
A Note on the Role of Mean Flows in Doppler-Shifted Frequencies

THEO GERKEMA, LEO R. M. MAAS, AND HANS VAN HAREN

NIOZ Royal Netherlands Institute for Sea Research, Texel, Netherlands

(Manuscript received 21 May 2012, in final form 28 September 2012)

ABSTRACT

The purpose of this paper is to resolve a confusion that may arise from two quite distinct definitions of

‘‘Doppler shifts’’: both are used in the oceanographic literature but they are sometimes conflated. One refers

to the difference in frequencies measured by two observers, one at a fixed position and one moving with the

mean flow—here referred to as ‘‘quasi-Doppler shifts.’’ The other definition is the one used in physics, where

the frequency measured by an observer is compared to that of the source. In the latter sense, Doppler shifts

occur only if the source and observer move with respect to each other; a steadymean flow alone cannot create

a Doppler shift. This paper rehashes the classical theory to straighten out some misconceptions. It is also

discussed how wave dispersion affects the classical relations and their application.

1. Introduction

A much studied situation in physical oceanography is

linear wave propagation in the presence of a mean flow.

Right at the outset, it is useful to identify the three key

players in this problem: the wave source, the observer,

and the mean flow. The source and observer may move

relative to each other as well as relative to the mean flow.

In the midnineteenth century, Christian Doppler iden-

tified the circumstances under which the frequency

measured by an observer will be different from the

frequency at which the source emits its waves. In phys-

ics, this difference is called the Doppler shift.

In the oceanographic literature, however, the term is

often used in another sense, for example, in Bretherton

and Garrett (1968), Olbers (1981), Kunze (1985), and

Bühler (2009). Their starting point lies in the equations

of motion, where a mean flow U gives a combination of

terms

›

›t
1U

›

›x
1⋯ . (1)

For sinusoidal waves sin(vt2 kx), with frequency v and

wavenumber k, this becomes v2Uk. It is then common

to define v0 5 v 2 Uk, the so-called ‘‘intrinsic fre-

quency.’’ Lighthill (1978) comments on the nomencla-

ture of this expression:

‘‘In the context of moving sources, equation [v0 5 v 2
Uk] has long been called the Doppler relationship, and it
is natural to call it by this name also for waves propa-
gating through non-uniformlymoving fluids’’ (p. 326, our
italics).

Thus, it has become common to speak of Uk as a

‘‘Doppler shift,’’ referring to the difference between

the frequency vmeasured by an observer at rest and the

frequency v0 measured by an observer moving with the

mean flow. So, here the term is used to indicate the dif-

ference in frequency between two observers, in contrast

to normal parlance in physics, where it refers to the dif-

ference in frequency between source and observer.

For the sake of clarity, we shall refer to the Doppler

shift in the former, ‘‘Bretherton/Garrett’’ sense as quasi-

Doppler shift, reserving the term Doppler shift for its

normal meaning in physics. The distinction is important,

for an observer may experience a quasi-Doppler shift,

while having no Doppler shift—and vice versa. A mean

flow can be said to imply a quasi-Doppler shift, but a

mean flow cannot create a Doppler shift.

Is this merely a matter of semantics? In the afore-

mentioned references, sources were left out of the

equation; the waves are simply assumed to be there. The

fixed observer measures frequencyv, while the observer

moving with the flowmeasures v0, and these frequencies

can be compared (quasi-Doppler shift), but no com-

parison with the forcing frequency can be made because

none is involved. So far, no confusion is possible. But, as

soon as one applies these theories to a specific oceano-

graphic situation, sources inevitably come into play—for
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example, the forcing of near-inertial waves by the wind

or of internal tides by tidal flow over topography. In-

deed, in observations it is more common to look into the

relation between the measured frequency and the forc-

ing frequency than it is to compare a frequency from

a moored instrument with simultaneous measurements

from a drifter. It is, therefore, crucial for the correct

interpretation of oceanographic data to understand

precisely under what circumstances aDoppler shift may,

or may not, occur. However, the distinct meanings of

quasi-Doppler shifts and Doppler shifts are sometimes

conflated. It is, for example, not uncommon to see the

notion of a quasi-Doppler shift being morphed into the

(incorrect) idea that a mean flow would give rise to a

Doppler-shifted frequency at amooring. Some instances

are discussed in section 4.

The purpose of this paper is twofold: to bring into

clear focus the distinction between quasi-Doppler shifts

and Doppler shifts, and to provide a concise overview of

the role of mean flows in Doppler shifts. Regarding the

latter point, this paper has partly the character of a re-

view; much of it was already known by the late nine-

teenth century, although these insights seem to have

somewhat slipped into oblivion. An additional element

is the inclusion of dispersion. The classical theory typi-

cally considers dispersionless waves (sound, light waves),

but in the oceanographic context, dispersion is usually

important.

We start by rehashing the basic theory of Doppler

shifts (section 2) following its historical origins. This

section also serves to stress the importance of specifying

and distinguishing the movements of the source, me-

dium, and observer. We then examine an analytical ex-

ample in which not only the classical Doppler relation

for the shift in frequency is derived, but also expressions

for amplitude and wavelength (section 3). Until here,

waves are assumed to be dispersionless. In section 4, it is

shown that the effects of dispersion can be straightfor-

wardly accommodated in the classical relation for

Doppler shifts. In section 5 we discuss some observa-

tions on internal waves from the literature and revisit

their interpretation with regard to Doppler shifts. Con-

clusions follow in section 6; here we also discuss, briefly,

the effect of nonsteady mean flows but, in preceding

sections, steadiness is assumed.

2. Recapitulation of the Doppler theory

Of the several papers in which Doppler laid out the

effect named after him, three are of particular interest

here. They were published in 1842, 1846, and 1847 and

later reprinted in Doppler (1907). This book is more

useful than the original papers thanks to extensive notes

by H. A. Lorentz, which contain numerous corrections

and clarifications.

In his theory of 1842, Doppler distinguished the two

cases of a moving source and a moving observer. The

medium is assumed to be at rest. Waves are emitted

from the source at period Ts; they propagate away at

phase speed c. An important restriction, here and in the

following section, is that waves are assumed to be dis-

persionless. In other words, the proper phase speed c is

a constant and is independent of the wave period; it

depends solely on the properties of the medium (e.g., on

temperature in the case of sound waves).

The first case is one in which the observer is at rest,

while the source moves. Let its speed be ys, directed

toward the observer. Each wave crest has to bridge the

distance between the position of emittance and the po-

sition of the observer, but this distance decreases by an

amount of ysTs for every next wave crest because of the

movement of the source. The period between the arrival

of successive crests is therefore not Ts, but the Doppler

shifted T1 5 Ts 2 ysTs/c5 Ts(12 ys/c). The wavelength

being shifted as l1 5 (c2 ys)Ts, the relation c5 l1/T1 is

satisfied from the viewpoint of the observer.

The second case is one in which the source is at rest

while the observer moves. Suppose the observer moves

away from the source at speed yo. At a moment when

a wave crest passes the observer, the following crest is

still at a distance l5 cTs, the wavelength. Approaching

the observer at a relative speed of c2 yo, that following

crest will arrive after a time interval T2 5 l/(c 2 yo) 5
Ts/(1 2 yo/c). This is now the Doppler shifted period.

There is no change in wavelength in this case.

The first case was soon put to the test by the physicist

(and latermeteorologist) BuysBallot. In 1845, on a newly

built steam train near Utrecht, he had musicians play

tones on a trumpet, with other musicians standing along

the railway to register the pitch of the tones before and

after the passage of the train. The change in pitch was

found to be in good agreement with Doppler’s formula.

This was in itself a triumphant confirmation of his prin-

ciple, but Doppler’s chief interest lay in the application to

the color of the stars, which proved to be less straight-

forward (for more on this history, see Toman 1984).

In his 1846 paper, Doppler considered the situation in

which the source and observer are both in movement.

Thus, combining the previous two cases, the observed

period T becomes

T5Ts

c2 ys
c2 yo

. (2)

For a proper application of this formula, positive values

should be assigned to ys and yo for movement to the
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right; negative values, for movement to the left. How-

ever, we will take c always positive. If the observer is to

the left of the source, we are concerned with waves

moving to the left and, accordingly, should replace c

by 2c in the formula.

Expression (2) has an obvious but important corol-

lary: if the source and observer move at the same speed

and in the same direction (i.e., ys 5 yo), no Doppler shift

in frequency occurs. But then, in a frame of reference

that moves together with the source and observer, the

mediumwill be perceived to bemoving.One thus arrives

immediately at the conclusion that a moving medium

creates no Doppler shift in frequency.

This brings us to the case considered by Doppler in

his 1847 paper, in which he studied the effect of a mov-

ing medium on waves in ether (i.e., light waves), air, or

water. The source and observer are here assumed to be

at rest. For an observer located upstream (A in Fig. 1),

the waves travel at a lower speed and the wavelength is

shortened, while for an observer located downstream

(B) the speed and wavelength are enlarged. But, what

happens to the frequency? For an observer at any fixed

position, successive wave crests propagate under iden-

tical circumstances from source to observer and hence

need equal times to bridge that distance; as a consequence,

the observed frequency must be the same as the fre-

quency of emittance. This remarkably simple argument,

given by Lorentz, hangs on the stationarity of the set-

ting and remains valid if the mean flow is spatially

nonuniform.

By the late nineteenth century, this result had already

found its way into the textbooks, for example, Lord

Rayleigh (1896, p.154):

‘‘If the source and the observer move with the same ve-
locity there is no alteration of frequency, whether the
medium be in motion, or not.’’

The only way the observed frequency can be higher

(or lower) is when the relation between source and ob-

server is nonstationary: if they move toward (or away

from) each other. In that case, successive waves do not

propagate under identical circumstances, for the dis-

tance between source and observer, which they have to

bridge, changes.

The different situations, discussed here, are elegantly

captured in a single formula derived by Bateman (1917):

T5Ts

c1U2 ys
c1U2 yo

. (3)

Again, we adopt the convention with regard to the sign

of c as in (2).

Bateman’s Eq. (3) is a natural generalization of (2) in

that the proper phase speed c in the latter is being re-

placed by the effective phase speed c1 U. Equation (3)

confirms that a mean flow U does not create a Doppler

shift; a mean flow merely modifies an already existing

Doppler shift if the source and observer are in relative

movement (i.e., ys 6¼ yo). This formula will be rederived

in the next section, where we explore an analytical

example.

3. An analytical example

We will examine the propagation of linear long inter-

facial waves in the presence of a steady and uniform

background flow U. This simple example allows us to

pinpoint, by means of an explicit solution, the distinct

roles of the movement of the source, medium and

observer.

a. Basic equations

We assume wave propagation in the horizontal x di-

rection in a two-layer system; for the other horizontal

direction: ›/›y 5 0. Within each layer the horizontal

current velocity associated with the (long) waves is in-

dependent of the vertical; these velocities are called u1
and u2, for upper and lower layer, respectively. Then

FIG. 1. Illustration from Doppler’s 1847 paper (Doppler 1907),

showing the effect of a medium M flowing to the left (as indicated

by the arrows). The source is at rest atQ, as are the observers at A

and B. The mean flow produces a leftward translation of the cir-

cular wave pattern; at this instant, previously generated wave crests

have their centers atO,OI,OII, etc. Here the mean flow is assumed

to be lower than the proper phase speed of the waves (otherwise no

waves would move to the right at all).
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u 5 u2 2 u1, the change in horizontal velocity across

the interface, satisfies the momentum equation

ut 1Uux52g*hx , (4)

with g* denoting reduced gravity; h is the interfacial

displacement.We ignore the Coriolis force here, but will

discuss its dispersive effect in section 4.

From the continuity equation and the boundary con-

ditions (rigid lid at surface, flat bottom), one obtains

ht 1Uhx 1h*ux5F(t, x) . (5)

Here h* is the reduced water depth (h*5 h1h2/(h11 h2),

with hi the unperturbed thickness of layer i).

In (5), an ad hoc source is introduced through the

forcing term F. For later use, we specify the source as

a wavemaker oscillating at frequency vs and moving at

speed ys:

F(t, x)5 sin(vst)G
0(x2 yst) . (6)

For positive (negative) ys, the source moves to the right

(left). Here, G0 is the derivative, with respect to its ar-

gument, of an arbitrary function G. This way of writing

turns out to be convenient in what follows.

b. Solution

To facilitate solving (4) and (5) we make a transforma-

tion to a coordinate system moving along with the flow:

~x5 x2Ut; ~u(t, ~x)5 u(t, ~x1Ut) (7)

and similarly for h and F. Hence, by applying the chain

rule

ut 5 ~ut 2U ~u~x; ux5 ~u~x

and similarly for h. Transformed to this system, (4) and

(5) become

~ut 52g*~h~x

~ht 1 h*~u~x 5
~F(t, ~x) .

They can be combined into one equation for h:

~htt 2 c2~h~x~x5
~Ft (8)

with c5 (g*h*)
1/2, the phase speed of wave propagation

in the absence of a background flow. Like in the previous

section, we define c to be positive (unlike U and ys). For

initial conditions ~h, ~ht 5 0, starting from a system at rest,

the solution of (8) reads (see, e.g., Zauderer 1989, §4.5):

~h(t, ~x)5
1

2c

ðt
0
dt

ð~x1c(t2t)

~x2c(t2t)
dj ~Ft(t, j) . (9)

From (6) we obtain, after transformation to the moving

frame of reference and taking the derivative to t,

~Ft(t, j)5vs cos(vst)G
0(j1 (U2 ys)t)

1 (U2 ys) sin(vst)G
00(j1 (U2 ys)t) .

The inner integral of (9) now yields, after some rewriting,

ð~x1c(t2t)

~x2c(t2t)
dj ~Ft5

›

›t
fsin(vst)[G( ~X2)2G( ~X1)]g

1 c sin(vst)fG0( ~X2)1G0( ~X1)g, (10)

with ~X6 5 ~x2 (6c)t1 (6c1U2 ys)t. Taking the in-

tegral
Ð t
0 dt⋯, the first term on the rhs of (10) vanishes

entirely, so (9) becomes

~h(t, ~x)5
1

2

ðt
0
dt sin(vst)fG0( ~X2)1G0( ~X1)g .

Transforming back to the original frame of reference

(~x5 x2Ut), we get the final result:

h(t, x)5
1

2

ðt
0
dt sin(vst)fG0(X2)1G0(X1)g , (11)

with X6 5 x 2 (6c 1 U)t 1 (6c 1 U 2 ys)t.

The remaining integral in (11) can be solved analyti-

cally if we choose a (moving) point source, described by

a delta distribution:G0 5 d. From the general properties

of delta distributions (see, e.g., Messiah 1961), one has

d(X6)5 d((6c1U2 ys)(t2 t6*))5
d(t2 t6*)

j6c1U2 ysj
,

with t6*5 [(6c1U)t2 x]/(6c1U2 ys). The delta-

distribution d(X6) yields a contribution if 0, t6*, t,

and is zero otherwise. Thus, from (11) we can write the

solution as

h5h2 1h1 (12)

with

h6(t, x)5
sin(vst6*)

2j6c1U2 ysj
if 0, t6*, t ,

and h65 0 for all other t6*. In the absence of mean flows,

the terms h2 and h1 in (12) describe waves propagating
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to the left and right, respectively. Using the definition of

t6*, we can write h1 more simply as

h6(t, x)5
1

2j6c1U2 ysj
sinvs

�
(6c1U)t2 x

6c1U2 ys

�
(13)

for all x satisfying either (6c1U)t, x, yst or yst, x,
(6c 1 U)t; for all other x, h6 5 0.

c. Results

We first consider the case of two fixed observers, as

illustrated in Fig. 2. One is located to the left of the initial

location of the source at a distance of two wavelengths;

the other to the right of the source, also at two wave-

lengths. (Wavelength is here defined in the absence of

a mean flow and with a source at rest.) The signal re-

ceived by the observers, h, is calculated from (12), (13).

In Fig. 3 they are plotted in gray and black, respectively.

Wave forcing starts at t 5 0. Figure 3a shows the refer-

ence case, which has no mean flow and no movement of

the source; as expected, both observers start to receive

the same signal after two forcing periods.

In Figs. 3b,c,d, we add a background mean flowU, but

the source still does not move. Clearly, the observed

wave period is unchanged in each of these cases; this

confirms the classical result, discussed in the previous

section, that a background flow does not create aDoppler

shift in frequency. In Fig. 3b, the effective phase speed

becomes 3c/2 for rightward propagating waves, leading

to an earlier arrival at the observer’s position and a re-

duction in amplitude (black line). For leftward propa-

gating waves, the background flow reduces the effective

phase speed to c/2, leading to a later arrival and an en-

hanced amplitude (gray line). In Figs. 3c,d the flow be-

comes too strong for the waves to propagate leftward,

and the observer on the left detects no waves at all. In

Fig. 3d, they are even drifted to the right so that the ob-

server on the right starts to receive them after four wave

periods.

In Figs. 3e,f we have no background flow; instead, the

source moves to the right. Now we see, as expected,

a Doppler shift in frequency. In Fig. 3e, we see the

source passing the observer on the right at t 5 4; at that

instant, the wave frequency drops sharply. From then

on, both observers detect the same signal in terms of

amplitude and (Doppler-shifted) wave period. The near-

critical case is shown in Fig. 3f, where we see a ‘‘boom’’

when the source passes the observer on the right (the

peak is cut off in the figure, its amplitude is, in fact,

nearly four times larger than shown).

The combined effect of a moving source and back-

ground flow in shown in Fig. 3g; the Doppler shift due to

the moving source is now modified by the background

flow (cf. Fig. 3e).

d. Discussion

We can readily adjust (13) to the case in which the

observer moves as well, by the substitution x5 xo 1 yot.

The argument of the sine in (13) then becomes

6c1U2 yo
6c1U2 ys

vst2
vs

6c1U2 ys
xo . (14)

This expression neatly sums up all the possibilities. The

first term in (14) gives the Doppler shift in frequency:

FIG. 2. Sketch of a situation used to illustrate the implications of

(13). A source, initially located halfway between two fixed ob-

servers, may move to the right. The presence of a rightward mean

flow is also considered.

FIG. 3. Solutions of interfacial displacement h, defined by (12)

and (13) for various U and ys, showing the received signal for an

observer two wavelengths to the left of the (initial) position of the

source (in gray), and another observer two wavelengths to the right

(in black).
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v5
6c1U2 yo
6c1U2 ys

vs . (15)

The movement of the observer (yo) implies a Doppler

shift in frequency, unless it moves at the same velocity

as the source (yo 5 ys). A mean flow U modifies the

Doppler shift if the source and observer have a relative

movement, but cannot by itself create a Doppler shift.

The expression (15) confirms exactly the classical result

(3) by Bateman (1917).

From the second term in (14) we see that the wave-

number is modified by a movement of the source and by

a mean flow:

k5
vs

6c1U2 ys
. (16)

This, too, is fully in agreement with the classical results

(see section 2). An example is shown in Fig. 4, illus-

trating the effect of a mean flow on downstream and

upstream propagating waves.

The analysis of Section 3b yields, as an extra result, the

amplitude factor 1/j6c1 U2 ysj in (13), demonstrating

how the amplitude is influenced by the mean flow (see

also Fig. 4) and by the movement of the source.

e. Quasi-Doppler shifts

Returning now to the quasi-Doppler shift (as we call

it), which is the concept often used in the oceanographic

literature, as discussed in the introduction. In the quasi-

Doppler shift, Uk is the difference between two ob-

served frequencies, one by a fixed observer and one by

an observer moving along with the mean flow. We can

now easily verify this relation. According to (15), a fixed

observer (yo 5 0) measures frequency

v5
6c1U

6c1U2 ys
vs .

An observer moving along with the mean flow (yo 5U),

meanwhile, measures frequency

v0 5
6c

6c1U2 ys
vs .

Notice that both are affected by the movement of the

source and, whenever source and observer are in rela-

tive movement, by the mean flow as well. Wavenumber

k, given by (16), is also affected by themean flow and the

movement of the source. But together, they form the

simple and familiar relation

v0 5v2Uk (quasi-Doppler shift) , (17)

which is valid whatever the value of ys. Precisely because

of this invariance for ys, however, the relation hides the

fact that v0, v, and k are, each individually, affected by

the movement of the source. To unveil this dependence,

one has to examine the Doppler shift (sensu stricto), as

above.

4. Dispersive waves

So far, we have considered dispersionless waves; the

phase speed was given by a constant c, which is inde-

pendent of the wave period. It depends only on prop-

erties of the medium; for example, in the previous

section, it was given by c 5 (g
*
h
*
)1/2.

If we consider a moving source (speed ys toward an

observer at rest) emitting dispersive waves at forcing

period Ts, we can again use the reasoning of the third

paragraph of section 2, but with one important modifi-

cation: the emitted waves now travel at some (as yet

unknown) speed C. Moreover, a distinction has to be

made between the waves traveling ahead and behind

the source, for their phase speeds will be different.

In all other respects, the earlier reasoning is valid re-

gardless of whether the waves are dispersive or not: each

wave crest has to bridge the distance between the posi-

tion of emittance and the position of the observer, but

this distance decreases by an amount of ysTs for every

next wave crest because of the movement of the source.

The period between the arrival of successive crests is

therefore not Ts, but the Doppler shifted

T5Ts

C2 ys
C

. (18)

This equation, however, is not immediately useful be-

cause it involves an unknownT as well as an unknownC,

which itself depends on the Doppler-shifted T. A dis-

persion relation is needed to close the problem.

As an example, we will introduce dispersion due to

the Coriolis force (parameter f ), known from Poincaré

waves. We also include a steady uniform background

flow U:

FIG. 4. Solution (13) after 10 forcing periods with the source at

rest at x5 0 and in the presence of a background flowU5 c/2. This

case corresponds to the case of Fig. 3b. On the horizontal axis, x has

been scaled by the wavelength l 5 cT, being the unperturbed

wavelength in the absence of a background flow.
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v5Uk1 ( f 21 c2k2)1/2 . (19)

Withv5 2p/T and the definition of phase speedC5v/k,

we can solve C from (18) and (19):

C65
2(ysf

22Uv2
s )6vs[c

2(v2
s 2 f 2)1 (U2 ys)

2f 2]1/2

v2
s 2 f 2

.

(20)

Thus, the two roots of the phase speed C are expressed

in terms of known parameters. With this, the Doppler-

shifted period T can now be calculated from (18).

Equation (20) demonstrates that the phase speed of

dispersive waves is not only affected by a mean flow but

also by the movement of the source.

Finally, a movement of the observer does not in any

way change the characteristics of the wave itself (in

particular, it leaves C unaffected). So, the reasoning of

section 2 dealing with a moving observer can be applied

regardless of dispersion. The upshot is a generalization

of Bateman’s formula:

T5Ts

C6 2 ys
C6 2 yo

. (21)

Here C6 is again given by (20), following from (18) [not

from (21)!] and the dispersion relation (19). The mean

flow enters (21) via C but, as before, does not by itself

lead to any Doppler shift.

Notice that for f 5 0, (20) would lead back to C6 5
6c 1U, the effective phase speed in the dispersionless

case, reducing (21) to (3).

An alternative approach to examining the effects of

dispersion would be to redo the analysis of section 3 with

dispersion included. To some extent, this is feasible, but

the problem can no longer be fully solved analytically,

although a closed-form solution can be obtained.

For example, if we add Coriolis terms to (4) and (5),

we get as a starting point, with an additional equation for

the transverse velocity component y:

ut 1Uux2 f y52g*hx

yt 1Uyx1 fu5 0

ht 1Uhx1 h*ux5F(t, x) .

After a transformation to a system moving with the

mean flow, this set can be reduced to one equation, for

example, for u:

~utt 2 c2~u~x~x1 f 2~u52g*
~F ~x(t, ~x) , (22)

a forced Klein–Gordon equation. As before, c is the

constant c 5 (g*h*)
1/2. Equation (22) can be solved in

terms of a double integral involving the Bessel func-

tion J0 (Zauderer 1989). Choosing again a moving point

source, one of these integrals can be solved. After a

transformation to the original coordinates, the final ex-

pression reads

u(t, x)5
1

2c

ðt
0
dt sinvt

3 J0

�
f

c

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c2(t2 t)2 2 [x2Ut1 (U2 ys)t]

2
q �

3Qfc2(t2 t)22 [x2Ut1 (U2 ys)t]
2g . (23)

Here Q is the Heaviside stepfunction (equal to one for

positive argument, zero elsewhere). The integral in (23)

is not amenable to further analytical treatment, but it

can be easily solved numerically. For various values of

ys, U, and f we have checked whether the wave period

found numerically is the same as the one obtained from

the procedure (18) and (20). In all cases, theywere found

to be in agreement to within numerical accuracy, con-

firming the correctness of the above procedure.

5. Observations and their interpretation

The conflation of quasi-Doppler shifts and Doppler

shifts has sometimes featured in interpretations ofmoored

observations on internal waves (e.g., Frankignoul 1970;

White 1972; Orvik and Mork 1995). The conflation

comes about by using the relation for quasi-Doppler

shifts (Uk) while examining the connection between a

forcing frequency and an observed frequency, on which

the quasi-Doppler relation has, in fact, no bearing. In-

stead, the pertinent theory is that of Doppler shifts.

In a revisit of these interpretations, the first question

that arises is whether there really was a ‘‘shift’’ in the

first place. In this respect it is of great significance that

these studies focused on near-inertial waves rather than

on internal tides. Internal tides are forced at precise and

well-known frequencies (semidiurnal lunar M2 etc.). In

contrast, the forcing of near-inertial waves is more

blurred. First, because the mechanism primarily respon-

sible for their generation, geostrophic adjustment, gen-

erates a range of near-inertial frequencies. Second,

because the notion of ‘‘inertial’’ changes, by definition,

with latitude. So, if one finds a spectral peak at f 1 d

(local Coriolis parameter f ), does this signify a Doppler

shift or does it simply result from generation at a higher

latitude where the local f was larger? These un-

certainties give room for seeing ‘‘Doppler shifts’’ when,

in fact, none is there.

For internal tides, on the other hand, the contradiction

between the expected ‘‘Doppler shifts’’ (on the basis of
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the quasi-Doppler relation!) and the absence thereof in

themoored observations wasmore patent. To find a way

out of this contradiction, one had to resort to rather

implausible explanations: Frankignoul (1970) puts for-

ward the idea that the waves come from all directions so

that the Doppler effects cancel in the mean; White

(1972) assumes that the spectral tidal peak is entirely

barotropic, in which case the presumed Doppler shift

would be negligible.

These problems disappear at once when one realizes

that mean flows cannot create a Doppler shift. Yet,

they affect the observations in other ways, as we will

now discuss.

a. Near-inertial waves

For near-inertial waves we can use the dispersion re-

lation (19). (This expression is based on the ‘‘Traditional

Approximation,’’ which may not always be valid, but for

simplicitly it is assumed to hold here.) The dispersion

relation with and without a mean flow is shown in Fig. 5.

The mean flow brings about two changes. First, for a

given frequency the wavenumber is modified. Second,

the lower bound of the range of allowable frequencies

decreases. The frequency can now attain values lower

than f. Contrary to what was suggested by Zhai et al.

(2005), however, this does not imply a Doppler shift.

There is no difference between the emitted and received

frequencies for sources and observers that do not move

relative to each other, see (21). Figure 5 simply means

that waves forced at frequencies slightly below f can now

freely propagate away, whereas they could not if no

mean flow were present.

All this is not to say that Doppler shifts cannot occur

for near-inertial waves. After all, wemay be dealing with

a moving source if the waves are due to the passage of

an atmospheric depression. In a moored instrument, the

observed frequency will then be different from the forc-

ing frequency but, since the forcing involves a range of

near-inertial frequencies, the actual Doppler shift may

be difficult to establish. Another complication arises

from the fact that one needs to take into account the

angle between the trajectory of the source and the line

connecting the source and observer. This aspect goes

beyond the scope of this paper but has been dealt with

in the literature (e.g., Young 1934).

b. Internal tides

For internal tides, generated over topography, the

source is not moving. If the waves are detected at a fixed

mooring, there will be no Doppler shift in frequency,

irrespective of the presence of background flows.

Although generation over topography is the typical

and most important mechanism for internal tides, an

alternative mechanism can be at work in some configu-

rations, namely when they are produced dynamically by

a horizontal displacement of fronts (Ou andMaas 1988).

As fronts have sloping isopycnals, horizontal tidal mo-

tion pushes isopycnals periodically away from their

original position. The situation is complicated since the

density gradient associated with the front is normally in

geostrophic equilibriumwith the Coriolis force acting on

a sheared mean flow parallel to the front. But, the tide

displaces this geostrophic flow laterally as well, such that

over a flat bottom the geostrophic equilibrium is actually

retained. To generate internal tides this balance of

forces needs to be broken, either by bottom slopes (Ou

andMaas 1988) or by instability of the geostrophic front.

The complexity of the tidal conversion within a sheared

frontal system makes it hard to quantify the particular

speed ys at which the sourcemoves. But one can think of,

for example, mesoscale variations that lead to a move-

ment of the intersection between the front (which itself

oscillates with the barotropic tidal flow) and a topo-

graphic feature. The location of that intersection forms

the source, which is thus in movement. The crucial point

in the present context is that such a movement of the

source would create a Doppler shift for fixed observers

(a mooring).

This intricate mechanism deserves further study, but

the literature already provides an example, from the

Straits of Florida, where such a mechanism may be at

work. Soloviev et al. (2003) show that in summer, when

fronts are strongest, a large and amplified baroclinic

spectral peak occurs near periods of about 10 h, while the

common semidiurnal peak (still present in the barotropic

FIG. 5. The dispersion relation (19) plotted for two different

cases: without mean flow (dashed), and with mean flow (solid).

Notice that in the latter case, v attains values lower than f.
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surface tide) is absent. It is not immediately clear that

this peak actually represents an internal tide since evi-

dence that one is dealing with one is normally based on

its dominant frequency. Perhaps for this reason, while

acknowledging the possibility that they may have mea-

sured aDoppler-shifted internal tide, Soloviev et al. prefer

to interpret this peak as showing the near-resonant re-

sponse of a local seiche, transverse to the channel be-

tween Florida and the Bahamas. Alternatively, they

suggest a shift of the ‘‘effective’’ inertial frequency away

from the planetary inertial frequency by local subinertial

vorticity of about 4f.

In the winter season the baroclinic spectral peak,

while weaker, does appear at the semidiurnal frequency.

Thus, it is plausible that also in summer the semidiurnal

internal tide must be there, but, apparently, ‘‘blue shif-

ted.’’ This suggestion is reinforced by a seasonal blue

shift in the diurnal tide (Soloviev et al. 2003). In view of

the previous discussion, apparently the nature of the

tidal conversion changes fromwinter to summer, and we

note that instabilities of the Florida Current and non-

uniform bathymetry, required to break the geostrophic

balance, are indeed present (Davis et al. 2008).

Let us now make a crude estimate of the required

source speed, ys, based on the observed Doppler-shifted

internal tidal frequency. For this, it is important to re-

iterate that, although mean flows cannot create Doppler

shifts, they will modify an existing one; see (3) and (15).

For an average Florida Current speed U ’ 2 m s21, a

typical first mode (or interfacial) long wave phase speed

c 5 O(0.2) m s21, and a fixed observer (yo 5 0), the

observed 2-h period shift of the semidiurnal and diurnal

tides suggest ys ’ U/5 5 0.4 m s21. Interestingly, (13)

also predicts that, simultaneously with the blue shift, the

amplitude of the internal tide generated by a moving

source (as compared to that for a source at rest, ys 5 0),

is boosted by a factor of 5/4, not unlike the summer am-

plification of the shifted internal tide found on the

southeast Florida Shelf (Soloviev et al. 2003).

Thus, the observations offer some support for the

speculation that we are here dealing with a Doppler

shifted internal tide, due to a moving source. However,

we emphasize that this case should nevertheless be con-

sidered exceptional for, as mentioned above, internal tide

generation occurs predominantly over topography, in

which case the source does notmove and there will be no

Doppler shifts for moored observers.

6. Conclusions

The main purpose of this paper is to point out the

importance of distinguishing quasi-Doppler shifts (i.e.,

the difference in frequency between two observers: one

fixed and one moving with the mean flow) fromDoppler

shifts in the normal physical sense, where one compares

the frequency of an observer with that of a source.

Regarding the latter, the principal points can be sum-

marized as follows.

(i) ADoppler shift in frequency can occur only if there

is a relative movement of source and observer

(sections 2 and 3).

(ii) The presence of a mean flow does not change this

fact (sections 2 and 3).

(iii) The wavelength and amplitude are affected by

a mean flow as well as by a movement of the source

(section 3).

(iv) Nomeaningful interpretation of observational data

in terms of Doppler shifts can be made unless the

movement of the observer (e.g., fixed as in moored

instrumentation or moving as in a drifting platform)

as well as the movement of the source has been as-

certained (Section 5).

(v) For dispersive waves, a straightforward generaliza-

tion of the classical formula for Doppler shifts can

be derived (section 4). The aforementioned points

all remain valid in that case.

Regarding quasi-Doppler shifts and its central re-

lation (17), which plays a key role in Bretherton and

Garrett (1968) and following studies, it should be noted

that the movement of a source does not feature in this

relation; it is invariant for that movement (section 3e).

But, this should not be misinterpreted as implying that

the movement of a source does not influence the in-

dividual terms v, v0, and k. The invariance just means

that (17) cannot tell us anything about that influence; for

this, it is necessary to consider Doppler shifts in the strict

sense of the word.

In this paper we have restricted ourselves to the rel-

atively straightforward cases in which all velocities are

parallel and in which the mean flow is spatially uniform.

The more general cases of arbitrary angles between the

various velocities and of spatial variations in the mean

flowwere analyzed byBateman (1931) andYoung (1934).

In particular, the mean flow at the location of the source

may be different from that at the location of the observer.

The upshot is that mean flows still create no Doppler

shifts. This is actually already clear from the ‘‘stationarity

argument’’ discussed in section 2.

In reality, mean flows vary not only spatially but also

in time. This aspect, however, brings in a new element

quite distinct from Doppler shifts, namely nonlinear in-

teraction, the generation of higher harmonics, etc. Such

interactions do not bring about a shift in the spectral

peak, but rather they create new additional peaks at the

sum and difference frequencies of mean flow and wave
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(see, e.g., Bell 1976). If the flow oscillates slowly com-

pared to the wave or if the stratification varies slowly,

these peaks will be very close to the main peak, effec-

tively making it broader (depending on the spectral

resolution; in the time domain, this is manifested as in-

termittency). To add to the already existing confusion,

this effect is often called ‘‘Doppler smearing,’’ even

though it has nothing to do with Doppler shifts or, in-

deed, with anything Christian Doppler ever did.
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