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Abstract

In this paper we study a model that describes the dynamics of the tidal elevation within an almost-enclosed short basin that
is connected to a tidal sea by a narrow strait. This model has the form of a forced nonlinear Helmholtz oscillator. The forcing is
prescribed by the tide at sea and has a quasi-periodic character of a special nature, since the difference between the frequencies
of the lunar and solar components of the forcing tide are very small. We focus on the interactions between the nonlinearity in
the oscillator caused by the geometry of the basin, and the external forcing tide. The behavior of small amplitude solutions
of the weakly (and quasi-periodically) forced Helmholtz oscillator is studied by a combination of the averaging method and
the Melnikov method. We construct three different Melnikov functions. These Melnikov functions enable us to distinguish
between six structurally different types of chaotic behavior. © 2002 Elsevier Science B.V. All rights reserved.
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1. Introduction

It is well-known that tidal elevations within basins such as bays, fjords and estuaries are strongly influenced by the
characteristics of the basin. If there is (almost) a resonance between the exterior tide at sea and an eigen-frequency
of the basin, the amplitude of the tide within the basin will be much larger than that of the exterior forcing tide. This
amplification is a strictly linear phenomenon and is well understood [3,11].

However, an externally driven tidal basin is a nonlinear system. In this paper we will study some of the nonlinear
aspects of externally driven tidal systems. We will focus on the impact of the characteristics of the basin on the tidal
dynamics and its relation to the tide at sea.

Among the most simple physical models for a ‘tidal oscillator’ are those that describe the behavior of the tide
within an almost-enclosed short basin that is connected to a tidal sea by a narrow strait. In such basins, the tide
is generally governed by the pumping or Helmholtz (eigen-)mode, in which the water level within the basin rises
and sinks in unison [11]. In [16] it was shown that the evolution of the amount of water in excess of the amount
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of water present in such a basin in the absence of tides—theexcess volume v—can be modeled by the following
second-order equation:

v̈ + ζ(v) = ζext(t) − γ (v̇). (1.1)

Hereζ(v) andζext(t) denote, respectively, the surface elevation within the basin and in the exterior sea, the latter is
assumed to be a given function of time. Their difference provides the pressure gradient that drives the flowu along
the connecting strait (u̇ ∼ ζext− ζ ). This flow generates changes in the excess volume (v̇ ∼ u). Their combination
yields (1.1), in which the termγ (v̇) is added to represent friction effects. See [8,16] for more details on the derivation
of this model.

There are two (potentially) nonlinear terms in this externally drivenHelmholtz oscillator: the termζ(v) that
describes the surface elevation as a function of the (excess) volume of water within the basin, i.e.ζ(v) is determined
by thegeometry of the basin, and the friction termγ (v̇) (see [28] for a derivation of a (nonlinear) expression for
γ (v̇)). In order to be able to fully focus on the influence of the geometry of the basin on the dynamics of (1.1), we
will only consider linear friction effects in this paper.

The Helmholtz frequencyσH of a tidal basin of the above type is (in unscaled form) given by

σH =
√

BDg

A0L
, (1.2)

whereD is the (maximum) depth of the basin,A0 the surface area of the basin ‘at rest’ (i.e.v = 0),B andL the width
and length of the strait, respectively, andg is the gravitational acceleration constant [16]. In the nonlinear system
(1.1), the Helmholtz frequencyσH is identical to the frequency associated to the center point of the linearization
around(v, v̇) = (0, 0) of the integrable Helmholtz oscillator, i.e. (1.1) without forcing or friction terms. In that
sense,σH is a quantity that measures linear effects, it neglects all nonlinear information on the geometry of the
basin.

In this paper we extend the concept of the linear Helmholtz frequency into the nonlinear regime, by relating it to
the periodT0(H) of the periodic orbits of the integrable nonlinear Helmholtz oscillator as a function of the energy
(or Hamiltonian)H . By construction, it follows thatσH = 2π/T0(0), whereT0(0) is the linearized period of the
center point atH = 0 (Section 2). The periodT0(H) depends strongly on the characteristics of the basin. We will
show thatT0(H) remains bounded for all ‘allowable’H and that it is in general not a monotonically increasing
function, as is the case for most mechanical oscillators.

Of course,σH can be scaled to 1 (orT0(0) to 2π ). However, the unscaledσH varies over quite a large range in
natural basins. Small-scale coastal bays and fjords typically have Helmholtz periods ranging from a few minutes
up to perhaps an hour [10,14]. Sometimes the Helmholtz mode seems to prevail also in still larger-scale areas, like
almost-enclosed lakes and seas [16]. This may lead to Helmholtz periods up to 24 h, as was estimated for the Gulf
of Mexico [19]. Thus, by scalingσH to 1, and thinking of variations at sea as being principally of tidal origin, we
have to allow for external forcing termsζext(t) in (1.1) that evolve on time scales of the same order as the integrable
Helmholtz oscillator, orζext(t) that vary significantly slower than the Helmholtz oscillator. In this paper we will
focus on the former case, the latter case has been briefly considered in [17].

The external forcing termζext(t) is not an exactly periodic function of time. The tide at sea consists of lunar
and solar components, and may contain annual, diurnal, semi-diurnal and, as a result of nonlinearity, all kinds of
harmonic combination frequencies. Frequently, the tide is dominated by just its semi-diurnal components, giving
rise to the well-known (linear) fortnightly modulation (spring-neap cycle). The dominant lunar component, the
semi-diurnalM2 tide, has a frequencyω = 1.4056×10−4 s−1, i.e. a period of≈12 h 25 min; the semi-diurnal solar
S2 tide hasωsol = 1.4544× 10−4 s−1: the exact 12 h period. These frequencies are, of course, almost the same:
|ω−ωsol|/ω = 3.47×10−2 � 1. Thus,ζext(t) is (at least) quasi-periodic with two frequencies,ω andωsol, but the
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fact thatω ≈ ωsol must be taken into account in an (asymptotic) analysis of (1.1), see Remark 1.1. The amplitudes
of theM2 andS2 components can be of comparable order, although in most basins the lunar component of the tide
is significantly stronger than the solar component [3].

The main goal of this paper is to develop fundamental insight in the interactions between the geometry of the
basin with the external forcing tide, that is assumed to be weak (i.e. with an asymptotically small amplitude), and
to unravel the mechanisms by which these interactions generate chaotic behavior in (1.1). The fact that the forced
nonlinear oscillator (1.1) can exhibit chaotic solutions is, a priori, not very surprising. This was indeed already
observed and studied in [17] for a certain special basin. However, the Helmholtz oscillator (1.1) distinguishes itself
from most nonlinear oscillators studied in the literature, by the fact that the integrable limit only has one unique
critical point, the above mentioned center point atH = 0 (see Section 2). Therefore, it is not possible to show that
(1.1) can have chaotic solutions by directly applying the ‘standard’ methods as presented for instance in [9,25], since
these methods are based on the assumption that the integrable planar oscillator has a homoclinic or a heteroclinic
orbit. Such an orbit can of course not exist in a system without saddle points. As a consequence, we also cannot
use the ideas for the analysis of weakly, quasi-periodically forced oscillators as presented in [1], and the references
therein.

We can only expect non-trivial behavior in (1.1) by a resonant interaction of the weak forcing and friction terms
with a periodic orbit of the integrable limit system. It is well-known [9,25] that in such cases, a purely periodic
O(ε) forcing term can at most generate exponentially (i.e.O(exp(−c/ε))) thin layers of chaotic behavior. Hereε is
the perturbation parameter, 0< ε � 1, that is related to the ‘weakness’ of the exterior forcing. We refer to [16] for
such ‘exponential’ behavior in the Helmholtz oscillator. We thus may conclude that ‘observable’ chaotic behavior
in (1.1) must be generated by the special character of the quasi-periodic forcing termζext(t).

For a special basin, with a triangular structure in the vertical direction (see Section 2), it was already shown in
[17], by a multiple time scale approach for small (O(ε)) amplitude solutions in the 1:1 resonance case, that (1.1)
can be transformed to a periodically driven oscillator on a time scale that is proportional to 1/|ω − ωsol|, the time
scale of the spring-neap tide cycle. In the case of a purely periodic (lunar) forcing term, this equation, called the
modulation equation in [16,17], is integrable at leading order and has two homoclinic orbits to one saddle point, one,
the ‘inner’ orbit, inside the other, ‘outer’, homoclinic orbit (under certain conditions on the parameters)—see Fig. 3.
Note that this integrability agrees with, and is related to, the above mentioned fact that in this case periodic forcing
can only generate chaotic behavior in regions that are thinner thanεN for all N > 0. Thus, the solar component of
the quasi-periodic exterior tide acts through the two time scales transformation as a periodic forcing term on this
integrable system. This system can then again be considered as a weakly forced integrable system, by assuming
that the amplitude of the solar component is small compared to the amplitude of the lunar component, as is the case
in most basins [3]. By a standard application of the Melnikov method, it was shown in [17] that both homoclinic
orbits can perturb into transversally intersecting stable and unstable manifolds to the saddle point of the associated
Poincaré map, so that it is possible to show the existence of chaotic solutions to this modulation equation by the
standard horseshoe map construction [9,25] (see Remark 1.1) The analysis in [17] was confirmed by the observation
of chaotic behavior in numerical simulations of the modulation equation and the underlying Eq. (1.1).

In this paper we analyze the appearance of chaotic solutions in the quasi-periodically forced Helmholtz oscillator in
1:1 resonance forgeneral basins. The ‘modulation equation’ is derived by the method of averaging (to second-order).
The averaged equations are studied by Melnikov’s method. The ‘standard’ Melnikov approach employed in [17]
(for a special basin) neglects the possibility of having transversal intersections of ‘mixed’ type, i.e. intersections
between stable and unstable manifolds that merge with distinct homoclinic orbits in the integrable limit (see also
Remark 1.1). By a careful control of the ‘interactions’ of the Melnikov method and the method of averaging, we
determine a mixed Melnikov function that measures the possibility of such intersections in the averaged system.
It is found that such intersections do occur, also in regions in parameter space where neither the ‘inner’ nor the
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‘outer’ homoclinic orbit can generate chaotic solutions by itself. Hence, our analysis extends the existence of chaotic
behavior to regions in parameter space in which the ‘standard’ approach yields ‘trivial’ (i.e. non-chaotic) behavior
(see also Remark 4.1). Moreover, we discover and classify geometrically various distinct types of complex behavior,
that also cannot be detected by the ‘standard’ approach.

Remark 1.1. Nonlinear oscillators with quasi-periodic forcing terms with two frequencies that are ‘almost’ the
same have also been studied in [15,26,27]. In [15] and [26] the existence of ‘local’ chaotic solutions, i.e. close to
a center point of the integrable limit, was shown by a ‘classical’ analysis similar to that of [17]. As in [17], no
attention has been paid in [15,26] to the possibility of ‘mixed’ intersections, see Remark 4.1.

2. The integrable Helmholtz oscillator

In this section we study the integrable limit associated to (1.1) for a class of general basins. We show that the
flow induced by this integrable system can only have periodic ‘free tidal oscillations’ and a center point. We pay
special attention to the periodT0(H) of such a free tidal oscillation as function of the ‘energy’H . We determine
explicit approximations forT0(H) near the center point and study the behavior ofT0(H) in several examples.

2.1. The phase portrait

System (1.1) is integrable in the limit without friction or forcing:

v̈ + ζ(v) = 0. (2.1)

The integralH of this Helmholtz oscillator is defined by

H = v̇2 + 2Z(v), Z(v) =
∫ v

0
ζ(ṽ) dṽ. (2.2)

The dynamics of (2.1) is determined by thegeometry of the basin throughζ(v), the surface elevation as a function
of the excess volumev. The geometry of a basin is prescribed by a ‘shape function’z = h(x, y): h gives a relation
betweenz, the height or depth of the boundary or bottom of the basin and the span-wise coordinatesx andy; z

is normalized such thatz = 0 refers to the mean sea level. Note thatz = 0 also corresponds to an excess volume
v = 0. The functionh(x, y) determines the so-called ‘wetted area’A(z) at heightz: A(z) is the surface area of the
water in the basin at the water heightz. Hence,A(0) = A0 as in (1.2), the surface area of the basin at the mean
sea level. The surface elevation as function of the excess volumev, the termζ(v) in (1.1) is, of course, determined
directly by the wetted areaA(z) (see below for the details): all geometrical ‘information’ of the basin enters (1.1)
and (2.1) through the functionA(z).

In this paper we consider (scaled) two-dimensional basins given byz = h(x) (see Fig. 1) or equivalently,
three-dimensional basins that have a trivial, linear, structure in they-direction. This is purely for technical reasons,
since it is less cumbersome for these basins to obtain the explicit relation between the shape of the basin and the
nonlinearity in (1.1) and (2.1). More realistic three-dimensional basins can be studied along the same lines: the
geometry of the basin defines the nonlinear term in (1.1) and (2.1) through the relation betweenh(x, y) and the
surface areaA(z).

We scale the basin by assuming thath(±(1/2)) = 0 and that the basin has its maximum depth atx = 0:
h(0) = −1. This implies for the Helmholtz frequency thatσH = 1 (1.2). In order to reduce the technicalities
of the calculations as much as possible, we simplify the analysis even further by assuming thath(x) is symmetric
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Fig. 1. A typical scaled basin of ‘tidal flat type’ (see Section 2.2).

(h(−x) = h(x)), sufficiently smooth, and non-decreasing as a function ofx for x ≥ 0, see Fig. 1. As a consequence,
the shape functionz = h(x) can be inverted forx ≥ 0. This is of course special for the symmetric, non-decreasing
functionsh considered here.

Under these assumptions, the wetted areaA(z) of the basin at heightz is given byA(z) = 2h−1(z) (z ≥ −1).
The excess volumev = V (ζ ) is determined by its integral from the mean sea level to the surface,ζ :

v = V (ζ ) =
∫ ζ

0
A(z) dz = 2

∫ ζ

0
h−1(z) dz. (2.3)

The nonlinear termζ(v) appearing in (1.1) and (2.1) can thus be expressed in terms of the geometryh(x) of the
basin by taking the inverse ofV (ζ ) in (2.3):ζ(v) = V −1(v). Note thatV (ζ ) is monotonous and thus invertible, by
construction, sinceA(z) ≥ 0. As a consequence,ζ(v) also is monotonous and invertible.

In this paper we will mainly focus on the case of small amplitude oscillations, i.e.|v| � 1. In this caseζ(v) can
be expanded as a Taylor series inv, with coefficientsζi = diζ/dvi(0), i = 1, 2, 3, . . . . These coefficients can be
expressed in terms of the local geometry of the basin nearz = 0 by the above procedure:

ζ1 = 1, ζ2 = − 2

h1
, ζ3 = 2

6h1 + h2

h3
1

, . . . , hi = dih

dxi

(
1

2

)
. (2.4)

The resultζ1 = 1 is equivalent toσH = 1 (1.2), it is due to our scaling of the width and depth of the basin atz = 0,
and other, similar, scalings. Note that the geometry can be such thath1 = 0. However,h(x) is non-decreasing (thus
h2 = 0 if h1 = 0), so thatζ(v) can locally still be expressed in terms of thehi for i = 3, 4, . . . , although the
expansion ofζ(v) will have a different structure than in (2.4).

The monotonically increasing functionζ(v) can only be defined forv ≥ vlow
c where, by (2.3),

vlow
c = −2

∫ 0

−1
h−1(z) dz = 2

∫ 1/2

0
h(x) dx < 0, (2.5)

vlow
c is the (negative) excess volume of the empty basin. Thus, the solutionsφ(t) of (1.1), and its integrable limit

(2.1), are not allowed to enter the{v < vlow
c } part of the phase space by this natural condition. Sinceζ(v) changes

sign atv = 0 it follows thatZ(v) > 0 for all v �= 0, which yields thatH ≥ 0 (2.2). Moreover, the monotonicity
of ζ(v) also implies that the Helmholtz oscillator (2.1) only has one critical point,(0, 0) at H = 0, of center type
(2.4). Thus, the only allowed solutions of (2.1) are the one-parameter family of periodic solutions around(0, 0).
This family is bounded by a critical orbitφc(t), at the level set

H = Hc = 2Z(vlow
c ) = 2

∫ 1/2

0
h2(x) dx > 0 (2.6)
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(2.2) and (2.3), that is tangent to the line{v = vlow
c }. This orbit represents the critical oscillation in which all water

has flown out of the basin at low tide. We definev
high
c > 0, andζ high

c > 0, as the excess volume, and relative elevation
of the water at high tide of the critical oscillation:v

high
c is the second zero of the equationH = Hc = 2Z(vlow

c ) and

ζ
high
c = ζ(v

high
c ). Note that the excess volume and the (relative) elevation of the water in the basin at high tide are

in general not the same as the equivalent quantities at low tide, i.e.v
high
c �= |vlow

c | andζ
high
c �= 1 (in general).

2.2. The period of the Helmholtz oscillator

The critical orbitφc(t) plays a role similar to the homoclinic orbit, or the pair of heteroclinic orbits, in classical,
nonlinear oscillators, such as the Duffing equation or the mathematical pendulum, in the sense that it is the boundary
of a one-parameter family of periodic orbits around the center point(0, 0). However, there is an essential difference:
the period of the Helmholtz oscillator does not become unbounded asH approachesHc. The periodT0(H) of the
orbit φ(t;H) = (v(t;H), v̇(t;H)) is given by

T0(H) = 2
∫ vhigh(H)

vlow(H)

dv√
H − 2Z(v)

, (2.7)

wherevlow(H) < 0 < vhigh(H) are thev-components of the two intersections ofφ(t;H) with the v̇-axis, i.e.
vlow(H) and vhigh(H) represent the excess volumes at low and high tide. The periodT0(H) is the nonlinear
counterpart of the classical, linear Helmholtz periodTH = 2π/σH (1.2), whereTH = T0(0) by construction.

The occurrence of resonances between the forcing termζext(t) and the free oscillations of the Helmholtz oscillator
(2.1) is of crucial importance for the dynamics of the full system (1.1). Therefore, it is necessary to study the behavior
ofT0 as a function ofH . Since we mainly focus on small amplitude oscillations in this paper we first give an expansion
of T0(H) for H � 1:

T0(H) = 2π(1+ T2H +O(H 3/2)), T2 = 1

48
(5ζ 2

2 − 3ζ3) = −8h1 + 3h2

24h3
1

(2.8)

(2.3) and (2.4). There are two remarkable things about this expression: (i) the leading order correction to the linear
Helmholtz period/frequency (1.2) depends both on the local slope of the basinh1 = h′(1/2) and on the local
‘curvature’ h2 = h′′(1/2); (ii) the sign of this correction can both be positive and negative. Note that the period
increases away from the center point for standard (mechanical) nonlinear oscillators (i.e.T2 > 0 in these systems).
In the next section we will find thatT2 plays a crucial role in the analysis of small amplitude solutions of (1.1).

The periodT0(H) can be expressed explicitly in terms of the geometry of the basinh(x) by the transformations
in (2.3). We do not present the details of this straightforward procedure here. For the critical orbit it results in

Tc = T0(Hc) = 2
∫ x

high
c

0

xh′(x)√
− ∫ x

0 ξh(ξ)h′(ξ) dξ

dx, (2.9)

wherex
high
c = h−1(ζ

high
c ). Note thatTc is always bounded and that it can be both larger or smaller than the linear

Helmholtz periodTH = 2π .
The behavior ofT0 as a function ofH differs, in general, essentially from that in mechanical oscillators, as we

shall illustrate briefly in two examples.
For the first example we consider a class of basins that generalizes the ‘triangular’ basin considered in [8,16,17]:

h(x;α) = (2x)α − 1, α > 0, for x ≥ 0, h(−x;α) = h(x;α): α → ∞ gives the rectangularlinear basin (Fig. 2c),
α = 1 the triangular basin of [8,16,17] (Fig. 2b), andα < 1 a ‘trough’ (Fig. 2a), not unlike the trench often found in
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Fig. 2. Three plots of the class of basins that generalizes the ‘triangular’ basins studied in [8,16,17]: (a)α < 1, a ‘trough’; (b)α = 1, the
triangular basin of [8,16,17]; (c)α > 1 a basin that limits on the rectangular basin asα →∞.

tidal flat areas. It follows from (2.8) thatT2(α) = −(3α + 1)/48α2 < 0 for all α > 0. Hence,T0(H, α) decreases
as a function ofH , for H small. By (2.9) we find (with the aid of Mathematica) that

Tc(α) = 2
√

π

√
α + 1

2α

(
2α + 1

α + 1

)(α+1)/2α
Γ ((α + 1)/2α)

Γ ((2α + 1)/2α)
,

whereΓ (z) is the Gamma function. It follows that limα↓0Tc(H ;α) = 2
√

eπ , limα→∞Tc(H ;α) = 2π , and
Tc(α) ∈ (2

√
eπ, 2π) (with, e.g.,Tc(1) = 6 [16,17]). Note that limα→∞T0(H ;α) ≡ 2π , since the basin becomes

rectangular in this limit (Fig. 2c). Numerical approximations indicate thatT0(H ;α) decreases monotonically as a
function ofH .

Next, we consider models that are (loosely) inspired on the character of the tidal basins of the Wadden Sea. Large
parts of these basins, the so-called tidal flats, are above sea level at low tide. This implies that the tidal oscillation
in the Wadden Sea can certainly not be considered as being of small amplitude, on the contrary: in each of the tidal
basins of the Wadden Sea, the ratio between the total volume of water in the basin at high tide to the (unscaled) sum
vhigh + |vlow| ranges between 0.5 (the Marsdiep basin) to almost 1 [16].

We takeh(x;β) = −1+c1(β)x2+βx4+c3(β)x6 with c1,3(β) such thath((1/2);β) = 0 and such thath′(x;β)

andh′′(x;β) vanish at the same pointsx = ±xflat(β) �= 0. Thus, althoughh(x;β) is monotonically increasing for
x ≥ 0, the basin is indeed flat at the inflection pointsx = ±xflat(β) (Fig. 1). The position of the flat part of the basin,
i.e.xflat(β), can be controlled by varyingβ: xflat(β) ∈ (0,∞). With the aid of Mathematica it can be checked by the
above general results onT0(H) (2.8) and (2.9) that bothT2(β) andT0(Hc;β)− 2π can change sign independently
within this β-family of ‘tidal flat basins’. Hence, there exist basins in whichT0(H ;β) can have a maximum or a
minimum as a function ofH for a certainH = Hm(β) ∈ (0, Hc). As a consequence, the external forcingζc(t) can,
for instance, be in 1:1 resonance withtwo different free oscillations of the Helmholtz oscillator (2.1).

These examples show that the behavior as a function of the HamiltonianH of the periodT0(H), or equivalently,
the (nonlinear Helmholtz) frequency, of an integrable tidal oscillator, can be quite rich compared to the monotonic
character of the period in classical examples of mechanical oscillators. As a consequence, there can also be new types
of resonant interactions. This will be the subject of future research. In this paper we focus on the small amplitude
case, so thatH � 1.

3. Small amplitude oscillations

In this section we focus on the case of small amplitude oscillations of the excess volumev(t). We scale system
(1.1) such that we can apply the method of averaging and derive a generalization of the modulation equation
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in [17]. The integrable limit can again have a saddle point with an ‘inner’ and an ‘outer’ homoclinic orbit. The
existence of these orbits is determined completely by the relation between the characteristics (frequency, amplitude)
of the dominant, lunar component of the exterior tide and the deviation of the nonlinear Helmholtz frequency from
the linear Helmholtz frequencyσH . This deviation, i.e. in essenceT0(H) − T0(0) for smallH , is determined by
the geometry of the basin. Thus, we find that the possibility of a chaotic response of the tide in a basin to a given
exterior forcing tide, is determined by the geometry of that basin.

The main motivation to use the method of averaging is that it enables us to obtain full control on the validity
of the approximation on the relevant time scale [22]. This is necessary, since a Melnikov analysis requires validity
on long time scales. It is shown that a Melnikov analysis of the averaged system is possible, in the sense that the
approximation is valid on the time scales necessary for the Melnikov method. However, it has to be assumed that
the ratio of the amplitude of the solar and the lunar exterior tide isO(δ) with 0 < ε � δ � 1. The analysis cannot
be expected to be valid whenδ = O(ε), whereε is the asymptotic parameter of the averaging procedure, since in
that case one has to be able to approximate the flow on time scales that exceed those for which the validity of the
approximation is guaranteed by the averaging method.

Next, we study all possible intersections of the stable and unstable manifolds to the saddle point of the Poincaré
map associated to the weakly forced modulation equation. We show that apart from the two ‘standard’ Melnikov
functionsMin(T0) andMout(T0), there is a third Melnikov function,Mmixed(T0) that measures the distance between
stable and unstable manifolds that merge with different homoclinic orbits in the limitδ → 0. All three Melnikov
functions can be represented by explicit expressions. The ‘mixed’ Melnikov function is constructed by a careful
analysis of the path of an (un)stable manifold as it follows the framework spanned by both the outer and the inner
(unperturbed) homoclinic orbits. Here, the passage of a manifold near the saddle point requires special attention
(see also Remark 3.5).

3.1. The averaged equations

We introduce 0< ε � 1 andV = V (t) by v = εV and use (2.4) to obtain a leading order expansion of the
left-hand side of (1.1) in terms of the geometry. We then ‘tune’ the magnitude (with respect toε) of the quasi-periodic
forcing term and of the friction term at the right-hand side of (1.1) to the character of the integrable limit (2.1) of
(1.1)—see Remark 3.1. Therefore, we assume thatζext(t) = ε3Z(t) andγ (v̇) = ε2Cv̇, so that (1.1) can be written as

V̈ + V = −1
2εζ2V

2 + ε2[−1
6ζ3V

3 + Z(t) − CV̇ ] +O(ε3). (3.1)

Note that we thus have assumed that the surface elevation of the exterior seaζext(t) = O(ε3) � ζ(v) = ζ(εV ) =
O(ε), the surface elevation within the basin. This amplification is in essence the ‘strictly linear phenomenon’ due
to resonance, mentioned in Section 1 [3,11]. We furthermore assume that both the semi-diurnal lunarM2 tide and
the semi-diurnal solarS2 tide are almost in 1:1 resonance with the small amplitude periodic orbits of the integrable
system (2.1). By (2.2) and (2.8) we know thatT0 − 2π is O(ε2) in anO(ε) neighborhood of the center point.
Therefore we can now introduce an explicit, simplified, expression for the external quasi-periodic forcing term:

Z(t) = F cos(ωt + θ) + Fsol cos(ωsolt + θsol), ω = 1+ ε2σ, ωsol = 1+ ε2σsol (3.2)

so that, by constructionω ≈ ωsol ≈ 1. The weak quasi-periodicity of the forcing term is established by the condi-
tion σ �= σsol. Note that we have thus assumed (for simplicity) that the external tideζext(t) only has semi-diurnal
components (i.e.M4, S4, etc., and diurnal components have all been neglected).

The scaled Eq. (3.1) can be brought into a ‘standard form for averaging’ [9,22] by introducing the polar coordinates
R(t) andΦ(t) through the phase-amplitude transformation,

V (t) = R(t) cos(ωt − Φ(t)), V̇ (t) = −ωR(t) sin(ωt − Φ(t)), (3.3)
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so that (3.1) can be written as a three-dimensionalt-periodic system

Ṙ = ε

[
1

2
ζ2R

2 cos2(ωt − Φ) sin(ωt − Φ)

]
+ ε2[G(R, Φ, Σ, ωt) sin(ωt − Φ)] +O(ε3),

Φ̇ = ε

[
−1

2
ζ2R cos3(ωt − Φ)

]
+ ε2

[
− 1

R
G(R, Φ, Σ, ωt) cos(ωt − Φ)

]
+O(ε3),

Σ̇ = ε2[Ω], (3.4)

where

G(R, Φ, Σ, ωt)= 1
6ζ3R

3 cos3(ωt − Φ) − 2σR cos(ωt − Φ) − F cos(ωt + θ),

−Fsol cos(ωt + Σ) − CωR sin(ωt − Φ),

Ω = σsol − σ. (3.5)

The special quasi-periodic structure of the driving force (3.2) has been incorporated in the slow variableΣ . Note
that it is immediately clear from the structure of (3.1) that first-order averaging will yield a trivial result, i.e. the ‘net
contribution’ of the termεζ2V

2 is 0, so that the averaged quantitiesR̄ andΦ̄ are constant on a 1/ε time scale (at
leading order) [9,22]. Therefore, we average system (3.4) to second-order [22] and obtain

R̄′ = −1
2CR̄ + 1

2[F sin(Φ̄ + θ) + Fsol sin(Φ̄ + Σ̄)] +O(ε),

Φ̄ ′ = σ + 1

48
(5ζ 2

2 − 3ζ3)R̄
2 + 1

2R̄
[F cos(Φ̄ + θ) + Fsol cos(Φ̄ + Σ̄)] +O(ε),

Σ̄ ′ =Ω +O(ε), (3.6)

where the derivatives are now taken with respect to the natural slow timeT = ε2t associated to the second-order
averaging procedure. Since(R̄, Φ̄, Σ̄) only evolves on theO(1/ε2) time scale, i.e. since first-order averaging yields
a trivial result, it follows that the approximation of(R, Φ, Σ) by (R̄, Φ̄, Σ̄) isO(ε2) accurate on aO(1/ε2) time
scale, i.e. the solutions of (3.6) giveO(ε2) accurate approximations of the solutions of (3.4) as long asT = O(1)

[22] (see Remark 3.2).
The averaged equation can be interpreted more directly in Cartesian coordinates, therefore we introduceX(T )

andY (T ) by

X(T ) = R̄ cos(Φ̄), Y (T ) = R̄ sin(Φ̄), (3.7)

so that (3.6) can be brought into the leading order two-dimensional form

X′ = −Y [σ + T2(X
2 + Y 2)] + 1

2F sinθ − 1
2CX + 1

2Fsol sin(ΩT + Σ0),

Y ′ =X[σ + T2(X
2 + Y 2)] + 1

2F cosθ − 1
2CY + 1

2Fsol cos(ΩT + Σ0), (3.8)

where we have used (2.8). Note that (3.8) can also be derived more directly from (3.1) by using the van der Pol
transformation [22] instead of the phase-amplitude transformation (3.3).

Observe that all ‘information’ on the geometry of the basin is concentrated in a single coefficient,T2, the leading
order approximation of the difference between the classical, linear Helmholtz periodTH = 2π/σH and its nonlinear
generalizationT0(H) (2.7) and (2.8). We can indeed conclude that the nonlinear Helmholtz period (or frequency)
is the dominant quantity in the representation of the structure of a basin in the description of its tidal dynamics,
like in the classical, linear case [11,28]. Since we are interested in the influence of the geometry of the basin on the
dynamics of (1.1) we assume thatT2 �= 0, although it should be noted thatT2 can be 0 with a non-trivial geometry
(2.8).
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Without loss of generality, we setθ = 0; θ originally described a phase shift in (3.2), changingθ corresponds
through (3.3) and (3.7) with a rotation ofX andY in (3.8), and a shift inΣ0.

Remark 3.1. We have made several choices to arrive at (3.1) and (3.2). Of course, the assumption that the system is
in 1:1 resonance is arbitrary, different resonances can be studied along the same lines (see Section 5). The assumption
that the excess volumev is small with respect to the total volume of the basin is very natural, although it is certainly
not valid for all natural basins, see Section 2. However, the assumptions on the relations between the magnitudes
of |v|, |ζext(t)|, |γ (v̇)| and |ω − ωsol| are motivated by the (mathematical) preference to balance the influences
of all four competing components in (3.1)—the geometry, the forcing and its quasi-periodicity, and the friction.
In that sense the above scalings can be interpreted as a ‘significant degeneration’ in the terminology of (singular)
perturbation theory [5].

Remark 3.2. The ‘modulation equation’ (3.6) can also be obtained by the method of multiple time scales, as was
done for a special ‘triangular’ basin (see Section 2) in [17]. Here, we prefer the method of averaging, since we
need the (classical) results on the accuracy and the validity of the approximation procedure (that can for instance
be found in [22]) in order to be able to apply Melnikovs method to (3.6) and (3.8).

3.2. The periodically forced Helmholtz oscillator

By settingFsol = 0, we recover the case of a periodic, lunar, forcing in (1.1), see (3.2). System (3.8) can now be
seen as a Hamiltonian system with friction. This system has been studied in more detail in [16,17] in the special
case of a ‘triangular’ domain, so thatT2 = −(1/2) (see Section 2). The integrable structure is common for weakly,
periodically forced planar systems at resonance: in weakly forced systems, non-trivial, chaotic, behavior can only
be expected near saddle connections, see for instance [9,25].

The integrable limit is obtained by setting, in addition,C = 0. The Hamiltonian reads

H(X, Y ) = − 1

4T2
[σ + T2(X

2 + Y 2)]2 − 1

2
FX. (3.9)

The critical points of the Hamiltonian system are given by

T2X
3 + σX + 1

2F = 0, Y = 0. (3.10)

Hence, if sign(T2) = sign(σ ), then there is only one critical point (of center type) in the integrable limit, if sign(T2)

�= sign(σ ), then there are up to three critical points (by varyingF ): two centers and one saddle (see Fig. 3). Note

Fig. 3. The unperturbed, i.e. integrable, averaged system: (3.8) withC = Fsol = 0; F is chosen such that there are two center points, a saddle
pointPs = (Xs, 0), and two homoclinic orbits to the saddlePs, the outer orbitγ hom

out and the inner orbitγ hom
in .
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that only the latter, most interesting, case corresponds to a situation in which the frequency of the dominant (lunar)
tide,ω = 1+ ε2σ , (3.2) can be in exact 1:1 resonance with one of the natural small amplitude oscillations of the
basin withH = ε2Ĥ (2.1) and (2.2), since the nonlinear Helmholtz frequency of such an oscillation is given by
σH (ε2Ĥ ) = 2π/T0(ε

2Ĥ ) = 1− ε2ĤT2 +O(ε3) (2.8).
In the next (sub)sections we will consider (3.8) as a periodically forced integrable system. We will assume that

bothC andFsol are asymptotically small, ofO(δ), with 0 < ε � δ � 1 (see Section 3.3 for a detailed motivation).
Since one of the main themes of this paper is to show that a weakly, quasi-periodically forced Helmholtz oscillator
exhibits chaotic behavior, while there are no saddle connections in the integrable limit (2.1), we will only consider
the case in which there can be saddle points, and thus homoclinic orbits, in the integrable limit of the averaged
system (3.8), see Remark 3.3. Hence, we can conclude that there can only be non-trivial behavior in (3.8) (with
C, Fsol = O(δ)), when the dominant (lunar) component of the external quasi-periodic forcing term (3.2) can be in
exact resonance with one of the ‘nonlinear’ small amplitude periodic orbits of (2.1). Note that the geometry of the
basin thus completely determines, throughT2 (2.8), the possibility of chaotic behavior, since the frequency of the
lunar tide must be considered as given.

In this paper we considerT2 < 0 < σ . The situationσ < 0 < T2 can be transformed into this case. Without
loss of generality we can setT2 = −1 andσ = 1 in (3.8), by rescalingX, Y, F, C, Fsol. This is in essence the case
studied in [17]. It follows from (3.10) that the Hamiltonian limit of (3.8), i.e.C = Fsol = 0 with σ = −T2 = 1,
can only have saddle points when−(4/9)

√
3 ≤ F ≤ (4/9)

√
3. WhenF �= 0,±(4/9)

√
3 there is one saddle

point,Ps = (Xs, 0), and two critical points of center type. This saddle point defines the level setH(X, Y ) = Hhom

(3.9). There are two homoclinic orbits in this level set: anouter orbit γ hom
out (T ) and aninner orbit γ hom

in (T ) (see
Fig. 3), both limiting on(Xs, 0). As F → (4/9)

√
3, or−(4/9)

√
3, the saddle point merges with one of the center

points;γ hom
out (T ) andγ hom

in (T ) merge asF → 0. TheX-coordinateXs of Ps is positive for−(4/9)
√

3 < F < 0;
the case of a saddle point with a negativeX-coordinate can be obtained from this by transformingX → −X,
Y →−Y andF →−F (which corresponds, once again, to a phase shift in (3.6)). Therefore, we focus on the case
−(4/9)

√
3 < F < 0.

In the next section we will study the influence of small,O(δ), perturbation terms in the integrable limit system by
the Melnikov method [9,25]. In order to perform the necessary calculations, we need explicit expressions forγ hom

out (T )

andγ hom
in (T ). These expressions can be obtained by introducing the auxiliary variableS = S(T ) = (X2+Y 2)−1.

In terms of this new variable, the homoclinic orbitsγ hom
out,in(T ) correspond toShom

out,in(T ). It is shown in Appendix A
that

Shom
out (T )= Ss+

(
cosh2µT

S+ − Ss
− sinh2µT

S− − Ss

)−1

= Ss+ As

−as+ cosh 2µT
,

Shom
in (T )= Ss+

(
cosh2µT

S− − Ss
− sinh2µT

S+ − Ss

)−1

= Ss+ −As

as+ cosh 2µT
. (3.11)

We refer to (A.3) and (A.4) in Appendix A for explicit expressions for the constantsSs < 0, S+ > Ss, S− < Ss,
As > 0, as ∈ (0, 1) andµ > 0. The Melnikov analysis of the next section will be based on (3.11).

Remark 3.3. The dynamics of (3.8) in the case sign(T2) = sign(σ ) andC, Fsol = O(δ) is, of course, not completely
trivial. The driving frequencyΩ can be in resonance with one or more periodic orbits of the integrable limit, so that
one, once again, can study the system by averaging, or by the subharmonic Melnikov method [9,25] (note that these
procedures are only valid for 0< ε � δ � 1, see Section 3.3). Hence, one can establish the existence of various
types of periodic orbits in (3.8).
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3.3. Perturbed homoclinic orbits: the Melnikov functionsMout andMin

In this section and the next section we study a weakly forced version of (3.8)

X′ = −Y [1 − (X2 + Y 2)] + δ[−1
2C̃X − 1

2F cos(ΩT )] +O(ε),

Y ′ =X[1 − (X2 + Y 2)] + 1
2F + δ[−1

2C̃Y + 1
2F sin(ΩT )] +O(ε), (3.12)

whereε � δ � 1 has been defined by the natural assumption that the amplitude of the solar tide is (asymptotically)
small compared to that of the lunar tide:Fsol = δF (3.2). Moreover, we have chosenΣ0 = −π/2, in order to be
able to compare the outcome of the Melnikov calculations with those in [17]. This choice is not at all essential:Σ0

does not have any (leading order) influence on the existence of transversal intersections of the homoclinic orbits of
(3.12) with generalΣ0 (it does have influence on the location of these intersections, but that is not relevant for the
existence of Smale horseshoes, etc., see also Remark 3.6). Furthermore, we have setσ = −T2 = 1, θ = 0, as was
explained in the previous section, andC = δC̃ (the tilde will be dropped in the subsequent analysis). System (3.12)
can be written in the standard, autonomous form

d

dT


 X

Y

Θ


 =




∂H

∂Y
(X, Y )

−∂H

∂X
(X, Y )

Ω


+ δ



G1(X, Y, Θ)

G2(X, Y, Θ)

0


+O(ε) for (X, Y, Θ) ∈ R2 × S1, (3.13)

whereH(X, Y ;F) is the Hamiltonian (3.9) and(G1,G2) the 2π/Ω periodic perturbation term. System (3.13) has a
hyperbolic 2π/Ω periodic orbit that isO(δ) close to the saddle pointPs of the unperturbed problem. A more precise
formulation of this result can be given in terms of the Poincaré mapPT0 associated to (3.13), whereT0 ∈ [0, 2π/Ω)

defines the sectionΣT0 = {Θ = T0} on whichPT0 is defined. There exists a neighborhoodDP of Ps in which the
mapPT0 has a saddle pointP T0

δ that isO(δ) close to the saddle pointPs of the unperturbed (δ = ε = 0) limit of

(3.13). Moreover, the (local) stable and unstable manifolds ofP
T0
δ in DP , W

s,u
loc (P

T0
δ ), areO(δ) close to the (local)

stable and unstable manifolds ofPs in the Hamiltonian limit system [9,25].
In the analysis of (3.13), it is essential to assume that 0< ε � δ � 1, i.e. thatδ is anO(1) quantity compared

to ε. This is because the averaging method only givesO(1) accuracy onO(1) T -time intervals in (3.8) and thus
in (3.13) [22]. A priori, one might think that it is thus not at all possible to apply Melnikovs method to measure
the splitting distances in the perturbed homoclinic orbits of the averaged system (3.13), since this method involves
integrals over (semi-)infinite time intervals. However, inside the above defined neighborhoodDP the behavior of the
integrable limit persists, and one has full control over the flow generated by (3.13). There exist similar persistence
results in the literature on the averaging method (see for instance [22]) that relate a critical point of the averaged
system to a periodic orbit of the full system. The application of these results to the periodically forced system (3.4)
without dissipation, i.e.Fsol = C = 0 in (3.4), yields that the saddle pointPs of the integrable system, and its local
characteristics, corresponds to a periodic orbit of the original system (3.4) with the corresponding local character
(note that (3.4) reduces to a two-dimensional system when there is no solar component in the forcing term, i.e.
whenFsol = δF = 0, see (3.5)). The combination of the two persistence results yields that one only needs to
approximate the global stable and unstable manifolds ofP

T0
δ , W s,u(P

T0
δ ), outsideDP , andW s,u(P

T0
δ ) only spend

a finite time interval outsideDP in the application of the Melnikov method [9,25]. Assuming that the magnitude
δ of the perturbations in (3.13) isO(1) with respect toε, implies that the time interval over which one needs to
approximate theW s,u(P

T0
δ ) is alsoO(1) with respect toε. Hence, when 0< ε � δ � 1 there is no conflict between

the application of the Melnikov method and the averaging method (see Remark 3.4).
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Fig. 4. A sketch of the four stable and unstable manifoldsW s
out(P

T0
δ ), Wu

out(P
T0
δ ), W s

in(P
T0
δ ), andWu

in(P
T0
δ ) to the saddle pointP T0

δ of the Poincaŕe
mapPT0 associated to (3.12). Note that there are no intersections in this case.

The perturbations in (3.13) will, in general, break both homoclinic orbits ofPs in the Hamiltonian limit. The
Melnikov method measures the (leading order) splitting distance between the stable and unstable manifolds ofP

T0
δ ,

W s(P
T0
δ ) andWu(P

T0
δ ). In standard applications of the Melnikov method [9,25] there is only one homoclinic orbit

to the saddle point in the integrable limit, so that one only has to measure the distance between those branches of the
stable and unstable manifolds that correspond to that one homoclinic orbit. The system studied in this paper (3.13)
has two homoclinic orbits to the same saddle point in the integrable limit,γ hom

out (T ) andγ hom
in (T ) (Section 3.2). Thus,

we have to distinguish between two pairs of stable and unstable manifolds,W
s,u
out(P

T0
δ ) andW

s,u
in (P

T0
δ ) (see Fig. 4).

In this section we will determine explicit expressions for the ‘standard’ Melnikov functionsMout(T0) and
Min(T0);Mout(T0) measures the splitting distance betweenW s

out(P
T0
δ ) andWu

out(P
T0
δ ),Min(T0) betweenW s

in(P
T0
δ )

andWu
in(P

T0
δ ). This distance is measured at a reference pointγ hom

out,in(0) in terms of the natural weighted distance
associated to the HamiltonianH of the integrable limit (3.9) [9,25]. Note that one has to multiplyMout,in(T0) with
δ/‖(∂H/∂X(γ hom

out,in(0)), ∂H/∂Y (γ hom
out,in(0)))‖ to obtain the expression for the (leading order) Euclidian distance be-

tweenW s
out,in(P

T0
δ ) andWu

out,in(P
T0
δ ) at the pointγ hom

out,in(0) in a cross-section that is perpendicular to the unperturbed
homoclinic manifold [9,25]. We will always refer to this weighted ‘energy’ distance function when we measure the
distance between two manifolds.

In the next section we will consider the ‘mixed’ intersections,Wu
out(P

T0
δ )∩W s

in(P
T0
δ ) andW s

out(P
T0
δ )∩Wu

in(P
T0
δ ).

It follows from the standard theory [9,25] that

Mout,in(T0) =
∫ ∞

−∞







∂H

∂X
(γ0(T − T0))

∂H

∂Y
(γ0(T − T0))


 ·

(
G1(γ0(T − T0), ΩT )

G2(γ0(T − T0), ΩT )

)
 dT , (3.14)

whereγ0(T ) = (X0(T ), Y0(T )) = γ hom
out,in(T ) (Section 3.2). The Melnikov functionsMout,in(T0) can be computed

explicitly using the results of the previous section and Appendix A. It is shown in Appendix B that

Mout(T0;Ω, C, F )=−2

[
C

(
φout− 3 tanφout

3+ tan2φout

)
+ πΩ2

sinhksπ
eksφout cos(ΩT0)

]
,

Min(T0;Ω, C, F )=−2

[
C

(
−φin + 3 tanφin

3+ tan2φin

)
+ πΩ2

sinhksπ
e−ksφin cos(ΩT0)

]
, (3.15)
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whereks = Ω/µ, φout,in are determined by

cosφout = −as with φout ∈
(π

2
, π

)
, cosφin = as with φin = π − φout ∈

(
0,

π

2

)
, (3.16)

andµ andas are given in (A.4). We note that a simple zero ofMout(T0), respectivelyMin(T0), corresponds to a
transversal intersection ofW s

out(P
T0
δ ) andWu

out(P
T0
δ ), respectivelyW s

in(P
T0
δ ) andWu

in(P
T0
δ ) [9,25].

Remark 3.4. The ‘interactions’ of the Melnikov method and the averaging method have been discussed in more
detail in [9]. The limitations on the accuracy and the time scales of the approximation by an averaged system also
imply that the leading order correction terms in an averaged system like (3.13), that can be computed by another
round of averaging, cannot be used as additional ‘input’ in a Melnikov calculation, although such input might lead
to interesting, but in general spurious, phenomena in quasi-periodically forced oscillators [27].

3.4. The ‘mixed’ Melnikov functionMmixed

Due to the presence of two homoclinic orbits emanating from the same saddle pointPs in the integrable limit,
there can also be intersections of the outer stable or unstable manifolds of the saddle pointP

T0
δ , W

s,u
out(P

T0
δ ) of the

Poincaré mapPT0 associated to (3.13) with the inner unstable or stable manifolds ofP
T0
δ , W

u,s
in (P

T0
δ ) (see Figs. 4

and 7).
In this section we will construct a ‘mixed’ Melnikov functionMmixed(T0) that measures the distance between

the manifoldsWu
out(P

T0
δ ) andW s

in(P
T0
δ ). We refer to Remark 3.5 for some background to the ideas presented in this

section.
First, we need to assume that eitherMout(T0) �= 0 for all T0, so thatWu

out(P
T0
δ ) ∩ W s

out(P
T0
δ ) = ∅, or that

Min(T0) �= 0 for all T0, i.e. W s
in(P

T0
δ ) ∩ Wu

in(P
T0
δ ) = ∅. If neither of these conditions hold, then both pairs,

W
s,u
out(P

T0
δ ) andW

s,u
in (P

T0
δ ), intersect countably many times nearP

T0
δ and both generate the well-known homoclinic

tangle structure [9,25], see Fig. 7d. In Section 4.2 we shall show that countably many ‘lobes’ ([25] and Remark 4.2)
of bothWu

out(P
T0
δ ) andW s

in(P
T0
δ ) will intersect any (transversal) cross-section at any reference point on the orbits

of eitherγ hom
out or γ hom

in (see Fig. 7d). Hence, trying to measure the distance betweenWu
out(P

T0
δ ) andW s

in(P
T0
δ ) is in

a sense irrelevant in the case that bothMout(T0) andMin(T0) have zeroes.
The outer Melnikov functionMout(T0) cannot be positive for allT0, since the non-oscillating component of

Mout (i.e. the component that does not depend onT0) is always negative ((3.15), recall thatφout ∈ (π/2, π)

(3.16)). Thus, the conditionMout(T0) �= 0 for all T0 impliesMout(T0) < 0 for all T0. A similar argument shows
thatMin(T0) must be positive when it is assumed thatMin(T0) �= 0 for all T0. Note that these conclusions
are in essence equivalent to the observation that both center points of the integrable limit system of (3.12), i.e.
δ = ε = 0 in (3.12), become attractors when one introduces friction to the system (but no periodic forcing),
see [16].

The result on the sign ofMout(T0) also implies that the outer stable manifoldW s
out(P

T0
δ ) will be ‘outside’ the

unstable outer manifoldWu
out(P

T0
δ ) whenMout(T0) �= 0 for all T0 (see Figs. 4 and 7a). Hence,W s

out(P
T0
δ ) will

spiral outwards, so that the possibility of having intersections ofW s
out(P

T0
δ ) with Wu

in(P
T0
δ ) is excluded. By the

sign ofMin(T0) we know that the unstable inner manifoldWu
in(P

T0
δ ) will be ‘inside’ W s

in(P
T0
δ ) when we assume

thatMin(T0) �= 0 for all T0 (Figs. 4 and 7a). Hence,Wu
in(P

T0
δ ) will spiral inwards, so that there can again be no

intersections ofW s
out(P

T0
δ ) with Wu

in(P
T0
δ ).

We conclude that the only ‘measurable’ mixed intersections can occur betweenWu
out(P

T0
δ ) and W s

in(P
T0
δ ).

Note that this does not imply thatW s
out(P

T0
δ ) ∩ Wu

in(P
T0
δ ) = ∅ for all parameter combinations:W s

out(P
T0
δ ) and
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Wu
in(P

T0
δ ) will intersect when bothMout(T0) andMin(T0) have zeroes (the ‘double chaos’ case, see Section 4 and

Fig. 7d).
We now assume thatMout(T0) �= 0 for all T0, so thatWu

out(P
T0
δ ) ∩W s

out(P
T0
δ ) = ∅. The outer unstable manifold

Wu
out(P

T0
δ ) will thus return to the (small) neighborhoodDP of Ps andP

T0
δ . By taking the reference pointγ hom

out (0)

at the boundary ofDP , we may conclude that the (leading order) distance betweenWu
out(P

T0
δ ) andW s

loc,out(P
T0
δ )

(the local outer stable manifold ofP T0
δ ) at the ‘entrance point’QD

entr ∈ ∂DP is given byMout(T0). In order to

determine a distance betweenWu
out(P

T0
δ ) andW s

in(P
T0
δ ) we must first followWu

out(P
T0
δ ) during its passage nearP

T0
δ

(see Remark 3.5).
It follows from the construction ofMout(T0) [9,25] that this conclusion is only valid when we assume that∂DP

coincides, at the intersection, with a (large enough) piece of the line through the intersection point, normal to the
outer homoclinic manifold of the integrable limit system (i.e. the orbit ofγ hom

out (T )). Therefore, we will assume
from now on that the neighborhoodDP of P

T0
δ has the shape of a quadrangle with sides perpendicular to the orbits

γ hom
out,in at the four intersection pointsγ hom

out,in ∩ ∂DP . This is of course no restriction. Moreover, we chooseDP such

that the Euclidian distance between those intersection points and the ‘center’Ps, or equivalentlyP T0
δ , of DP is of

O(δk) for some 0< k < 1/2 (this is, again, no restriction [9,25]). The bounds onk will be explained (and used) in
the forthcoming analysis.

Since the ‘full’ Eq. (3.13) is (by definition) dominated by the linear flow inside the regionDP ×S1, it is possible
to compute the orbits of the Poincaré mapPT0 throughDP explicitly (to leading order), and thus to determine the
path of the manifoldWu

out(P
T0
δ ) throughDP . It follows from the conditions on the ‘size’ ofDP , i.e.k > 0, that an

orbit of the mapPT0 through the entrance pointQD
entr exitsDP afterN = O(|logδ|) iterations (which isO(1) with

respect toε). It can be assumed (by adaptingDP ), without loss of generality, that(PT0)N(QD
entr) = QD

exit ∈ ∂DP .
Note that, in terms of the flow governed by (3.13), this corresponds to the assumption that the orbit through the
point (QD

entr, 0) ∈ R2 × S1 leaves the regionDP × S1 with an ‘exit’ phase equal to the ‘entrance’ phase, i.e. that
Θexit = ΩTexit = 0 (mod 2π ), whereTexit is theO(|logδ|) ‘passage time’ of that orbit throughDP × S1. Since
Wu

out(P
T0
δ )∩W s

out(P
T0
δ ) = ∅ ‘before’ Wu

out(P
T0
δ ) reachedDP , it follows thatWu

out(P
T0
δ ) does not intersect the span

{W s
loc,out(P

T0
δ ) ∪ Wu

loc,out(P
T0
δ ) ∪ W s

loc,in(P
T0
δ ) ∪ Wu

loc,in(P
T0
δ )} ∩ DP . TheEuclidian distance betweenWu

out(P
T0
δ )

and this span varies betweenO(δ) andO(
√

δ) insideDP , due to the saddle character ofP
T0
δ . This explains the

above lower bound on the size ofDP (k < 1/2). A Taylor expansion aroundPs = (Xs, 0) yields that

Ḣ(X(T ), Y (T ), Θ(T )) = δ







∂H

∂X
(X(T ), Y (T ))

∂H

∂Y
(X(T ), Y (T ))


 ·

(
G1(X(T ), Y (T ), Θ(T ))

G2(X(T ), Y (T ), Θ(T ))

)
 = O(δ1+k)

for (X(T ), Y (T ), Θ(T )) ∈ DP × S1 (since∂H/∂X(Xs, 0) = ∂H/∂Y (Xs, 0)=0). Thus, since(PT0)N(QD
entr) =

QD
exit ∈ ∂DP for someN , we may conclude that the distance, measured in terms of the Hamiltonian distance

function, betweenWu
out(P

T0
δ ) and the span{W s

loc,out(P
T0
δ ) ∪Wu

loc,out(P
T0
δ ) ∪W s

loc,in(P
T0
δ ) ∪Wu

loc,in(P
T0
δ )} ∩DP at

the exit pointQD
exit is given byMout(T0)+O(δk|logδ|), i.e. the same Melnikov expression (at leading order) as at

the entrance pointQD
entr (without any additional changes in phase, see Remark 3.6).

SinceMout(T0) < 0 for all T0, we know thatWu
out(P

T0
δ ) is ‘inside’ W s

out(P
T0
δ ), so that the exit pointQD

exit will be

O(δ) close toWu
loc,in(P

T0
δ ) (see Figs. 4 and 7a). The distance betweenWu

in(P
T0
δ ) andW s

in(P
T0
δ ) at the pointQD

exit is,
by definition, given byMin(T0) (at leading order). Hence, it follows that the Melnikov function that measures the
distance betweenWu

out(P
T0
δ ) andW s

in(P
T0
δ ) is given by

Mmixed(T0) =Mout(T0) +Min(T0), (3.17)
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under the condition thatMout(T0) < 0 for all T0. By (3.15) and the relationφout = π − φin (3.16) we thus obtain

Mmixed(T0) = −2

[
C

(
π − 2φin + 6 tanφin

3+ tan2φin

)
+ πΩ2

sinhksπ
(1+ eksπ ) e−ksφin cos(ΩT0)

]
. (3.18)

The same construction can be used to study the caseMin(T0) �= 0 for all T0. Here, however, one needs to determine
the path ofW s

in(P
T0
δ ) through the regionDP . It follows immediately that the distance betweenW s

in(P
T0
δ ) and

Wu
out(P

T0
δ ) can be expressed inexactly the same ‘mixed’ Melnikov functionMmixed(T0) that is given by (3.17) and

(3.18)). See however Remark 3.6.

Remark 3.5. It should be noted that there are more examples in the literature where ‘mixed’ Melnikov expressions
of the type considered here are derived (see for instance [2]). Nevertheless, since the system considered here does not
have a special symmetric structure (chains of homoclinic orbits appear more naturally in systems with symmetries
[2]), and since we have to deal here with the additional subtleties of deriving a Melnikov function in an averaged
system, we decided to present a completely independent and detailed derivation ofMmixed(T0). For similar reasons,
we performed an independent analysis of the passage ofWu

out(P
T0
δ ) nearP T0

δ and refrained from referring to general
results on the passage of manifolds near another (normally hyperbolic) manifold [12,13].

Remark 3.6. By construction, the Melnikov expressionsMout,Min andMmixed measure the distance between
stable and unstable manifolds relative to a given reference point on one of the unperturbed homoclinic orbits.
Therefore,Mout,Min andMmixed explicitly depend on the position of that reference point on an orbitγ hom

out or
γ hom

in . This fact can be made explicit by taking into account the changes in the phaseΘ in the computation of
the Melnikov functions, see [25]. Since we have not explicitly incorporated the influence of phase differences into
the Melnikov expressions, the expressionsMout,Min, andMmixed can only be used to see whether stable and
unstable manifold can intersect, and can in this form not directly be used to determine the precise location of the
intersections. For instance, if the parameters in the model are such thatMout(T0) can have zeroes for certain values
T int

0 of T0 (see Section 4), then we know thatW s
out(P

T0
δ ) andWu

out(P
T0
δ ) intersect transversally. However, only for

T0 = T int
0 we know the precise location of this intersection, or better, of one of the intersections: it is by construction

asymptotically close to the reference pointγ hom
out (0), i.e. by Section 3.2, near theY -axis. For other values ofT0 we

have to do some extra work to find the location(s) ofW s
out(P

T0
δ )∩Wu

out(P
T0
δ ) (we have to followγ hom

out (T ) for a time
T int

0 −T0, see [25]). The precise information on the location of the intersections of the stable and unstable manifolds
is not relevant for the forthcoming analysis. Nevertheless, this straightforward observation demonstrates that there
indeed is a quantitative distinction between the two ‘identical’ expressions derived forMmixed(T0) in the two cases
considered in this section (i.e.Mout(T0) �= 0 for all T0 andMin(T0) �= 0 for all T0). In the two constructions of
Mmixed(T0), the reference points, relative to which the distanceMmixed(T0) is measured, are in general not the
same. Therefore, the two versions ofMmixed(T0) will differ by a phase factor.

4. Chaotic behavior

In this section we interpret the outcome of the asymptotic Melnikov analysis of the previous section. It is shown
that the mixed Melnikov functionMmixed(T0) plays a crucial role in the analysis of the character of the intersections
of the stable and unstable manifolds of the saddle point.

Each of the three Melnikov functions defines a manifold in a three-dimensional parameter space—these parameters
are related to the magnitude of the friction coefficient, the amplitude of the exterior forcing, and the frequency
difference between the lunar and solar components of the forcing. Such a manifold separates the parameter space
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into two regions: one in which the associated Melnikov function can have (simple) zeroes and one in which it cannot
change sign. Together, these manifolds determine seven regions, one in which there are no transversal intersections,
and hence no chaotic solutions, and six in which there are six different types of transversal intersections possible.
Four of these six types are of a ‘mixed’ nature, in the sense that the chaotic solutions are ‘spread out’ along the
full framework spanned by the outer and inner homoclinic orbits of the unperturbed limit. By a combination of the
information obtained from the three Melnikov functions with geometrical arguments based on the nearly integrable
character of the weakly forced system, it is possible to deduce the structure of all stable and unstable manifolds of
the saddle point of the Poincaré map (and their intersections) and to construct various horseshoe maps in all six
‘chaotic’ regions.

4.1. Transversal intersections

The three Melnikov functionsMin(T0), Mout(T0) andMmixed(T0) define the three critical manifolds,Cout,
Cin andCmixed in the (Ω, F, C)-parameter space (withC > 0 and−(4/9)

√
3 < F < 0, see Section 3.2). The

definition of these manifolds is straightforward: they separate the regions in(Ω, F, C)-parameter space where
Min(T0),Mout(T0),Mmixed(T0) can have zeroes, from those where the Melnikov functions do not change sign as
a function ofT0. It follows immediately from the structure of the expressions in (3.15) and (3.18) that the manifolds
Cout,in,mixedcan be expressed in terms of a functionC = Cout,in,mixed(Ω, F ), so thatMout,in,mixed(T0) has countably
many (simple) zeroes as function ofT0 for 0 < C < Cout,in,mixed(Ω, F ), and no zeroes forC > Cout,in,mixed(Ω, F );
Cout,in,mixed are given by

Cout =
{

C = Cout(Ω, F ) =
∣∣∣∣∣ πΩ2

sinhksπ
eksφout

(
φout− 3 tanφout

3+ tan2φout

)−1
∣∣∣∣∣
}

,

Cin =
{

C = Cin(Ω, F ) =
∣∣∣∣∣ πΩ2

sinhksπ
e−ksφin

(
−φin + 3 tanφin

3+ tan2φin

)−1
∣∣∣∣∣
}

,

Cmixed =
{

C = Cmixed(Ω, F ) =
∣∣∣∣∣ πΩ2

sinhksπ
(1+ eksπ ) e−ksφin

(
π − 2φin + 6 tanφin

3+ tan2φin

)−1
∣∣∣∣∣
}

(4.1)

(recall thatφout,in = φout,in(F ) (B.6), ks = ks(Ω, F ) (B.7)). The manifoldCmixed is only defined in the region
{C > Cout} ∪ {C > Cin} (Section 3.4).

All three manifoldsCout, Cin andCmixed vanish asΩ → 0. In this limit there is no forcing term in (3.12), so that
there can be no transversal intersections of stable and unstable manifolds. Note, by (3.2) and (3.5), thatΩ = 0
corresponds to the periodically forced case (Section 3.2). Similar behavior occurs for tidal frequenciesω andωsol

(3.2) that are not both close to the same resonance, i.e. when|Ω| " 1. This is because the term sinh(ksπ) in the
denominators of the expressions in (4.1) dominates all other terms asks = Ω/2µ →±∞ (B.7). Thus, we conclude
that there can only be non-trivial (i.e. chaotic) behavior in system (3.12) when the frequencies of the ‘lunar’ and
‘solar’ components of the external forcing term (3.2) are not identical, and close to resonance.

There are two other relevant limits:F ↑ 0 andF ↓ −(4/9)
√

3. The limit F ↑ 0 corresponds by (B.6) to
φout ↓ π/2 andφin ↑ π/2. It follows from (B.5) thatµ ↓ 0 asφout,in → π/2, so that, by (B.7), all three manifolds
Cout,in,mixed approach{C = 0} exponentially fast asF ↑ 0, due to the dominating exponential growth of the term
sinh(ksπ) in the denominators in (4.1). Hence, also in this limit, all non-trivial behavior vanishes. Note that in the
integrable limit system (i.e.δ = ε = 0 in (3.12)), the inner and outer homoclinic orbit merge asF ↑ 0 (bothγ hom

out
andγ hom

in coincide with the degenerate circle of fixed points{X2 + Y 2 = 1} whenF = 0). This also implies that
Mout(T0) andMin(T0) must measure the same splitting distance in this limit, except for a change in sign, since the
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local stable manifold segment ofγ hom
out merges with the local unstable manifold segment ofγ hom

out and vice versa.
This is confirmed by (3.15):Mout,in(T0) →∓πC asF ↑ 0. It thus follows thatMmixed(T0) → 0 for F ↑ 0 (3.17).
However, this has no influence on the existence of ‘mixed’ intersections in this limit (due to the exponential decay
of Cmixed(Ω, F ) (4.1)).

A similar geometrical point of view gives additional insight in the limitF ↓ −(4/9)
√

3 that corresponds toφout ↑
π andφin ↓ 0. In the integrable limit,γ hom

in shrinks to a point asF ↓ −(4/9)
√

3, whileγ hom
out reaches a well-defined

limit. Once again we find that the structure of the manifoldsCout,in,mixed is dominated by the exponential growth of
sinh(ksπ) (since againµ → 0 asφout,in → π, 0 (B.5)). However, one must be careful in interpreting the behavior
of the Melnikov functionMin(T0) for the shrinking orbitγ hom

in . A leading order asymptotic analysis yields that

Cin(Ω, ϕ) = 45πΩ2

2ϕ5
e−(3|Ω|/2ϕ)(π+ϕ)(1+O(ϕ2)) for 0 < ϕ = φin � 1. (4.2)

Thus,Cin(Ω, ϕ) indeed decays exponentially asϕ ↓ 0 for a given fixed value ofΩ. However, the exponential decay
is not uniform inΩ, the limit of Cin(Ω, ϕ) for (Ω, ϕ) → (0, 0) does not exist (consider for instanceΩ = wϕ

for fixed w: Cin(wϕ, ϕ) behaves as 1/ϕ3 for 0 < ϕ � 1 (4.2)). Hence, the manifoldCin has a singularity at
(Ω, F ) = (0,−(4/9)

√
3) and becomes unbounded near this point, see Fig. 5.

Note that the existence of a singularity onCin also implies that it is possible to have transversal intersections
of W s

in(P
T0
δ ) andWu

in(P
T0
δ ) for arbitrarily large values of the friction parameterC, since anyC will be belowCin

for appropriately chosen values ofΩ andF . This is quite a surprising and counter-intuitive result. However, all
elements ofW s

in(P
T0
δ )∩Wu

in(P
T0
δ ) will be close to the now ‘arbitrarily small’ orbitγ hom

in and thus to the saddle point

P
T0
δ . Moreover, in order to retain the validity of the approach, it is necessary to assume thatC = O(1) with respect

to δ. This implies that one has to chooseδ (and thusε) ‘small enough’ when one wants to considerC ‘large’.
Parameter combinations(Ω, F, C) that are above all three manifoldsCout, Cin and Cmixed, i.e. C >

Cout,in,mixed(Ω, F ), correspond to ‘trivial’ flows in (3.12), in the sense that there are no intersections of the stable
and unstable manifolds to the saddleP

T0
δ of the Poincaré mapPT0. The region below the manifoldsCout, Cin and

Cmixed can a priori be divided into six subregions (see Fig. 5):

• Double chaos: C < min(Cout(Ω, F ), Cin(Ω, F )). In this region bothMout(T0) andMin(T0) have (countably
many) simple zeroes, so that there are transversal intersections of bothW s

out(P
T0
δ ) with Wu

out(P
T0
δ ) and ofW s

in(P
T0
δ )

with Wu
in(P

T0
δ ). The manifoldCmixed is not defined in this region (Section 3.4), but, as we shall show in the next

section, bothW s
out(P

T0
δ ) ∩ Wu

in(P
T0
δ ) �= ∅ andW s

in(P
T0
δ ) ∩ Wu

out(P
T0
δ ) �= ∅, see Fig. 7d. This region consists of

two components, one on either side of the plane{Ω = 0}.
• Inner chaos: max(Cout(Ω, F ), Cmixed(Ω, F )) < C < Cin(Ω, F ). Here onlyMin(T0) has zeroes, so that there

can only be transversal intersections ofW s
in(P

T0
δ ) andWu

in(P
T0
δ ). Due to the singular behavior ofCin for (Ω, F )

near(0,−(4/9)
√

3), this region, which again consists of two components, is the largest of the 6 regions, i.e. inner
chaos is the most common type of chaos in this system.

• Outer chaos: max(Cin(Ω, F ), Cmixed(Ω, F )) < C < Cout(Ω, F ). This region turns out to be empty: there are
no parameter combinations for which onlyW s

out(P
T0
δ ) andWu

out(P
T0
δ ), and none of the other combinations, have

intersections (see Remark 4.1).
• Mixed chaos: max(Cout(Ω, F ), Cin(Ω, F )) < C < Cmixed(Ω, F ). This region consists of one component with

Ω > 0. In this region there are no ‘classical’ intersections, i.e. when one considers either the perturbations ofγ hom
out

or those ofγ hom
in separately (as was done in [15,17,26]), one will conclude that there are no ‘non-trivial’ solutions

(see Remark 4.1). However,Mmixed(T0) has simple zeroes in this region, so thatWu
out(P

T0
δ ) and W s

in(P
T0
δ )

intersect transversally. Like in the classical case [9,25], these intersections can of course be related to a Smale
horseshoe map, as we shall see in the next section.
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Fig. 5. Intersections of the manifoldsCout, Cin and Cmixed with various equally spaced{F = Fi} planes, whereFi =
0.01− (4/9)

√
3 × (1 − (1/7)(i − 1)) ∈ (−(4/9)

√
3, 0), i = 1, . . . , 7. These manifolds determine the various types of chaos described

in this section. Note that the ‘outer chaos’ case does not exist.
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• Inner and mixed chaos: Cout(Ω, F ) < C < min(Cin(Ω, F ), Cmixed(Ω, F )). Here, there are ‘classical’ inter-
sections ofW s

in(P
T0
δ ) andWu

in(P
T0
δ ), whileMout(T0) �= 0 for all T0, so thatMmixed(T0) can be constructed;

Mmixed(T0) also has zeroes, which implies thatWu
in(P

T0
δ ) also intersectsW s

out(P
T0
δ ) transversally (see Fig. 7c).

This region consists of two components, one on either side of the plane{Ω = 0}.
• Outer and mixed chaos: Cin(Ω, F ) < C < min(Cout(Ω, F ), Cmixed(Ω, F )). This region consists of one compo-

nent withΩ > 0 that is close, but just below, the ‘mixed chaos’ component. There are classical, outer transversal
intersections and mixed intersections ofWu

out(P
T0
δ ) andW s

in(P
T0
δ ).

Remark 4.1. The fact that a quasi-periodic forcing term with two ‘nearby’ frequencies can create chaotic behavior of
the small amplitude solutions of a weakly forced nonlinear oscillator was already noted in [15,26]. However, in these
papers no attention has been paid to the possibility of mixed intersections, or to the construction of a mixed Melnikov
functionMmixed(T0). As a consequence, neither of the ‘mixed’ types of chaos have been discussed in these papers.
Therefore, the existence of the ‘mixed chaos’ region is of particular interest, since in this region in parameter space
there is chaotic behavior, while the ‘classical’ Melnikov functions do not change sign. Furthermore, the ‘mixed’
Melnikov analysis also shows that it is not possible to have ‘classical’ ‘outer chaos’ without mixed intersections.

4.2. The structure of W
s,u
out,in(P

T0
δ ) and the construction of horseshoe maps

Since the Poincaré mapPT0 is based on the weakly perturbed integrable flow generated by (3.12), it is possible
to obtain a geometric,qualitative insight in the structure of the manifoldsW s

out(P
T0
δ ), Wu

out(P
T0
δ ), W s

in(P
T0
δ ), and

Wu
in(P

T0
δ ) in all different cases distinguished in the previous section. Based on the behavior of the three Melnikov

functions and some fundamental properties of homoclinic tangles, it is possible to sketch a qualitative picture of the
stable and unstable manifolds. The following three properties are especially useful (see [9,25]):

• Once two manifolds intersect in a so-called ‘pip’, a ‘primary intersection point’ (see [20,25] and Remark 4.2), they
must intersect in countably infinitely many pips. Adjacent pips form an ordered sequence along the manifolds.

• Near the saddle point the amplitude of the ‘lobes’ ([20,25] and Remark 4.2) increases. This is a consequence of
the fact that the pips accumulate on the saddle pointP

T0
δ , while the area of a lobe is, at leading order, conserved

(the mapPT0 is (also) almost Hamiltonian and thus almost area-preserving, where ‘almost’ means: up toO(δ)

perturbations).
• The mapPT0 maps a pair of two adjoining lobes to the next adjoining pair of lobes. Thus, also intersections

of lobes are mapped to intersections of lobes (i.e. if two lobes intersect, their images and pre-images must also
intersect).

The structure of the manifoldsW s,u
out,in(P

T0
δ ) can now be obtained for all cases by a strict application of the above

properties, in combination with the character of the leading order, integrable flow. See Fig. 6 for the ‘classical’
‘inner chaos’ case and Fig. 7 for the four ‘mixed’ cases.

Note in particular, that it now follows that there must also be ‘mixed’ intersections in the ‘double chaos’ case,
i.e. in this caseWu

out(P
T0
δ ) ∩ W s

in(P
T0
δ ) �= ∅, but alsoW s

out(P
T0
δ ) ∩ Wu

in(P
T0
δ ) �= ∅ (see Fig. 7d) To see this, we

consider the lobes formed byW s
out(P

T0
δ ) andWu

loc,out(P
T0
δ ), nearP T0

δ (these exist, sinceMout(T0) has zeroes).

These lobes become longer and thinner the closer the pips approachP
T0
δ , and are ‘folded’ along the two branches

of the stable manifold ofP T0
δ , W s

out(P
T0
δ ) andW s

in(P
T0
δ ). SinceMin(T0) also has zeroes, there will also be lobes

formed byWu
in(P

T0
δ ) andW s

loc,in(P
T0
δ ) nearP T0

δ . These lobes will be folded alongWu
out(P

T0
δ ) andWu

in(P
T0
δ ). The

lobes ‘inside’, i.e. those that accumulate onWu
in(P

T0
δ ) will form the ‘standard’ homoclinic tangle with the lobes of

W s
in(P

T0
δ ) andWu

loc,in(P
T0
δ ). The lobes ‘outside’, i.e. those that accumulate onWu

out(P
T0
δ ) will have countably many
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Fig. 6. A sketch of the stable and unstable manifolds toP
T0
δ in the ‘inner chaos’ case. The ‘color coding’ of the manifolds is the same as in

Fig. 4.

Fig. 7. The sketches of (the intersections of) the stable and unstable manifolds for the four ‘mixed’ types: (a) mixed chaos; (b) outer and mixed
chaos; (c) inner and mixed chaos; (d) double chaos. The ‘color coding’ of the manifolds is the same as in Fig. 4.
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intersections with the ‘inside’ lobes ofW s
out(P

T0
δ ) andWu

loc,out(P
T0
δ ), i.e. those lobes that accumulate onW s

in(P
T0
δ ),

nearP T0
δ , sinceWu

out(P
T0
δ ) andW s

in(P
T0
δ ) both originate from, or limit on,P T0

δ . Hence, there are countably many

intersections ofW s
out(P

T0
δ ) andWu

in(P
T0
δ ). Likewise, it follows thatWu

out(P
T0
δ ) andW s

in(P
T0
δ ) also have countably

many intersections (Fig. 7d).
Transversal intersections of stable and unstable manifolds imply that certainN th iterates of the mapPT0 must

have an invariant hyperbolic Cantor setΛ. Restricted toΛ, the iterated map(PT0)N is topologically equivalent to
a shift map on a finite number of symbols. This is in essence the statement of the Smale–Birkhoff theorem [9,25].
The key ingredient to the proof of the Smale–Birkhoff theorem is the construction of a horseshoe map from a map
that has a hyperbolic fixed pointp (hereP

T0
δ ) with stable and unstable manifolds that intersect transversally in a

pointq (here: a zero of eitherMout(T0),Min(T0) orMmixed(T0)).
In the cases that only one of the Melnikov functions has zeroes, i.e. the ‘inner chaos’ and the ‘mixed chaos’

case (recall that (only) ‘outer chaos’ does not exist), the construction of the horseshoe map is identical to that in
the standard case. In order to explain the difference between these two standard cases and the other three more
complex cases (‘mixed and outer chaos’, ‘mixed and inner chaos’ and ‘double chaos’) we give a rough sketch of
the construction of a horseshoe map, and the associated intersections of the stable and unstable manifolds, for the
most common type, the ‘inner chaos’ (Fig. 6).

Assume thatq ∈ W s
in(P

T0
δ ) ∩ Wu

in(P
T0
δ ) and thatq is a pip. Consider a quadrangleV ⊂ DP with P

T0
δ ∈ V, such

that∂V = ∂Vs
out ∪ ∂Vu

out ∪ ∂Vs
in ∪ ∂Vu

in with W
s,u
loc,out,in(P

T0
δ ) ∩ ∂V ∈ ∂Vs,u

out,in. The mapPT0 will stretchV in the
direction of the unstable manifolds, and squeezeV in the direction of the stable manifolds. Thus,∂Vu

in is mapped

by PT0 towardsq alongWu
in(P

T0
δ ) and∂Vs

in is mapped by the inverse,(PT0)−1, towardsq alongW s
in(P

T0
δ ). We

definek andD as the minimal numbers such thatq ∈ (PT0)k(V) andq ∈ (PT0)−D(V). Now, the map(PT0)N , with
N = k + D, acts as the classical horseshoe map on the regionVhs = (PT0)−D(V): (PT0)N stretches, squeezes and
bendsVhs so that(PT0)N(Vhs) ∩ Vhs = (PT0)k(V) ∩ (PT0)−D(V) consists of two ‘strips’, one containingP T0

δ , the
otherq (see [9,25] for all details of this construction).

The regionV is stretched byPT0 along bothWu
in(P

T0
δ ) andWu

out(P
T0
δ ), but the standard horseshoe construction

does not pay attention to the ‘outer’ parts of(PT0)k(V) = (PT0)N(Vhs) (that has(PT0)k(∂Vu
out) as ‘tip’). Likewise,

the outer part ofVhs(that has(PT0)−D(∂Vs
out) as ‘tip’), has also not been considered. This was of course not necessary,

since it is assumed that there are no other intersections than those of the inner stable and unstable manifolds: the
‘outer’ parts ofVhs and(PT0)N(Vhs) are irrelevant to the dynamics in this case.

This changes drastically in the ‘outer and mixed chaos’, ‘inner and mixed chaos’ and ‘double chaos’ cases. In
Fig. 8 we have sketched a construction of a horseshoe map for the ‘outer and mixed chaos’ case. The main difference
with the above standard case is that here both stable manifolds have intersections with the unstable outer manifold.
Thus, we can now ‘tune’ the regionV andk, D such that(PT0)N(Vhs)∩Vhs = (PT0)k(V)∩ (PT0)−D(V) for instance
consists of three strips. It follows that the map(PT0)N defines an invariant hyperbolic setΛ onV on which(PT0)N

is equivalent to a shift on 3 symbols (the details of this statement can be checked by the standard theory presented
in [9,25]).

Of course the fact that(PT0)N is equivalent to a shift in 3 symbols, instead of the classical example of the horseshoe
map that is equivalent to a shift on 2 symbols, is not special: the classical horseshoe construction sketched above
(for the ‘inner chaos’ case), can be modified so that it yields a horseshoe map that is equivalent (on an invariant set
Λ) to a shift onn symbols, for anyn ≥ 2 (this can be achieved by stretchingVhs further alongW s

in(P
T0
δ ), so that

Vhs∪Wu
in(P

T0
δ ) consists of more than two components). However, in the ‘inner chaos’ case, periodic and/or chaotic

points of the mapPT0 (see Remark 4.3) can only be found in anO(
√

δ) neighborhood of the unperturbed inner
homoclinic orbitγ hom

in (note that theO(
√

δ) estimate comes from the behavior ofPT0 near the saddle pointP T0
δ ).

It follows from the construction of the horseshoe map for the ‘outer and mixed chaos’ case (Fig. 7b and Fig. 8) that
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Fig. 8. A construction of a horseshoe map for the ‘outer and mixed chaos’ case. The second map can be obtained from the first by a topological
deformation.

the periodic and/or chaotic points of the mapPT0 occur in anO(
√

δ) neighborhood of the unionγ hom
out ∪γ hom

in of the
unperturbed and outer and inner homoclinic orbits. The same is true for the ‘inner and mixed chaos’ and ‘double
chaos’ cases. In these three cases, the chaotic solutions to (3.12) are ‘spread out’ over anO(

√
δ) neighborhood of

{γ hom
out ∪ γ hom

in } × S1.

Remark 4.2. The ‘pip’ and ‘lobe’ terminology is based on [20], see also [25]. Letp be a saddle point of a planar map
P, with stable/unstable manifoldsW s,u(p). Let q ∈ W s(p) ∩Wu(p) and letS[p, q], respectivelyU [p, q], denote
the segment ofW s(p), respectively.Wu(p), fromp toq (includingp andq); q is called a primary intersection point,
a ‘pip’, if S[p, q]∩U [p, q] = {p∪q}. Letq1 andq2 be two adjacent pips, i.e. there are no other pips on the segments
S[q1, q2] ⊂ Ws(p) andU [q1, q2] ⊂ Wu(p). The region bounded byS[q1, q2] andU [q1, q2] is called a lobe.

Remark 4.3. A chaotic point of the mapPT0 corresponds to an elementρ of the invariant (Cantor) setΛ of a map
(PT0)N (for a certainN ) by a horseshoe map construction as sketched above. OnΛ, (PT0)N is equivalent to a shift
map on the space of bi-infinite sequences ofn symbols (for a certainn). The fact thatρ is chaotic implies thatρ
corresponds to a ‘random’ (bi-infinite) sequence [9,25].

5. Discussion

We have shown that the tidal elevation within an almost-enclosed short basin that is connected to a sea by a
narrow strait may respond chaotically to the forcing of an exterior tide with lunar and solar components. We have
focused on the role played by the geometry of the basin and the interactions between the nonlinearities induced by
the geometry and the special structure of the quasi-periodic forcing term. We have established that this interaction
generates various essentially different types of chaotic behavior.

There are many reports in the literature of ‘irregular’ tidal oscillations [3,7,10,14]; in [6,24] the ‘irregularity’ is
measured by analyzing time series of observations and determining an estimate of the (embedding) dimension of
the data. These observations, however, do not necessarily imply that the ‘irregularity’ of the tidal oscillations are
due to nonlinearity associated with the geometry of the basin, i.e. the mechanism studied in this paper. Nevertheless,
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our study implies that almost-enclosed basins in the coastal zone may respond chaotically to forcing by a com-
bination of semi-diurnal solar and lunar tides, when both are close to resonance. This may express itself through
spectral peak-broadening, noisiness of tidal ‘constants’ (amplitudes and phases of astronomically determined tidal
frequencies), and irregular subsequent elevation extrema [6,17,24]. A related mechanism may be operating when
not the tide itself, but one of the higher order modes is in resonance with the basin. Such a situation may appear in
fjords, that typically have Helmholtz periods of a couple of minutes to an hour [11]. For this situation a modulation
equation can be derived that is remarkably similar to (3.8) [17]. This equation can be studied and classified by the
same (mixed) Melnikov functions in combination with the geometric approach of Section 4. In a case like this,
the chaotic response manifests itself by secondary elevation changes [10] and may actually be amplified in the
accompanying current field [7,17].

It should be remarked that the model (1.1) studied in this paper is overly simplified. The derivation (1.1) is based
on several assumptions that can be considered to be unrealistic in many natural basins [16]. For instance, many basins
cannot be considered to be connected to the sea by a narrow strait. The model also neglects the nonlinear character of
the flow through the channel. From a physical point of view, the assumption of weak friction employed in the model is
particularly questionable. On the other hand, it is quite interesting in this respect that ‘inner chaos’ can, for idealized
cases, be reached for arbitrarily large values of the friction parameter (Section 4.1 and Fig. 5). In work in progress
[23] the tidal dynamics of half-open bays is studied. Here, modulation equations like (3.8), i.e. equations that may
exhibit chaotic behavior, are obtained directly from the full hydrodynamic equations that govern the flow in such a
basin. This implies that the analysis of this paper is also relevant in this much more realistic and general context.

Moreover, we note that on longer than fortnightly time scales, slow modulation of environmental conditions
(such as mean sea level, tidal forcing amplitudes, basin shape) may bring a basin into or out of resonance. This
may provoke relatively drastic shifts in the basin’s response to the tidal forcing. This phenomenon can be accounted
for by the theory developed here, and in [16,17]: the parameters in (3.8) will change under these environmental
conditions and the drastic shifts will be triggered by bifurcations, for instance of saddle node type, in (3.8) (see
[16,17] for more details). Therefore, the ideas of nonlinear tidal dynamics developed in [16,17] and this paper may
be relevant to explain certain changes in sedimentation records [18].

There are also some important mathematical issues we did not discuss in this paper. First of all, there is the problem
of the existence of chaoticattractors. We have only shown the existence of chaotic solutions, but, these solutions
cannot be stable, due to the stretch and squeeze character of their construction. This is, of course, a fundamental
issue and is not special for the Helmholtz oscillator. It was found in [17] by numerical simulations that there are
chaotic attractors, both in the averaged system and the underlying system (1.1), whenδ is increased to values that can
no longer be considered to be asymptotically small. This behavior is typical for forced nonlinear oscillators [9,25].

Another important fundamental problem we did not yet touch upon is the implication of the existence of chaotic
solutions in the averaged system for the underlying system (1.1). A priori one can only conclude that there are
solutions to (1.1) that are close to a chaotic solution of the averaged system for a very long time (ofO(1/ε2)). A
chaotic solution is related to a full, bi-infinite sequence ofN symbols by the horseshoe construction. The bounded
validity of the averaging method only enables us to follow a chaotic solution over a bounded part of this sequence.
To our knowledge, there are no general persistence results for chaotic solutions of an averaged system as chaotic
solutions to the original system. This issue lies beyond the scope of this paper and will be considered in detail in [4].

Finally, we note that the approach developed in this paper, and in particular the construction and evaluation of
the mixed Melnikov function, can also be used to study general nonlinear oscillators with similar ‘almost resonant’
quasi-periodic forcing terms (see also [15,26,27]). In the case of small amplitude oscillations, the only ‘essential
information’ on the oscillator isT2, the leading order quantity that describes the nonlinear character of the period of
the periodic orbits of the nonlinear oscillator near the center point (2.8). This quantity can, of course, be determined
for any nonlinear oscillator. Furthermore, the method can also be used to study more general resonances than just
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the 1:1 case. In these cases, the averaged system will again have the character of a periodically forced integrable
system. However, the integrable system for the higher resonances will have more than ‘just’ two homoclinic orbits
[15]. For instance, there are two saddle points connected by four heteroclinic orbits in the 1:2 resonance. All orbits
will ‘break up’ due to the periodic forcing term. The associated ‘gaps’ between the stable and unstable manifolds
can again be measured by Melnikov functions, although one will need more than ‘just’ two ‘classical’ and one
‘mixed’ Melnikov function as we found in the 1 : 1 case. As a consequence, there will also be more than the six
different types of chaos/transversal intersections determined in this paper.
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Appendix A. Explicit expressions for the unperturbed homoclinic orbits

By (3.8) and (3.9) we see that

S′ = FY, 2FX = S2 − 4Hhom, (A.1)

on the homoclinic level setH(X, Y ) = Hhom (recall thatS = (X2+Y 2)−1). Thus,X andY can be removed from
the differential equation forS

S′ = ±
√

F 2(S + 1) − 1
4(S2 − 4Hhom)2 = ±1

2(S − Ss)
√

(S − S−)(S+ − S), (A.2)

whereS+ > Ss > S− and

Ss = X2
s − 1 < 0, S± = −Ss±

√
−2F 2

Ss
, Hhom = −3

4
S2

s − Ss. (A.3)

This equation can be brought into the form̃s′ = ±[ the product of two linear terms iñs]1/2 by introducing
s̃(T ) = ±(S(T ) − Ss)

−1 (where the outer orbit corresponds with the+ and the inner with the−). The equation
for s̃ can be transformed intôs′ = ∓µ[ŝ2 + ŝ2

0]1/2 by settings̃(T ) = (1 + ŝ(T )2)× a suitably chosen constant.
This equation has two solutions of exponential growth (asT → ±∞): ŝ(T ) = ±ŝ0 sinh(µT ). These solutions
correspond to the homoclinic solutions of (A.2) as given in (3.11). It follows from a straightforward analysis that

As = (Ss−S−)(S+−Ss)

S+−S−
> 0, as = (S++S−−2Ss)

S+−S−
∈ (0, 1), µ = 1

4

√
(Ss−S−)(S+−Ss). (A.4)

Note that both orbits are biasymptotic toSs and thatShom
out (0) = S+, Shom

in (0) = S−.

Appendix B. ComputingMout(T0) andMin(T0)

We (again) introduceS0(T ) = (X0(T )2 + Y0(T )2) − 1 and rewrite (3.14) by (3.12) and (A.1) as

Mout,in(T0)=−C

8

∫ ∞

−∞
(3S2

0 + 4S0 + 4Hhom) dT + 1

4

∫ ∞

−∞
(S2

0)′ sin(Ω(T + T0)) dT

+1

2

∫ ∞

−∞
S′′0 cos(Ω(T + T0)) dT . (B.1)
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By expanding the cos(Ω(T + T0)) and sin(Ω(T + T0)) terms, and defining

Jn(Ω) =
∫ ∞

−∞
(S0(T ) − Ss)

n cosΩT dT (B.2)

for n = 1, 2, we can reduce (B.1) to

Mout,in(T0) = −C

8
[(4+ 6Ss)J1(0) + 3J2(0)] − Ω

4
[2(Ss+ Ω)J1(Ω) + J2(Ω)] cos(ΩT0). (B.3)

Note that all integrals involving sin(ΩT ) ‘average out’ sinceS0(T ) − Ss is an even function ofT (3.11). The
Jn(Ω) integrals can be evaluated by expressing them in terms of

I(a, k) =
∫ ∞

0

coskx

a + coshx
dx = π

sinφ

sinhkφ

sinhkπ
, (B.4)

wherea = cosφ ∈ [−1, 1] (this identity can be obtained by contour integration, see also [21]). At this stage we
have to distinguish between the outer and the inner case. Based on (3.11) and (A.4) we defineφout,in = φout,in(F )

as in (3.16). Thus, by (A.3) and (A.4)

Ss = − 2

3+ tan2φout,in
, µ = ∓ tanφout,in

3+ tan2φout,in
, As = 4µ

√
1− cos2φout,in. (B.5)

Note that this also implies that

F = − 4 cos2φout,in

(1+ 2 cos2φout,in)3/2
. (B.6)

Next, we introduce

ks = ks(Ω, F ) = Ω

2µ
. (B.7)

Like µ, ks has the same value in the outer and the inner case (A.4). We thus find, for the outer case by (B.2), (B.4),
(B.5) and (B.7)

J1(Ω)= 4
√

1− a2
sI(as, ks) = 4π

sinhksφout

sinhksπ
,

J2(Ω)=−16µ(1− a2
s)

∂I

∂a
(as, ks) = 16πµ

sinhksφout

sinhksπ

(
ks

tanhksφout
− 1

tanφout

)
. (B.8)

Note that the limitsΩ → 0 andks → 0 are both well-defined. The computations for the inner case are in essence
the same. The expressions given in (3.15) now follow from (B.3), (B.5) and (B.8).
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