of the eigenoscillations of the basin, the behaviour of the corresponding
dynamical system is analysed further in this chapter. The number of modal equations
depends on the number of modes that are excited at this order. Neglecting the
Coriolis force leads to real-valued coefficients Γk,m. In that case, the equations have
some symmetry (that disappears again with the introduction of the Earth’s rotation).
Therefore, (4.30) will be considered first for real-valued coefficients Γk,m. The effects
of the Earth’s rotation will be investigated later. For different basins, different values
for the coefficients Rk,k and Γk,m will be found, see section 4.4. Therefore the idea
is not to consider the problem for specific values of the coefficients, but to study it
for arbitrary values in general. In sections 5.3 and 5.4 one- and two-mode systems
are discussed. The one-mode system is interesting because its amplitude equation
is identical to that governing the Helmholtz mode in an almost-enclosed basin, as is
found by Maas (1997), Maas & Doelman (2002) and Doelman et al. (2002). As the
temporal behaviour of the forcing can contain multiple (near-resonant) frequencies,
the response of even this single mode can still be quite rich (ranging up to chaotic).
However, a complex response can also be facilitated by the interaction between modes,
as the two-mode system shows. Note that equations similar to (4.30) have been
studied by Nayfeh & Mook (1979), but only up to the point of steady states. Multiple
equilibria are found by them as well, but chaotic dynamics are beyond the scope of
that book. This chapter ends with a discussion of a number of mechanisms that
may lead to chaotic dynamics of tidal amplitudes, before jumping to conclusions in
section 5.6.

5.2 Boundedness and truncation

The forcing terms Fk(τ) in (4.30) are essentially the amplitudes of the components of
the external tide with frequency near ωk. They form the (generalized) Fourier com-
ponents of the exterior tidal curve with respect to the eigenfrequencies ωk. It follows
from Fourier theory that these amplitudes will be bounded. Moreover, they tend to
zero for ωk →∞, and hence for k →∞.

The Landau equation (4.30) is an equation for the slow evolution of the complex
amplitudes Ak. Hence, for each k it amounts to two equations for two unknowns in
real coordinates. In order to state the equations in polar coordinates the modulus
and argument of the amplitudes are introduced: Ak = RkeiΦk and Fk = ZkeiΨk . In
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these coordinates (4.30) become

dRk

dτ
= −ck Rk + Zk cos(Ψk − Φk), (5.1a)

Rk
dΦk

dτ
=

∑
m

Γk,mRm
2Rk + Zk sin(Ψk − Φk). (5.1b)

From the radial equation (5.1a) it is clear that the amplitude Rk decreases if Rk >
Zk/ck. We conclude that |Ak| ≤ Zk/ck for τ → ∞. The estimate |Ak| ≤ Zk/ck

ensures that the (absolute) convergence of the response amplitudes Ak follows from
the convergence of the forcing amplitudes Zk. If a certain mode k is not excited by
the external tide (Zk = 0) then it is not excited by other modes either. In particular
for harmonic forcing, if the exterior tide ζe consists of a single tidal constituent, then
Zk is non-zero, hence Ak is as well, for a single component k only. Because the
amplitudes Zk of the tidal harmonics ultimately decrease with increasing frequency,
it makes sense to truncate the model and consider (4.30) for a finite number of modes.
This will be done in sections 5.3 and 5.4.

Note that the form of (5.1a) depends on the assumption that Γk,m is real, and
hence on neglecting the Earth’s rotation. For complex-valued Γk,m there is a con-
tribution of the nonlinear terms in the radial equation as well. This invalidates the
preceding argument. In combination with the Earth’s rotation the nonlinear effects
of continuity and advection can cause growth of the solution’s amplitudes. For real-
valued Γk,m the interaction between modes is not present in the radial equations. The
interaction between the modes is entirely through the phases Φk.

5.3 Single-mode solution

In this section, the external tide is assumed to be in effective resonance with only one
eigenmode of the basin, hence Fk 6= 0 for one k only. According to the reasoning in the
previous section, the dynamics will be dominated by this single resonant eigenmode
k; all other modes will be negligible. The (complex) amplitude Ak of this mode is
governed by

dAk

dτ
= Fk(τ)− ck Ak + iΓk,k |Ak|2Ak,

which is just the truncation of (4.30) to a single mode. In this section the connection
with previous work by Doelman et al. (2002) will be established first. Consequently
an overview of the results of their analysis is given: the determination of stationary
states, yielding multiple equilibria, mechanisms leading to chaotic dynamics and the
construction of a chaotic set for one of those mechanisms are discussed.

If the external tide is in perfect resonance with eigenmode k, i.e. ζe ∼ eiωkt, then
Fk(τ) is a constant, related to the amplitude of the tidal signal. A more natural
situation is the case of near resonance, when the temporal behaviour of the external
tidal component is eiωt, where the forcing frequency ω = ωk + α2σ deviates slightly
(O(α2) only for the modulation to be on the same time scale as the evolution due
to the nonlinear effects) from the eigenfrequency ωk. In this case one has eiωt =
eiωkteiσα2t = eiστeiωkt from which it follows that Fk(τ) is proportional to eiστ , say
Fk(τ) = Zei(στ+Ψ). It is convenient to write Ak(τ) = A(τ)eiστ , which introduces an
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additional term −iσA in the amplitude equation. Suppressing the subscript k, this
leads to

dA

dτ
= −(c + iσ) A + iΓ |A|2A + ZeiΨ, (5.2)

which in polar coordinates A = ReiΦ becomes

dR

dτ
= −cR + Z cos(Ψ− Φ), (5.3a)

R
dΦ
dτ

= −σR + Γ R3 + Z sin(Ψ− Φ), (5.3b)

and in Cartesian coordinates A = X + iY

dX

dτ
= (σ − Γ R2)Y − cX + Z cos(Ψ), (5.4a)

dY

dτ
= −(σ − Γ R2)X − cY + Z sin(Ψ), (5.4b)

with R2 = X2 +Y 2. In this form the equations are completely equivalent to the ones
studied in Maas (1997), Maas & Doelman (2002) and Doelman et al. (2002).2 In
those papers, the equations were derived by averaging methods in a zero-dimensional
model for so-called Helmholtz oscillators, see section 5.1. Averaging is another way to
dissect the slow from the fast behaviour of the model. The results are equivalent: an
equation for the slow evolution of the amplitudes of oscillations on the fast time scale.
Because equations (5.3) and (5.4) are essentially the same as the ones found in Maas
& Doelman (2002) and Doelman et al. (2002), their results apply here as well. Those
results will only be summarized here, for details refer to the original papers. Note
that, although the form of the amplitude equations is essentially the same, the differ-
ence between them lies in the fact that the equations were derived for a much larger
class of basins in the previous chapter. The restriction to almost-enclosed Helmholtz
resonators was lifted in this thesis.

The system exhibits stationary solutions. They correspond to a response of the
system at the same frequency as the forcing and with constant amplitude. From (5.2)
one can derive the amplitude response equation, describing the response amplitude R
as a function of the forcing frequency σ and amplitude Z. However, it is much easier
to give the frequency σ in terms of Z and R, which yields

σ = ΓR2 ± Z

R

√
1− (

cR

Z
)2, (5.5)

The resulting response curve is plotted in figure 5.1, for three values of the forcing am-
plitude Z. It clearly shows the effect of the nonlinear terms in bending the resonance
horn because the effective eigenfrequency now depends on the response amplitude.
In linear theory one would find a single response amplitude for each value of the fre-
quency σ. In this case however, it is possible to find multiple stationary solutions.
It appears that, if there are three response solutions for given parameters σ and Z,
the response with largest and the response with smallest amplitude are stable. The

2Compare (5.3) and (5.4) with respectively (3.6) and (3.8) in Doelman et al. (2002), where
Fsol = 0 at this point.
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Figure 5.1: Frequency response curves for Γ = −10, c = 1 and several forcing am-
plitudes, Z = 1

2 , 1, 2. Solid curves denote stable branches, the dotted curves are
unstable. A vertical line at σ = −5.3 indicates that multiple equilibria are found
under certain conditions.

‘medium amplitude response’ is an unstable solution of (5.2), represented in figure 5.1
by a dotted line. This means that under those external conditions, the system can
be found in either an amplified or a choked tidal regime, depending on the history of
the system.

Under slow changes of external conditions, like mean sea-level rise or changing
morphology, the system will follow one of the stable branches. However, if such a
branch ‘folds’, hence ceases to exist, the system will make a sudden transition to the
remaining stable branch if the external conditions change further. If the parameters
change very slowly, the system will have time to settle down to the new regime. If
however the parameters change back and forth before the system has time to reach
the corresponding stationary states, the reaction of the system can be chaotic, as will
be discussed below. There are two obvious ways in which the forcing parameters σ
(frequency) and Z (amplitude) can be changed on the time scale τ of the transient
amplitude behaviour in (5.2): either a slow change in water depth or forcing ampli-
tude modulations, the latter due to e.g. the spring-neap tidal cycle. In relatively
small basins, a slow change in water depth could be due to large scale tidal motion,
with the resonant eigenmode representing secondary undulations on a much smaller
time scale. It constitutes a slow change in the basin’s characteristics, hence its eigen-
frequency. This effectively amounts to changing the forcing frequency σ relative to
the eigenfrequency, see Maas & Doelman (2002, section 5). The analysis in chapter 4
does not capture this process accurately, although it is in principle possible to incor-
porate this effect in the present model as well.

In the case of amplitude modulations a so-called ‘horseshoe’ has been found as a
subsystem of the model under some additional assumptions, thus constituting a proof
of the occurrence of chaos in the system (Doelman et al., 2002). This construction
will be illustrated here. The external forcing is assumed now to consist of two tidal
components, one much smaller in amplitude than the other, and both almost in
resonance with the one eigenfrequency ωk, as is appropriate for many areas where the
tidal signal is dominated by the lunar M2-tidal component, with a small modulation
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Figure 5.2: Phase portrait of Hamiltonian flow for Z1 = 1
24

√
3. This choice for Z1 is

arbitrary. When 0 < Z1 < 2
9

√
3, there are three stationary states and the result is

similar.

due to the solar S2-constituent. As explained for one tidal component at the beginning
of this section, this leads to Fk(τ) = Z1ei(σ1τ+Ψ1) + Z2ei(σ2τ+Ψ2). The assumption
formulated above can be written as Z2/Z1 = δ, with δ � 1, which leads to

Fk(τ) =Z1ei(σ1τ+Ψ1) + Z2ei(σ2τ+Ψ2)

=Z1ei(σ1τ+Ψ1)(1 + δei(∆σ τ+∆Ψ))

=Z(τ)ei(στ+Ψ(τ)),

where σ = σ1, ∆σ = σ2−σ1, ∆Ψ = Ψ2−Ψ1, Z(τ) = Z1

(
1+δ cos(∆σ τ+∆Ψ)

)
+O(δ2),

and Ψ(τ) = Ψ1 + δ sin(∆σ τ + ∆Ψ) + O(δ2). The expression for Fk(τ) is similar to
that for a single tidal component. Therefore, (5.2), (5.3) and (5.4) are equally valid,
with the only difference that Z and Ψ depend on τ now. Moreover, in conjunction
with assuming small modulation, friction is assumed to be additionally small as well,
by writing c = δC. By rescaling, the system is brought into the form

dX

dτ
= (1−R2)Y + Z1 + δ

[
− CX + Z1 sin(∆σ τ)

]
, (5.6a)

dY

dτ
= −(1−R2)X + δ

[
− CY − Z1 cos(∆σ τ)

]
, (5.6b)

which is the same as (3.16) in Doelman et al. (2002) upon interchanging X and Y .
System (5.6) is Hamiltonian for δ = 0;the Hamiltonian is given by

H(X, Y ) = − 1
4 (1−R2)2 + Z1Y. (5.7)

The resulting phase portrait is shown in figure 5.2 under conditions for which there
are multiple equilibria. One of the critical points is a saddle, the other two are centre
points. The saddle corresponds to the unstable stationary solution from figure 5.1.
The centres correspond to the stable stationary solutions in figure 5.1. The ‘inner’
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one is the choked mode with small amplitude, the ‘outer’ one is the amplified mode
with an amplitude which is larger than the amplitude of the saddle. Two homoclinic
orbits are connected to the saddle.

For δ 6= 0 the system (5.6) is not autonomous, so the phase portrait in figure 5.2
is not appropriate anymore. For small δ � 1 it can be used as a first approxima-
tion however. The persistence of the homoclinic orbits can be investigated using the
Melnikov method. In fact, the deviation from the unperturbed homoclinic orbit in
figure 5.2 is approximated by calculating the approximate change of the Hamiltonian
H due to the O(δ) perturbations by friction and modulation. This determines if they
are connected still, or if the stable and unstable manifolds of the saddle point —
the points that tend to respectively come from it — do not meet and spiral down
to the critical points. The analysis by Doelman et al. (2002) shows that the sta-
ble and unstable manifolds do intersect transversely if friction is not too large (for
C < Cmax(Z1,∆σ)). Note that transverse intersections between stable and unsta-
ble manifolds are possible due to the non-autonomous nature of (5.6). In that case
the well-known ‘horseshoe’ can be constructed (the Smale–Birkhoff theorem), which
yields a chaotic set, consisting of chaotic orbits which evolve close to the homoclinic
orbits of figure 5.2 again and again in an irregular way. The physical consequence is
that harmonic ‘constants’ cannot be found because they evolve chaotically on longer
time scales (cf. Doodson, 1924; Gutiérrez et al., 1981).

A final remark should be made about the value of the parameter δ. It must be
small in order for the Melnikov method to be applicable. The parameter α should
be even smaller, to maintain the validity of the amplitude equation (5.2). However,
though this assumption on δ is needed to construct the horseshoe map by the Melnikov
method, the smallness of δ, i.e. of the modulation of the external forcing, is likely
not to be required at all. It is to be expected that for larger δ, chaotic motion still
occurs. This is motivated for example by the numerical observations in Maas (1997)
and Maas & Doelman (2002).

5.4 Two-mode solutions

In order to investigate the influence of one mode on the other, it is natural to consider
the model with two modes. Hence, in this section the external forcing is assumed to
be in resonance with two eigenmodes of the basin. Without loss of generality we call
them mode 1 and mode 2, referring to these modes by means of corresponding indices.
The external forcing will give rise to Fk = Zkei(σkτ+Ψk), for k = 1, 2. Continuing as
in the previous section, we replace Ak(τ) by Akeiσkτ resulting in the equations

dA1

dτ
= −c1A1 − iσ1A1 + i(Γ1,1 |A1|2 + Γ1,2 |A2|2)A1 + Z1eiΨ1 , (5.8a)

dA2

dτ
= −c2A2 − iσ2A2 + i(Γ2,1 |A1|2 + Γ2,2 |A2|2)A2 + Z2eiΨ2 . (5.8b)
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In polar coordinates Ak = RkeiΦk we have

dR1

dτ
= −c1R1 + Z1 cos(Ψ1 − Φ1), (5.9a)

R1
dΦ1

dτ
= −(σ1 − Γ1,1R1

2 − Γ1,2R2
2)R1 + Z1 sin(Ψ1 − Φ1), (5.9b)

dR2

dτ
= −c2R2 + Z2 cos(Ψ2 − Φ2), (5.9c)

R2
dΦ2

dτ
= −(σ2 − Γ2,1R1

2 − Γ2,2R2
2)R2 + Z2 sin(Ψ2 − Φ2). (5.9d)

The next subsection deals with the stationary solutions of these equations which can
be studied analytically. Figure 5.3 shows the four-dimensional response graphs of the
response amplitudes R1 and R2 as a function of the forcing frequencies σ1 and σ2 for
fixed forcing amplitudes Z1 and Z2. In order to clarify this figure, a classification of
(σ1, σ2) parameter space is given in figure 5.4. The stability of the stationary states is
discussed here as well. Moreover, cross-sections of the graphs in figure 5.3 are shown
in figure 5.5. Finally, the section ends with numerical investigations of the system,
showing periodic orbits, period doublings and chaos.

Note that the behaviour described here is that of the amplitudes themselves. The
resulting water-level variations will be oscillations with frequencies ω1, ω2 of the re-
spective eigenmodes, but with amplitudes and phases modulating slowly in time,
according to the dynamics described here. This behaviour would manifest itself if one
performs harmonic analyses on tidal signals over moving windows in time. Instead of
being constant over all time frames, the amplitudes and phases found for a tidal com-
ponent would vary slowly in time. It is this variation of the amplitudes and phases
that is studied here.

5.4.1 Analytical results

Stationary solutions to these equations correspond again to the response of the system
at the same frequencies as the forcing. They follow by equating the derivatives in (5.9)
to zero and eliminating the angle coordinates. This leads to

σ1 = Γ1,1R1
2 + Γ1,2R2

2 ±

√
Z1

2

R1
2 − c1

2, (5.10a)

σ2 = Γ2,1R1
2 + Γ2,2R2

2 ±

√
Z2

2

R2
2 − c2

2. (5.10b)

Compare this with (5.5) for one mode. For each mode, the response curve Rk as a
function of σk would be just a shifted copy of figure 5.1, if the other mode’s amplitude
were constant. Obviously R1 depends on σ1 but it depends on σ2 as well through
the interaction with R2. The influence of one mode on the other is to change its
effective eigenfrequency. Because the shift depends on the amplitude, the result can
nevertheless be quite complicated. As in the case of one mode, it is much harder to
find the response amplitudes R1 and R2 as a function of the detuning frequencies
σ1, σ2. However, by plotting the frequencies as a function of the amplitudes, one
can still parametrically describe the response-‘curves’. Figure 5.3 shows the results.
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The plots are made with coefficients Γk,m according to the first two eigenmodes of a
rectangular basin with vertical sidewalls, i.e. Γ1,1 = −10, Γ1,2 = −12, Γ2,1 = −17,
Γ2,2 = −16 and friction c1 = c2 = 1

2 , see section 4.4. Cross-sections, shown in
figure 5.5, will be described later.

Because the response amplitudes depend on both frequencies σ1 and σ2, the graphs
are three-dimensional. In fact, they should be considered together as four-dimensional
graphs of (R1, R2) as a function of (σ1, σ2). For a given pair of frequencies (σ1, σ2)
a stationary state is characterized by a pair of amplitudes (R1, R2). These states
constitute the branches in figure 5.3; the graphs are not independent from each other.
The number of stationary states at given frequencies can be read off from the colours
in figure 5.4. The solid lines in this figure mark the frequency values for which saddle-
node bifurcations occur, where two steady states appear or vanish. They are obtained
by considering the Jacobian of (5.9):

−c1 Z1 sin(Ψ1−Φ1) 0 0

2Γ1,1R1−
Z1 sin(Ψ1−Φ1)

R1
2 −Z1 cos(Ψ1−Φ1)

R1
2Γ1,2R2 0

0 0 −c2 Z2 sin(Ψ2−Φ2)

2Γ2,1R1 0 2Γ2,2R2−
Z2 sin(Ψ2−Φ2)

R2
2 −Z2 cos(Ψ2−Φ2)

R2


.

(5.11)
Using the fact that Zk cos(Ψk−Φk) = ckRk, for k = 1, 2, in steady states, the Jacobian
can be conveniently expressed in terms of the two variables tk = tan(Ψk − Φk). The
characteristic polynomial of (5.11) is

p(λ) = λ4 + aλ3 + bλ2 + cλ + d,

where

a=2(c1 + c2),

b =4c1c2 + c1
2(1 + t1

2) + 2c1Γ1,1R1
2t1 + c2

2(1 + t2
2) + 2c2Γ2,2R2

2t2,

c=2c2(c1
2(1 + t1

2) + 2c1Γ1,1R1
2t1) + 2c1(c2

2(1 + t2
2) + 2c2Γ2,2R2

2t2),

d =(c1
2(1 + t1

2) + 2c1Γ1,1R1
2t1)(c2

2(1 + t2
2) + 2c2Γ2,2R2

2t2)

−4c1c2Γ1,2Γ2,1R1
2t1R2

2t2,

(5.12)

with Rk = Zk/(ck

√
1 + tk

2). Saddle-node bifurcations occur when λ = 0 is a root.
Solving d = 0 for t2 hence leads to a parametric description of the solid bifurcation
lines in figure 5.4 in terms of t1.

The stability of the steady states in figure 5.3 can also change due to Hopf bifur-
cations. These occur if λ = iω, with ω ∈ R, is a root of p(λ), i.e. ω4−bω2 +d− iaω3 +
icω = 0. From the imaginary part cω−aω3 we find that either ω = 0, resulting in the
saddle-node bifurcations already considered, or ω2 = c/a, which subsequently can be
substituted in the real part of p(λ). Solving the resulting condition c2−abc+a2d = 0
leads to a parametrization of the dashed bifurcation lines that are also shown in fig-
ure 5.4. At those values for the frequencies σ1 and σ2, one of the branches of steady
states undergoes a Hopf bifurcation, generically giving birth to a periodic solution.

Three basic components can be distinguished in figure 5.3. First one has the
steady states with R1 finite and R2 very small, or with R1 very small and R2 finite.
In the first case, because R2 is negligible, the corresponding frequency σ2 has hardly
any influence on these states. This results in a graph parallel to the σ2-axis, with
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Figure 5.3: The response amplitudes R1 and R2 as a function of forcing frequencies.
Bay parameters are chosen in accordance with the first two modes of a rectangular
basin (c1 = c2 = 1

2 , Γ1,1 = −10, Γ1,2 = −12, Γ2,1 = −17, Γ2,2 = −16). The
choice (Z1, Z2) = (1, 13/11) of forcing amplitudes is arbitrary. Other choices lead
to different but similar pictures. The surfaces are parameterized by R1 and R2; the
black gridlines are for constant R1 and R2 respectively. Corresponding branches are
in the same colour in both figures: along the blue branches both R1 and R2 are small,
red is for R1 finite and small R2, green denotes small R1 and finite R2, orange/yellow
branches have both R1 and R2 finite.
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(a)

(b)

Figure 5.4: Bifurcation lines in (σ1, σ2) parameter space for Z1 = 1, Z2 = 13
11 , bay pa-

rameters as in figure 5.3. Solid lines mark saddle-node bifurcations and divide the
space into regions with a different number of steady states (regions are colour-coded).
Dashed lines represent Hopf bifurcations. (b) A zoom of the part of parameter
space for which numerical experiments were performed, along the indicated line for
σ1 = −10.
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Figure 5.5: (a–f), For caption see facing page.



5.4. Two-mode solutions 91

−80 −60 −40 −20 0 20
0

0.5

1

1.5

2
R1

σ2(g) At σ1 = −36.

−80 −60 −40 −20 0 20
0

0.5

1

1.5

2

2.5
R2

σ2(h) At σ1 = −36.

−80 −40 0
0

0.5

1

1.5

2R1

σ2

(i) At σ1 = −60.

−80 −40 0
0

0.5

1

1.5

2

2.5
R2

σ2

(j) At σ1 = −60.

−120 −80 −40 0
0

0.5

1

1.5

2R1

σ2

(k) At σ1 = −80.

−120 −80 −40 0
0

0.5

1

1.5

2

2.5
R2

σ2

(l) At σ1 = −80.

Figure 5.5: Several cross-sections of the response surfaces from figure 5.3, for the
same bay parameters and forcing amplitudes as in the previous figures. (a–f) show
the response amplitudes R1 and R2 as a function of σ1 for (a,b) σ2 = −1, (c,d)
σ2 = −18, (e,f) σ2 = −80; (g–l) show R1 and R2 as a function of σ2 for (g,h)
σ1 = −36, (i,j) σ1 = −60, (k,l) σ1 = −80. The dashed line at σ2 = −54.5 in (g) and
(h) indicates conditions for which nine different equilibria exist.
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constant cross-section perpendicular to that axis, following the one-mode response
curve for R1 versus σ1 (figure 5.1). The same holds, mutatis mutandis, for the steady
states with R1 very small. Besides those two branches, there are new equilibria with
both R1 and R2 finite, to be called two-mode equilibria. The backbone of these
equilibria is described by σ1 = Γ1,1R1

2 + Γ1,2R2
2 and σ2 = Γ2,1R1

2 + Γ2,2R2
2, for

0 ≤ Rk ≤ Zk/ck. Hence this ‘backbone’ exists in a parallelogram in (σ1, σ2) frequency
space. The square roots in (5.10) cause the steady states to deviate from it, but the
(distorted) parallelogram is still recognizable as such in figure 5.4(a).

Several cross-sections of figure 5.3 are shown in figure 5.5. They are obtained
using another parametrization of the response-surfaces. In fact, by solving (5.10a)
with respect to R2, one can obtain (R2, σ2) as a function of (R1, σ1). Solving (5.10b)
for R1 yields a parametrization of (R1, σ1) as a function of (R2, σ2). The former can
be used to plot intersections for constant σ1 by choosing a judicious range of values
for R1, the latter for intersections with σ2 constant. The stability of the respective
steady states was determined by calculating the eigenvalues of the Jacobian (5.11).
Solid lines indicate stable equilibria, unstable branches are dashed.

The common feature in these cross-sections (for fixed σk) is the one-mode response
curve when one mode (Rk) is very small. Its stability generally corresponds to that
of the one-mode solution, the higher and lower modes being stable and the ‘medium
amplitude mode’ unstable. In figure 5.5(a) (with corresponding figure 5.5(b)) the
lower mode is unstable due to a Hopf bifurcation over a small interval of σ1-values,
apparently due to the influence of the second mode. The new two-mode equilibria are
separated from the one-mode response curve in figures 5.5(k), 5.5(l) for σ1 = −80.
In figures 5.5(e), 5.5(f) the two-mode equilibria are disconnected from the one-mode
response curve for R1 as well. The fact that these branches extend to σ1 → ±∞
reflects that they are connected with the one-mode solutions for which R1 is very
small. In the other figures the two-mode equilibria and the one-mode response curves
are connected. Although they often are unstable, which implies that they would
not appear in practice, there are conditions for which the new two-mode equilibria
are stable, hence observable in principle. They can occur, even though the one-mode
response curve shows low-amplitude solutions at those conditions only. The nonlinear
interaction between modes allows the basin to resonate at other frequencies than its
linear eigenfrequencies. Multiple equilibria occur in the two-mode system as well
(see figure 5.4), with a maximum of nine equilibria under conditions indicated by
intersections with the dashed line in figures 5.5(g), 5.5(h).

There is hardly any difference (apart from interchanging R1 and R2) between the
cross-sections perpendicular to the σ2-axis and those perpendicular to the σ1-axis. All
figures are shown here for Z1 = 1 and Z2 = 13

11 . For other choices the differences are
similar to those between the cross-sections for constant σ1 or σ2. Increasing friction
(parameters c1 and c2) blurs the picture: the width of the resonance peaks increases,
thus obscuring their backbone structure. In particular the bending of the resonance
‘curves’, hence the multiple equilibria, ultimately disappears.

5.4.2 Numerical integrations

Using the numerical dynamical systems package DsTool (Guckenheimer et al., 1992),
the system (5.8) was investigated near one of the Hopf bifurcations. In fact, some
experiments were carried out for σ1 = −10 and σ2 ranging between 0 and −11.5,
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Figure 5.6: Time series and projections of the orbit in phase space for the chaotic
attractor at σ1 = −10, σ2 = −9.3. The Poincaré section for the return map to the
plane R1 = 0.4 is shown in 5.6(f) and 5.6(i). For comparison, the periodic attractor
at (σ1, σ2) = (−10,−9.416), after two period doublings, is shown as well.
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along the line indicated in figure 5.4(b). There are multiple equilibria under these
circumstances, but we focused on one particular branch only, with R1 being lowest
and R2 highest of three at σ2 = 0 (this order is not preserved throughout). Therefore
some of the bifurcation lines that are crossed in figure 5.4(b) are not relevant because
they occur on other branches. On the selected branch a Hopf bifurcation occurs when
the dashed line is crossed. The solid line crossed at σ2 = −11.6 marks a saddle-
node bifurcation, thus ending this branch. The solid line which is crossed at about
σ2 = −5.2, marks a saddle-node bifurcation that occurs on another branch.

The stationary state is stable for σ2 just above the saddle-node bifurcation at
σ2 = −11.6. On increasing σ2 from there a supercritical Hopf bifurcation occurs:
a stable periodic solution to (5.8) appears for σ2 just above −11.48. This solution
undergoes period doubling at σ2 = −9.44,−9.42, . . .. This orbit is shown in the
left-hand column of figure 5.6 at σ2 = −9.416, after two period doublings. The dif-
ference between subsequent oscillations is hardly visible in the time series 5.6(a) for
the imaginary part Y1 of the first mode, although the fourfold symmetry breaking is
still reasonably distinct in the phase portraits 5.6(d) and 5.6(g). After a cascade of
period doublings a chaotic attractor is found, for which the time series for Y1 and
projections of the orbit in phase space are shown for σ2 = −9.3. Regime behav-
iour, a common feature in chaotic systems, is found: the amplitude of the oscillations
collapses suddenly and starts to grow again, until at some moment another collapse
occurs. Although the growth process seems to behave regularly, the period between
two collapses is irregular. The chaotic nature of the motion is corroborated further-
more by the Poincaré section in figures 5.6(f), 5.6(i), showing the return map to the
plane R1 = 0.4. A Hénon-like fractal attractor is found.

At σ2 = −9.29 the chaotic attractor becomes unstable: orbits starting close to
the chaotic set stay close for some time, but end up at one of the remaining stable
fixed points ultimately. It remains unstable till σ2 = −5.61, above which a stable
chaotic attractor is found again. It originates from a cascade of period doublings at
σ2 = −5.00,−5.38, . . . when decreasing σ2 below the (supercritical) Hopf bifurcation
at σ2 = −2.72. For σ2 > −2.72 the stationary solutions is stable again: no periodic
orbit is found anymore.

5.5 Mechanisms for chaos

Chaotic behaviour is found in system (4.30), both in section 5.3 for one mode, and
in section 5.4 for two modes. The mechanism responsible for the chaos is different
however. In this section a number of mechanisms that can lead to chaos are discussed.
For a system with only one eigenmode, such as an almost-enclosed basin with its
corresponding Helmholtz mode (the dynamics of which was discussed by Maas, 1997;
Maas & Doelman, 2002; Doelman et al., 2002) no chaotic behaviour was found if the
exterior tide ζe is harmonic. Quasi-periodic forcing, i.e. multiple tidal constituents in
ζe, is necessary to obtain complex dynamics. In the present model however, chaotic
behaviour is possible for harmonic forcing as well, due to the possible interaction
between eigenmodes. Mechanisms of this kind are discussed in a separate section 5.5.2.
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5.5.1 Quasi-periodic forcing

If two components of the tidal signal ζe at sea (for example the M2- and S2-
components, causing the spring-neap tidal cycle) are nearly in resonance with a single
eigenfrequency of the basin, this single mode is forced with slowly modulating
forcing amplitude (and phase). As discussed in section 5.3, it was shown in Doelman
et al. (2002) that this leads to chaotic behaviour of the system. The mechanism stems
from the fact that the response curve (5.5) changes with changing forcing amplitude
Z. The system has to adapt to a new stable equilibrium when it passes the end
of a stable branch. However, before the system has settled to the new regime, the
forcing amplitude has changed again, causing continuous regime changes in a chaotic
manner. In Maas (1997) this was observed first for a model describing an almost-
enclosed basin, with only one mode, the Helmholtz or pumping mode. In this thesis
it is shown that those conclusions hold for more general basins as well, if one of its
eigenmodes is resonantly forced with two components.

Another mechanism, mentioned already by Maas & Doelman (2002), occurs if the
external tide ζe consists of one component which is very slow compared to the eigen-
modes of the basin and one which is nearly resonant with one of the eigenfrequencies.
This might happen for relatively small basins, such as fjords or harbours, with large
eigenfrequencies (periods of hours or less), the ‘slow’ component being M2 and an
eigenfrequency being resonant with one of its overtones M2n or with another ‘high’-
frequency component in (the continuum part of) the water-level spectrum (cf. Munk
& Cartwright, 1966). The slow component of the external tide amounts to a slow
change of the reference water depth in the basin. As a consequence its eigenmodes
change. For an almost-enclosed basin, where the relatively simple Helmholtz mode is
the only eigenmode of interest, determination of the change in eigenfrequency is quite
straightforward. Because the frequency σ in (5.5) is relative to the eigenfrequency,
this causes a slow change of σ. Hence a mechanism similar to the previous case occurs.
The system will change between regimes while σ moves along the response curve (5.5).
Under appropriate conditions the regime changes will occur in a chaotic manner. In
principle this mechanism applies for the model derived in the previous chapter as well.
A detailed analysis is more complicated however, because it necessitates calculating
the change of the eigenmodes due to a slow change in water depth.

In contrast with previous studies, the model derived in chapter 4 deals with more
than one eigenmode. This allows the possibility of two different eigenmodes being
resonantly forced by the external tide ζe. This situation is discussed in section 5.4.
With a single tidal component forcing each of the two eigenmodes, the forcing ampli-
tudes Z1 and Z2 are constant. In the corresponding case for one mode (section 5.3)
this leads to multiple equilibria, but no chaos. In the two-mode case however, the
behaviour of the system can be richer. Periodic orbits for the response amplitudes
are found and numerical evidence of chaos has been provided. The interaction be-
tween modes is only through the phase equation, where it can be seen as one mode
modifying the effective eigenfrequency of the other. In that respect the mechanism is
comparable with the previous one, although the time dependence results from an in-
stability in the interaction between the two modes in this case. Although explicit time
dependence of the amplitude equations was needed for the one-mode cases, whereas
Z1 and Z2 may be constant in the two-mode case for chaos to occur, this is not an
essential difference either. For all three mechanisms discussed so far, chaos occurs
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only if the forcing tide ζe at sea comprises at least two components. For the first
and third mechanism both need to be in resonance with an eigenmode, either a single
one or two different ones. For the second mechanism only one component needs to
be resonant; the other component must be slowly evolving on the same time scale at
which the system adapts to new equilibria.

The mechanism discussed in the previous paragraph dealt with both amplitudes
Z1 and Z2 being O(1) (note that this still amounts to small amplitudes at sea due
to the scaling of ζe compared to ζ). If one forcing component, say Z2, were even
smaller, then the corresponding response amplitude R2 would be equally small. This
situation gives rise to an approximate mathematical approach. For this we assume
Z2 = δz = O(δ) with δ � 1. Similar to the analysis in Doelman et al. (2002) we
assume friction to be additionally small, c1 = δ2C1 = O(δ2), but c2 = O(1) may not
be small. This is a realistic scenario if mode 1 is one of the first eigenmodes, whereas
mode 2 is, although denoted here by the subscript 2, a fairly high eigenmode, because
ck generally increases with k (see section 4.4). This scaling implies that R2, the
amplitude of the second eigenmode, is O(δ). Hence we write R2 = δr, X2 = δx and
Y2 = δy to obtain the following amplitude equations in Cartesian coordinates (cf.
(5.8)):

dX1

dτ
= (σ1 − Γ1,1R1

2 − δ2Γ1,2r
2)Y1 − δ2C1X1 + Z1 cos(Ψ1), (5.13a)

dY1

dτ
= −(σ1 − Γ1,1R1

2 − δ2Γ1,2r
2)X1 − δ2C1Y1 + Z1 sin(Ψ1), (5.13b)

dx

dτ
= (σ2 − Γ2,1R1

2 − δ2Γ2,2r
2)y − c2x + z cos(Ψ2), (5.13c)

dy

dτ
= −(σ2 − Γ2,1R1

2 − δ2Γ2,2r
2)x− c2y + z sin(Ψ2), (5.13d)

where R1
2 = X1

2 + Y1
2 and r2 = x2 + y2. Up to O(δ2), the first mode is governed

by the Hamiltonian flow with Hamiltonian

H(X, Y ) =
−1

4Γ1,1
(σ1 − Γ1,1R1

2)2 + Z1 cos(Ψ1)Y1 − Z1 sin(Ψ1)X1,

which is the unscaled variant of (5.7), whereas the equation for the second mode is
linear. Hence the phase portrait of the first-order flow for the first mode is known,
see Doelman et al. (2002). Evolving along one of those periodic or homoclinic orbits,
the first mode drives the second parametrically. The second mode couples back to the
first mode at O(δ2), in a similar way as in the second mechanism discussed before, by
modulating the effective eigenfrequency. The modulation by R2 reflects the first-order
behaviour of R1 in this case. This is the setting in which perturbation theory could be
applied, using Melnikov functions to estimate the change of the Hamiltonian, due to
friction and the interaction with the second mode, while evolving along the first-order
orbits of the one-mode system. One may be able to construct (stable) periodic and
homoclinic orbits in the full two-mode system in this way and possibly chaos of the
Shilnikov-type (Guckenheimer & Holmes, 1983; Wiggins, 1988).
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5.5.2 Harmonic forcing

For all mechanisms described in the previous subsection, the external tide needs to
be non-harmonic for chaos to occur. A harmonic external tide ζe with one tidal
constituent can lead to chaos as well if one mode can excite another. This is possible
if Coriolis effects are taken into account. In the context of the present work, Coriolis
forces cause the eigenfunctions of (4.10), (4.11) to be non-real. Physically this means
phase differences within the eigenmode over the basin; mathematically it leads to
non-real coefficients Γk,m. Writing Γk,m 7→ Γk,m + i∆k,m and Z2 = 0, the equivalent
of (5.9) is

dR1

dτ
= −(c1 + ∆1,1R1

2 + ∆1,2R2
2)R1 + Z1 cos(Ψ1 − Φ1), (5.14a)

R1
dΦ1

dτ
= −(σ1 − Γ1,1R1

2 − Γ1,2R2
2)R1 + Z1 sin(Ψ1 − Φ1), (5.14b)

dR2

dτ
= −(c2 + ∆2,1R1

2 + ∆2,2R2
2)R2, (5.14c)

R2
dΦ2

dτ
= −(σ2 − Γ2,1R1

2 − Γ2,2R2
2)R2. (5.14d)

The essential difference with the system for real Γk,m is that one mode can now
excite others. More specifically, if ∆2,1 < 0, the first mode can destabilize the global
attractor R2 = 0 to which the second mode would otherwise decay for Z2 = 0. If one
of the diagonal elements ∆k,k is negative, then mode k causes positive feedback to
itself and will grow without bound, thus escaping the validity of the present model.
In that case higher-order terms should be taken into account. Positive ∆k,k provide
an additional damping mechanism, manifested at high values of Rk. In order to
investigate the possible effects of the interaction terms ∆k,m, the model (5.14) was
run (in Cartesian coordinates) using DsTool, with parameters as in figure 5.6, except
for Z2 = 0, ∆1,1 = ∆1,2 = ∆2,2 = 0 and ∆2,1 = −5. A periodic orbit, period doublings
and chaotic behaviour were found. The mechanism for the chaotic behaviour is similar
to the two-mode mechanism in the previous subsection, when two modes are excited
externally: both modes influence each others eigenfrequency, hence causing continuous
regime changes towards the bent resonance curves. The difference is that the second
mode is internally excited by the first one. The external tide ζe is a single sinusoid.

The previous paragraph considered the influence of new interaction terms in the
amplitude equations due to Coriolis effects. Another possible source of additional
terms is if the non-resonance conditions (4.14d) for the derivation of the Landau
equation are violated. In fact, the intermediate equation (4.29) shows the nonlin-
ear terms in the amplitude equations without assuming the absence of third-order
resonances. Many of those terms also allow for the possibility of one mode exciting
(or rather destabilizing) another. Although the non-resonance conditions (4.14d) are
fulfilled generically, there may be symmetrical situations causing some internal res-
onances between eigenmodes to occur. For a rectangular basin the eigenfrequencies
are ωj = (j+ 1

2 )
√

γπ (section 4.4), whence second-order resonances are clearly absent,
but ωk = ωl + ωm − ωn holds whenever k = l + m− n. The resulting extra terms in
the amplitude equations may also lead to complicated behaviour in the presence of
only one harmonic component in the external tidal forcing.
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Several mechanisms leading to chaotic behaviour in co-oscillating tidal basins have
been discussed in this and in the previous subsection. It is not predicted to always
occur in all real basins, but would be found under several types of specific conditions
on the external forcing and the geometry of the basin. A mathematically rigorous
proof of the existence of chaotic dynamics has been elaborated for the first case (two
components in near resonance with a single mode) only, although there are clear
indications that it occurs in many more situations. We conclude this section with the
observation that there are several mechanisms that could in principle lead to chaotic
tidal dynamics.

5.6 Conclusions and discussion

In the preceding chapter the depth-averaged two-dimensional shallow-water equa-
tions (4.1) were investigated in a small-amplitude, strongly resonant limit to obtain
the Landau equations (4.30) that govern the modulation of the amplitudes of the linear
eigenmodes of the basin. Truncation of the nonlinear dynamical system (4.30), which
describes the behaviour of all amplitudes, to a finite number of modes is natural, see
section 5.2. Truncating to a single mode, one finds that the effective eigenfrequency
of the eigenmode is changed with increasing amplitude. This causes bending of the
response curve, the response amplitude as a function of forcing frequency, leading to
multiple equilibria: under the same external conditions the basin can be in either
a high- or low-amplitude regime, depending on the history of the sea state within
the basin. Sudden regime changes may occur under slight changes of the external
conditions. Moreover, if the forcing tide at sea is quasi-periodic, i.e. consisting of
multiple constituents such as the lunar M2 and solar S2 components, chaotic behav-
iour of regime changes is possible. Truncating at two modes, interactions between
modes come into play. The response is not a simple superposition of the results for
one mode. Interaction between modes alters the region in parameter space for which
resonance occurs; it leads to Hopf bifurcations, periodic orbits and chaos.

Several mechanisms leading to chaos under different circumstances were described
in section 5.5. Moreover, many other nonlinear processes lead to the same amplitude
equations: the truncation of (4.30) to one mode leads to (5.3) and (5.4), which are
the same equations as those found by Maas (1997), Maas & Doelman (2002) and
Doelman et al. (2002) for the amplitude of the Helmholtz mode in an almost-enclosed
basin, where the nonlinearity results from non-uniform hypsometry, i.e. an increase of
the wet area with rising tide as is the case for a sloping bottom and tidal flat systems.
The nonlinear effect due to the change in cross-sectional area of the inlet channel as a
function of the water level, described in Miles (1981), leads to similar results. Actu-
ally, a change in cross-sectional area of the inlet channel is equivalent to a hypsometry
change. Both cause a nonlinear relationship between the current through the channel
and the resulting water-level change in the basin. In summary, advection and continu-
ity (which are the nonlinear processes in the shallow-water equations (4.1)), changing
cross-section of the inlet channel (Miles, 1981) and non-uniform hypsometry (Doel-
man et al., 2002) all lead to similar results. The fact that many nonlinear processes
lead to the same description suggests that (4.30) is a universal equation whose coeffi-
cients Γk,m are determined by many contributions, possibly including ones that have
not yet been identified. Whenever the effective eigenfrequencies of the tidal resonator
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depend on the amplitudes, the generic behaviour of the system would be governed
by (4.30).

Although the terminology used in this thesis and the scaling assumptions following
(4.3) are appropriate for basins with megatides in particular, the analysis performed
here may be relevant for secondary undulations as well. In that case the primary tidal
oscillation period is much longer than that of the basin’s eigenmodes. Because the
latter determine the time scale of the model (4.4), (4.5), the tidal oscillation would
be incorporated as a slow change of the reference water depth D(0). The calcula-
tions become much more involved because one has to include the effect of the tidal
change in water depth on the eigenmodes of the basin. In principle the analysis can
be performed and is expected to introduce parametric forcing terms just as in Maas
& Doelman (2002, section 5) for the simpler Helmholtz case. Chaotic dynamics can
be expected under certain conditions for this case as well. Another mechanism that
would lead to chaos occurs if a zero-frequency eigenmode is present. Just like the
Earth’s rotation and non-trivial third-order resonances, it may trigger internal ex-
citation of modes that are not excited by the tide at sea directly. The presence of
multiple modes with non-zero amplitude can lead to chaotic behaviour through their
interaction described in this chapter, cf. section 5.5 in particular.

Predictions of tides are often based on tidal harmonics, the amplitudes and phases
of which are constant in linear theory, describing the tidal signal as a superposition
of harmonic components. In many cases this works quite well, but there are clearly
deviations. They are usually attributed to meteorological disturbances. The observa-
tional challenge is to distinguish between meteorological effects and internally induced
deviations (Vittori, 1992). Some first steps using an approach apt for chaotic systems
have been made in Frison et al. (1999). They state that the tidal signal becomes
increasingly irregular when progressing into complicated basins. This is consistent
with our findings, attributing chaotic behaviour to nonlinear resonance phenomena.
However, note that their work is on the time series of in situ water levels themselves,
whereas in this work the amplitudes of eigenmodes are considered. More specifically,
we suggest to consider the time series describing the evolution of harmonic constants,
as was done on a year to year time scale by Doodson (1924). He identified three per-
turbations on the harmonic constants for St. John, Bay of Fundy and Bombay, two
of which he found to be related to astronomical forcing and one of which remained
unaccounted for. More recently Gutiérrez et al. (1981) studied fluctuations of the
harmonic constants for Puntarenas (situated at the Gulf of Nicoya, Pacific coast of
Costa Rica) and Trieste (North Adriatic Sea) and found that they do not result from
non-perfect selectivity of the analysis. They condensed the variation into a single
value for its variance however; we have no knowledge of studies in which time se-
ries of harmonic constants have been tested for chaotic dynamics. We hope that our
findings may spur further data investigation of this kind, both on tidal records (on a
fortnightly time scale) and on secondary undulations (on a daily time scale). Because
the latter are relatively unimportant for the water level, they have been investigated
less extensively until recently, but their influence on currents can be considerable and
irregular behaviour of secondary undulations had already been reported at the be-
ginning of the twentieth century, see Honda et al. (1908) and Nakano (1932). Clear
evidence of nonlinearity would be the occurrence of sudden regime changes and hys-
teresis: the response of the basin depending on its history, disturbances having lasting
effects after the decay of transient behaviour. Sudden changes of the tidal regime in
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the past may be detected from their geological signature (Oost, 1995).
Apart from reinvestigating time series of observed water levels, the nonlinear mech-

anisms can also be studied by means of laboratory experiments. Elaborating on the
work by Maas (1997) on the nonlinear effects due to non-uniform hypsometry in an
almost-enclosed basin, a laboratory tank has been created to simulate a Helmholtz
resonator. The results in chapter 3 validating Lorentz’s linearisation principle for
quadratic friction were obtained from preliminary measurements with this tank. The
experimental results on the nonlinear effects are discussed in the next chapter of this
thesis. Bending of the response curves and multiple equilibria were observed, although
other processes than the hypsometry also play an important role in causing this.
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Chapter 6

Experimental evidence for
multiple equilibria

Laboratory experiments have been performed with a laboratory tank to study the Helmholtz
response of a semi-enclosed tidal basin co-oscillating with an adjacent sea. As opposed to
the well-known effect of distortion of the tidal curve due to the generation of overtides, we
focus on nonlinear effects on the response curve: amplification factor and phase difference
between basin and sea as a function of forcing frequency and amplitude. Motivated by the
results in chapter 5, the aim of this work is to investigate whether for specific parameter
settings nonlinear processes result in the possibility of multiple tidal regimes in the basin:
different responses in the basin under the same forcing conditions at sea, the actual state
of the basin depending on initial conditions c.q. its history. Consequently, sudden regime
changes may occur, even in a chaotic fashion according to model studies. A number of
different physical mechanisms have been identified to lead to the same generic behav-
iour, among which non-uniform hypsometry (if the basin area depends on tidal phase),
advective accelerations and the feedback of water-level changes on depth-averaged mass
flux. The main conclusion of this chapter is that, although non-uniform hypsometry is not
significant at the laboratory scale, multiple equilibria do occur with a crucial role played
by the shape of the inlet between basin and sea. The precise nature of the physical mech-
anism responsible for the observed effect is still open to further research and a discussion
of possible mechanisms is included.1

6.1 Introduction

Although direct tidal forcing by the gravitational forces from the moon and the sun is
relatively weak (0.27 m, 0.13 m amplitude respectively), tidal motion up to 8 m (Bay
of Fundy) amplitude occurs due to resonance in coastal basins co-oscillating with an
adjacent sea. This resonance phenomenon is successfully explained with linear models
(reviewed in e.g. Defant, 1961; Raichlen, 1966; LeBlond & Mysak, 1978) which provide
us with response curves (amplification of the tide as a function of forcing frequency)
of particular tidal basins.

1This chapter is based on the paper “Experimental evidence of multiple equilibria in a tidal
resonator” by Guido M. Terra, Willem Jan van de Berg and Leo R.M. Maas, in preparation.
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Nonlinear effects arise due to many mechanisms, such as advective acceleration,
water-level feedback on mass fluxes, non-uniform hypsometry (dependence of basin
area on the water level as in the case of tidal flats) and quadratic friction. In ob-
servational studies nonlinear effects manifest themselves in the generation of higher
harmonics (Gallagher & Munk, 1971; Parker, 1991b) distorting the tidal curve from
purely sinusoidal to an asymmetric curve. However, from a dynamical systems point-
of-view nonlinear terms may also cause more complex behaviour. Indeed, there have
been reports of drifting harmonic ‘constants’ (Doodson, 1924; Gutiérrez et al., 1981)
and even chaotic tidal behaviour (Vittori, 1992; Frison et al., 1999). In this work the
focus is on changes in a basin’s response curve.

An almost-enclosed basin, which is connected to an adjacent sea through a narrow
inlet only, constitutes a fairly simple example of a tidal resonator. The first eigen-
mode of such a basin is almost uniform within the basin since its tidal wavelength
is much larger than the dimensions of the basin. As such, this Helmholtz mode can
be described by an ordinary differential equation for the water level inside the basin.
Miles (1981) extended his linear theory for the Helmholtz mode (Miles, 1971) to in-
clude the effect of changing channel cross-section with water level. This shortens the
high water period and increases the low water period. Moreover, the total period of
free oscillations increases with amplitude and the response curve is tilted. As a result
multiple equilibria are found: for the same tidal signal at sea, different tidal response
amplitudes in the basin are possible. Consequently hysteresis may occur under chang-
ing exterior conditions. Elaborating upon the work of Green (1992), it was shown
that non-uniform hypsometry has a similar but opposite effect on the tidal response:
reduction of the low water period and lengthening of the high water period (Maas,
1997). In the limit of small friction and near resonance, he found multiple equilibria
as well. Moreover, if the tidal signal at sea is not purely sinusoidal but consists of a
couple of nearly resonant components (such as M2 and S2, causing the spring-neap
tidal cycle) chaotic behaviour of the response amplitude was shown to occur (Maas
& Doelman, 2002; Doelman et al., 2002). By performing a similar weakly nonlinear
analysis on the depth-averaged shallow water equations, their results can be shown to
apply to more general basins as well and not be restricted to Helmholtz basins with
non-uniform hypsometry (chapters 4 and 5). In that case the nonlinear effects stem
from advective acceleration and water-level feedback on mass fluxes. In fact, many
nonlinear mechanisms lead to the same weakly nonlinear results. The occurrence of
multiple equilibria is a key ingredient in this route to chaos. This chapter describes
experiments that have been performed in order to find multiple equilibria in a real
(though on a small experimental scale) tidal resonator of the Helmholtz type.

The experimental setup is described in section 6.2. Although this work was orig-
inally motivated by the results on the effect of hypsometry in Helmholtz basins, the
weakly nonlinear results appear to be of generic nature applicable to several nonlinear
physical mechanisms. Still, the introduction to the theory in section 6.3 is restricted
to the relatively simple Helmholtz case in which hypsometry is causing nonlinear
effects. Discussion of other physical mechanisms that may lead to the same phenom-
ena is postponed until section 6.5, after having described the experimental results in
section 6.4.
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Figure 6.1: Sketch of the experimental setup, dimensions in mm are indicated. The
forcing tank is set into motion by a servomotor. The water expelled by the tank moves
through the conduit underneath the ‘basin’ area to the ‘sea’. The tidal signal thus
generated at sea, propagates into the basin through a completely submerged pipe.
The water-level elevation is measured by acoustic sensors at different positions. The
sensor positions indicated in the figure represent the standard configuration. Because
the tide in the basin is nearly uniform, the measurements for the sensors in the basin
are virtually the same.

6.2 Experimental setup

A sketch of our experimental setup is shown in Fig. 6.1. The area of interest is
the ‘basin’ with a size of 957 × 957 mm. A completely submerged pipe is used to
connect the basin to the forcing tide at ‘sea’. In this way, its cross-section O does
not depend on water-level elevation ζ, in contrast to an open channel which would
introduce additional nonlinear effects (Miles, 1981). A number of different pipes have
been used, with lengths between 300 and 550 mm and diameters of 75–95 mm. The
water depth at rest ranged 15–22 cm above the bottom of the basin, making sure
that the pipe remained completely submerged, in which case it has no influence the
measurements. A forcing tank is immersed in the water and is lifted and lowered
by a properly counterbalanced servomotor. The control signal can be generated by
the computer. The applied forcing frequencies varied from 0.02 Hz to 0.25 Hz. In
principle the forcing signal may consist of many frequency components, but harmonic
forcing only is considered in this chapter. The water expelled by the forcing tank,
moves through the conduit underneath the basin area towards the sea. A grating was
inserted in order to help the water level at sea to be uniform, but it did not prevent
the occurrence of a standing wave: depending on the forcing frequency, amplitudes
are higher at the far end of the sea. The amplitude of the control signal is adjusted
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Figure 6.2: Sample time series of measurements at forcing frequency 0.0420 Hz
and forcing amplitude approximately 2 mm, for uniform hypsometry with A0 =
0.916 m2, L = 441 mm, O = 4.6 · 10−3 m2. Dots indicate measurements from the
sensor at the seaward pipe entrance, pluses and crosses indicate measurements at the
entrance and end of the basin, respectively. Solid curves show harmonic fits to the
respective time series. The two curves inside the basin are nearly indistinguishable,
consistent with a Helmholtz mode of uniform basin tide.

to obtain the desired forcing amplitude at the mouth of the basin (cf. the discussion
at the end of this section), so this has no influence on the measurements. Acoustic
sensors are used for nonintrusive measurements of water-level elevation. They are
located above the tank and emit an acoustic signal at 300 kHz down to the water
surface and measure the return time of the reflected signal, like an echo sounder.
Their resolution is 0.36 mm, the standard deviation of the noise is similar. Significant
outliers occur and were dismissed from the analysis if they differ by more than 3.5
times the standard deviation from a harmonic fit to the time series.

Figure 6.2 shows time series of laboratory experiments using the full basin area
(A0 = 0.916 m2), a straight pipe (L = 441 mm long) with circular cross-section
(O = 4.6 · 10−3 m2). At least at three locations the water level was measured, above
the seaward and basin end of the pipe and at the end of the basin. In correspondence
with a Helmholtz mode inside the basin the water level was found to be almost uni-
form. Although the amplitude is usually somewhat higher at the end of the basin, the
phases correspond very well. The time series were analysed by performing a harmonic
fit with the dominant frequencies, determined from the Fourier power spectrum. Re-
sponse curves are determined by comparing the amplitudes and phases of the forcing
frequency component both for the sensor at sea and inside the basin.

No dissipators have been installed at the sidewalls of the sea. Raichlen & Ippen
(1965) warn that consequent reflections have a dramatic effect on the response curves
(amplification factor and phase difference between response in the basin and forcing
at sea as a function of forcing frequency). They define the amplification factor as the
ratio of the tidal response amplitude in the basin over the amplitude at the seaward
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entrance if the basin were closed. Indeed, radiation damping effects changing the
actual tidal signal at the seaward entrance, are quite different in a finite reflective sea
than in a semi-infinite reflectionless sea. We however choose to correct the motion of
the forcing tank such that the amplitude at the seaward entrance is the same for all
frequencies and define the amplification factor as the ratio of the response amplitude
in the basin over the amplitude at sea with the basin connected to it. This boils
down to eliminating the effect of radiation damping and circumvents the problems
mentioned by Raichlen & Ippen (1965).

6.3 Theory

By considering the momentum and mass balance a simple model can be derived
describing the Helmholtz mode of a basin, the dimensions of which are assumed to be
much smaller than the tidal wavelength λ = 2π

√
gH/ω (where g is the gravitational

acceleration, H the water depth at rest and ω the angular forcing frequency). In
that case the water level in the basin will rise and fall almost uniformly and can be
described by a single parameter ζ, the elevation relative to the still water level. Water
flows into the basin through the pipe of length L, cross-section O, into the basin with
horizontal area A. In the case of non-uniform hypsometry the basin area A = A(ζ)
depends on the water level: at low tide the wet area is less than at high tide when tidal
flats are flooded. All dynamics are concentrated in the connecting pipe, where the
elevation difference between sea and basin drives the flow, balanced by the inertia of
the water in the channel and dissipation by friction/flow separation. Bottom friction
is commonly described by Chezy’s law (cD/H) |u|u, with drag coefficient cD ≈ 0.0025
determined empirically (Parker, 1991a). The head loss due to flow separation is
parameterized by (f/L) |u|u (Hayashi et al., 1966; Terrett et al., 1968; Mei et al.,
1974; Maas, 1997) and differs only in the formulation of the coefficient; f has to be
determined empirically as well. For our configuration f ≈ 1 appears to be a good
estimate (cf. section 3.4 or 6.4.1). The equations for the momentum and mass balance
are:

du

dt
=

g

L
(ζe − ζ)− f̃

L
|u|u, (6.1a)

A(ζ)
dζ

dt
= O u, (6.1b)

where ζe = αe cos(ωt) = Re
[
αe eiωt

]
is the prescribed elevation at sea. The head

loss coefficient f̃/L is considered to include friction with sidewalls as well (f̃/L =
f/L + cD/H, where “H” should be related to the radius of the pipe). Head loss due
to flow separation seems to be more important here. As in the experiment radiation
damping is not modelled here explicitly but is assumed to be already incorporated
in ζe. In analysing the experimental results we will also compare the measurements
inside the basin with the forcing signal at sea as it is measured simultaneously.

In section 6.3.1 the Helmholtz model (6.1) with uniform hypsometry (A(ζ) = A0

independent of ζ) when friction is the only nonlinear term will be dealt with by
Lorentz’s linearization procedure. In section 6.3.2 the strong resonance limit for
weak friction and forcing frequency ω close to the eigen- (Helmholtz) frequency ω0 =√

gO/(A0L) is investigated for linearized friction. The nonlinear effect of non-uniform
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hypsometry is used to illustrate the generic results of the weakly nonlinear analysis
(in Doelman et al., 2002, and chapters 4 and 5 in this thesis as well) in a simple way.
Finally, the two are combined to obtain a correction to the quasi-linear theory from
section 6.3.1 consistent with the strong resonance limit in section 6.3.2.

6.3.1 Quasi-linear (Lorentz’s) theory

In order to overcome problems with the nonlinear friction term in (6.1), Lorentz (1922)
proposed to replace it by a linear term ru, with effective linear friction coefficient r to
be determined. In the case of uniform hypsometry the system (6.1) becomes linear and
the response will be of the form ζ = |α| cos(ωt + ϕ) = Re

[
α eiωt

]
, where α = |α|eiϕ,

and consequently u = −(A0/O)ω|α| sin(ωt + ϕ). Lorentz’s energy principle states
that the energy dissipation per tidal cycle should be the same for both formulae:
〈ru2〉 = 〈(f̃/L) |u|u2〉, in which 〈·〉 denotes averaging over a tidal cycle. Evaluation
of the corresponding integrals leads to

r = ν0 ω|α|, with ν0 = 8
3π

f̃A0
OL , (6.2)

i.e. effective friction increases linearly with tidal amplitude in the basin. This leads
to the dispersion (frequency response) relation

(ω0
2 − ω2) α + i ν0 ω2 |α|α = ω0

2 αe, (6.3)

which can be solved for the amplification factor to find the frequency response function

|α|
αe

=

√√√√√(1− ( ω
ω0

)2)4 + 4ν0
2( ω

ω0
)4αe

2 − (1− ( ω
ω0

)2)2

2ν0
2( ω

ω0
)4αe

2
, (6.4)

which can be combined with (6.3) to find the phase lag ϕ ∈ (−π, 0) as well, from
ϕ = arccos((1− ( ω

ω0
)2) |α|αe

).

6.3.2 Weakly nonlinear theory for strong resonance

Elaborating upon the work of Green (1992), Maas (1997) showed that non-uniform
hypsometry A(ζ) in a Helmholtz basin leads to a reduction of the low tide period
and an increase of the high tide period. In order to illustrate the analysis of possible
nonlinear effects on the response curves, it will be discussed here as a relatively simple
example, although the analysis in chapter 4 shows that it is applicable to more general
basins as well. A mathematical investigation of (6.1) with linearized friction and
non-uniform hypsometry was carried out in the small-amplitude strongly resonant
limit (Maas & Doelman, 2002; Doelman et al., 2002). Introducing the asymptotic
parameter ε � 1 as a measure for the assumption of small amplitudes ζ̃ = O(ε), weak
linear friction r̃ = O(ε2) and nearly resonant ω = ω0(1+ε2σ) small forcing ζ̃e = O(ε3),
where tildes are used to denote rescaled dimensionless variables (for details, see Maas,
1997), a dynamical system was derived by averaging methods describing the (slow)
evolution of the response amplitude and phase. In this strongly resonant limit, the
resonance peak is high O(ε−2) and narrow O(ε2). The dispersion relation describing
it, after translating their results back to dimensional variables and using the effective
friction coefficient r from Lorentz’s procedure, is given by

(ω0 − ω) α + ω0Γ|α|2α + i
1
2
ν0 ω0 |α|α =

1
2
ω0 αe, (6.5)



6.3. Theory 107

-1.5 -1 -0.5 0.5 1 1.5

1

2

3

4

5
|α|

αe ε2

σ = ( ω
ω0
− 1)/ε2

A

B

C

Figure 6.3: Frequency response curves according to (6.5) for fixed friction parameter
ν0 and hypsometry coefficient Γ and increasing forcing amplitudes for curves A,B and
C, respectively. Solid curves denote stable branches, the dotted curves are unstable.
A dashed vertical line at σ = 0.49 indicates that multiple equilibria are found under
certain conditions.

in which Γ = 1
16A0

d2A
dζ2 |0− 7

24A0
2 (dA

dζ |0)
2 is a coefficient resulting from the non-uniform

hypsometry term. The subscript |0 expresses that the respective value should be
calculated for the situation at rest (ζ = 0). Note that (6.5) is applicable to many
more processes, see the discussion in section 6.5.1. The hypsometry term causes the
response curve to tilt, see figure 6.3, because the effective eigenfrequency depends
on the amplitude in this case, with Γ|α|2 being the relative change of the effective
eigenfrequency. As indicated in the figure, this can lead to multiple equilibria: dif-
ferent response regimes are possible under the same forcing conditions. At the in-
dicated forcing frequency (dashed line), with medium forcing amplitude (curve B),
three steady states are found, one with relatively high amplification and one with less
amplification. The middle one is unstable hence will not occur in practice. Conse-
quently sudden regime changes will occur if the forcing conditions change such that
the present branch is not a solution anymore. When conditions subsequently return
to the original situation, the system will remain in the newly found regime and does
not return to the original response (hysteresis). Moreover, Maas & Doelman (2002)
and Doelman et al. (2002) showed that the regime changes may occur chaotically
under continuously evolving forcing conditions.

Clearly, there are some major flaws in this picture. For ω ↓ 0 the amplification
factor should tend to 1, because for very slow oscillations the basin and sea simply
serve as communicating vessels. However, ω = 0 is not special in (6.5), because of
the scaling which is designed to apply near resonance ω ' ω0. We should consider
the limit σ → −∞, in which case the amplification tends to zero, because the weakly
nonlinear theory zooms in on an allegedly very high resonance peak O(ε−2) such
that 1 and 0 are indistinguishable in this limit. As a consequence, (6.5) by itself is
inadequate to describe the results of the experiments, for which the resonance is not
infinitely strong.
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6.3.3 Heuristic incorporation of weakly nonlinear limit within
quasi-linear theory

In order to obtain a theory with which the laboratory measurements can be com-
pared, the weakly nonlinear results for the strong resonance limit must be incor-
porated within the quasi-linear theory for finite amplitude from section 6.3.1. The
combined theory should satisfy the restriction that it a) equals (6.3) in the absence of
nonlinearity (Γ = 0), b) reduces to (6.5) for ω → ω0, c) implies amplification factor
|α|/αe → 1 for ω ↓ 0 and |α|/αe → 0 for ω →∞.

Dividing (6.3) by 2ω0 one can see (6.5), with Γ = 0, emerging from (6.3) by
taking the limit ω → ω0 except in the difference term ω0 − ω. Reverting the process,
multiplying (6.5) by 2ω0 to

2ω0(ω0 − ω) α + 2ω0
2Γ|α|2α + i ν0 ω0

2 |α|α = ω0
2 αe,

one regains (6.3) with an additional term 2ω2Γ|α|2α upon replacing 2ω0, 2ω0
2Γ and

ν0ω0
2 by ω0 + ω, 2ω2Γ and ν0ω

2 and leaving the right-hand side as it is. Although
restriction a) confines the finite resonance result for the terms that also occur in
(6.3), the additional ‘hypsometry’ term could be anything with the correct limiting
behaviour for ω → ω0. The restriction c) requires the ‘hypsometry’ term to vanish for
ω ↓ 0. In fact, every combination 2ωnω0

2−nΓ|α|2α with n > 0 would do, but n = 1, 2
are the most likely choices in view of the derivation. Because the resulting equation
is more easily solved for ω2 as a function of |α| if we choose n = 2, we use

(ω0
2 − ω2) α + 2ω2Γ|α|2α + i ν0 ω2 |α|α = ω0

2 αe (6.6)

as the simplest combined dispersion relation for finite resonance with nonlinearity.
The experimental results in section 6.4 will be compared with this equation.

6.4 Results

In this section the response curves for a number of cases with different pipes and basin
area are presented. First measurements with full basin area without hypsometry are
shown as reference case for which quasi-linear theory (6.3) applies. Next, the influence
of non-uniform hypsometry is investigated by introducing artificial ‘tidal flats’. Its
effect on the response curve appears not to be significant compared to the width of
the resonance peak due to friction. Multiple equilibria were found when introducing
smooth pipe ends and reducing the basin area in order to reduce the effect of friction
and are discussed in section 6.4.3. The smooth shape of the pipe ends appears to be
the key difference in section 6.4.4 and the section is concluded showing the dependence
on the basin area.

6.4.1 Quasi-linear case: straight pipe entrance

As a reference, measurements were performed with uniform hypsometry, using the full
basin area (A0 = 0.916 m2) with vertical sidewalls and a straight pipe (L = 441 mm)
with circular cross-section (O = 4.6 · 10−3 m2). The quasi-linear theory according
to (6.4) has been fitted to the measurements minimizing the least square error in
the complex α/αe-plane. Because the effective pipe length differs from the actual
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Figure 6.4: Response curves: amplification factor |α|
αe

and phase lag ϕ between the tide
at sea and in the basin as a function of forcing frequency, for the same configuration as
in figure 6.2. Three series of measurements with forcing amplitudes αe ≈ 1, 2, 5 mm
are shown, for each of which results for two sensors in the basin have been obtained.
Slight amplitude differences between both basin sensors can be noted, in particular
at 1 mm forcing amplitude. Solid curves show the fit to Lorentz’s theory (6.4). The
Helmholtz frequency ω0 = 0.0505 Hz is indicated by a dotted vertical line. Note that
one fit is used to describe all three curves. Apparently the decrease of the resonator’s
quality is adequately described by Lorentz’s linearization theory.

pipe length due to the added mass effect it has to be determined empirically from
the apparent eigenfrequency of the basin. The same holds good for the head loss
parameter f̃ . Therefore, ω0 and ν0 are used as fitting parameters. The curves shown
in Fig. 6.4 are for the best fit with ω0 = 50.5± 0.9 · 10−3 Hz = 0.317± 0.006 rad s−1,
ν0 = 374± 9 m−1. So the effective pipe length Leff = 48.9± 1.7 cm is 4.8 cm longer
than the actual length. Furthermore, f̃ = 0.97±0.02 has the same order of magnitude
as Ito (1970) found for motion on real geophysical scale (f ≈ 1.5) by comparing the
results of his numerical model with tidal data after the partial closure of the entrance
of the Port of Ofunato. Hence our experiments corroborate his numerical/empirical
value. So, although fitting is involved to determine the precise value of ω0 and ν0, they
do not differ much from their rough independent estimate. Moreover, the decrease of
the resonator’s quality (the height and sharpness of the resonance) due to increased
effective friction with increasing tidal amplitude, is explained well by the theory.
Note that the phase lag is −π/2 for ω = ω0 irrespective of forcing amplitude. This
is in perfect correspondence with quasi-linear theory (6.3), but will be different if
additional nonlinear effects become important in equation (6.6). See chapter 3 for a
more extensive discussion on the validation of Lorentz’s linearization procedure.

6.4.2 Non-uniform hypsometry

In order to measure the nonlinear effect of non-uniform hypsometry, artificial ‘tidal
flats’ were introduced in the basin, see figure 6.5. The mean tidal curve was con-
structed by wrapping the measurements onto a single period subtracting an integer
number of tidal periods (14.3 s in this case) from each time value. Figure 6.6 clearly
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(a) Overview (b) Detail: basin entrance

Figure 6.5: Pictures of the laboratory basin with ‘tidal flats’, to the left and right
side of the main channel.

shows that the low tide period decreases and the high tide period increases because
water spreads over a smaller or larger basin area, respectively. In principle one would
expect this to be visible in the response curves as well, which should get tilted because
of the dependence of the effective eigenfrequency on the oscillation’s amplitude. How-
ever, the response curves for this basin with non-uniform hypsometry do not differ
significantly from the ones shown in figure 6.4 for the basin with vertical sidewalls.
The reason is that friction widens the response curves. Possible tilting of the response
curves is invisible relative to the frictional width of the peaks.

The effect of non-uniform hypsometry increases if the difference between the basin
area at high and low tide is larger, but the effective friction is smaller when tidal
ranges are low (cf. section 6.4.1). Therefore, we tried to maximize the relative effect
of hypsometry by decreasing the slope of the ‘tidal flat’, such that a small change in
water level results in a large change in basin area. However, this leads to a number of
small scale effects that destroy the uniform nature of the Helmholtz mode: cohesion
and adhesion of the water to the slope causes a significant delay when wetting/drying
the tidal flat. More importantly, because the water depth is increasingly small over the
tidal flat when decreasing its slope, the tidal wave velocity and wavelength decrease.
As a consequence there will be a phase lag between the tidal flat and the deeper part
of the basin, contradicting the assumption of uniformity of the Helmholtz mode. This
invalidates the model (6.1) and effectively leads to additional damping.

The effects of cohesion and adhesion are not likely to be important in large-scale
natural basins. The decrease of the tidal wavelength can indeed be observed in natural
tidal flats as well, although its effect may be diminished by the fractal nature of the
tidal channel system (Cleveringa & Oost, 1999). In fact, this causes the total length
of the water line to be much larger than with a straightforward construction as shown
in figure 6.5. Consequently, the actual slope and in particular the water depth near
the water line need not be that small to achieve large changes in basin area with small
changes in water level. From a physical point of view, the gullies transport the water
to and from the shoals, hence causing the tide to remain uniform, thus eliminating
the damping effect of the phase differences between the water level in channels and
above shoals.
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Figure 6.6: Tidal curve of measurements with tidal flats at forcing frequency
0.0700 Hz and forcing amplitude approximately 7 mm. The two curves measured
at sea are indistinguishable. The two curves measured at different positions inside
the basin are almost the same as well.

6.4.3 Multiple equilibria

In order to reduce the effect of friction, the basin area A0 was reduced2 (from 0.916 m2

to 0.255 m2) and smooth trumpet-shaped pipe ends (figure 6.9(b)) were introduced.
Both pipe ends of increasing diameter are 145 mm long. With a straight part of
30 mm, 92.9 mm interior diameter, in between the total length of the pipe is 320 mm.
Indeed the response curves are much higher and sharper in this case. Actually, al-
though no artificial topography had yet been introduced, multiple equilibria were
found. Apparently, another nonlinear effect is at play. A number of processes possi-
bly explaining the observed phenomena, will be discussed in section 6.5.

Figure 6.7 shows the response curve found under these conditions at 1 mm forcing
amplitude. It is different from figure 6.4 in that this curve tilts to the right. In
particular the phase difference deviates from −π/2 at ω = ω0, which is an indication
of the influence of nonlinear effects as well. Indeed the response curve according
to Lorentz’s linearization theory (solid curve) fits less well in this case, whereas the
(dashed) curve corresponding with the extended nonlinear theory (6.6) describes the
global behaviour of the response curve much better. Multiple equilibria occur in a
small but reproducible frequency range only, see figure 6.7(c). Note the gap in this
figure in which phase differences between −2.6 and −2.5 do not occur because the
corresponding branch of steady solutions is unstable. Although the formula (6.6) does
predict multiple equilibria as well for Γ large enough, it apparently does not describe
the system well enough to predict the correct parameter range, as it does not predict
multiple equilibrium for the value of Γ that best fits the data. This may be caused

2This reduces the amplitude of currents through the pipe. Hence, due to the quadratic dependence
of friction on the current, the effective friction decreases.
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Figure 6.7: Response curves: amplification factor and phase lag between the tide
at sea and in the basin as a function of forcing frequency with forcing amplitude
αe ≈ 1 mm. Solid curves show the fit to Lorentz’s theory (6.4) with parameters ω0 =
0.149 Hz (indicated by a dotted vertical line) and ν0 = 19.4 m−1, whereas the dashed
curves show the extended nonlinear theory (6.6) with parameters ω0 = 0.140 Hz,
ν0 = 15.1 m−1 and Γ = 1.63 ·103 m−2. Figure 6.7(c) zooms in on the small frequency
range (indicated by the box in figure 6.7(b)) for which multiple equilibria were found:
the upper branch was followed when gradually increasing the forcing frequency, the
lower branch corresponds with gradually decreasing frequencies. Because the results
for both basin sensors are plotted together, the two branches are less clearly identified
in figure 6.7(a), as the amplitude differences between the two sensor locations are
comparable to the gap between the branches.
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Figure 6.8: Illustrations of multiple equilibria: 6.8(a) Time series of the envelop of
forcing at sea and response in the basin by plotting measurements of high and low tide.
The forcing conditions remain at frequency 0.1592 Hz and amplitude 1 mm during
the entire time series, but the response shifts to a higher amplitude regime. 6.8(b)
Measured tidal curves of forcing at sea and two different stable response regimes under
the very same forcing conditions. Forcing is at 0.1588 Hz frequency, 1 mm amplitude
for both cases, but the response has a phase lag of 2.29 rad and amplitudes of 5.5–
6.8 mm for the higher amplitude regime and a phase lag of 2.65 rad and amplitudes
of 5.1–5.8 mm for the lower amplitude regime. Note that overtides are clearly present
at sea but do not propagate into the basin.

by the fact that, having been derived from the small-amplitude limit near resonance,
it captures the first order correction to the effective eigenfrequency only.

Tantamount to the presence of multiple equilibria is the occurrence of hysteresis:
when performing a series of measurements gradually increasing the forcing frequency,
the tidal response in the basin remains in the higher amplitude (less phase lag) regime
until it ‘suddenly’ collapses to the lower amplitude branch. Subsequently decreasing
the forcing frequency the lower branch is followed until a ‘sudden’ transition to the
higher amplitude regime occurs, see figure 6.8(a). In this figure only high and low tide
measurements are plotted in order to obtain the envelop of the signals oscillating at
forcing frequency 0.1592 Hz (6.3 s period). At the start of the time series, the basin
response seems to be in the lower amplitude regime in which it started as the forcing
frequency had just been decreased from higher values. However, although there is no
change in the forcing conditions during the plotted interval the basin response shifts
to the higher amplitude regime and remains there (also for long after the plotted
part of the time series). Apparently the lower amplitude regime near which the basin
started had ceased to exist under these conditions so the system is forced to transfer
to the stable higher amplitude regime. The lower amplitude regime not only has
lower amplitude, the phase lag with the forcing at sea is larger as well as can be
seen in figure 6.8(b) which shows two different tidal curves of the response in the
basin under the same forcing at sea in a single plot. The response amplitudes can be
different only because the phase lag, hence the input of energy, differs. The phase lag
is different because the effective eigenfrequency of the basin is different at different
tidal amplitudes.
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6.4.4 Smooth pipe entrance versus straight pipes

In the previous section we showed the occurrence of multiple equilibria after reducing
friction by decreasing the basin area and introducing smooth trumpet-shaped pipe
ends. Because vertical sidewalls were used, non-uniform hypsometry cannot be the
mechanism responsible for this effect. Although the reduction of the basin area dra-
matically decreases effective friction, hence increases amplification, it is not the key
factor either (see also section 6.4.5). Figure 6.9 shows that the key difference is the
shape of the pipe ends: with straight pipe ends no nonlinear effects are observed, the
curves for the best quasi-linear Lorentz’s fit and the best extended nonlinear fit actu-
ally coincide. With smooth trumpet-shaped pipe ends the results clearly deviate from
Lorentz’s theory and are better described by the nonlinear extension. Apparently, it
is the shape of the pipe entrance that causes the effective eigenfrequency to depend
on the amplitude. The most likely scenario is that the effective length of the pipe
depends on the fluid velocity and turbulent gyres of the flow through the pipe. In that
case the first order correction to the quasi-linear dispersion relation (6.3) should lead
to the same equation (6.6) as for non-uniform hypsometry. No quantitative analysis
to corroborate this description is available yet however.

6.4.5 Dependence of resonance characteristics on basin area

Because of the apparent influence of basin area on the effective friction, a series of
measurements at different basin areas have been performed. For this series a pipe with
smooth trumpet-shaped ends (like in the previous section) was used. At the basin side
it was cut in order to reduce the height of the opening and smoothen the transition
to the bottom of the basin. The total pipe length is 340 mm, 2 cm longer than in
section 6.4.3, for technical reasons. Figure 6.10 shows the response curve parameters
fitted to the respective measurements. The eigenfrequency decreases with the square
root of basin area A0 in correspondence with its definition ω0 =

√
gO/(A0L).

Equation (6.2) suggests a linear relation between the friction parameter ν0 and A0.
However, figure 6.10(b) clearly shows a quadratic deviation from linear dependence.
Perhaps this is related to statistical interdependence between ν0 and the tilting pa-
rameter Γ which, besides tilting, has a damping effect on the response curve as well
by detuning forcing and eigenfrequency.

There is no quantitative theory for Γ yet for the Helmholtz mode with uniform
hypsometry. From figure 6.10(c) we conclude that it increases quadratically with A0.
Note that the tilting effect of Γ on the response curve is measured by Γ|α|2 in (6.6), so
the increase of the friction parameter ν0 decreasing the response amplitude |α| needs
to be considered as well when assessing the importance of the tilting parameter.

For none of the cases in this series of measurements, multiple equilibria were
found. For comparison, the parameters ω0, ν0 and Γ found for the configuration
in section 6.4.3, for which multiple equilibria were found, are plotted with stars in
figure 6.10 as well. Although ω0 and Γ were slightly higher in that case (as was
expected for the eigenfrequency ω0 because the pipe was a bit shorter), the friction
coefficient was significantly lower in that case, possibly because the care taken in
preventing leakage was traded for being able to swiftly change the configuration.
Apparently this causes the absence of multiple equilibria in the present series of
measurements.
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Figure 6.9: Response curves with and without smooth trumpet-shaped pipe ends.
Forcing amplitude αe ≈ 1 mm in both cases. The straight pipe (left) is 313 mm long
with 92.9 mm inner diameter, the smooth pipe (right) has a total length of 340 mm
including 145 mm trumpet-shaped openings at either side, in which the inner diameter
increases from 92.9 mm at the interior to 200 mm at the ends. On the basin side,
the lower part of the entrance has been cut to better merge with the basin’s bottom.
Solid curves show the fit to Lorentz’s theory (6.4) with parameters ω0 = 0.134 Hz
and ν0 = 62.2 m−1 in the straight pipe case, ω0 = 0.147 Hz and ν0 = 18.1 m−1 in the
smooth entrance case. Dashed curves show the extended nonlinear theory (6.6) with
parameters ω0 = 0.133 Hz, ν0 = 61.1 m−1 and Γ = 0.60 ·103 m−2 in the straight pipe
case, ω0 = 0.141 Hz, ν0 = 16.0 m−1 and Γ = 1.08 · 103 m−2 in the smooth entrance
case. Again amplitude differences within the basin can be seen between the sensors
at the end and entrance of the basin respectively.
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Figure 6.10: Response curve parameters as a function of basin area. Eigenfrequency
ω0 is inversely proportional with the square root of A0 as expected from its definition
just before section 6.3.1. Although a linear relation between the friction parameter ν0

and basin area A0 was expected on the basis of (6.2), it clearly comprises a quadratic
deviation from linear dependence. No quantitative theory is available for the nonlinear
tilting parameter Γ yet. It appears to depend on basin area A0 quadratically. For
comparison, six-pointed stars denoting the parameters found in section 6.4.3, with a
slightly different pipe, have been added.
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6.5 Discussion of alternative theories

The results presented in the previous section show that apart from non-uniform hyp-
sometry there must be another process leading to a similar nonlinear effect. In this
section a number of such processes are discussed, emphasizing the physical mecha-
nisms rather than mathematical solution. First a number of effects related to the
nonlinear character of advection and continuity are considered. The mechanism dis-
cussed in section 6.5.2 shows that the results are not exclusive for shallow water models
but may occur in non-hydrostatic models as well. Finally, there is some discussion
on different friction regimes as a less likely candidate for explaining the observed
phenomena.

6.5.1 Advective and continuity effects

Apart from friction, there are two nonlinear terms in the two-dimensional depth-
averaged shallow water equations

∂U
∂t

+ [U · ∇]U = −g∇ζ − τb
ρD

, (6.7a)

∂ζ

∂t
+∇·[DU] = 0, (6.7b)

where τb is the bottom friction stress, ρ the density, ζ(x, t),U(x, t) the water-level
elevation and current at position x, time t and D = H(x) + ζ(x, t) is the total
water depth. The advective term [U · ∇]U and the continuity term ∇·[ζU] not only
induce the well-known nonlinear effect of distorting the tidal curve by exciting higher
harmonics, but may also change response curves. In chapter 4 an extensive calculation
for the same strongly resonant limit as in section 6.3.2 led to the nonlinear amplitude
equations (4.30) of which the Helmholtz results are a special case.

The effects of non-uniform hypsometry discussed along the lines of Maas
(1997), Maas & Doelman (2002) and Doelman et al. (2002) in section 6.3.2 can be
interpreted as a continuity effect, because it is a consequence of the fact that the flux
of water through the channel spreads out over a variable wet area of the basin. As
a consequence the same current through the channel leads to a different rise in the
basin’s water level, hence the restoring force of the oscillator, depending on the phase
of the tide. At high tide the resulting water-level change is less than at low tide.

The opposite effect emerges when considering the influence of water-level elevation
changes on the cross-section of the channel itself (Miles, 1981). Indeed at high tide the
same current velocities over larger channel cross-section leads to larger flux of water
through the channel than at low tide when the channel cross-section is relatively small.
Hence the nonlinear effect caused by the dependence of the channel cross-section
on the water level reduces the high tide period and decreases water-level changes at
low tide, so this also leads to an equation similar to (6.5).

Actually, (6.5) appears to be the generic form of the first-order nonlinear cor-
rection to the dispersion relation whenever the effective eigenfrequency depends on
amplitude. Apart from explicit derivations for particular mechanisms the main moti-
vation is along the lines of chapter 4: for oscillatory modes (ω 6= 0) the condition for
resonant feedback onto itself cannot be fulfilled for triad interactions. The condition
for resonant quartic interactions ensures that |α|2α will generically be the first non-
linear term (see also Nayfeh & Mook, 1979, ch. 4). Although this suggests that it is
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appropriate to use (6.5) to describe the results from our laboratory experiments as
well, a proper analytical derivation has not been given yet. In particular, a theoretical
value for Γ is not available for this situation.

The results in section 6.4.4 show that the smooth trumpet-like shape of the
pipe entrance plays a key role in the occurrence of nonlinear changes to the response
curve in the laboratory setting. Apparently, it too causes the effective eigenfrequency
to depend on the amplitude. The most likely mechanism is that the effective pipe
length changes because of the influence of the entrance shape on the flow in and out
of the channel. With straight pipe ends, a jet of water flows out of the pipe into the
adjacent sea at rest. As a result vortices are shed (see Wells & van Heijst, 2003),
whereas the return flow into the pipe behaves more or less uniformly as potential
flow. With smooth trumpet-shaped ends, which blend better with the surrounding
water, vortices are diminished though not eliminated. The size and strength of these
vortices depend on the velocity through the channel. At low amplitudes the outflow
is like potential flow as well, at higher amplitudes a jet still forms. Possibly less water
actually takes part in the oscillation in the latter case, hence reducing the added mass
effect and increasing the effective eigenfrequency.

Indeed we observe that the occurrence of potential or jet-like outflow seems to
coincide with the basin being in the lower or higher amplitude regime respectively.
On the other hand, it is not yet proven whether this is consequence or cause. In this
respect it would be interesting to see if the diffuse nature of the transition between the
two regimes in Wells & van Heijst (2003) is reminiscent of hysteresis. They use the
velocity through the channel as a control parameter so hysteresis in their experiments
would indicate an intrinsic hysteresis mechanism in the change of flow regimes.

Because jet-formation is a consequence of the advection term, it makes sense to
classify this effect under the present subsection as well. This effect of the shape of
the pipe end may seem peculiar to the laboratory setting because in reality tidal
basins are not connected to sea by pipes. However, funnel-shaped tidal inlets are very
common. Probably the processes that occur within the trumpet-shaped pipe ends do
apply to funnel-shaped tidal inlets as well.

6.5.2 Vertical accelerations

The continuity and advection effects described in the previous paragraph still play
a role in shallow water systems. Another mechanism is feasible if the hydrostatic
approximation is abandoned and vertical accelerations are taken into account. As the
water level in the basin rises and falls, the distance over which the vertical pressure
gradient is induced sustaining the corresponding accelerations, changes as well. Hence
the corresponding pressure difference is larger at high tide than at low tide. In other
words, inertia increases with water level; consequently the high tide period increases
and the low tide period is reduced. A neat and to-the-point treatment of this effect
is given by Lorenceau et al. (2002), considering oscillations in a liquid column in a
partly submerged vertical tube. In fact, Bernoulli (1738) already set out the theory
for gravitational oscillations in a U-shaped tube in which this effect plays a role if
the two tubes have different cross-section. A rough but involved model shows that
his equation can also be derived for the present configuration. The resulting estimate
for Γ however is orders of magnitudes too low to explain the observed tilting of the
resonance curves.
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Figure 6.11: Sketch of frictional pressure difference during half a tidal period. 6.11(b)
shows the friction law that was used, with a transition region between the laminar and
turbulent regime. In 6.11(a) the regime of the flow at different intervals during the
flood period is indicated. The effective friction coefficient determined from Lorentz’s
linearization procedure is shown in 6.11(c).

6.5.3 Friction regimes

It is a well-known fact that two regimes have to be distinguished with regard to
pipe friction laws. In the laminar regime for low Reynolds numbers Re = Ud/ν,
with U = ω|α|A0/O the amplitude of the current, d the pipe diameter and ν ≈
10−6 m2 s−1 the viscosity of water, the friction law constitutes a linear increase of the
frictional pressure difference with the velocity through the pipe. For high Reynolds
numbers Re & 2500, the flow becomes turbulent and we simplify the discussion by
using a quadratic friction law in this regime, rather than one of more sophisticated
empirical friction laws (such as Landau & Lifshitz, 1959, (43.5)). For the sake of
the illustration, suppose the transition even leads to hysteresis, the transition from
laminar to turbulent occurring at Re = 3000 and from turbulent back to laminar
at Re = 2000. For the dimensions of the pipe described in section 6.4.3 for which
multiple equilibria were found, this leads to the friction law shown in figure 6.11(b),

∆p =
{

r0 u, for u < u+ m/s (laminar)
γ |u|u, for u > u− m/s (turbulent) (6.8)

with coefficients r0 = 1.19, γ = 68.4 and a transition region ranging from u− =
0.022 m/s to u+ = 0.032 m/s.

Although the friction laws are derived for stationary flow, we use a quasi-stationary
approximation and assume the frictional pressure difference to be given by (6.8) at
each stage of the oscillatory tidal flow. If the amplitude of the current is below u+

the flow remains in the laminar regime, but for higher amplitudes the flow becomes
turbulent at maximum flood and maximum ebb, as is illustrated in figure 6.11. In
view of the apparent success of Lorentz’s linearization method (see chapter 3) we
can consequently derive an effective linear friction coefficient as a function of the
tidal amplitude according to the energy principle 〈ru2〉 = 〈∆p u〉. Performing the
integration over the complete tidal period, this leads to an analytical expression for
the effective friction coefficient r. As long as the current amplitude U is below u+,
one simply has r = r0 = 1.19. For U above this upper limit for laminar motion, the
expression is much more elaborate. The resulting graph is shown in figure 6.11(c).
Note that in the limit for high amplitude U , the effective friction coefficient r tends
to the well-known result 8

3π γU without taking into account the laminar regime. Next
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we can solve the resulting linear system to the equivalent of (6.3):

|α| = ω0
2αe√

(ω0
2 − ω2)2 + r2ω2

(6.9)

in which the effective friction coefficient r depends on U = A0/O ω|α|. Because |α|
decreases monotonically as a function of r according to (6.9), multiple equilibria, with
two different solutions for the response amplitude |α|, are possible only if r decreases
as a function of the current amplitude U . Under the quasi-stationary approximation
this appears not to be the case.

The transition between friction regimes can be responsible for the observed phe-
nomena only if the quasi-stationary approach used in this section is violated. In that
case an oscillatory pipe friction law relating the amplitude of the velocity through
the constriction (or pipe, in the present situation) to the amplitude of the pressure
difference, is needed.

6.6 Conclusion

Several results of experiments on the response of a co-oscillating tidal resonator have
been shown in this chapter. The first results in the standard setting with ‘large’
basin area A0 = 0.916 m2, uniform hypsometry (i.e. vertical sidewalls) and a straight
pipe, corroborate the quasi-linear theory with Lorentz’s linearization procedure for
quadratic friction. This is an important result by itself, because although Lorentz
(1922, 1926) proposed his linearization scheme at the beginning of the twentieth
century already and computations using it on large-scale geophysical tidal systems
have been corroborated, no experimental validation has been given so far (see also
chapter 3).

Although the introduction of artificial topography in order to simulate the effect
of hypsometry did show its influence on the tidal curve, reducing the low tide and in-
creasing the high tide period, tilting of the response curve was found to be insignificant
compared to the frictional width of the resonance peak. On the laboratory scale the
importance of the hypsometry effect could not be sufficiently increased due to small
scale effects. On the other hand, the influence of friction can be reduced by decreasing
the basin area and introducing smooth trumpet-shaped pipe ends; the amplification
factor of 1.5–2.5 increased to a factor of 8–12. More importantly, a nonlinear effect
became significant: tilting of the response curve due to the dependence of the ef-
fective eigenfrequency on the amplitude of the tidal oscillation. In particular, under
specific conditions multiple equilibria were found: at the same forcing amplitude and
frequency two different tidal response regimes could occur in the basin, depending on
initial conditions.

These multiple equilibria were found with uniform hypsometry, in which case no
nonlinear effects are anticipated based on simple Helmholtz models. In section 6.5
however, a number of different nonlinear processes are discussed that give rise to
similar effects. The derivation in chapter 4 shows that the amplitude equation for the
Helmholtz case can be generalized to more general basins with a set of eigenmodes
and nonlinear terms due to advection and continuity in the shallow water equations.
The generic nature of the result suggests that a similar derivation can be performed in
a three-dimensional setting, needed in order to describe the experimental basin with a
pipe connecting the basin to the adjacent ‘sea’. The experiments show that the shape
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of the pipe ends plays a key role in the occurrence of the nonlinear effects. Intuitively
this may be related to a dependence of the effective pipe length on the amplitude of the
current. In order to explain the experiments, the added mass effect should decrease
(for the effective eigenfrequency to increase) with increasing amplitude. However, a
quantitative model to compare with the measurements is not available yet.

The apparent importance of the particular three-dimensional shape of the pipe
ends used in the experiment may lead to the impression that the occurrence of multiple
equilibria is more of an experimental peculiarity. However, two-dimensional funnel-
shaped tidal inlets abound in geophysical reality, so the trumpet-shaped pipe ends
seem to be more realistic than the straight ones. Moreover, the hypsometry effect is
hampered mainly by small scale effects in the laboratory, which leaves the possibility
of its relevance for instance in tidal flat systems with their fractal structure of channels
(Cleveringa & Oost, 1999). Of course truly convincing proof of the relevance of the
processes sketched in this thesis would lie in finding evidence of these processes in
observational records of tidal motion. We think that the results of these experiments
provide additional motivation to search for this kind of behaviour in tidal observations.
It may be unlikely that sudden changes in the tidal regime and hysteresis, the response
of the basin depending not only on the present forcing conditions but also on its
history, have been overlooked in the principal tidal components, but they could play
a role in secondary undulations. The latter are relatively unimportant for the water
level, hence have been investigated less extensively until recently, but their influence
on currents can be considerable and reports of irregular behaviour date back to the
beginning of the previous century (Honda et al., 1908; Nakano, 1932). Moreover the
results from Maas & Doelman (2002), Doelman et al. (2002) and chapter 5 suggest to
look for internally induced chaotic dynamics of the response amplitudes inside tidal
basins without being linked directly to the dynamics of the forcing, i.e. for variations
in harmonic ‘constants’ (such as reported by Doodson, 1924; Gutiérrez et al., 1981).
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Lefèvre, F., Lyard, F. H., Le Provost, C. & Schrama, E. J. O. 2002 FES99:
A global tide finite element solution assimilating tide gauge and altimetric infor-
mation. J. Atm. Oc. Tech. 19 (9), 1345–1356.

Lepelletier, T. G. & Raichlen, F. 1987 Harbor oscillations induced by nonlinear
transient long waves. J. Waterway, Port, Coastal and Ocean Eng. 113 (4), 381–400.
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Samenvatting

Deze samenvatting geeft een beknopte inhoud van dit proefschrift in het Nederlands. Het
streven is geweest om het in principe toegankelijk te maken voor mensen met V.W.O.-
natuurkunde als achtergrond. Nieuwe begrippen (cursief gedrukt) zijn zoveel mogelijk
direct erna verklaard (bij een opsomming kan het nodig zijn om iets verder door te lezen).
Het is echter onvermijdelijk zeer compact geschreven en de nieuwe begrippen volgen el-
kaar in een snel tempo op. Hulde aan de lezer die zich er met een dergelijke achtergrond
toch doorheen weet te slaan. Onderstaand wordt eerst een korte inleiding gegeven in
de “oude” (lineaire) theorie van getijden, om dan door te gaan met het bespreken van
het nieuwe (niet-lineaire) werk. De kernvraag die in dit proefschrift is bestudeerd is in
hoeverre niet-lineaire processen ertoe kunnen leiden dat de voorspelbaarheid en regelmaat
van het getij worden verstoord. Hiertoe is enerzijds gebruik gemaakt van abstracte wis-
kundige modellen en anderzijds van laboratorium-experimenten waarbij op kleine schaal
een zogenaamde Helmholtz resonator is nagebootst.

In veel kustgebieden is een belangrijke rol weggelegd voor het getij : de dagelijkse
verandering van de waterstand (hoog- en laagwater) in oceanen, zeeën en aangren-
zende (kust)wateren en de daarmee gepaard gaande eb- en vloedstromen. Het is een
belangrijke factor voor de navigatie, maar ook kunnen de getijstromen grote hoeveel-
heden sediment (zand en klei) verplaatsen en zo de ligging van de bodem bëınvloeden
en ze zijn van belang voor de verspreiding van vervuiling en voedingsstoffen in het
water. Het woord “getij” vindt zijn oorsprong in het regelmatige voorspelbare karak-
ter ervan. Over het algemeen zit er 12 uur en 25 minuten tussen twee opeenvolgende
hoogwaters, met een laagwater ertussen. Al vroeg in de geschiedenis werd het verband
gelegd met de maan, al heeft een adequate beschrijving van het mechanisme moeten
wachten tot de zwaartekrachtswetten van Newton.

De zwaartekracht tussen de aarde en een hemellichaam, zoals de zon of de maan,
doet deze om elkaar heen draaien. In het middelpunt van de aarde zijn de resulte-
rende centrifugaal- (of middelpuntvliedende) kracht en de zwaartekracht met elkaar
in evenwicht. Dichter bij het hemellichaam is de zwaartekracht groter, terwijl aan
de tegenoverliggende kant van de aarde de centrifugaalkracht overheerst, zie ook fi-
guur 1.2. Als de aarde geheel uit water zou bestaan, dan zou je het zogenaamde
evenwichtsgetij verwachten: een “vloedberg” aan de kant van het hemellichaam door
de daar overheersende zwaartekracht en een tweede “vloedberg” aan de andere kant
door de daar overheersende centrifugaalkracht. Doordat de aarde in ongeveer 24 uur
om zijn as draait, komt een vast punt op aarde dus twee keer per dag een hoogwa-
ter tegen en dus ook twee keer per dag een laagwater. Omdat daarnaast de maan
zelf in 28 dagen om de aarde draait, duurt het iets langer (namelijk 24 uur en 50
minuten) voordat een vast punt op aarde zich weer op dezelfde plek t.o.v. de maan
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bevindt, zodat de periode van het maansgetij 12 uur en 25 minuten bedraagt. De
belangrijkste twee hemellichamen die het getij op aarde veroorzaken zijn de zon en
de maan. Hoewel de zon veel groter en zwaarder is dan de maan, is de invloed van
de laatste toch groter omdat de maan dichter bij de aarde staat. Met volle en nieuwe
maan, wanneer de zon en de maan min of meer op een lijn staan, dan versterken
zij elkaar en ontstaat een extra sterk springtij, met een hogere hoogwater- en lagere
laagwaterstand. Bij eerste en laatste kwartier werken ze elkaar juist tegen en is het
doodtij, met een minder hoog hoogwater en minder laag laagwater. Zo varieert het
getij in kracht op een tijdschaal van 14 dagen. Andere veranderingen in de stand van
de zon en de maan, zoals de declinatie t.o.v. de evenaar en de elliptische vorm van
hun baan, zorgen voor weer andere tijdschalen die een rol spelen in het evenwichtsgetij.

Er zijn twee redenen waarom het getij op aarde afwijkt van het evenwichtsgetij.
Ten eerste bestaat de aarde niet alleen uit water, maar wordt de getijgolf geblokkeerd
door de continenten. Ten tweede draaien de vloedbergen van het evenwichtsgetij te
snel om de aarde, zodat het water door zijn traagheid en door wrijving onvoldoende in
staat is om te reageren. Daardoor treedt een vertraging (en verzwakking) op in de re-
actie van het water op de getijdekrachten van de zon en de maan. Het gangbare beeld
is dat de directe forcering van het getij alleen in de zuidelijke oceaan, waar rondom
Antarctica wel water is over een volledige breedtecirkel, een rol van betekenis speelt.
Daarvandaan plant de getijgolf zich dan voort over de andere oceanen en kustzeeën,
doordat die meebewegen met de schommelingen in de waterstand in de aangrenzende
oceaan of zee (co-oscillatie). Dat verklaart dan ook waarom springtij en doodtij niet
met volle/nieuwe respectievelijk eerste/laatste kwartier plaatsvinden, maar ongeveer
twee dagen later. Uit het feit dat er op aarde ook plaatsen voorkomen waar deze “leef-
tijd van het getij” negatief is, blijkt echter dat dit beeld ook niet helemaal volledig is,
maar daar zal hier verder geen aandacht meer aan besteed worden.

In het co-oscillatie-proces kan het getij flink versterkt worden. Het evenwichtsgetij
zelf is namelijk vrij klein (27 cm getijverschil voor de zon en 54 cm voor de maan).
Afhankelijk van de locale omstandigheden, zoals de diepte en de vorm van het getijde-
bekken, kunnen bepaalde componenten (tijdschalen waarop de variaties van het getij
optreden) van het evenwichtsgetij resoneren met de eigenmodi van het bekken. Deze
eigenmodi zijn de natuurlijke slingeringen van het water in het bekken. Net zoals bij
het duwen van een kind op een schommel is er één bepaalde aandrijf-frequentie (in
het geval van getijdebekkens zijn er méérdere eigenmodi) waarbij kleine duwtjes een
grote uitwijking tot gevolg hebben. Als je sneller of langzamer aandrijft, dan is het
resultaat minder groot. Resonantie in getijdebekkens treedt dus op als de frequentie
van het getij overeenkomt met een eigenmode van het bekken. In een vereenvoudigd
smal rechthoekig bekken van constante diepte dat aan één zijde in verbinding staat
met een aangrenzende oceaan of zee, zoals weergegeven in figuur 1.6(a), betekent dit
dat de lengte van het bekken overeen moet komen met een oneven aantal keren een
kwart-golflengte, vandaar de naam kwart-golflengte resonator. Dit is vergelijkbaar
met de resonantie van een orgelpijp. De Adriatische Zee, bij wijze van voorbeeld
besproken in hoofdstuk 2, gedraagt zich als zo’n kwart-golflengte resonator. Terwijl
het getij op de Middellandse Zee verwaarloosbaar is (zo’n 13 cm getijverschil aan de
monding van de Adriatische Zee) neemt het toe tot een duidelijke 52 cm aan het eind
bij Venetië. Een andersoortige eigenmode is te vinden in relatief kleine bekkens die
bijna geheel zijn omsloten door land en slechts door een smalle doorgang verbonden
zijn met de zee of oceaan. Deze Helmholtz mode, ook wel pomp mode genoemd, ken-
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merkt zich door een nagenoeg vlak op en neer gaan van de waterstand binnen het
bekken, terwijl het water door het smalle zeegat wordt geperst ten gevolge van het
verschil in waterstand binnen het bekken en buiten op zee, zie ook figuur 1.7(b). Ook
de Nederlandse Waddenzee kan worden opgevat als een aantal afzonderlijke getijde-
bekkens van dit type.

De hiervoor besproken verschijnselen kunnen allemaal nog beschreven en verklaard
worden met behulp van zogenaamde lineaire getijdetheorie. Lineariteit is een wiskun-
dig begrip dat betekent dat de respons van een systeem evenredig is met de mate van
forcering. Dus als de aandrijving toeneemt met een factor twee, dan wordt ook het
gevolg twee keer zo groot. Lineaire systemen zijn voor wiskundigen relatief eenvoudig
op te lossen. In dit proefschrift is echter vooral gekeken naar niet-lineaire processen
die een rol spelen in het co-oscillatie-proces, in het bijzonder rond resonantie. De
forcering is dan de getijdebeweging in de aangrenzende oceaan of zee en de respons is
het co-oscillerende getij binnen het getijdebekken. In de ondiep-water-vergelijkingen
(ondiep is relatief t.o.v. de golflengte, dus voor het getij kan zelfs de oceaan van
5 km diepte “ondiep” zijn) spelen drie niet-lineaire processen een rol: wrijving, ad-
vectieve versnellingen en het continüıteitseffect. Wrijving met de bodem en ook de
turbulente dissipatie (verlies van energie) wordt vaak beschreven met een kwadrati-
sche wrijvingswet : als de snelheid met een factor twee (of 3) toeneemt, dan neemt
de wrijving met een factor vier (of 9) toe. Advectieve versnellingen vinden plaats
in stroomversnellingen en hebben te maken met het feit dat het water het liefst met
een constante snelheid rechtuit wil bewegen; een grotere snelheid heeft dubbel effect
omdat het betekent dat het water meer moet versnellen, maar ook dat één specifiek
waterdeeltje sneller in en uit de stroomversnelling beweegt. Het continüıteitseffect
heeft betrekking op het feit dat niet alleen de snelheid van het water maar ook de
waterstand bepaalt hoeveel water er door het getij verplaatst wordt; bij hoogwater
gaat er relatief meer volume aan water door een geul dan bij laagwater.

De gevolgen van de niet-lineaire processen laten zich ook in drie groepen on-
derverdelen: vervorming van de getijgolf, verandering van de stationaire amplitude
en modulatie van het getij. Niet-lineaire processen kunnen extra getij-componenten
opwekken met frequenties die een veelvoud zijn van de frequenties in het evenwichts-
getij, hetgeen leidt tot een vervorming van de sinus-vormige getijgolf. Als het systeem
slechts zwak niet-lineair is, dan kan dit veelal beschreven worden door herhaald toe-
passen van lineaire theorie zonder dat de dynamica van het getij essentieel wordt
bëınvloed. Wel kan de asymmetrie van het getij (de gebruikelijkste vorm is een korte
sterke vloed en een zwakkere langdurige eb) grote gevolgen hebben voor het transport
van bijvoorbeeld sediment en dus voor de bodemligging. In dit proefschrift is deze
niet-lineaire vervorming van de getijgolf grotendeels buiten beschouwing gelaten.

Onder stationaire forcering (d.w.z. een periodiek signaal van constante amplitu-
de), valt in het algemeen ook een stationaire respons te verwachten. De resonantie-
eigenschappen van het getijdebekken kunnen dan worden weergegeven met behulp van
een respons curve, waarin men de amplitude-verhouding en het faseverschil van het
stationaire getij in het bekken t.o.v. de forcering van buiten uitzet tegen de frequentie
van het signaal (zie bijvoorbeeld figuur 3.4). In een lineair systeem heeft de amplitu-
de van de forcering geen invloed op de respons curve; als de forcering toeneemt dan
neemt de respons ook toe, maar de verhouding blijft gelijk. Kwadratische wrijving
zorgt er echter voor dat wrijving relatief belangrijker wordt bij grotere amplituden.
Daarom is de resonantie-piek scherper en hoger bij kleinere forcerings-amplituden; bij
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toenemende forcering neemt ook de respons wel toe, maar relatief minder sterk dan
de forcering. Om deze niet-lineariteit goed mee te nemen bedacht Nederlandse Nobel-
prijswinnaar H.A. Lorentz al in het begin van de vorige eeuw een linearisatie-principe.
Dat kwam erop neer dat de kwadratische wrijvingswet door een lineaire werd vervan-
gen, maar de daarin voorkomende coëfficiënt werd stapsgewijs zodanig aangepast dat
de dissipatie van energie per periode hetzelfde was als wanneer de kwadratische wrij-
vingswet zou zijn gebruikt. Hij gebruikte zijn methode om met succes te voorspellen
wat het effect zou zijn van de Afsluitdijk op het getij in de Waddenzee. Hoewel de
methode inmiddels onomstreden is dankzij zijn succesvolle toepassing, bleek een zorg-
vuldige validatie in een laboratorium-opstelling te ontbreken. In hoofdstuk 3 wordt
dit gat opgevuld met experimenten die op het N.I.O.Z. zijn uitgevoerd. Ook dit effect
lijkt echter nog erg op lineair gedrag, in de zin dat het nog steeds mogelijk is om
een respons curve te definiëren die bij gegeven stationaire forcering voorspelt wat de
stationaire respons zal zijn.

Niet-lineaire effecten kunnen de dynamica ook wezenlijk veranderen. Voortbor-
durend op eerder werk van Leo Maas, Arjen Doelman en Femius Koenderink, wordt
in hoofdstuk 4 een wiskundig model afgeleid voor de modulatie van getij-amplitudes
in een co-oscillerend getijdebekken. Hun werk beperkte zich tot de Helmholtz mode
in bijna volledig afgesloten bekkens, waarvoor de wiskunde relatief eenvoudig is om-
dat de waterstand binnen het bekken overal gelijk is en dus met een enkele variabele
kan worden beschreven. In dit proefschrift wordt het uitgebreid naar willekeurig ge-
vormde bekkens zonder dat de waterstand overal in het bekken gelijk hoeft te zijn.
Het model voor de Helmholtz mode blijkt daar dan een speciaal geval van te zijn.
Voor de Helmholtz mode ontstaat de niet-lineariteit doordat de oppervlakte van het
bekken verandert met de fase van het getij (een deel van het bekken valt droog met
laag water), hetgeen in essentie ook een continüıteitseffect is. In het algemenere geval
blijken meer niet-lineaire termen (advectie en continüıteit) binnen de ondiep-water-
vergelijkingen tot dezelfde resultaten te leiden.

De belangrijkste fysische aannamen waarop de afleiding van het model is geba-
seerd zijn dat sprake is van een kleine getij-amplitude en sterke resonantie. De getij-
amplitude moet klein zijn t.o.v. de waterdiepte om de wiskundige analyse mogelijk
te maken. Fysisch valt te verwachten dat de niet-lineaire effecten alleen maar groter
zullen worden voor grotere amplituden, maar de wiskundige technieken om dat te
onderzoeken ontbreken vooralsnog. Sterke resonantie houdt hier in dat we aannemen
dat de frequentie(s) van de forcering dichtbij de eigenfrequenties van het bekken liggen
en dat wrijving erg klein is. Vooral aan de laatste aanname zal in de praktijk vaak
niet worden voldaan, aangezien wrijving en turbulentie in de relatief ondiepe kustge-
bieden in het algemeen wel belangrijk is. Op grond van deze aannamen kunnen, met
behulp van zwak niet-lineaire theorie, vergelijkingen worden afgeleid die beschrijven
hoe de amplitudes van de verschillende getij-componenten langzaam variëren in de
tijd. Dit betekent dat het getij in de gebruikelijke 12 uur en 25 minuten tussen hoog-
en laagwater op en neer gaat, maar dat de amplitude en fase van het getij langzaam
verandert op een langere tijdschaal. In de praktijk bestaat een dergelijke modulatie al
omdat de forcering varieert volgens de springtij-doodtij-cyclus, maar deze modellen
suggereren daarnaast een intrinsieke niet-lineaire dynamica van de getij-amplituden,
op dezelfde of op een andere tijdschaal.

In hoofdstuk 5 worden de consequenties van het afgeleide model voor de modu-
latie van de getij-amplitudes nader onderzocht. Omdat de resultaten van Leo Maas,
Arjen Doelman en Femius Koenderink als speciaal geval worden teruggevonden, kan
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daarbij voor een belangrijk deel worden teruggegrepen op hun werk. Allereerst wordt
de stationaire respons op stationaire forcering (m.a.w. de respons curve) bëınvloed
door de niet-lineaire effecten. De resonantie-piek blijkt te worden gebogen, zie fi-
guur 5.1. Daardoor zijn meervoudige evenwichten mogelijk: onder dezelfde externe
omstandigheden (vorm en diepte van het bekken, amplitude en fase van het getij
op de aangrenzende oceaan of zee) kan het bekken zowel in een toestand met grote
getijden terechtkomen als in een toestand met een zwakker getij. Het hangt van de
voorgeschiedenis af welk getij in het bekken zal optreden en het kan niet meer direct
voorspeld worden op grond van het getij zoals dat binnenkomt uit de aangrenzende
oceaan of zee. Als de externe omstandigheden langzaam veranderen, bijvoorbeeld
onder invloed van zeespiegelstijging of bodemdaling, dan kan een bifurcatie optreden.
Het kan dan namelijk gebeuren dat de toestand van het getij niet langer een oplossing
is. Het systeem zal zich dan “plotseling” aanpassen naar een nieuw getij, met wellicht
een hogere of lagere amplitude. Ook al zouden de externe omstandigheden vervolgens
weer teruggebracht worden naar de oude waarden, dan blijft het systeem in de nieuwe
toestand hangen, een verschijnsel dat hysterese wordt genoemd.

Wanneer de externe omstandigheden voortdurend veranderen op een tijdschaal die
overeenkomt met de tijd dat het bekken nodig heeft om zich aan de nieuwe omstandig-
heden aan te passen (de springtij-doodtij-cyclus zou zo’n voortdurende verandering
van de externe getij-amplitude kunnen zijn), dan blijven de “plotselinge” overgangen
van het getij binnen het bekken voortduren. Onder die omstandigheden is binnen het
model aangetoond dat de dynamica chaotisch kan zijn. De wiskundige chaos-theorie
beschrijft deterministische systemen (d.w.z. in principe volledig voorspelbaar) die
door niet-lineaire processen toch een grillig gedrag zonder regelmaat laten zien. Het
bekendste voorbeeld van een chaotisch systeem is het weer. Als we van alle moleculen
op aarde exact zouden weten hoe ze op dit moment bewegen, dan zouden we in prin-
cipe tot willekeurig ver in de toekomst het weer kunnen voorspellen. Echter, zoals de
Amerikaanse meteoroloog/wiskundige E.N. Lorenz (niet te verwarren met de eerder
genoemde H.A. Lorentz) het formuleerde: een vlinder in Brazilië zou door een slag
van zijn vleugel een tornado in Texas kunnen veroorzaken. De volgende vleugelslag
zou het effect ook weer teniet kunnen doen. Waar het om gaat is dat in chaotische
systemen kleine verstoringen grote gevolgen kunnen hebben. Dat zorgt ervoor dat de
voorspelbaarheid die in principe mogelijk is, in de praktijk niet gerealiseerd kan wor-
den. Een chaotisch getij zou echter haast een contradictio in terminis zijn aangezien
het woord getij zijn herkomst juist vindt in zijn regelmaat. Voorspellingen van het
getij worden geacht al jaren vooruit gedaan te kunnen worden en afwijkingen daarvan
worden toegeschreven aan meteorologische effecten. Deze studie stelt dit enigszins ter
discussie.

Om de opmerkelijke conclusies van het theoretische werk op hun betrouwbaarheid
te toetsen, zijn ook laboratorium-experimenten uitgevoerd. Daarbij werd in eerste
instantie geprobeerd de niet-lineaire effecten van variabele bekken-oppervlakte (door
het droogvallen van een deel van het bekken bij laagwater) na te bootsen voor de
Helmholtz mode. Dat werd echter bemoeilijkt doordat wrijving het effect maskeert
en het optimaliseren van de hypsometrie (bekken-oppervlakte als functie van de wa-
terstand) stuk liep tegen effecten ten gevolge van de kleine schaal van de opstelling.
Om de wrijving te beperken werd het bekken verder verkleind en werd de verbinding
tussen het bekken en de “zee” glad afgerond. Vervolgens werden wel meervoudige
evenwichten waargenomen! In tegenstelling tot wat de eenvoudige theorie voor de
Helmholtz mode suggereert, gebeurde dit ook wanneer de bekken-oppervlakte niet
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varieerde met de waterstand. De afgeronde verbinding tussen het bekken en de “zee”
bleek het verschil te maken tussen het al dan niet optreden van dit niet-lineaire effect.
Vooralsnog is echter geen afdoende verklaring voorhanden. Ook het onderzoek naar
de voorspelbaarheid van het getij blijft voorlopig nog actueel.
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