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Abstract

The dynamics of a water basin at the equator is described using the
lowest moments of its density and momentum fields; the centre-of-mass
and the angular momentum around it. In the resulting model a non-
conventional Coriolis term is used to describe the dynamics at the equator.
Neglecting viscosity and diffusion, in the absence of wind and differential
heating, a fluid pendulum in the equatorial plane is found. Adding dif-
ferential heating in the zonal direction causes a deviation from this path.
When mixing of momentum happens fast compared to mixing of temper-
ature and salt stable points in and outside the equatorial plane are found
taking one forcing at a time into account. Focussing on El Nifno numeri-
cal computations show a downward jump of the centre-of-mass when the
trade winds weaken. Seasonal variations at the Pacific Ocean cause pe-
riodic solutions to occur when forcings are strong. When evaporation is
dominant chaos can be found.
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1 Introduction

The climate on earth affects us all. We check the weather forecasts to see
whether we can go to the beach. We want to know which airstrip a plane has
to use to land safely. We wonder what the effects are of continued emission of
carbon dioxide on the temperature and what the consequences for the sea level
are. For these and many more reasons research of the climate is important and
interesting.

For 2014-2015 an extreme El Nifio is predicted [1]. The consequences may
be immense, particularly in the regions around the Pacific Ocean. El Nino’s
disrupt the normal weather patterns, causing for example floods in usually dry
regions in South-America. El Nino is still not fully understood and research will
remain necessary in the coming years.

El Nifio is a quasi-periodic phenomenon occurring in the equatorial region
of the Pacific Ocean [2]. During a couple of months the sea surface temperature
at the east side of the Pacific Ocean around the equator is much higher than
usual (by 6-8°C). The counterpart of El Nifo is known as La Nina. During La
Nina the sea surface temperature near South America is lower than usual (by
3-5°C). The El Nifio-La Nina cycle has a quasi-period of two to seven years.

Usually the wind above the equator blows towards the west (trade winds),
taking the warm surface water with it. This causes upwelling of cold water at
the east side of the Pacific Ocean, which makes sea life flourish as the upwelling
water is rich in nutrients. As a consequence the sea surface temperature in the
west is several degrees higher than in the east, as can be seen in Figure 1. Also
the thermocline, indicating at which depth the temperature decreases fastest
with depth, is shown in this figure. In the atmosphere a convective circulation
takes place (Figure 1). Air rises at the west side and descends at the east side.

During an El Nino the trade winds are weaker and the surface water at the
east side of the ocean is warmer than in the normal situation (Figure 1). This is
a self-sustaining situation; the smaller temperature difference between the east
and west side weakens the wind, while the weaker wind takes less water towards
the west and thus lowers the temperature difference. During an El Nifio the
thermocline lowers at the east side of the basin. Also the circulation in the
atmosphere is disrupted. The region where most of the air rises moves towards
the centre of the Pacific Ocean, causing eastward winds at the west side of the
Pacific Ocean.

During a La Nina the opposite happens. The trade winds increase in strength
and the sea surface temperature at the east side is lower than usual. The thermo-
cline is closer to the surface near South-America indicating stronger upwelling.
The region where air rises is located even further towards the west. A La Nifa
often follows an El Nifio, causing mostly opposite weather to El Nifio. For ex-
ample during an El Nifio there is a lot of rain at the coast of Peru, whilst during
a La Nifna it is very dry.

As El Nino takes place near the equator, it is very interesting to consider
the dynamics of the equatorial region. On a rotating sphere, like the earth, this
rotation affects the way fluids behave. The effects are described by the Coriolis
force [3], which is proportional to the cross product of the earth’s rotation
vector (© o (0, cos ¢, sin @), with ¢ the latitude) and the velocity of a particle.
Most climate models use an f-plane approximation to describe the Coriolis force,
where f o sin ¢. In this approximation the horizontal component of the earth’s
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Figure 1: The sea surface temperature (red being above 30°C and dark blue below
20°C), wind, thermocline and areas of rising air during El Niflo, La Nifia and normal
conditions. [1]

rotation vector is neglected. This however is not valid at the equator since then
f = 0. Therefore it is important and interesting to abandon this approximation
and look specifically at the situation at the equator employing non-traditional
Coriolis terms.

In this thesis a model that describes the dynamics of the ocean in terms of
the lowest moments of the density and momentum fields is used. This means we
look at the location of the centre-of-mass and the angular momentum around it
in a box of water on the equator. It is important to note we will look at an ocean-
only model instead of a coupled ocean-atmosphere model as is customary. Even
in this low order ocean-only model the non-linear terms are able to produce ‘rich’
dynamics. Looking at low order dynamics allows us to describe the ocean using
ordinary differential equations, while for higher order terms partial differential
equations are needed. It also provides us with more insight in the dynamics,
as we can follow the movement of the centre-of-mass in detail. This way it is
possible to better understand the causes and consequences of the dynamics.

We will focus on the consequences of the non-traditional Coriolis term in
our low order model. To acquire better insight at the dynamics at the equator,
we will approximate our model in various ways. These approximations will
be mostly focussed on obtaining solutions in an analytical manner. Numerical
methods are used when analytical solutions can not be easily acquired any more.



2 Dynamics of the centre-of-mass on the equa-
tor

Maas (2004) [4] gives us the equations for the dynamics of the centre-of-mass
at mid-latitudes in a certain basin. These first order ordinary (not partiall)
differential equations for the location of the centre-of-mass X and the basin-
averaged angular momentum L around it, describe the dynamics of the basin
at lowest order. The equations are obtained by integrating the Navier-Stokes
equations over the whole basin.

The location of the centre-of-mass X(t), with components X (¢), Y (¢) and
Z(t), is given in Cartesian coordinates x = (x,y,2) on a plane tangent to the
earth with its centre corresponding to the centre of the basin. We denote with
i, j and k the unit vectors in the positive x, y and z direction respectively. The
z-direction is the zonal direction, with positive z pointing east. The y-direction
is the meridional direction, with north corresponding to positive y. The z-
direction is the vertical direction, with positive z pointing against gravity. In
this coordinate system the basin-averaged angular momentum around the origin
L(t) has components L;(t), Lo(t) and L3(t), which represents rotation around
the z-, y- and z-axis respectively following the right-hand rule.

In this coordinate system the first order differential equations describing the
behaviour of X(t) and L(t) are:

dL

Pr_lﬁ + 'k x L=—-Yi+ Xj— (L1, Ly,rL3) +TT (1)
dxX
E*I’XXL:*(X,Y,MZ)*FRCLF (2)

In these equations T drives the angular momentum and in this way repre-
sents differential momentum fluxes due to wind stress. F represents forcing due

to differential buoyancy fluxes and drives the centre-of-mass directly. Further-
rp L2
12K,

of viscous over diffusive processes, T gives the magnitude of the wind stress
torque and Ra is a Rayleigh number defined as Ra = 2?5’1’5570 and represents
differential heating. In these definitions 7, and r, represent Rayleigh damping
coefficients in both vertical and horizontal directions (friction), L and H depict
the length and depth of the basin, K, and K, represent diffusion in the vertical
and horizontal direction, ¢ is the gravitational acceleration, dp. is the external
density contrast (normalizing for the average density difference between east
and west) and pg is a constant reference density. Also r = :—Z represents the

friction-ratio and pu = g;f; the diffusion-ratio. Lastly f’ = w, with  the
rotation rate of the earth and ¢ the latitude, represents the traditional Coriolis
term due to the earth’s rotation in an f-plane description.

In Maas (1994, 2004) [5] an f-plane approximation is made in which the y-
part of the rotation vector €2, proportional to cos ¢, is neglected. This results
in an approximation which is strictly speaking only valid on the poles, where
¢ = +3. For higher latitudes this may be a reasonable approximation, but on
the equator, where ¢ = 0, it does not describe the Coriolis force correctly any
more. To investigate the dynamics on the equator and especially El Nino we
here abandon this approximation.

more Pr is a Prandtl number defined as Pr = and measures the ratio
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Figure 2: The box on the equator with the axes shown in red with arrows pointing
in positive directions. Gravity g and the earths rotation €2 are depicted in yellow. The
orange and purple arrows show possible vectors for X and L respectively.

To do so, the coordinate system has to be changed. We again use Cartesian
coordinates, but now in a box tangent to the equator with its centre at the
centre of the basin as depicted in Figure 2. The z-, y- and z-directions remain
the same, hence x gives the longitude, y the latitude and z the altitude as can
be seen in Figure 3. This time it is important to assume the basin has artificial
walls at latitudes of +2°, since at higher latitudes the dynamics are observed to
change drastically [6].

Now, to find the equations describing the dynamics at the equator, the only
term we have to change with respect to (1) and (2) is the Coriolis term. On
the equator the rotation of the earth has only a component in the y-direction,
so the Coriolis acceleration takes the form of:

Qcoriolis = 2@ xL = 2Qj x L (3)

By changing the Coriolis term, the new equations describing the dynamics
on the equator become:

dL .
Pr*lﬁﬂfj xL=-Yi+ Xj— (L1, Ly,rL3) +TT (4)
dX

E—i—XxL:—(X,Y,yZ)—i—RaF (5)

In this equations the unconventional horizontal component of the Coriolis
acceleration reads f = Th?f”. Here we divide by 7, + 7, because the cross
product gives rise to a Coriolis force in the zonal and vertical directions. Note
that f is always positive, in contrast to the classical f’ in (1) which can also be
negative.

In the following sections we look at (4) and (5) in more detail and use various
approximations to understand their behaviour. The approximations we make
are mostly guided by simplifying the equations in a way we can solve them
analytically. We will also look specifically at the forcings in the Pacific Ocean
during the normal situation and El Nifio and investigate the behaviour that
follows from our model in these cases.
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Figure 3: The coordinate system on earth with the arrows pointing in positive di-
rections (rotation goes according to the right-hand rule).

3 Ignoring diffusion, viscosity and forcing

First we investigate one of the most simple cases, namely when there is no
diffusion, viscosity or forcing. This way we find the inertial motion of the
system. In this case it is possible to rescale the equations by setting X’ = PrX
and f’ = Prf and afterwards dropping the primes. This way we get rid of
Pr. Rescaling a second time we also can take f = 1 by setting L = f~'L,
X' = f72X and ¢’ = ft and again dropping the primes. Ignoring the diffusion,
viscosity and forcing terms in (4) and (5) we find after rescaling:

Ly +L3=-Y (6)
Ly=X (7)
L3~ Ly =0 (8)
X+YLy—ZLy =0 (9)
Y+ 2L — XLz =0 (10)
Z+XLy—YL; =0 (11)



From these rescaled equations we find three different invariants that will help
us in our study of the behaviour of the centre-of-mass in the equatorial basin.
To find these invariants we look for expressions of which the time derivative is
zero, since then way the expression itself has to be constant.

The first expression of which the time derivative is zero, we obtain by adding
Ly times (6), Ly times (7), L3 times (8) to (11). This way we find Z + Ly L, +
LoLy + L3L3 = 0 and the corresponding invariant is:

1
7+ 5(L%+L§+L§) = (12)

We can consider this as the conservation of energy. That way Z corresponds
to the potential energy due to gravity acting on the centre-of-mass and the
kinetic energy is represented by %(L? + L3 4+ L3). When there is no external
forcing, nor diffusion or viscosity these are the only two terms contributing to
the total energy. So the total energy is conserved according to (12).

The second invariant we find by adding X times (9), Y times (10) and Z
times (11). This yields XX +YY + ZZ = 0, which corresponds to:

X2 4 Y2422 =c (13)

This conserved quantity shows that in this rough approximation the distance
of the centre-of-mass to the geometrical centre is constant. This is due to the
absence of diffusion and viscosity. Their presence would cause mixing of the
water. When for example the warmest water is at the surface of the basin,
and the coldest at the bottom, the centre-of-mass will be located below the
geometrical centre of the basin (X = 0). Diffusion would change this and bring
the centre-of-mass upwards. In its absence the centre-of-mass will stay at a
constant distance from the origin, which is a very strict limitation on the way the
water masses can move. Thus this invariant corresponds to the conservation of
stratification, meaning the water does not mix. All the water will move together
with the centre-of-mass.

The last conserved quantity is found by adding X times (6), Y times (7),
Z times (8), Ly times (9), Ly + 1 times (10) and L3 times (11). We then find
XL+ L1 X +Y Lo+ (Lo + l)Y + 705+ L3Z = 0, corresponding to:

XL, +YLo+ZLs +Y = c3 (14)

This invariant says that when the distance of the centre-of-mass to the ro-
tation axis becomes larger, the rotation of the water will slow down and it
will speed up when the distance gets smaller. We can write this invariant as
(fj +L)- X, which can be seen as the analogue of potential vorticity. Vorticity
is the local rotating motion of a fluid near a certain point [7]. Potential vorticity
is defined as (f+w)- %9, where f represents the rotation of the earth, w the rela-
tive vorticity of the water (as measured on earth), p the mass density and € the
potential temperature [8]. We thus consider this quantity as the conservation
of potential vorticity (Figure 4).

In principle it is possible to reduce the set of six first order differential
equations to a set of three equations using these three invariants. To do so
we have to eliminate three of the six variables using the invariants. There are
different ways to do this. The first way is set out in Appendix A. Here we
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Figure 4: A sketch of the conservation of potential vorticity. Stretching of the col-
umn of water, corresponding with the centre-of-mass getting closer to the geometrical
centre, causes the column to rotate faster. [9]

change to polar coordinates for X and cylindrical coordinates for L; and L3 to
reduce the number of equations. Another option is to keep the same coordinates
and write X as a function of L. Both ways do not yield ‘nice’ expressions, so
we will not look into more detail at this.

In Sections 3.1 and 3.2 we will consider the motion of the centre-of-mass and
the angular momentum for certain initial conditions. We will choose the initial
conditions in such a way that the equations are (almost) analytically solvable.
We use Mathematica to compute and visualize the trajectories. By looking at
those simple situations we know how the dynamics are when few processes are
involved. This will help us to understand the more difficult situations considered
in Sections 5 and 6.

3.1 A well-mixed state

We first consider the ocean being in a well-mixed state, meaning all mass is
equally distributed over the basin. Then the centre-of-mass is located at the
geometrical centre of the basin (X = 0). This way also the derivatives of X, Y
and Z are zero, so the centre-of-mass will stay at the origin. The only dynamics
in this case is due to the angular momentum and is described by:

Li+L3=0 (15)
Ly =0 (16)
Ly—L; =0 (17)

From (16) we conclude that there is a constant rotation around the y-axis
(L2). By combining (15) and (17) we find for L; a second order differential
equation:

Ly =-1, (18)

Solving this differential equation yields a periodic solution for Lj:

Lyi(t) = Acos(t + «) (19)
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Figure 5: The oscillations of Li (blue) and Ls (red) for L1(0) = —1/3 and L3(0) =
~1/2.

Here A and « depend on the initial situation of the system. Thus we find
an inertial oscillation in Ly and L3, since L3 = —L; = Asin(t 4+ «). Here Ly is
a quarter of a phase behind Li, as can be seen in Figure 5. This holds for all
possible initial conditions. Note that before rescaling, taking f = 1, the Coriolis
parameter was in front of the L; and Lz terms. As solving the differential
equation (18) yields an oscillation of Ly, the Coriolis parameter (squared) would
in that case determine the period.

So when the basin is in a well-mixed state we find a constant rotation parallel
to the equatorial plane (Ls). Also we find oscillating angular momenta perpen-
dicular to this plane (L, Ls) with equal (initial) period and a phase difference
of a quarter. The Coriolis force on the equator is the reason this oscillation of
Ly and L3 takes place. It provides the period of these oscillations and so deter-
mines the complete behaviour of the currents in the basin in this situation. Due
to the non-conventional Coriolis force the oscillation of the angular momentum
is in the Ly and L3 part (perpendicular to the equatorial plane) instead of the
Ly and Lg part (perpendicular to the z = 0 plane), as is the case in the f-plane
approximation [4].

3.2 Oscillations in the equatorial plane

Another interesting situation is when there is no motion perpendicular to the
equatorial plane (L; = L3 = 0), nor density difference in this direction (Y = 0).
Since the time derivatives of Y, Ly and Ls are in that case also zero, Y, L
and L3 will remain zero. The result is that the dynamics is restricted to the
equatorial plane. In this case we find a set of three differential equations for X,
Z and Log:

Ly=X (20)
X —ZLy=0 (21)
Z+XLy=0 (22)
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Figure 6: The trajectory of the centre-of-mass for R = 0.5, ¢(0) = %71' and L2(0) =
0.7. The red dot depicts the initial location of the centre-of-mass.

Here X2 + Z? = R? is invariant (as in (13)) and corresponds to the conser-
vation of stratification in the equatorial plane. Using this we change to polar
coordinates R (constant) and ¢ for X and Z:

X = Rsin¢ Z = Rcos ¢ (23)

Rewriting (21) (or (22)) using this new coordinates we find a differential
equation for ¢:

¢ =Ly (24)
Combining the above with (20) results in a second order differential equation

in ¢:
¢ = Rsin¢ (25)

This differential equation is that of a simple pendulum. For small angles ¢
around ¢ = m we have in approximation sin ¢ ~ —¢. The corresponding solution
is ¢(t) = B cos(vV/Rt+6), where B and § depend on the initial conditions. So for
angles ¢ close to 7, corresponding to X =~ 0 and Z ~ — R, there is an oscillation
of the centre-of-mass in the equatorial plane with a period proportional to R~*/2.

To solve the equation for larger angles, we can simplify the equation by
multiplying both sides with ¢ and reducing. The result is a first order differen-
tial equation, which can be solved numerically and analytically (using elliptic
integrals [10]):

é = +/c—2Rcos ¢ (26)
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Figure 7: The oscillation of Ly for R = 0.5, $(0) = Zm and L2(0) = 0.7.

Here c is a constant to be determined by the initial conditions. In Figure 6
a numerically computed trajectory of the centre-of-mass is shown and in Figure
7 the corresponding graph for Ly is shown. Depending on the initial conditions
there are three different options for the movement of the centre-of mass.

The first option occurs when Lo (0) = 0. Then the centre-of-mass will oscil-
late in the equatorial plane around (0, —R) and every time return to the starting
point, but never exceed it. This is due to the conservation of energy. The sec-
ond option we find when 0 < Ly(0)? < 2R(1 — cos¢(0)). In that case there
is enough energy for the centre-of-mass to exceed its initial position, but not
enough to make a full circle as there is still more energy at (0, R). In Figure 6
and 7 an example of such an oscillation is shown. The last option occurs when
L2(0)2 > 2R(1 — cos $(0)). Now the centre-of-mass will start librating, since
there is enough energy to get through the top point.

When in the initial situation the centre-of-mass is located at the equator
and there are only currents parallel to the equatorial plane, it will remain this
way. We find oscillations of the centre-of-mass in the equatorial plane. The time
scale involved is proportional to R~'/2, meaning that when the distance of the
centre-of-mass to the origin increases the time scale decreases. The oscillation
will be faster. This inertial oscillation might be an important component of
the El Nino-La Nina oscillation. Strengthening or weakening of Lo affects the
height the centre-of-mass reaches. As the location of the centre-of-mass indicates
density differences, and thus possibly temperature differences, in the equatorial
plane, changes in this oscillation can lead to an El Nino or La Nina. The question
now is which (periodic) forcings affect the angular momentum Lo.

4 Ignoring diffusion and viscosity
To see what happens when the inertial system is forced we include forcings due

to buoyancy fluxes. We still ignore diffusion, viscosity and wind. This way we
find another set of equations. In these equations we have scaled out Pr and f

11



in the same way as in Section 3. Furthermore we have rescaled F by setting
F' = PrRaf?F and dropping the prime afterwards. This way we also get rid of
Ra and the equations become:

Li+Ls=-Y (27)
Ly=X (28)
Ly—Li=0 (29)
X+YLs—ZLy=F (30)
Y 4+ ZL, — XLz = F, (31)
Z+XLy—YL =F; (32)

Except for the F terms, these equations are the same as in Section 3. In the
following we will look at the situation of Section 3.2, but now also take forcing
into account. This way we will see what the consequences of forcings are when
no damping due to diffusion and viscosity takes place.

4.1 Forced oscillations in the equatorial plane

We again look at the situation with only motion parallel to the equatorial plane
(Y = Ly = Ly = 0). This time we look at the consequences of different forcing
mechanisms. Now if we want Y to remain zero, it is necessary for F5 to be zero
too. This means there are no buoyancy fluxes in the meridional direction which
would force the centre-of-mass out of the equatorial plane. It still remains
possible to have buoyancy fluxes in the zonal and vertical directions, which
are parallel to the equator. These buoyancy fluxes can for example be due
to differential heat input at the east (F} < 0) or west (F7 > 0) side or at
the surface (F3 < 0) or bottom (F3 > 0). The set of equations under these
conditions becomes:

Ly=X (33)
X -ZLy=F (34)
Z+ XLy =F; (35)

These equations describe the motion of the centre-of-mass when it is forced
by for example differential heating. Due to the forcings it is possible to drive the
centre-of-mass to infinity, as there is no damping. Therefore this approximation
may not be realistic, but it does show what happens to the centre-of-mass when
it is forced in the vertical and zonal direction.

Note that when we add friction to the above equations (meaning (33) be-
comes Ly = X — Ls) and ignore buoyancy fluxes in the zonal direction (F; = 0)
the Diffusionless Lorenz Equations are found [11], [12]. For this equations we
know periodic and chaotic solutions exist. In this equations however our non-
conventional Coriolis parameter does not play a role for the equilibria. The only
difference is the plane in which the dynamics takes place as before.

12



4.1.1 Vertical differential buoyancy fluxes

First we look at the situation in which there are only buoyancy fluxes in the
vertical direction (Fy = 0, F5 # 0). These buoyancy fluxes are due to for
example precipitation (F3 < 0) or evaporation (F3 > 0). Here we find an
invariant which we can compare with the invariant for conservation of energy:

1
Z + §L§ —Ft=c (36)

In this equation ¢ depicts the time. By inserting (34) into the derivative of
(33) and using the above invariant we find a second order differential equation
for L. Here we take ¢ to be zero as it is possible to move the zero of the time.
Also we can rescale the equations by taking ¢’ = F31/3t and L), = F3_1/3L2 and
dropping the primes afterwards. This way we find a second order differential
equation for Ls:

. 1
Ly = —§L§ +tLy (37)

By using L) = —%Lg, this equation changes to Ly = 213 + tLo, which is
the second Painlevé equation with a solution called the second Painlevé tran-
scendent. A Painlevé transcendent is the solution to a non-linear second-order
differential equation in the complex plane [10]. For this equation the points
where the solution is not continuous all have to be poles, which means that as
we approach such a point the solution goes to infinity. The location of these
points also depends on the initial conditions.

The consequence is that Ly keeps growing, meaning the rotation will go ever
faster, which is not a physically acceptable solution. This is due to the absence
of diffusion and viscosity, which would prevent the forcing from driving Lo to
infinity. This feature can already be deduced from (37). As the time ¢ keeps
increasing, Z and/or Lo have to keep increasing as well (in absolute value).

In the situation of differential heat input at the surface by solar radiation
(F3 < 0) this approximation does not yield acceptable solutions. The constant
input of energy makes the angular momentum go to infinity, corresponding to
ever faster rotation in the basin. As this is one of the important forcings in
the Pacific Ocean, we now know damping is necessary in order to prevent the
rotation in the system becomes infinitely large.

4.1.2 Zonal differential buoyancy fluxes

Secondly we look at the situation where only differential buoyancy fluxes in the
zonal direction occur (F5 = 0, F}y # 0). This corresponds for example with river
input at the east or west side of the basin (Fy < 0, F; > 0 respectively). In this
case energy conservation still holds, so Z+ %L% = c¢. After rescaling by ' = \/ct,

Ly = %\/ELz and Fy = 25\1/5, we find a second order differential equation for Ls:
Loy=—2L3+ Lo+ F} (38)

Note that the number of degrees of freedom is reduced to two by using the
invariant. By multiplying both sides with Lo, we can simplify this equation to
a first order differential equation:

Ly=\/-L3+ L3+ 2Ly +¢ (39)

13
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Figure 8: The trajectory of the centre-of-mass for F; = —0.5, L2(0) = 0.6 and

L2(0) = 0.7. The red dot depicts the initial location of the centre-of-mass and the
arrow shows the direction.

Here ¢ is a constant determined by the initial conditions. Now we also rescale
X and Z by setting X’ = iX and Z' = % and dropping the primes afterwards.
This way we find in the rescaled coordinates X = Lo and Z = 1 —2L2. In Figure
8 a trajectory of the centre-of-mass according to these equations is shown. In
Figure 9 the corresponding graph for Lo is depicted.

As in Section 3.2 we can distinguish three different situations for the move-
ment of the centre-of-mass. The first is where Ly(0) = 0. In this case the
centre-of-mass will never exceed its initial position due to energy conservation.
The form of the trajectory will change for different forcing strengths. When Fy
is large in absolute value the trajectory is almost flat at the top, but there still
is a small dip where Ly changes sign causing the centre-of-mass not to exceed
its initial location.

The second option is when the centre-of-mass does exceed its initial position,
but does not make a circle-like movement. This case is shown in Figures 8 and
9. We can compare this to the oscillation found in Section 3.2, only this time
the clockwise and counterclockwise paths differ. The last case is when it does
make a circle-like movement, so there is no dip any more in the path at x = 0.
This is comparable to the case in Section 3.2 where the centre-of-mass makes a
full circle.
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The presence of differential heating in the zonal direction does change the
behaviour of the system at the equator. When we compare the situation where
this forcing is present with the situation without (Section 3.2) the largest differ-
ence is the path of the centre-of-mass. The distance to the geometrical centre
is no longer conserved and thus the clockwise and counterclockwise paths do
not have to be the same any more. Only forcing in the zonal direction does not
drive Ly to infinity in contrast to forcing in the vertical direction (F3). This is
possibly due to gravity, which works in the same direction as F3.

In the Pacific Ocean there is a temperature difference between the east and
west side of the basin. Considering this as a forcing mechanism, it changes the
inertial oscillation. When this forcing increases in strength, the upper minimum
gets closer to the maxima (Figure 8). We thus see zonal buoyancy fluxes affect
the angular momentum in the equatorial plane (Ls). It changes the shape of the
oscillation in Ls, but does not affect its period. During El Nifio the temperature
difference in the zonal direction increases. The magnitude of the deviation from
the inertial movement due to F; could provide information about the strength
of El Nino.

_27\ R S R R
0 5 10 15 20

Time

Figure 9: The oscillation of Ly for F; = —0.5, L2(0) = 0.6 and LQ(O) =0.7.

5 Dominant mixing of momentum

In the previous sections we did not take friction and diffusion into account.
There were no sinks of energy. In this section we add both friction and diffusion
and consider the case where Pr — oo. This means the mixing of momentum
in the basin happens fast compared to the mixing of temperature and salt.
Viscosity is thus more important than diffusion. In this case (4) simplifies to:

fLy=-Y - Li+T, (40)
0=X—Lo+T» (41)
—fLi=—rLs+ T (42)
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Here we have rescaled T by setting T/ = 7'T and dropping the prime. From
these equations we can find the angular momenta Ly, Lo and L3 as functions
of X, Y and Z. For Ly we only need to rewrite (41) to find:

Lo=X+T1T (43)

To find L; and Ls it is necessary to combine (40) and (42). This way we
find:

*7‘Y+’I“T1 - fT3

L, = T (44)
Y+ [T+ T3
Ly= =B (45)

Substituting these in (5) yields three ordinary differential equations for the
centre-of-mass X:

X+Y(=bY +d) —Z(X+Tp)=-X+F, (46)
Y+ Z(—aY +¢) = X(=bY +d) = -Y + F, (47)
Z+X(X+To)-Y(—aY +¢)=—pZ+Fy (48)
Here a = ﬁ, b= #, c= ”};_s_frn and d = L ?éf;rg. The equilibrium

points Xg of these equations, for which Xo = 0, are the intersection points of
three surfaces defined by these equations. The first surface is an ellipsoid found
by adding Xy times (46), Yy times (47) and Zj times (48):

1

1 1
(Xo— sF1)* + (Yo — = F)? + pu(Zo — o

1 1
2 L. 2, Lo
5 5 F3) —4(F1+F2+NF3)(49)

The location of the centre of this ellipsoid is determined by the buoyancy
fluxes F, as is the length of its axes. Since the axes in the zonal and meridional
direction are of equal length, this is an ellipsoid of revolution. This means it
can be formed by revolving an ellipse in a plane perpendicular to the x-y-plane
around its central z-axis. The parameter j, being the diffusion-ratio, determines
the ratio between the two horizontal axes and the vertical one. This difference
is thus caused by the difference in diffusion between the horizontal and vertical
direction.

This surface can be compared to the second invariant (13) in Section 3.
This invariant corresponds to the conservation of stratification. The surface
thus gives some information about the stratification of the basin in equilibrium.
Depending on the strength and direction of the buoyancy fluxes, the system
wants to reach a situation of stratification around a certain point.

The second surface is a paraboloid which we find by rearranging (48):

T c T2 2
(X0+?2)2+a(Y0—%)2:F3+I2+E—p20 (50)

Since a > 0 this is an elliptic paraboloid. Also the paraboloid has a maximum
since we have a minus sign in front of Z;. The z- and y-coordinate of this
maximum are determined only by the differential momentum fluxes (77, T» and
T3), whereas the z-coordinate is also dependent on vertical buoyancy fluxes (F3).
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Figure 10: The surfaces where X = 0 with the ellipsoid in blue, the paraboloid in
green and the surface of (51) in red for p =3, f =5, r =2, F = =9, F, = 9,
Fs = —10, Ty = =5, T> = 4 and T3 = 9. One of the equilibrium points is shown in
yellow.

As a consequence there are situations where the ellipsoid is completely above
the paraboloid in which there are no equilibrium points. Similarly there are
situations where the ellipsoid lies completely under the paraboloid.

In a way we can compare this surface to the first invariant (12) in Section 3
which corresponds to the conservation of energy. As X and Y can be written
as functions of the angular momentum, the left side of (50), together with
— TTZ’Z — %, represents the kinetic energy in equilibrium. On the right side F5—uZ
corresponds to gravitational energy.

The last surface is most difficult to visualise. It is found by rearranging (47).
This way we find an equation for Yj as a function of Xy and Zg':

Yb:CZo—dXo—FQ (51)
CLZO —bX 0 — 1

When the denominator is zero, also the numerator has to be zero, so there
will be only one line where this is the case (all values for Yj are possible). When
the denominator is not zero, Yy will go asymptotically to plus or minus infinity
(depending on ¢Zy —d Xy — F» being positive or negative) as Xy and Zy approach
the line aZy — bXg — 1 = 0.

All three surfaces are shown in Figure 10 for certain values of the parameters.
The points where all three surfaces intersect are the equilibrium points (not

IThere exists a surface which corresponds to the conservation of potential vorticity (14),
but it is even harder to visualise.
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necessarily stable). The locations of these points depend on the values of the
parameters. Since it is very hard to compute the stable points analytically
taking all parameters into account, it is easier to compute them numerically.
Then, however, values of all parameters have to be given. Because there is a
large uncertainty in most (if not all) parameters, we will in the following sections
look at cases where we can find the equilibrium points exactly. This is done by
keeping at most one forcing parameter and setting the others to zero.

5.1 Without forcing

First we look at the situation without any forcing mechanisms. When this is
the case the equations are:

X -bY?—ZX =-X (52)
Y —aZY +bXY = -Y (53)
Z+X?+aY?=—pz (54)

Now we want to find the equilibrium points for which X = 0. When Y =0
it will remain this way, since then Y = 0. For a fixed point with Y5 = 0 we find
the values for X, and Zy by solving (52) and (54). The solutions are Zy = 0 and
Xo=0o0r Zg =1and Xg = &i,/u. The last options however are imaginary as u
is always positive and so do not represent physical solutions. So the geometrical
centre is an equilibrium point.

Other fixed points are found when aZ — bX = 1, since then too ¥ = 0. In
this case however, we can not set Y; to zero, as (52) and (54) have to be satisfied
as well. For Xy and Z; we now find:

—ub a—1

Xo=—""— A —
07 ala—1) + pb? 07 ala—1) + pb? (55)

For the corresponding Yp-values it has to hold that:

o —p((a—1)%+ pb*)
Y0 = Tala=1) + 22 (56)

This means Y will always be negative as p is always positive. Therefore
this also yields imaginary values and so gives non-physical solutions. Thus in
the case there is no forcing we find only the origin as an equilibrium point. To
see if it is stable we compute the Jacobian matrix at this fixed point:

X X  9X

A PR
J = % 5v oz =10 -1 0 (57)
8z 0Z 0Z 0 0 —u

0X oY 0Z/ (0,0,0)

The eigenvalues of this matrix are —1 (two times) and —pu. These are all
negative, hence the origin is a stable equilibrium point.

Now we want to know whether the centre-of-mass will always end up at the
geometrical centre, no matter where it is at ¢ = 0. To investigate this we look
at a sphere of radius r centred at the origin. The direction of the outer-pointing
normal n is (2, Yn, 2,) for every point (z,,yn, 2,) on the sphere. Calculating
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the dot product of n with the vector field determined by X at the same point
yields —(z2 + y2 + pz2), which is always negative (for @, Y, 2, # 0). The dot
product being negative means that the vector field on the sphere always points
inwards, no matter what the radius is. Since this holds for every possible r,
the centre-of-mass will always move towards the centre of the basin, no matter
where is starts.

Physically this is quite obvious. Due to the presence of viscosity all move-
ment in the system will be damped. And due to diffusion the mass will become
equally distributed through the basin. As there are no forcings to oppose these
effects, the centre-of-mass will end up at the geometrical centre. Also the rota-
tion in the basin will go to zero, as can also be seen in (43), (44) and (45).

In reality most basins are off course forced by all sort of mechanisms. Now
we know the behaviour of the basin when no forcing takes place we will look
at the influence of some forcing mechanisms separately. The final purpose is to
see if including few forcings might result in periodic behaviour corresponding to
the El Nino-La Nina oscillation.

5.2 Equatorial symmetric forcings

By setting some of the differential momentum and buoyancy fluxes to zero the
differential equations simplify making it easier to find the equilibrium points.
This happens when only forcings which are symmetric in the equator are kept
(Th = Ts = F» = 0). This means there are no differential buoyancy fluxes in
the meridional direction (F3). Also we ignore wind torque at the surface (73)
and wind in the meridional direction (77). We still have the possibility for wind
in the zonal direction (7%, the trades). Moreover differential buoyancy fluxes
in the vertical (F3) and zonal direction (F}) remain possible. These forcing
parameters are quite realistic for an ocean basin on the equator (see Section 1).
Under these conditions (46), (47) and (48) simplify to:

X - Z(X+To)=-X+F (58)
Y —aYZ +bXY =Y (59)
Z+X(X+T)+aY?=—pZ+Fy (60)

Since we can write (59) as Y =Y (aZ — bX — 1) this yields two possibilities
for the fixed points (X = 0):

1. Yo=0
2. aZo—onzl

Based on these two options we can divide the equilibrium dynamics into two
parts. One part which is symmetric in the equatorial plane (Y = 0) and another
part which is not (aZy — bXy = 1). The symmetric part is expected as all forc-
ings we take into account act parallel to the equatorial plane. The equilibrium
dynamics which are not symmetric are more surprising. As the forcings above
the equator are in approximation mirror symmetric in the equatorial plane, this
is a quite realistic situation.

In the equatorial symmetric case (58) and (60) (for X = Z = 0) lead to a
cubic equation in Xy (or Zp), which can be solved analytically. This results in
three fixed points for which we have to check if they are real.
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In the asymmetric case Xy and Zjy are linearly related. The solutions for X
and Zj in this case are:

~ —pb+a(Ty + aFy + bF3) a—140b(Ty + aFy + bF3)

Xo = Zy = 1
0 ala —1) + pb? 0 ala —1) + pb? (61)

Knowing the values of X and Zj, there is a linear equation in Y left to solve.
This gives two possible values £Y{, which are real under certain conditions. In
that case we find two off-equatorial fixed points. In the following we will look at
the influence of each forcing parameter separately, since otherwise the equations
to solve remain very complicated.

5.2.1 Zonal winds

First we look at the case where only differential momentum fluxes in the zonal
direction are present (Tp #, Fy = F3 = 0). This corresponds with wind to
the west (75 < 0) or east (T5 > 0). In this section we will first compute all
equilibrium points. Next we will investigate their stability by computing the
eigenvalues of the Jacobian matrix. Finally we will look if the centre-of-mass
will always move towards one of these fixed points (or the one fixed point) by
searching for a surface for which the vector field of X points inwards for every
possible size of this surface.

We first compute the equilibrium points in the equatorial plane (Yy = 0).

Solving the corresponding cubic equation yields (0,0,0), (—iy/i—15,0,1 — %)
and (i/ — T5,0,1 + %) as fixed points. The last two are not real as p > 0

and therefore only the origin is a physically acceptable fixed point.
For the fixed points outside the equatorial plane it is necessary for Y to be
positive. With only 75 we have:
—(a® + pb*)TZ + 2pbTo — p((a — 1) + ub?)

Yg = (ala — 1) 1 pb2)? (62

This is a parabola in T with a maximum (as the term in front of T2 is
negative). If this maximum is smaller then zero, there are no points where Y2
is positive and as a consequence there are no real solutions. To see if this is the
case we solve Y = 0 for T5. This results in:

_ pb+iy/plaa — 1) + pb?|

T
2 a2 + b2

(63)

Thus we find no real solutions, as u > 0, except when a(a — 1) = —pb?. In
that case however the value of Y is undetermined, since the denominator is
zero. We conclude there are no equilibrium points outside the equatorial plane.
So only the geometrical centre is a fixed point when we have zonal differential
buoyancy fluxes.

We have found only the origin as an equilibrium point. Now we check if it is
stable, as is the case when T» = 0 (Section 5.1). To investigate this, we compute
the Jacobian matrix:

-1 0 1Ty
J=[ 0 -1 o0 (64)
—T2 0 -
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To find the eigenvalues we diagonalise this matrix and this gives —1, —1 and
—p —T2. Again all of these are always negative so we conclude that the origin
is again a stable point. Showing the centre-of-mass will always move towards
the geometrical goes in exactly the same way as in Section 5.1. The dot product
again yields —(x2 + y2 + p22), so indeed the centre-of-mass will always move
towards the geometrical centre.

The presence of wind in the zonal direction does change the behaviour of
the system. It does not change the fact the centre-of-mass will end up at the
geometrical centre, but it does change the path it follows towards the geometrical
centre. What it also changes is the angular momentum. According to (43), (44)
and (45) we find L = (0,7%,0), meaning there is a rotation of magnitude 7%
around the y-axis.

Physically this means all rotation in the basin is damped until only the
rotation forced by the zonal winds (Ls) remains. The density distribution in
that case will be homogeneous as the rotation does not change the location of
the centre-of-mass. So the system is well-mixed.

The trade winds are an important part of the forcings on the equator and in
our model correspond to negative T5. We have shown that presence of only 7%
yields one stable point at the geometrical where the centre-of-mass will always
end up. For periodic behaviour causing EI Nino more forcings are needed.

5.2.2 Zonal differential buoyancy fluxes

The second situation we consider is when only zonal buoyancy fluxes are present
(Fy # 0, Ty = F3 = 0). This corresponds for example with warm water input
at the east (or west) side of the basin (F; < 0 or Fy > 0 respectively). Our
approach will be the same as in Section 5.2.1. We will first consider the situation
in the equatorial plane (Yy = 0) and secondly the situation outside this plane
(aZy — bXg — 1 =0). In the first case the cubic equation again yields one real
solution, this time however not the origin, but:

L — ({(-9F + /3(2TF} + 4p)))*/?

Xo = (65)

(£ (—9F + \/3(2TFF + 4p)))'/3
X2 1(5 - (f5(-9F + V/BQRTFE +4p)))*/?)?

A (66)
H B (E(=9F 4+ /3(2TFE + 4p)))%/3
Together with Yy = 0 this gives a fixed point when only Fj is present. Now
we wonder if this point is stable in some cases. Putting Yy = 0 (but not yet
(65) and (66)) into the Jacobian matrix gives:

Zy—1 0 Xo
J=| 0 aZy-bXo—-1 0 (67)

By d1ag0nahz1ng thls matrix, we find the eigenvalues to be Zy — 1, aZy —
bXo—1 and —p + Z Since Zy = 775, it follows that always Zg — 1 < 0,
so in at least one dlrectlon there is stability. For the second value it is more
difficult. Again using Zy = —XTS, we find stability when —ﬁlﬁ -bXp—1<0.
Since this is a parabola with a maximum, we can look at the location of the top
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2
to see when this is the case. The maximum value is % — 1, meaning there is

always stability when pb? < 4a, since then the maximum is negative. However,
as Xy is a function of Fy, there are also certain values of F; for which stability
is found when pb? > 4a. For stability we need X, to be outside:

—pb £ /pu(pb* — 4a)
X =
0 2a (68)
This corresponds with F} being outside:
—ub(ub? —3)) % (ub? -1 b2 — 4
P M (ub* 4+ ala —3)) = (ub* + ala — 1))/ p(p a) (69)

2a3
For such values of F; we find stability in the meridional direction. The last

2X7
Zool < 0.

eigenvalue again is always negative. Because Zy — 1 < 0, we have
This leads again to stability in the vertical direction.

So when ub? < 4a all eigenvalues are negative for all possible zonal differ-
ential buoyancy fluxes and thus the equilibrium point in the equatorial plane is
stable. When this is not the case, there is instability in the meridional direction
for certain values of Fy (outside the interval of (69)), but nevertheless stability
in the other directions.

Next we look at the equilibrium points outside the equatorial plane (aZy —
bXo — 1 =0). Here we need Y to be positive as in the previous sections. Now
we have:

_@PFF 4 pba(a = 3) 4+ pb®) Fy + p((a — 1)* + pb?)
(a(a — 1) + ub?)?

Y§ = (70)

To see if this is positive, we solve YZ = 0 for I} as in Section 5.2.1 has been
done for T. In this case we find again (69). This is real only when ub® > 4a.
When this holds, Y# is positive when F is in between both values in (69). So
there are equilibrium points outside the equatorial plane.

We now focus on the stability of these fixed points. In the same way as in
Section 5.2.1 we compute the eigenvalues of the Jacobian matrix at both points.
In this case the Jacobian matrix is:

Zo—1 20, Xo
J=| —bv, 0 aY (71)
72X0 *QCLY() —H

2v2
After diagonalizing we find Zy — 1, 2;(:‘1 and —“““;2*’“’2 to be the eigen-

2 2
values. Again Zj — 1 is always negative, since here Z, = —@ (from (60)).

2y 2 2
Therefore also QZbO f(i < 0. Lastly —w is negative, as ub? > 4a > a(1—a).

Thus when the conditions for having these fixed points are met, they are also
stable.

Now we wonder whether the centre-of-mass will always move towards (one
of) the equilibrium point(s), no matter where it starts. We examine the different
cases separately. First we look at the stable point which is found when pb? < 4a.
In this case the stable location of the centre-of-mass will be in the equatorial
plane for all possible strengths and directions of the zonal buoyancy fluxes (F}).

22



To see if the centre-of-mass will always go there we first make a translation to
ensure that the equilibrium point (Xo, 0, Zp) is located at the origin:

After this translation we can use the same strategy as in Section 5.1. We
compute the dot product of X with the outer normal of a sphere and find:

—22(1 = Zo) + y2(aZy — bXo — 1) — p22 — Xoxpn 2, (73)

Here we have used that Xo(Zy — 1) + Fy, = 0 and —X2 — uZy = 0. Since
aZy—bXo—1 < 0 for this equilibrium point it follows that also y2(aZy —bX¢ —
1) < 0, meaning the centre-of-mass will always move towards the equatorial
plane. We now want the x,-z,-part of (73) to be also negative for all x,, and
Zn, as we then know the centre-of-mass always moves towards this fixed point.
To investigate if this is the case we remove y2(aZy — bXo — 1) from (73) and
write it as:

X
P P BELC PR/ (74)

4 N 2

This is always negative. So in the case ub? < 4a we find for all points on a
sphere that, no matter the radius, the centre-of-mass will always move inwards.
Wherever the centre-of-mass starts, it will always move towards the equilibrium
point in the equatorial plane. Also when pb? > 4a and F) outside the interval
of (69) the centre-of-mass will move inward. In both situations the angular
momentum in equilibrium will be (0, X, 0), so there will be rotation around
the y-axis of order Xj.

Secondly we have to look at what happens when pb? > 4a and F; inside
the interval of (69). Graphs (Figure 11) suggest that when the centre-of-mass
starts somewhere outside the equatorial plane it will always move towards the
stable point at its side of the this plane. It is however very hard to proof this.
A sphere, as in Section 5.1, does not work, nor does a cylinder around the line
between the two stable points. Which surface does work has to be investigated.

We have found that in presence of only zonal differential buoyancy fluxes
there is always a stable point in the equatorial plane when ub? < 4a. This
condition corresponds with the diffusion-ratio being smaller than the friction-
ratio. For ub? > 4a there are still fixed points in this plane, which are stable
under the condition F} is outside the interval of (69). The angular momentum
will in this case be (0, Xg,0), so there is only rotation around the y-axis. This
is expected as for example heating at the east side causes a density difference
between east and west and thus initiates rotation in this direction.

When pb? > 4a and Fy is inside the interval of (69) new stable points are
found outside the equatorial plane. These are more surprising than the ones in
the equatorial plane, as the symmetry of the equator is broken. This happens
when the diffusion-ratio is larger than the friction-ratio. Another condition is
that F} is negative which corresponds with differential heat input at the east
side of the basin.

During an El Nino the temperature difference between east and west lowers.
If this is due to extra heat input at the east side, this causes the centre-of-mass
to move towards the origin (smaller X). If this forcing is strong enough it
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Figure 11: One of the off-equatorial stable points depicted in red for = 0.1, r = 2,
f=3and Fy =7. Starting from (8, —5,8) (depicted) and many other possible initial
conditions the centre-of-mass moves towards the stable point.

might cause the centre-of-mass to move away from the equatorial plane. When
this happens density differences between the north and south side of the basin
occur, meaning one of these sides is warmer. This could be one of the features
of El Nino. With only zonal buoyancy fluxes no periodic or chaotic solutions
are found in this approximation.

5.2.3 Vertical differential buoyancy fluxes

The last situation we will consider is the case with only vertical differential buoy-
ancy fluxes (F5 # 0, T, = F; = 0) using the same approach as in the previous
sections. This situation with only F3 corresponds for example with differential
heat input from the air above the surface (F5 < 0) or with evaporation (F5 > 0).
For the situation in the equatorial plane (Yo = 0) we now find the equilibrium
points to be (0,0, %) and (+£+/F3 — 11,0,1). These last two points are only real
when F3 > p. To see if they are stable we again use the Jacobian matrix (67).

For (0,0, %) the eigenvalues are % -1, % —1 and —p. We need Fs < p
for the first eigenvalue to be negative. Since a < 1 this way F3 < pu < £, so the
second eigenvalue is also negative. Beside this we know —p is negative, so the
only condition needed for stability is F3 < p. Physically this means the forcing
does not force the centre-of-mass up so strong diffusion can not compensate.
When this point is stable, there will be no rotation in the basin as L = 0
according to (43), (44) and (45).

For (£vF3 — 11,0,1) we find —%(Fg, — )y, a —1Fby/F3—p and —pu as

eigenvalues. The first will always be negative, since it is necessary that Fs > p
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Figure 12: Both stable points for F3 > p depicted in red for p = 0.8, r =2, f =5
and F3 = 4. Starting from (—5,5,—3) (depicted) and many other possible initial
conditions the centre-of-mass moves towards one of the stable points.

for these fixed points to exist. Also the last is negative as before. For stability
l—a

we thus need F+v/F3 — u < -3%. As the right side is always positive (a < 1),
the plus root (corresponding with a minus sign in the eigenvalue) will always be

stable. For the minus root we need F3 < (“_13)# for stability.

When the centre-of-mass is forced upwards the centre-of-mass is more likely
to end up at the east side of the basin, corresponding with warmer water in
the west. The angular momentum in these cases will be L = (0, ++/F3 — p,0),
this means that the direction of rotation in the basin depends on the location
of the centre-of-mass. Here a clockwise rotation is more likely to occur, as
(vVF3 — 1,0, 1) is stable in more cases.

For the equilibrium points outside the equatorial plane (aZy — bXy = 1) we
need Y to be positive as before. Now we have:

(1 — aF3)(b*(F3 — p) — (a — 1)?)
(a(a —1))2 + ub?)?

¥y = (75)

2 2
This is positive when F3 is in between £ and (a*l)bif“b, which are both
always positive. When this fixed point exists, we use for its stability again the
Jacobian matrix (71). The corresponding eigenvalues, as given in Section 5.2.2,
202 Y§

2
are Zy — 1, 71 and —a(a_b#.
2
To see if the eigenvalues are negative we have to look at Xg as Zp—1 = — bXLg.
With only vertical differential buoyancy fluxes X, = %. Because ub? >

a(l — a) is necessary for the last eigenvalue to be negative, we need F3 > &
2 2
for X to be positive. So it is necessary that & < MTJFM, as otherwise the

points are not real. This corresponds to pub? < a(l — a). This never occurs. So
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Figure 13: The mean ocean evaporation on earth during 1958-2011. On the equator
evaporation is lower than at higher latitudes. [13]

these equilibrium points are never stable.

Now we wonder whether the centre-of-mass will always move towards (one
of) the equilibrium point(s). When F3 < p this is case. To show this, we
first translate in such a way that the fixed point is located at the origin. This
translation takes Z to Z + % In the same way as in the previous sections we

look at the dot product of X with the outer normal of a sphere centred at the
origin. This yields:

aF
0

Since F3 < pand a < 1, both 1 — £2 and 1 — ¢% are positive and thus (76)
is always negative. So for F3 < p the centre-of-mass will always move towards
(0,0, £).

Wﬁen F3 > p plots indicate that the centre-of-mass always will move towards
one of the fixed points (Figure 12), this however is hard to proof. Depending
on the initial conditions it will go to (v/F3 — p,0,1) or (—/F5 — 11,0,1). In
the equatorial plane for positive X the centre-of-mass will move towards the
plus root, whilst for negative X it moves towards the negative root when this is
stable. When the initial location is further away from the equatorial plane, the
plus root is reached more often than the minus root.

In the case where only vertical differential buoyancy fluxes are present, there
is at least one equilibrium point in the equatorial plane; (0,0, %) This point is
stable only when F3 < p and in that case the centre-of-mass will always move
towards this fixed point. This happens when for example solar radiation heats
the ocean surface (F3 < 0), as is often the case on the equator. In this case
there also will be no rotation in the basin, meaning the density increases only
with increasing depth.

Two new equilibrium points are found when the vertical forcing becomes
strong enough to be no longer compensated by diffusion (F3 < u). In that case

) =z (76)

n

F;
~20- 2 -0

26



the previous fixed point is no longer stable. Of these two points (v/F3 — p,0,1) is
always stable, whereas it is necessary that F3 < (0712# for (—vF5 — p,0,1)
to be stable. This situation occurs when for example evaporation is important.
In this case also rotation around the y-axis of order \/F3 — u will occur. In most
cases this will be a clockwise rotation in the equatorial plane.

On the equator evaporation is lower than in the surrounding areas as can
be seen in Figure 13. Thus we expect, taking only differential buoyancy fluxes
into account, there will be one stable equilibrium point somewhere below the
geometrical centre. This corresponds to the case where differential heat input
by the sun dominates. During an El Nino we do not expect this to change. So
only vertical differential buoyancy fluxes do not add much to the dynamics. In
combination with other forcing mechanisms this may change. In Section 6 we
will discuss the effects of combined forcings, specifically focussing on El Nino.

6 El Nino

In the previous sections we have considered various approximations of (4) and
(5). In this section we will use both the equations for Pr — oo, as the initial
equations (4) and (5) to investigate what this low order model can say about
El Nino. First we will look at the important forcings in the regular situation
and compare these with the situation where an El Nino takes place. When this
is clear we will see what our model tells us about this. Also we will look at the
consequences of seasonal periodicity using our low order model.

6.1 Forcings during El Nino

In the normal situation, the two main forcings of the circulation in the Pacific
Ocean are the trade winds and the heating of water by the sun. The sun heats
the water at the surface (F3 < 0) and thus causes a temperature difference
between surface and bottom (Z < 0). The trade winds blow westward (T < 0)
and this way force the warm surface water towards the west side of the basin
(X > 0). Here the water will move downwards due to gravity, while at the east
side upwelling will take place (Ls < 0). These processes are shown in Figure 14.

walker Circufatjon

South
America

Cool lower water

Figure 14: The dynamics governing the Pacific Ocean in the normal situation. [14]

27



Persistent

westerly wind ¢ i~ :.' T
— i
GNGW (__[rilde Winds
Hines 3 ——2 ~—-Warniing -~ South
Warm pool America

sloshes east

ﬂﬂﬂﬂﬂ The[modi ne dee!

Cool lower water

Figure 15: The dynamics governing the Pacific Ocean during an El Nifio. [14]

Then, what happens when an El Nifo takes place? In that case the trade
winds are weaker, which weakens the temperature difference between east and
west (X getting smaller). This is shown in Figure 15. The consequence of this
weaker temperature difference is that the warm surface water descends more
towards the centre of the ocean (reduced Ly). The circulation of the ocean
changes. The sea surface temperature over the whole basin is also higher than
usual (Z being more negative).

The differential heat input by the sun remains the same during an El Nifo.
In Section 6.2 we will look at a normal and El Nino situation where the only
forcings are the trades (7%) and differential heat input by the sun(F3). This
means the situation is symmetric in the equatorial plane. We will numerically
solve the system using both the approximation Pr — oo (Section 5), as the
initial equations (4) and (5) (Section 2).

6.2 Dynamics of El Nino

As it is hard to estimate realistic values for the parameters, like p and T3,
it is important to look at the differences between certain situations. We use
Dynamics Solver to solve the equations numerically for different values of T5.
All other parameters remain constant through all these computations. Some of
the results are shown in Figure 16. Note that using both the initial equations,
as the approximation Pr — oo the same equilibrium points are found, but the
paths towards them differ.

In the normal situation the trades are quite strong. In that case our equi-
librium point is located in the equatorial plane with X > 0 and Z = 0 (Figure
16). Z being zero means the density difference between the east and west side
is more important than the density difference between surface and bottom. In
this situation the angular momentum Lo turns out to be quite strong, around
-8 using the initial equations. This indicates there is a lot of rotation in the
equatorial plane due to the strong wind forcing.

In the situation of an El Nino the trades are weaker. As a consequence the
equilibrium point lies a lot deeper and also the X part is larger. Here the density
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Figure 16: The paths of the centre-of-mass projected on the equatorial plane start-
ing from (7,3,14) (green dots) for different values of T>. The upper figure shows the
trajectory using Pr — oo and the lower using the initial equations. The used param-
eters are yp = 0.1, r = 0.4, f = 2 and F3 = —4. The circle-like paths are found when
To, = —8, the others when 7o = —4.

difference between surface and bottom is more important than the difference in
the zonal direction. A consequence is the weakening of the rotation in the basin,
around -0.3 compared with -8 in the normal situation. In the normal situation
the angular momentum keeps pace with the strength of the trades, which is not
the case any more during an El Nifio.

When looking at wind strengths in between -4 and -8 we see there is a sudden
jump in the location of the equilibrium point between 5.4 and 5.5 (with the
numerical values given at Figure 16). This jump might indicate the transition
from the normal state to an El Nino state. As the strength of the trade winds
gets below a critical value, the vertical density differences get more important
than the zonal differences. This indicates that the sea surface temperature will
be more equal over all longitudes, weakening the trade winds even more and so
sustaining this situation.

Thus by only changing the strength of the trade winds (75) a transition
from the normal to the El Nino situation is found. This does mean we need
the atmosphere as input. The ocean alone can not explain the occurrence of El
Nino when we take only the trades (7%) and solar heating (F3) into account. By
looking at more parameters periodic and even chaotic solutions might be found.
In Section 6.3 we will look at seasonal variations keeping El Nino in mind.

6.3 Seasonal variations

In all cases we have considered so far we have looked at the forcings which are
symmetric in the equatorial plane (Fy, F3 and T3). But most of the time the
forcings in the area near and at the equator are not symmetric. For example
a seasonal variability in heat input by solar radiation takes place, altering the
latitude at which most solar radiation is received. As a consequence the winds
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Figure 17: The atmospheric circulation of the earth, including the Hadley Cell, the
Intertropical Convergence Zone and the trade winds. [15]

are not completely westward. These seasonal variations change the dynamics of
the system.

Due to the earths obliquity?, the region of highest incoming solar radiation
oscillates during the year. In Southern Hemisphere summer this region is located
at about 30 degrees south (F, > 0) and vice versa (F < 0) when it is summer
in the Northern Hemisphere. These seasonal changes of the incoming solar
radiation affect the dynamics of the atmosphere. Where most solar radiation
is received the air heats most and thus rises. High in the atmosphere this air
is transported towards the poles. At latitudes around +30 degrees it sinks and
moves back towards the equator near at the surface. This circulation is known
as the Hadley Circulation (Figure 17) [2].

Due to the Coriolis force the surface winds blowing towards the equator
are deflected westwards and form the trade winds. The region where the trade
winds come together is called the Intertropical Convergence Zone [2]. As the
location of the Hadley Cells changes with the seasons, so does the location of the
Intertropical Convergence Zone (ITCZ, Figure 18). As a consequence the wind
at the equator is south-west (T2 < 0, T} > 0) during the Southern Hemisphere
summer and north-west (7> < 0, 77 < 0) during the Northern Hemisphere
summer. Another effect is the occurrence of wind torque. Since in Southern
Hemisphere summer the wind at the north side is more to the south and at
the south side more to the west (75 < 0), a horizontal rotation in the ocean is
induced (L3 < 0).

In this section we will investigate the consequences of certain seasonal forc-

20bliquity is the angle between the rotational axis of the earth and the orbital axis between
the earth and the sun (approximately 23°).
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Figure 18: The average location of the Intertropical Convergence Zone during Jan-
uary and July. [16]

ings. For this we will numerically integrate (4) and (5) using Dynamics Solver.
The different forcing strengths used, are found by trial and error and so do not
give a complete overview of the occurring dynamics. In all cases we take Pr = 5,
f=2,r=04and p=0.1.

First we look at what happens when there is differential heating in the
meridional direction (F). In this case for strong forcing a periodic trajectory
is found (Figure 19). This closed path around the y-axis has positive y for
positive Fy, and negative y for negative Fy. When it is summer in the Northern
Hemisphere the centre-of-mass will be located at the Southern Hemisphere and
vice-versa. This is expected as the warmer less denser water is located at the
summer hemisphere. El Nino is strongest in December and January, when it is
summer at the Southern hemisphere. This is the moment F5 is largest, which
corresponds to the largest ‘radius’ of the trajectory.

Together with the change of differential heating in the meridional direction,
also the wind in these direction changes (T7). Positive T7 correspond to positive
Fy5 according to the right-hand rule and similarly negative Ty correspond to
negative F. Now when the meridional winds (7}) become strong no periodic
solutions are found, while for weaker winds there are. This is only the case
when also meridional differential heating is present. Only wind in the meridional
directions does not yield periodic solutions.

Also wind torque (73) is likely to contribute to the seasonal variability. When
it is summer in the Southern Hemisphere, the wind torque will be negative
(counterclockwise), as the Intertropical Convergence Zone lies south of the equa-
tor. Just like the meridional winds, only wind torque does not yield periodic
behaviour. Combined with meridional differential heating (F») it does. Then
however it should not be too large. In the presence of T3 periodic solutions for
larger T3 are found than previously.

Seasonal variability causes periodic trajectories of the centre-of-mass at one
side of the equator. These trajectories change together with the seasons and
thus might provide some information about the seasonal dependence of El Nifio.
When the dynamics of the atmosphere is focussed at one side of the equator,
the found periodic trajectories could describe the El Nifo-La Nina oscillation.

31



Figure 19: The trajectory of the centre-of-mass starting from (7, 3, 14) when 7> = —8,
F3 = —4 and F> = 8. In green the final periodic trajectory is shown.

The location of the ITCZ in January and July (Figure 18) does not indicate
this is the case at the Pacific Ocean, so other explanations are needed.

7 Discussion and conclusion

We have used a low order model to look at the ocean near and at the equator.
In various approximations we have computed trajectories and (stable) equilib-
rium points when possible, focussing on the dynamics of the El Nino-La Nina
oscillation.

In Section 3 and 4 we have investigated the inertial dynamics of the system
without diffusion and viscosity. The pendulum motion in the equatorial plane
indicates the warmer less denser water oscillates between the east and west
side of the basin when this motion is not damped. Forcing mechanisms, like
differential heating in the zonal direction (F}), alter this path.

In Section 5 we approximated the equations by assuming that the mixing
of momentum occurs faster than the mixing of temperature and salt. This
way we found equilibrium points for cases with only one equatorial symmetric
forcing at a time. Most of these fixed points are located in the equatorial plane,
but for certain negative differential buoyancy fluxes in the zonal direction (F})
stable points outside the equatorial plane are found. These stable points show
what the effect is of each forcing separately. It however does not provide much
information on what happens when you combine them.

To focus on El Ninio we looked at numerical solutions of both the initial
equations (4), (5), as the approximation Pr — oo (46), (47), (48) in Section
6. A difficulty is that the values of the parameters are not well known. With
more knowledge of the parameters, more could be concluded from this numerical
results. Now we have to compare different situations to see what the effects of
different forcing mechanisms are.

Still the numerical results using this low order model can explain already
some features of El Nino. Changing of only the strength of the trade winds
results in a downward jump of the centre-of-mass. This jump means that the
vertical density differences become more important than the zonal differences,
indicating a very small temperature difference between the east and west side
of the Pacific Ocean. This probably corresponds to an El Nifio. The periodic
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Figure 20: The trajectories of the centre-of-mass starting from (7, 3,14). The upper
figure shows the trajectory using Pr — oo and the lower using the initial equations
(with Pr = 5). The used parameters are yp = 0.1, r = 0.4, f = 2 and F> = 15, F3 =5,
T1 =30 and T3 = —10.

solutions found do not explain El Nifo, except when the atmospheric dynamics
are focussed on one hemisphere. They could explain the seasonal dependence
of the strength of El Nifio, but not its full behaviour.

Using this low order ocean-only model, features of El Nino are found. But
so far it has not been able to explain El Nino without taking into account the
changing forcings of the atmosphere. It might be interesting to make some of
the atmospheric forcings periodic in our model. This way it would be possible
to add seasonal variability to the equations.

Another interesting extension of our model would be to add a simple atmo-
spheric model. As the trade winds (T%) are very important for the equatorial
dynamics, a first simple extension is making the zonal winds dependent on the
location of the centre-of-mass, that is 7o = T2(X). It would be interesting to see
if with such a simple extension of our model periodic solutions in the equatorial
plane can be found. To further investigate this option Vallis (1988) [17] could be
consulted. Here simple ocean-atmosphere models are used to look at El Nino.

Beside the stable equilibrium points and periodic solutions, also chaotic solu-
tions are found using both the approximation Pr — oo and the initial equations.
In Figure 20 situations in which chaos occurs are depicted for both Pr — oo
and the initial equations. The occurring chaos is bounded to a certain area,
which differs between the used equations.

In more situations than the one shown in Figure 20 chaos is found. It is not
necessary for the vertical buoyancy fluxes (F3) to be positive, but when they
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are not, the other forcing mechanisms have to be very strong. Positive F3 might
however occur when a lot of evaporation takes place. Also westward winds
(T5 < 0) reduce the number of situations where chaos is found. The same holds
for zonal buoyancy fluxes (F}) being negative, for example differential heat input
at the east. In none of the tried situations chaotic trajectories corresponding to
El Nino are found.

In all our computations we have used a non-conventionial term for the Cori-
olis force. This alters the direction in which the initial oscillation takes place
and causes most of the dynamics to happen in the equatorial plane. This is also
the direction in which most of the dynamics of the El Nino-La Nina oscillation
takes place. Seasonal variations cause a breaking of this symmetry, resulting in
off-equatorial stable points and periodic trajectories. The used Coriolis param-
eter is important in the occurrence of these trajectories as it makes sure that
most of the dynamics still are quite parallel to the equatorial plane.

Our low order ocean-only model quite well explains what happens to the
ocean under certain atmospheric forcings. It also shows nicely some of the
features of El Nifio, but the El Nifio-La Nifia oscillation has not been found.
For this the atmosphere has presumably to be included. It is interesting to
investigate what the consequences for the dynamics are if a simple atmospheric
model is added, starting with the zonal winds. Maybe such a model can explain
the El Nino-La Nina oscillation.
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A Reducing to three equations

To reduce the equations of Section 3 we start using the second invariant (13)
(stratification) to remove the first variable. To do so, we write X, Y and Z in
spherical coordinates co > 0, 6 € [0, 7] and ¢ € [0, 27, where ¢5 is fixed:

X = cysinfcos ¢ Y =cycosf 7 = cosinfsin ¢ (77)

We calculate the derivatives of these expressions and insert these together
with (77) in the differential equations for X (9), (10) and (11). This way we
find after some calculations the derivatives of 6 and ¢:

0 = Ly sin¢ — Ls cos ¢ (78)

(¢ + L) sin@ = cosO(Ly cos ¢ + L sin¢) (79)

Now we have reduced the set of six equations to a set of five. To reduce this
set further, we change to cylindrical coordinates r and « € [0, 2x[ for Ly and
L32

Ly =rcosa L3z =rsina (80)

The corresponding differential equations are found using the differential
equations for Ly and Lg, (6) and (8), and the derivatives of (80). For r and «
we this way find:

7= —cg cos f cos a (81)

(& —1)r = cycosfsina (82)

In this new coordinates we can reduce the set of equations further be solving
the first invariant (12) (energy) for Lo, resulting in:

Ly = i\/ch — 2¢y sinfsin ¢ — r2 (83)

Now we insert all the above in the last invariant (14) (momentum) and solve
the resulting equation for « to find:

cg —cocosf(1l £ \/201 — 2cysinfsin g — r2)
corsin 6

a = ¢ — arccos( ) (84)

Note this equation is only valid when the term in the arccosine is in between
plus and minus one. Using the above equations for Ly and o we find a set of
three differential equations in r, 6 and ¢:

c3 — cacosO(1 £ \/2¢; — 2cosinfsin g — r2)

)

7 = —cy cosf cos (¢ — arccos (

corsinf
(85)
) \/037“2 sin62 — (c3 — cacos (1 & \/2¢; — 2co sinfsin  — 2))2
b = . (86)
Co sin 6
b= :1202\/201 — 2cosinfsin g — 12 + cosO(c3 — o cos 0) (87)

cosin® 0
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