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Abstract. We report an experimental study of the decay of grid-generated turbulence in a
confined geometry submitted to a global rotation. Turbulence is generated by rapidly towing a
grid in a parallelepipedic water tank. The velocity fields of a large number of independent decays
are measured in a vertical plane parallel to the rotation axis using a corotating Particle Image
Velocimetry system. We first show that, when a “simple” grid is used, a significant amount of
the kinetic energy (typically 50%) is stored in a reproducible flow composed of resonant inertial
modes. The possible coupling between these modes and turbulence suggests that turbulence
cannot be considered as freely decaying in this configuration. We demonstrate however that
these inertial modes may be significantly reduced (down to 15% of the total energy) by adding
a set of inner tanks attached to the grid. These results suggest that it is possible to produce an
effectively freely decaying rotating turbulence in a confined geometry.

1. Introduction

Translating a grid in a closed volume of fluid is a standard way to generate an approximately
homogeneous and isotropic turbulence. Although the level of homogeneity and isotropy of the
turbulence generated in this way is not as good as in the more conventional configuration of a
fixed grid in an open wind tunnel (1; 2), this closed flow configuration has proved to be very
useful when a compact system is needed, and in particular when experiments are performed in
a rotating frame (3; 4; 5; 6; 7). Apart from early experiments performed in wind tunnels with a
rotating section (8; 9), all rotating grid-generated turbulence experiments since then are based
on oscillated or translated grids in closed containers.

In the presence of background rotation, grid-generated turbulence may excite inertial waves.
These waves are anisotropic transverse dispersive waves, which propagate through a rotating
fluid because of the restoring nature of the Coriolis force (10; 11). Their angular frequency σ
lies in the range [0, 2Ω], where Ω is the rotation rate, indicating that these waves can be excited
when the characteristic time of the flow is of order of the rotation period, i.e. when the Rossby
number is of order unity. The flow excited by a grid translation is, in general, composed of a
superposition of (i) a reproducible flow (determined through ensemble averaging) and (ii) a non-
reproducible turbulent flow. During the decay of turbulence, both of these two flow components
may excite inertial waves after a certain time, when their characteristic timescale decreases down
to the order of the rotation period. The excited inertial waves are respectively (i) reproducible
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— and therefore detectable in the ensemble average — and (ii) non-reproducible — detectable
in the individual realizations only — and cancel out by phase mixing in the ensemble average
since their phase is not coherent between different realizations (12).

If now the rotating grid turbulence experiments are performed in a closed container, inertial
waves may appear in the form of standing inertial modes. Inertial modes are the eigenmodes
of a given container geometry, and can be found in general when the walls are either normal or
parallel to the rotation axis (10; 13; 14). Their resonant frequencies can be derived analytically
only in some specific geometries, such as the so-called Kelvin modes in a cylinder rotating about
its symmetry axis (15). In the case of a parallelepipedic box, the frequencies and the spatial
structure of the inertial modes have been characterized in detail by Maas (16) for an inviscid
fluid from numerical simulations.

Reproducible inertial modes excited in grid-generated turbulence have been first observed
in a parallelepipedic channel with a free surface by Dalziel (7), who pointed to their potential
influence on the decay of the turbulent component of the flow. Inertial oscillations are also
clearly visible in the experiments of Morize and Moisy (17) (with a rigid upper surface) and
Moisy et al. (18) (with a free surface). They have been characterized by Bewley et al. (5)
in a set of two experiments, in which a grid is rapidly drawn in liquid helium or nitrogen in
cylindrical and squared geometries. These authors found good agreement between the measured
frequencies and the numerical results of Maas (16) for various aspect ratios. They conclude
that translating a grid in a closed rotating container cannot generate freely decaying turbulence,
because a significant amount of the initial energy may be first stored in the inertial modes, and
then gradually released to the turbulence during the decay. It is noteworthy that in all cases
those modes were detected in the ensemble-averaged flow, suggesting that they originate from
reproducible flow features and not from turbulence.

The aim of the present paper is to investigate in more details the inertial modes excited when
towing a grid in a rotating square container, and to explore to what extent those modes may be
reduced. An experimental setup (12) similar to that of Morize et al. (4; 17) has been mounted
on a new rotating platform, allowing for Particle Image Velocimetry measurements in a vertical
plane. We demonstrate that, by attaching a set of inner sidewalls to the grid, the amount of
energy stored in the inertial modes may be drastically reduced. A similar configuration has
been first shown by Staplehurst et al. (6) to reduce significantly the large-scale recirculations
in the absence of rotation. We demonstrate here how a configuration inspired from their work
strongly reduces the excitation of inertial modes, by an enhanced conversion of the mean flow
energy into turbulence.

2. Experimental setup

2.1. Tank and rotating platform

Only the “simple grid” configuration, used in Sec. 3, is described here. The modified
configuration with additional inner walls is detailed in Sec. 4.

The experimental setup consists in a cubic glass tank, of lateral side L = 60 cm, filled with
52 cm of water (see Fig. 1) and mounted on a precision rotating turntable of 2 m in diameter
(11; 12). The angular velocity Ω of the turntable is set to 0.84 rad s−1 (8 rpm), with relative
fluctuations ∆Ω/Ω less than 5×10−4. The rotation of the fluid is set long before the experiment
starts in order for transient spin-up recirculations to be damped and therefore to achieve a solid
body rotation. A horizontal cover is placed at a height of H = 49 cm, defining the upper
boundary of the flow.

Turbulence —and inertial modes— is generated by rapidly towing a square grid at a constant
velocity Vg = 0.70 m s−1 from the bottom to the top of the tank. During the subsequent decay
of turbulence, the grid is kept fixed, at a height of 46 cm, slightly below the cover. The grid
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Figure 1. Schematic view of the
experimental setup, in the “simple
grid” configuration. The 60× 60×
60 cm3 tank is filled with 52 cm of
water and is rotating at an angular
velocity of Ω = 0.84 rad s−1. A
square grid of 40 mm mesh is towed
by four shafts from the bottom to
the top at constant velocity Vg =
0.70 m s−1. PIV measurements in
a vertical plane (x, z) are achieved
in the rotating frame, based on a
laser sheet illuminating the vertical
plane (x, z) and a camera aiming
normally at it.

consists in 8 mm thick square bars with a mesh size M = 40 mm. The grid is rigidly attached
at its four corners to a servo-controlled brushless motor ensuring the vertical translation of the
grid. The Reynolds number based on the grid mesh is Reg = VgM/ν = 28 000, and the Rossby
number is Rog = Vg/2ΩM = 10.4, indicating that the flow in the close wake of the grid is fully
turbulent and weakly affected by the rotation.

2.2. PIV measurements

Velocity fields in a vertical plane (x, z) are measured using a 2D Particle Image Velocimetry
(PIV) system. The flow is seeded with 10 µm tracer particles, and illuminated by a corotating
vertical laser sheet passing through the center of the tank. The entire 60 × 46 cm2 flow
section is imaged through a transparent side of the tank with a double-buffer high-resolution
2048 × 2048 pixels camera, corotating with the tank and aiming normally at the laser sheet.
During the decay of turbulence, 428 image pairs are acquired at a sampling rate of 2 Hz. Since
the typical flow velocities decrease with time, the delay between the two successive images of a
pair is made to gradually increase during the acquisition sequence, from 10 to 68 ms, so that
the typical particles displacement remains constant, of order of 5 pixels, during all the decay.
PIV computations are then performed over image pairs, on 32×32 pixels interrogation windows
with 50% overlap, leading to a spatial resolution of 4.9 mm.

2.3. Reynolds decomposition

In Fig. 2, we show the time series of the vertical velocity uz(x0, z0, t) at the center of the flow
for 20 independent realizations of the decay. The origin t = 0 is defined as the time at which
the grid reaches the top of the tank. The ensemble average of those realizations is also shown in
bold line. This plot clearly illustrates that the flow consists in well-defined oscillations excited
by the grid, of characteristic timescale of about one period of rotation, superimposed to non-
reproducible turbulent fluctuations. Those oscillations actually correspond to inertial modes,
and their amplitude is clearly of the order of the turbulence.

In order to investigate properly the dynamics of the inertial modes and of the turbulence,
and the possible coupling between the two, we introduce the standard Reynolds decomposition
of the velocity:

u(x, t) = U(x, t) + u′(x, t). (1)

Here u(x, t) is the total velocity field, U(x, t) ≡ u(x, t) its ensemble average (i.e. the
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Figure 2. Times series of the
vertical velocity uz(x0, z0, t) mea-
sured at the center of the flow
(x0 = 300 mm, z0 = 240 mm), for
20 realizations performed at Ω =
0.84 rad s−1 (in various colors).
The black thick line shows the en-
semble average of these time series.

reproducible component of the flow) and u′(x, t) its turbulent component. The overbar ·
stands for the ensemble average over several independent realizations of the flow. Note that,
although the ensemble average is often approximated by a temporal or a spatial average in most
turbulence experiments, the use of true ensemble averages here is critical to separate properly
the reproducible non-stationary component of the flow from the turbulence.

The Reynolds decomposition (1) naturally leads to introduce three kinetic energies,
characterizing the total, ensemble-average (simply denoted “mean” hereafter) and turbulent
flows respectively, and defined as:

ktot(t) = 〈u2(x, t)〉,

kmean(t) = 〈U2(x, t)〉,

kturb(t) = 〈u′2(x, t)〉, (2)

satisfying ktot(t) = kmean(t) + kturb(t). Here the brackets 〈·〉 denote the spatial average over the
whole fluid volume.

In practice, only the two velocity components ux and uz can be measured, the measurements
being restricted to a vertical plane (x, z) located at mid-width of the tank. The measured kinetic
energies must therefore be considered as approximations of the true ones. For a statistically
homogeneous and isotropic turbulent component, one would simply have kmes

turb = 2kturb/3. The
situation is more complicated for the energy of the mean flow for two reasons: (i) during one
period of a given inertial mode, the kinetic energy is basically exchanged between the measured
and the non-measured velocity components; (ii) the ratio between the energy averaged over the
whole tank and the energy averaged over the measurement plane (x, z) only depends on the
details of the spatial structure of each mode, which are not known a priori. For those reasons,
we do not apply here any correcting weight to the velocity components when computing kinetic
energies, and we simply define

ktot(t) = 〈ux2(x, z, t)〉x,z + 〈uz2(x, z, t)〉x,z (3)

(with 〈·〉x,z the average over the vertical plane), and similarly for kmean and kturb. Note that
those modified definitions still satisfy the relation ktot(t) = kmean(t) + kturb(t).

3. Inertial modes produced by the simple grid configuration

3.1. Kinetic energy decay

In Fig. 3, we present the time evolution of the three kinetic energies (2) computed from 40
decay realizations performed at Ω = 0.84 rad s−1. Both the energy of the total and the mean
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Figure 3. Total (dashed),
mean (continuous) and turbulent
(dashed-dotted) kinetic energies as
a function of the number of tank ro-
tations Ω t/2π from 40 realizations
performed at Ω = 0.84 rad s−1.
Inset: Ratio of turbulent to total
kinetic energy α (4), measured at
times tn of maximum mean energy.

flow show, superimposed to their overall decay, marked oscillations corresponding to the inertial
modes. On the other hand, the turbulent energy shows a monotonic decrease, suggesting a
good separation between the reproducible and non-reproducible components of the flow. At this
point, it is important to note that the kinetic energy of the ensemble-averaged flow kmean(t) is
of the same order than the turbulent one kturb(t).

The oscillations of ktot(t) and kmean(t) are only due to the 2-dimensions and 2-components
restriction of the PIV measurements. Indeed, a monotonic decay should be expected for the true
energies (2) computed from the 3 velocity components averaged over the whole fluid volume.
We expect therefore that the total and mean kinetic energies are correctly estimated only at
the maximum of their oscillations. In order to evaluate the relative amount of turbulent and
mean energy in the total flow, we shall therefore consider only the times tn at which kmean(t) is
maximum, and we introduce the ratio:

α(tn) =
kturb(tn)

ktot(tn)
. (4)

In the inset of Fig. 3, we actually see that turbulence represents only 50 ± 10% of the energy
in the flow. This quite low ratio indicates that the turbulence produced with this “simple”
grid configuration is evenly distributed among the reproducible inertial modes and the “true
turbulence”. It is therefore questionable to consider this turbulence as freely decaying. Indeed,
the possible coupling between the turbulence and the ensemble-averaged flow, which cannot be
investigated at this point, may prevent the turbulence to decay freely, as it is continuously fed
through energy transfer from the inertial modes.

3.2. Fourier analysis of the inertial modes

In order to characterize in more details the flow generated by the grid translation, we perform a
temporal Fourier analysis of the ensemble-averaged flow U(x, t) ≡ u(x, t). Assuming that this
ensemble-averaged flow is composed of inertial modes only, U(x, t) can be written as follows:

U(x, t) = ℜ

(

∑

n,m,s

anms(t)vnms(x) e
iωnmst

)

(5)

where vnms(x) is the (complex) spatial structure of the [n,m, s] mode, ωnms its angular
frequency, which lies in the range [0, 2Ω] allowed for inertial waves, and ℜ stands for the real
part. With notations similar to that of Maas (16) and Bewley et al. (5), we label here the
modes using two integer indices, n and m, and a sign, s = ±. The first index n is the normalized
vertical wavenumber such that the horizontal (resp. vertical) velocity component has n (resp.
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E mean Figure 4. Temporal energy
spectrum of the total (dashed),
mean (continuous) and turbulent
(dashed-dotted) component of the
flow as a function of σ/2Ω com-
puted from 40 decay realizations
performed at Ω = 0.84 rad s−1,
with logarithmic y-axis. Inertial
modes can develop for angular fre-
quencies σ < 2Ω. The modes cor-
responding to the peak frequencies
are given in Table 1.

n− 1) nodes in the vertical direction. The horizontal structure of a given mode of vertical index
n is characterized by the second index m. Larger values of m essentially correspond to finer
structures in the horizontal direction, although it is not directly related to the number of nodes
as for the vertical index n. Finally, the sign s refers to the symmetry of the mode with respect
to the rotation axis: s = + for a symmetric mode and s = − for an antisymmetric mode. The
frequencies ωnms are increasing functions of n and, at fixed n and s, decreasing functions of m.
In the absence of coupling with other modes or with turbulence, the amplitude of each mode,
anms(t), is expected to be a decreasing function of time because of viscous damping.

The modes present in the ensemble-averaged flow are identified from the temporal Fourier
transform of the ensemble-averaged velocity field U at each position in the (x, z) measurement
plane,

Ûσ(x, z) =

∫ Tmax

Tmin

U(x, z, t) e−iσt dt. (6)

The temporal bounds Tmin and Tmax have been chosen equal to 1 and 15 rotation periods,
respectively. From this, we define the temporal energy spectrum of the mean (ensemble average)
flow, spatially averaged over the (x, z) plane, as:

Emean(σ) =
1

2π
〈|Ûσ(x, z)|

2〉x,z. (7)

In Fig. 4, the spectrum Emean(σ) clearly shows a series of peaks, whose values are listed
in Table 1. These peak frequencies are in excellent agreement with some of the numerical
eigenfrequencies computed (as in Ref. (16)) for our experimental aspect ratio L/H ≃ 1.22. This
shows that the translation of the grid, because of its specific drag profile, selects only a small
set of specific inertial modes among the dense spectrum of modes evidenced in Ref. (16). Those
selected modes are among the lowest order modes (n = 1 to 3), probably because their simpler
structure better matches the spatial features of the ensemble-averaged flow at early times, i.e.
before it is affected by rotation, and also because higher order modes decay faster by viscous
damping.

In order to check whether the inertial modes are present only in the ensemble-averaged flow,
we also introduce the temporal Fourier transform of the total, ûσ(x, z), and of the turbulent
velocity field, û′

σ(x, z), similarly to Eq. (6), from which we can define the corresponding energy
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Table 1. Numerical values of normalized frequencies σ/2Ω for different modes of order [n,m, s]
(where n is the vertical wavenumber, m characterizes the horizontal structure, and s is the
symmetry of the mode) compared to the experimental peaks in Fig. 4. The uncertainty of the
experimental values is ±0.01. The numerical values are computed for an aspect ratio identical
to the experimental one L/H = 1.22.

mode σ/2Ω
[n,m, s] num. exp.
[1, 4,+] 0.2992 0.29
[1, 1,+] 0.4890 0.49
[1, 1,−] 0.6328 0.64
[2, 1,+] 0.7429 0.74
[3, 1,+] 0.8557 0.86

spectra:

Etot(σ) =
1

2π
〈|ûσ|2〉, (8)

Eturb(σ) =
1

2π
〈|û′

σ|2〉. (9)

As for the kinetic energies, the energy spectra are additive, Etot(σ) = Emean(σ) +Eturb(σ). For
a given total spectrum Etot(σ), the two spectra Emean and Eturb allow us to distinguish between
two kinds of inertial modes: (i) reproducible (i.e. phase-coherent) modes, characterized by peaks
in Emean but not in Eturb; (ii) non-reproducible (i.e. random-phase) modes, characterized by
peaks in Eturb but not in Emean. Interestingly, Fig. 4 shows the complete absence of peaks in
the turbulent spectrum Eturb(σ), indicating that all the inertial modes present in our system
are reproducible, and therefore not turbulent. This confirms that inertial modes in this system
are more likely excited by reproducible flow features induced by the grid translation. This also
suggests that the initial turbulence right after the grid translation is effectively not affected by
the rotation, as could be expected from the relatively large grid Rossby number Rog = 10.4.
Therefore, this initial turbulence is expected to be similar to classical grid turbulence in non-
rotating systems.

Finally, it is important to note that more than 97% of the energy of the ensemble-averaged
flow lies in the range of angular frequencies [0, 2Ω], confirming that almost all its energy is stored
in inertial modes. This result suggests that the ensemble-averaged flow is correctly converged,
so that the spectrum of the ensemble-averaged flow is almost not contaminated by the spectrum
of residual turbulent fluctuations which spans over larger frequencies. On the contrary, we see
that there is a significant amount of energy for σ > 2Ω in the turbulent spectrum, which actually
corresponds to the rapid small scales of usual 3D turbulence which are not directly affected by
the rotation.

4. Modified configuration with inner walls

4.1. Modified experimental setup

The modified configuration of the experimental setup studied in this section is shown in Fig. 5.
It consists in three parallelepipedic PVC tanks, of respective height 50, 40 and 40 cm and width
40, 24 and 8 cm. Each tank consists in 4 vertical sidewalls, without top and bottom walls. The
3 tanks are fit together co-axially, so that two neighbour sidewalls are separated by two grid
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Figure 5. Schematic view of
the modified grid configuration (the
outer water tank is not shown;
see Fig. 1). Three inner tanks
are mounted on the grid, and
turbulence is generated by raising
the set grid+tanks. Each inner
tank consists in 4 vertical sidewalls,
without top and bottom walls.
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Figure 6. Total (dashed),
mean (continuous) and turbulent
(dashed-dotted) kinetic energies as
a function of reduced time Ωt/2π
from 40 decay realizations per-
formed at Ω = 0.84 rad s−1 with
the modified configuration with in-
ner tanks. Inset: ratio of turbulent
to total kinetic energy as a function
of reduced time Ωt/2π with (points)
and without (triangles) inner tanks.

meshes, and attached on the upper side of the grid. All other parameters, in particular the grid
velocity and Rossby number, are the same as for the simple grid configuration. Since our grid is
translated from the bottom to the top, here the inner tanks are upstream the grid, so that the
decaying flow is not confined inside the smallest tank.

The presence of the inner tanks implies that no horizontal cover could be placed to define
the upper boundary of the flow, contrarily to the “simple” grid configuration. However, we
can consider here that an effective upper boundary is approximately defined by the grid itself,
locked at a height of 46 cm after its translation. Indeed, we have checked that the “simple” grid
configuration without upper rigid boundary also produces inertial modes, which are as intense
as with the rigid boundary. Moreover, here, the inner walls efficiently block the flow in the
region between the grid and the free surface.

4.2. Turbulence generated with the grid + inner tanks configuration

The decay of the kinetic energies of the total, mean and turbulent components of the flow
as a function of time, from ensemble averages over 40 decay realizations with the modified
configuration, is shown in Fig. 6. In comparison with the simple grid configuration (Fig. 3),
the oscillations due to the inertial modes are strongly reduced, both for the mean and the total
kinetic energies. We also see that, contrary to the simple grid configuration, the turbulent
kinetic energy is now significantly larger than the one of the ensemble-averaged flow. This can
be better seen in the inset of Fig. 6, showing that turbulence contains, after a transient of about
one tank rotation, approximately 85± 5% of the total kinetic energy, a value much larger than
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the 50% obtained with the simple grid configuration.
In Fig. 7, we superimpose the temporal energy spectrum of the mean flow obtained with

(continuous line) and without (dotted line) the inner tanks. We clearly see that, with the inner
tanks, the two dominant peaks (at σ/2Ω = 0.29 and 0.49) have been reduced by more than a
factor of 10. The reduction of the other peaks, in particular the n = 2 mode at σ/2Ω ≃ 0.74,
is less pronounced. The decrease of the two dominant inertial modes essentially explains the
significant drop of the kinetic energy of the mean flow with respect to turbulence shown in Fig.
6. We can also note slight frequency shifts between the two configurations, probably originating
from the not perfectly identical boundary conditions at the top of the container, and hence from
slightly different effective aspect ratios.

Interestingly, inertial modes are not only absent from the ensemble-averaged flow spectrum,
Emean(σ), but also from the turbulent spectrum Eturb(σ). This indicates that their
disappearance in the modified grid configuration cannot be attributed to a change in the nature
of the excited inertial modes, from reproducible to non reproducible, but to a true disappearance.

The differences in the energy decays and spectra show that the addition of the inner tanks to
the grid leads to a much more efficient transfer of the initial mean flow energy into turbulence,
bypassing the generation of inertial modes. However, the origin of the changes between the
two configurations is not clear. In particular, it is not evident if, and how, the differences in
the grid jet profiles may explain the preferential energy transfer from the mean flow to the
turbulence in the modified configuration. These results illustrate the sensitivity of the inertial
modes production to slight changes in the grid geometry, at least for the grid Rossby number
considered here, Rog = 10.4.

5. Discussion and conclusion

In this article, we characterize in details the flow generated when a simple grid is rapidly
translated in a rotating and confined volume of fluid. We show that, in addition to a non-
reproducible turbulent flow, the grid translation initiates a reproducible ensemble-averaged flow
composed of resonant inertial modes, which contains a significant amount of the total kinetic
energy. This observation agrees with the recent experiments of Bewley et al. (5) in a similar
geometry. We provide a quantitative comparisons of the mode frequencies with the numerical
predictions of Maas (16).

These results suggest that the turbulent (i.e. the non reproducible) component of the flow
generated in this configuration cannot be considered as freely decaying. Indeed, energy transfers
between the inertial modes and the turbulence may exist, so that the energy initially stored in the
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inertial modes may continuously feed the turbulence. However, measuring this transfer would
require to compute the turbulent Reynolds stress tensor and its coupling with the ensemble-
averaged flow. This cannot be performed from the PIV data presented here, which are limited
to two velocity components in a single plane.

The ability of a translated grid to generate or not reproducible inertial waves or modes
depends on the grid Rossby number, Rog = Vg/2ΩM , and also on the geometrical details of
the grid configuration, in particular its solidity (ratio of solid to total area). Indeed, for a given
grid geometry, a low Rossby number seems more likely to excite inertial modes, because the
reproducible flow structure in the wake of the grid may directly force inertial waves with a
phase coherence. On the other hand, we could speculate that, for much larger Rossby numbers
(and assuming that the Reynolds number is very large too), the reproducible wake pattern has
more time to loose its coherence before being affected by rotation, so its energy may be more
efficiently transferred to turbulence than reproducible inertial waves. Even if inertial waves are
later generated from these decaying incoherent motions, their random phase should cancel them
out by averaging over independant realizations, so inertial modes should not be found in the
ensemble-averaged flow.

In the experiments of Bewley et al. (5), the moderate grid Rossby number Rog of 5.5 is
found to produce strong inertial oscillations. In the experiments of Staplehurst et al. (6), Rog
takes even lower values, in the range 1−3.2, so that significant inertial modes are also expected,
although they are not described by these authors. Interestingly, in the present experiment, for
a slightly larger grid Rossby number of 10.4, the production of reproducible inertial modes is
found to be very sensitive to slight details in the geometry of the grid. Indeed, by adding a set
of inner tanks to the grid, we show that it is possible to significantly reduce the production of
inertial modes, although the mechanism responsible for this preferred energy transfer towards
turbulence instead of modes is not elucidated in the present work. This sensitivity of the flow
evidenced for this particular Rog is consistent with the results of Morize and Moisy (17), covering
a wide range of Rog between 2 and 65, in which a smooth transition around Rog ≃ 10 was found
in the decay law of the turbulent energy, suggesting a change in the energy transfer between
inertial modes and turbulence.

A first conclusion from these results is that the standard assumption of statistical homogeneity
may not be appropriate to describe decaying rotating turbulence in a closed container. This
calls for the development of new experiments and theoretical tools to describe the interaction of
turbulence with reproducible inertial modes. However, a second conlusion is that, providing the
grid Rossby number and the geometrical features of the grid are carefully selected, achieving a
nearly “pure” rotating turbulence, free of reproducible inertial modes, is actually possible in a
confined geometry. If these requirements are satisfied, this system may be suitable to explore
experimentally the influence of the rotation on freely decaying homogeneous turbulence.
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