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Environmental context. The low concentration of iron in the oceans limits growth of phytoplankton.
Dissolved organic molecules, called ligands, naturally present in seawater, bind iron thereby increasing its
solubility and, consequently, its availability for biological uptake by phytoplankton. The characteristics of these
ligands are determined indirectly with various mathematical solutions; we critically evaluate the underlying
method and calculations used in these determinations.

Abstract. The determination of the thermodynamic characteristics of organic Fe binding ligands, total ligand

concentration ([Lt]) and conditional binding constant (K
0), by means of titration of natural ligands with Fe in the presence

of an added known competing ligand, is an indirect method. The analysis of the titration data including the determination
of the sensitivity (S) and underlying model of ligand exchange is discussed and subjected to a critical evaluation of its
underlying assumptions. Large datasets collected during the International Polar Year, were used to quantify the error

propagation along the determination procedure. A new and easy to handle non-linear model written in R to calculate the
ligand characteristics is used. The quality of the results strongly depends on the amount of titration points or Fe additions in
a titration. At least four titration points per distinguished ligand group, together with a minimum of four titration points

where the ligands are saturated, are necessary to obtain statistically reliable estimates of S, K0 and [Lt]. As a result
estimating the individual concentration of two ligands, although perhaps present, might not always be justified.

Received 28 March 2013, accepted 27 September 2013, published online 20 March 2014

Introduction

Fe is an essential micronutrient for marine phytoplankton
growth; however, dissolved Fe concentrations are extremely

low in oceanwater relative to biological demand. High nutrient–
low chlorophyll (HNLC) regions in the oceans are often caused
by a lack of Fe.[1–3] Seasonal Fe limitation of primary production

in the Iceland Basin,[4] and control of nitrogen fixation in the
North Atlantic Ocean[5] show that Fe also regulates primary
productivity outside the classic HNLC regions.

Since 1994 it has been known that,99% of dissolved Fe in
seawater is bound to organic molecules (ligands) with high
affinity for Fe.[6] The binding by dissolved organic ligands
prevents or at least retards precipitation of Fe as insoluble oxides

and may play an important role in the dissolution of Fe from
dust[7] and in keeping Fe from glacier melt water[8,9] and
hydrothermal sources in the dissolved phase.[10,11] Organic

complexation influences the photochemistry and bioavailability
of Fe.[12–14] To allow biological uptake of Fe, part of the
organically complexed Fe pool must be biologically available

for phytoplankton. It is still not clearwhichpart of the organically
complexed Fe pool is available and how it is assimilated by
organisms.[15–17] It is also not exactly known which organic

molecules in the marine environment bind Fe. The term ‘ligand
soup’ is probably a good description of the reality in seawater: a

continuum of different ligands in very low concentrations over a
wide spectrum of size classes and Fe-binding functional
groups.[18,19] Some components contributing to the natural ligand

pool have been investigated. Siderophores are known to bind Fe
strongly and have been detected in natural seawater.[6,20–22]

Laglera et al.[23,24] investigated the role of the weaker binding

humic substances. Hassler et al.[12,25] discovered the contribution
of sugars to the ligand pool as relatively weak Fe-binding
compounds, but present at relatively high concentrations.[25]

Most methods use adsorptive cathodic stripping voltamme-
try (adCSV) with a hanging mercury drop electrode based on
ligand exchange.[6,26–28] This is an indirect method because the
natural ligands themselves are not measured. The characteristics

of the natural ligands, the total ligand concentration ([Lt]) and
the conditional stability constant (K0, commonly expressed as
logK0), are mostly calculated according to the Langmuir iso-

therm model.[29–31] Using this model, it is assumed that the
added ligand (AL) competes with one or two different natural
ligand groups present in the sample. This is a well known

oversimplification.
The simplicity and strength of the Langmuir model has

popularised this model since 1982.[30–32] To estimate the ligand

characteristics K0 and [Lt], a series of observations is needed to
solve the Langmuir equation. Therefore, the ligands are titrated
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with Fe, typically resulting in 10 titration points. Although

different linear[30,31,33] and non-linear[34–37] mathematical solu-
tions have been developed using the Langmuir model, they all
estimate the unknown parameters by fitting solutions to the

Langmuir equation through the observations. Improvements and
more sophisticated mathematical approaches to calculate the
binding characteristics have been published.[35,37–39] An
increasing number of publications on organic Fe speciation

present data in which two ligand groups are distinguished[40]

with one strong ligand (L1) having K0
1 between 1021 and 1024,

and one relatively weak ligand (L2) with K
0
2 between 10

19.8 and

1022. Global models use this concept of two ligands to fit the
measured dissolved Fe concentrations.[41,42] However, calculat-
ing the ligand characteristics of these two ligand groups in a

correct way from the results of a titration, including standard
deviations of the estimated values, is mathematically
difficult.[37,38]

Inspired by the review paper of Gledhill and Buck[40] on Fe

speciation in oceans we discuss the relationship between the
quality of the analytical data and the interpretation of these
results. After a short explanation of the principle of the ligand

exchange method we discuss the consequences when the
assumptions of the applied ligand exchange or Langmuir model
are not fulfilled. We relate these consequences to the quality of

the results and the data interpretation.
To interpret the data we use a straightforward and simple

method in which the sensitivity (S), the conditional stability

constant (K0) and the total ligand concentration ([Lt]) are
estimated using non-linear regression. By including S as an
unknown parameter in the non-linear regressionwe allow for the
possibility that the visually linear part of the titration curve is

still affected by unsaturated natural ligands. The large datasets
from IPY-GEOTRACES[43,44] from the International Polar
Year program and unpublished measurements from theWestern

Atlantic Ocean are used to calculate the effects of S on Fe
speciation results as well as the influence of the number of data
points in a titration and the saturation with Fe of the natural

ligands on results of Fe complexation in natural samples. In
addition, we discuss whether a distinction of the ligand pool in
two groups is warranted by the data quality. Although we do not
doubt the existence of more than one ligand group, we propose a

more critical data interpretation.

The ligand exchange method

Definitions

The prime in the stability constants K0 and b0 is used to indicate
the conditional nature of the sample matrix to express the
dependency on the conditions, differing from ideal conditions in

temperature, pressure, pH, major ion composition, concentra-
tion of competing ligands and the ionic strength or salinity.[45] In
this paper the values of K0 and b0 are given with respect to free

Fe (Fe0). Fe0 corresponds to the sum of the fractions of dissolved
Fe that are ionic Fe3þ and bound by inorganic complexes.

Principle

Voltammetry is a well suited method to measure low metal
concentrations at a constant pH and at a high ionic strength as
found in the marine environment. Ligand exchange is based on
the addition of a well characterised electro-active ligand that

competes with the natural unknown ligands for Fe. The con-
centration of Fe bound to this well characterised ligand can be
measured. Its concentration reflects the equilibrium after

competition with the natural ligands for Fe. The natural ligands

are titrated by adding increasing concentrations of Fe to sub-
samples. At low added Fe concentrations both the natural and
the added known ligands (hereafter added ligand, AL) compete

for the added Fe. At high added Fe concentrations almost all
natural ligands bind Fe and the measurable concentration of
known ALs increases almost linearly with added Fe (Fig. 1a).
We use this ‘linear’ part of the titration to calculate the con-

centration of non-Fe bound or ‘free’ natural ligands not bound to
Fe and S that describes the sensitivity of our analytical signal for
the addition of Fe. The sensitivity is used to translate the current

I in nA as peak height into Fe concentration in nM. If any FexALy

complex is formed that is not electro-active an error is intro-
duced overestimating the Fe complexation: until now no infor-

mation has been known about this for the methods used for Fe.
The Langmuir equation combines the equilibrium expression

and the mass balance of the natural ligands. The equilibrium
expression is

K 0 ¼ ½FeL�=½Fe0�½L0� ð1Þ

where K0 is the conditional stability constant, often expressed as
logK0, and [Fe0] and [L0] the concentrations of free Fe and
natural ligand L, whereas [FeL] is the concentration of Fe that is

complexed by natural ligand L. The mass balance of the natural
ligands is given by

½Lt� ¼ ½FeL� þ ½L0� ð2Þ

in which [Lt] is the total ligand concentration. Inserting [L0]
from Eqn 2 into 1 gives the Langmuir equation:

½FeL� ¼ K 0½Lt�½Fe0�=ðK 0½Fe0� þ 1Þ ð3Þ

The competing ligand method is an indirect method with a
limited range defined by the detection window (D), which is the

product of the non-Fe bound known AL concentration ([AL0])
and conditional binding strength (b0) of the AL.[45,46] The AL
should have such a high concentration that any decrease in [AL0]
by binding of Fe is insignificant. Consequently [AL] is assumed
to be equal to [AL0], implying D¼ [AL]b0 (Eqn 4). The product
of the non-Fe bound ligand ([L0]) and conditional binding

strength (K0) of the natural ligands that can be detected is in the
range of one order of magnitude above and below D, according
to Apte et al.[45] and van den Berg et al.[46] However, the range
used is a little wider, by up to two orders of magnitude.[40]

A known amount of a well characterised competing ligand is
added to the sample at a desired pH. After equilibrium is
established, the Fe complexed by the AL can be adsorbed at a

certain negative or neutral potential on the mercury drop:
scanning in the more negative direction will result in the
dissociation of Fe from the AL and a reduction of FeIII to FeII,

which can be measured as a current. The instrument signal can
be translated into a concentration by S. Four different added
Fe-binding ligands are currently used in adCSV: 1-nitroso-2-

napthol (1N2N), later abbreviated as NN,[6] salicylaldoxime
(SA),[26] 2-(2-thiazolylazo)-p-cresol (TAC)[27] and dihydroxy-
naphthalene (DHN).[28] The original method of Gledhill and van
den Berg[6] was based on the added ligand NN, using a solution

pH of 6.9.[47,48] Because a change in pH may change the
chemistry of Fe, we restrict ourselves to the later NN work from
2001 onwards when a solution pH of 8.05 was used,[49] which is
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similar to the ambient pH in the open ocean. The used detection

window (D) varied between 87.7 and 640.[7,24,27,28,43,44,49–55]

All these applications give comparable results.[56] K0 varies
between 109.5 and 1014 with respect to Fe0 and 1019.5 and 1024

with respect to Fe3þ.

The calculation of K0 and [Lt], using the Langmuir equation

Applying the Langmuir equation to estimate K0 and [Lt] has

been described elsewhere[30,34] and we only briefly report the
essentials. The concentration of Fe bound to the AL ([FeAL])
reflects the result of competition with the natural ligands. The
concentration FeAL can be written as:

½FeAL� ¼ bFeAL½AL�½Fe0� ¼ D½Fe0� ð4Þ

with D, the detection window, as the product of the concentra-
tion of AL not bound to Fe ([AL0]) and bFeAL. Because the
concentration of the AL is orders of magnitude larger than that

of dissolved Fe, [AL] is used in Eqn 4 instead of [AL0], and [Fe 0],
the concentration of Fe not bound to the added and natural
ligands can be calculated. Becausewe assume equilibrium in the
sample solution, Eqn 1 can be rearranged to give,

½FeL� ¼ K 0½L0�½Fe0� ð5Þ

With the mass balance of Fe,

½Fedis� ¼ ½FeAL� þ ½FeL� þ ½Fe0� � ½FeAL� þ ½FeL� ð6Þ

In this mass balance we assume that [AL] is sufficiently high
that the detection window of the added ligand (DFeAL,) is
..100, therefore [FeAL] is large compared to the concentration

of inorganic Fe species ([Fe0]), which is lower than 1%. [Fe0]
can therefore be removed from the mass balance (second part of
Eqn 6). [FeL] can thus be calculated using the measured [FeAL]
and the dissolved Fe concentration ([Fedis]), which needs to be

known. The [Fe0] species are predominantly Fe hydroxides. At a
fixed pH, this fraction of dissolved inorganic Fe can be calcu-
lated. At pH 8, [Fe0]¼ 1010� [Fe3þ].[57] In Eqn 6 [Fedis] is the

natural dissolved concentration of the sample, increasing to the
total dissolved Fe concentration after Fe additions. In Eqn 5 two
unknowns remain, [L0] and K0. We need a sufficient number of

data points, hereafter called titration points, to estimate [L0] and
K0 with regression (Fig. 1a). The titration points are obtained
by Fe additions, thus for a titration, the sample is typically
subdivided into 6 to 15 subsamples with increasing Fe

concentration.
To obtain [Lt] and K0 the Langmuir equation (Eqn 3) is

fitted to the measured [FeAL] as a function of added Fe
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Fig. 1. Examples of treatment of (theoretical) datawith different forms of the Langmuir equation for one ligand (a–c) and for two ligands (d–f). (a) The

titration of one ligand with measured current in peak heights (nA) on the y-axis representing the Fe bound by the known added competing ligand and on

the x-axis the total dissolved Fe ([Fedis] þ added Fe) (nM). (b) The van den Berg–Ružić linearised form of the data in (a), in which the quotient of

the concentration of free Fe (Fe0) and Fe complexed by natural ligand L (i.e. [Fe 0]/[FeL]) is on the y-axis and [Fe0] (nM) (Eqn 7) is on the x-axis. (c) The

Scatchard linearisation of the data in (a); in which the quotient of [FeL] and [Fe0] is on the y-axis and [FeL] (nM) on the x-axis (Eqn 8). (d) As in (a) but

now two ligands are present in the sample. (e) As in (b) but now two ligands are present in the sample. (f) As in (c) but now two ligands are present in the

sample. (a–c) Theoretical data: [Fedis]¼ 0.1 nM, logK0¼ 11.8, [Lt]¼ 2 nEq of M Fe. (d–F) Theoretical data: [Fedis]¼ 0.1 nM, logK0
1¼ 12.5,

[Lt1]¼ 0.5 nEq of M Fe, logK0
2¼ 11.8, [Lt2]¼ 2 nEq of M Fe.
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concentrations. Linearised forms of the Langmuir equation

(Eqn 3) are also used, e.g. the van den Berg–Ružić linearisa-
tion[30,31] (Fig. 1b),

½Fe0�
½FeL� ¼

½Fe0�
½Lt� þ

1

K 0Lt

ð7Þ

and the Scatchard linearisation[33] (Fig. 1c)

½FeL�
½Fe0� ¼ �K 0½FeL� þ K 0½Lt� ð8Þ

The left hand sides of Eqns 7 and 8 (respectively [Fe0]/[FeL]
and [FeL]/[Fe0]) are seen as independent variables, whereas it is
clear from their expressions that they still depend on the
dependent variables on their right hand sides (i.e. [Fe0] and
[FeL]). Although the Scatchard linearisation (Eqn 8) most times

doesn’t fit the data properly,[45,58] it is a good method to reveal
the presence of two ligand groups as indicated by two distinctive
linear regions (Fig. 1f) instead of one if only one ligand group is

present (Fig. 1d). Because [Fe0] is in the denominator of the
function of [FeL] it magnifies the relationship between [FeL]
and [Fe0] in the region of low FeL concentrations enabling

distinction between two ligand groups[34,45,59] (Fig. 1f).
If two ligand groups, L1 and L2, are assumed to exist,

K 0
1 ¼ ½FeL1�=½Fe0�½L0

1� ð9Þ

K 0
2 ¼ ½FeL2�=½Fe0�½L0

2� ð10Þ

Inserting these into the total ligand concentration equation:

X
½FeL� ¼ ½FeL1� þ ½FeL2� ð11Þ

one obtains:

X
½FeL� ¼ ðK 0

1½Lt1�½Fe0�Þ
ðK 0

1½Fe0� þ 1Þ þ
ðK 0

2½Lt2�½Fe0�Þ
ðK 0

2½Fe0� þ 1Þ ð12Þ

The calculation of four parameters (K0
1, K

0
2, [Lt1] and [Lt2])

using 10 titration points needs data with little noise, otherwise
the error in the estimates by least-squares regression will be
very large. For the moment we will restrict ourselves to the

assumption that one ligand exists as given in Eqn 3. This is still
one equation with two unknowns, K0 and [Lt]. The greater Fe
additions are meant to fully occupy all natural ligand sites
resulting in a linear relationship between the instrumental sig-

nal, I (nA), and the Fe concentration, giving S¼ I/[FeAL]. The
linear part is typically determined by visual inspection of the
titration curve. S is the third unknown and this was not

acknowledged for a long time. There are two reasons why the
estimation of S by visual inspection has been criticised[35,36]:
first the determination is very subjective, second the so-called

straight part is not straight but still slightly curving. This error
can be restored using an iterative process[36] or by using non-
linear regression of all three parameters.[35]

The assumptions

The Langmuir equation[29] is often used to calculate ligand
characteristics from titration data. Several assumptions need to

be made to be able to use the Langmuir equation. Applying the

Langmuir equation to titration data is based on the equilibrium

expression (Eqn 1) and the mass balance of the natural ligands
(Eqn 2). Therefore the first and most important assumption is
that the system under observation is in equilibrium or at least in a

steady-state. The second assumption is that all binding sites of L
with Fe are equal and do not influence each other. In the above
equations a 1 : 1 coordination is used, meaning that the FeL
complex consists of one Fe and one natural ligand, but any

coordination can be assumed to exist between L and Fe. The
Langmuir equation (Eqn 3) can be extended to more than one
ligand and the assumption that the sites are equal to each other

within the distinguished groups remains.
The third assumption, related to Eqn 2, is that no other

elements other than Fe influence [L0].
The fourth assumption, related to the first assumption of

equilibrium, is that natural ligands bind Fe reversibly, which is
inherent to the analysing method of ligand exchange. In other
words, Fe bound to natural ligands can be released to an AL

within the time limits of the method. This is defined by the
association and dissociation kinetics of the natural and added
ligands.

Assumption 1: equilibrium

Equilibrium, or at least a steady-state, is assumed to exist in the
open ocean, although it is a natural environment in which pro-
cesses occur continuously. However, the photic zone is subject
to fast processes like photo-reduction and, on a longer timescale,

biological processes such as phytoplankton blooms and degra-
dation of fresh organic matter. Phytoplankton take up Fe and
excrete dissolved organicmolecules that might act as Fe binding

ligands. Mineralisation below the photic zone releases Fe and
organic molecules. Natural ligands are produced and altered by
biological and physical processes that can lead to exchange

between particles and solution. Somewhere in this environment
a sample is taken. The result is a snapshot, as is every mea-
surement. However, the sample is filtered and the effect of fil-
tration, the removal of the particulate phase, may affect the

natural equilibrium conditions and therefore measurement of
dissolved organic ligands. Ligands keep Fe in the dissolved
phasewhereas scavenging removes Fe from the dissolved phase.

Filtration removes one phase and sampling adds another com-
petitor for Fe: the bottle wall.[60,61] The ligands might therefore
bemore under saturated than theywere under natural conditions,

and we might overestimate the non-Fe bound ligand concen-
tration. Comparison between the dissolved Fe concentration
immediately after filtering and after being present for a day in a

sample bottle at natural pH indeed shows a reduction of 13%
(data not shown; n¼ 130, Fe content is 86.8% � 17.6 s.d. of
the [Fedis] measured in immediately acidified samples;
GEOTRACES West Atlantic data). It is important to carefully

describe when and under which conditions samples for dis-
solved Fe were taken, and it is advisable to sample for dissolved
Fe from the same sample bottle as that in which the sample for

organic speciation is kept and to sample just before organic
speciation is measured. Another possibility is to condition
sample bottles for speciation analysis with the sample before

sampling, this is already routine with bottles for the subsamples
of the titration. Free or inorganic Fe and complexed Fe adsorbs
on the bottle wall. The added ligand TAC is known to be able to

colour low density poly(ethylene) (LDPE) bottles and thus is
clearly sticking to these bottles. If complexed Fe is adsorbing,
the consequence is that the total ligand concentration is under-
estimated but not the excess ligand concentration [L0].When the
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non-Fe bound ligands adsorb, the total ligand concentration and

[L0] will be underestimated.
We also can not exclude interactions between the AL and the

natural ligands. Such interactions might exist between TAC and

humic substances, masking complexation of Fe by humics.[24]

The consequence of not fulfilling assumption 1, thus when
the system under study is not in equilibrium, is that the results
are only valid for the moment the sample is measured. To apply

the Langmuir model, equilibrium is necessary during the mea-
surement but this also implies equilibrium in the sample before
analysis. The formation of a new equilibrium after addition of

the AL and increasing Fe concentrations has been tested
extensively by the authors of the methods in use; we assume
that the assumption of equilibrium during analysis is fulfilled.

However, Town and van Leeuwen[62] wrote a critical note on
this assumption, arguing that the kinetics of the reactions
guaranteed a non-equilibrium situation during the measurement
itself. Although this was rebutted by Hunter[63] and van den

Berg,[64] it is still under debate whether such strong complexes,
assumed to exist between Fe andmarine organic complexes, can
react within the time span of themeasurement.[65] Recent kinetic

data from the open ocean[66] proves that the time frame to reach
equilibrium is ,12–48 h.

Assumption 2: equal binding sites

It is clear that assumption 2, all binding sites between L and Fe
are equal to each other, is not fulfilled in natural samples. The
results from the Langmuir model gives conveniently convincing

results, but the existence of one or two ligands is a much too
simple reflection of reality.We know that the ligands binding Fe
consist of a variety of groups like siderophores, sugars and

humic substances, but predominantly contain unidentified sub-
stances in different size fractions (Gledhill and Buck[40] and
references therein). The variation in characteristics of metal

binding ligands might be endless as discussed extensively by
Buffle and co-workers forming a kind of continuum of binding
strengths that can bemodelled by affinity spectra.[67,68] The data
resulting from application of a simple 1 or 2 ligand model is that

the obtained [Lt] is from the most positive point of view the sum
of all binding sites present.[50]Modelling a pool of ligands as if it
is a single ligand results in a conditional stability constantK0 as a
kind of weighted mean, weighted by especially the strength and
to a lesser extent by the concentration of the separate ligand
(group)s. However, the influence of the different ligand (group)s

on K0 is restricted by the detection window (D) of the method,
ligands with a-values (a¼K0[L0]) outside D will interfere less.
The magnitude and kind of this interference also depend on the
a-value being at the upper or lower limit of D.

Sources of ligands and processes of degradation will be
reflected in variations in ligand characteristics with depth
(source relation) or time (production and degradation of

ligands). The distinction into one or two ligand groups depends
on this variability. The saturationwith Fe of one group of ligands
with time or depth will influence the interpretation of the

binding characteristics of the sample.

Assumption 3: no competition by other metals

The binding strength between Fe and the organic ligands is so

strong that the chance of competition is fairly small. Competi-
tion by divalent metals is unlikely. Although research on humic
substances showed that the conditional binding constants of

Zn, Co and Cu in seawater are only two orders of magnitude

lower,[69] competition with Fe for humics might occur in a

coastal environment with elevated Cu and Zn concentrations.
Little is known about competition of rare earth metals and
because their concentration is low, it is probably of less

importance. If a competition does exist, both K0 and [Lt] are
underestimated. [Lt] is underestimated by the concentration
occupied by the competing metal. The explanation of the
underestimation of K0 is that K0 was calculated for a smaller [Lt]

than present in the sample and a ligand with an a-value larger
than assumed and so [L0] is smaller than assumed and conse-
quently K0 must be larger (Eqn 1). Competition falls under the

conditional nature of the binding constant. However, it does
disturb our interpretation if the unknown competing element or
compound changes in concentrationwith time and place (depth),

as then an observed increase in ligand concentration might in
reality be only a decrease in the competing element. The extent
of the error made in interpreting such a change will depend on
the change in the concentration of the competing metal.

Assumption 4: reversibility

We here define Fe to be bound reversibly to a natural ligand
when the AL is able to compete with this natural ligand for Fe

and to bind Fe in a concentration related to the detection win-
dow of theAL, which is thus related to the concentration and the
binding strength of the AL. For Cu in coastal waters it was

shown that up to 60% of the dissolved Cu was irreversibly
bound.[70] If assumption 4 is not fulfilled and irreversibly bound
Fe is present, as shown for Cu, the added ligand will not be able

to bind Fe. Eqn 6 is then incomplete. The interpretation of the
data will result in an overestimation of the concentration of
natural ligands binding reversibly within the detection win-
dow.[40,55] The overestimation will amount to the concentration

of irreversible bound Fe. [Lt] is overestimated, as well as
K0.[40,55] K0 is overestimated because it is calculated with an
overestimated [Lt] (Eqn 6), and only [L0] is estimated

correctly.[55] The effect of the concentration of Fe bound irre-
versibly on the obtained ligand characteristics can be illustrated
by the data from Thuróczy et al.[55] They measured Fe binding

organic complexes in filtered and unfiltered samples. In the
unfiltered samples part of the Fe was bound in particles not
available for complexation by an AL or in another way made

inert for ligand exchange. Although particulate Fe not available
for complexation is not the same as irreversibly bound Fe in the
dissolved phase, the study of Thuróczy et al.[55] can be used to
illustrate the effect of inert dissolved Fe that does not take part

in the ligand exchange. In the unfiltered samples it was
unknown which part of the measured total dissolvable Fe
(unfiltered samples acidified at pH 2 and measured after

0.5 year) was bound reversibly to dissolved ligands. Therefore
the parameters [Lt] and K

0 were calculated twice, with the total
dissolvable Fe concentration as a maximum for the concen-

tration of Fe bound reversibly by organic ligands and with the
dissolved Fe concentration as an estimate of the minimum of
the Fe concentration bound reversibly by organic ligands. Here
we add that if the concentration of Fe bound irreversibly is

large, fitting themodel through the datamight become difficult,
therefore resulting in large errors in [Lt] and K

0, and thus also a
large error in [L0]. The [L0] concentrations were the same for

both calculations (0.92, s.d.¼ 0.24 and 0.957, s.d.¼ 0.31,
n¼ 10). The difference between the Fe concentrations influ-
enced the calculated K0 and a-values according to the linear

relationships shown in Fig. 2.
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Non-linear fitting of [Lt], K9 and S

Description of method used

In the present section we derive a non-linear model relating
measured current (I) to the total dissolved iron concentration,
x¼ added Feþ [Fedis]. Observations are used to estimate

unknown parameters ([Lt], K
0 and S) by fitting the non-linear

model for a single ligand to the data using non-linear regression.
We also show how the method can be extended when two

(or more) ligands are present. In that case the model is instead,
more easily (and exactly) cast in inverse form, i.e. it is namely
one that relates total dissolved iron (x) non-linearly to measured

current (I).
Fitting programs generally work better when data are of

order one. Therefore the current I is given in nanoamperes and

concentrations in nanomoles per litre instead of amperes and
moles per litre, and the value of K0 is divided by D to make the
number of order one. The Langmuir model is rewritten in the
following way.

Using the mass balance equation (Eqn 2) [FeL]¼ [Lt]� [L0],
[FeAL]¼D[Fe0] and the measured peak height (nA) I¼ S

[FeAL], with S the sensitivity of the analytical method, using

Eqn 4 we find

I ¼ SD½Fe0� ð13Þ

Using Eqn 1, the current is rewritten as

I ¼ SD
½FeL�
K 0½L0� ð14Þ

With [Fedis] and added Fe expressed as x, we can rewrite the
mass balance of Fe as

D½Fe0� ¼ x� ½FeL� � ½Fe0� ð15Þ

From Eqn 1 we get

½FeL� ¼ ½Fe0�K 0½L0� ð16Þ

From Eqn 15 and 16 we get

ð1þ Dþ K 0½L0�Þ½Fe0� ¼ x ð17Þ
From Eqn 1, we replace [Fe0] by [FeL]/K0 [L0]. Using Eqn 2,

we then replace [FeL] by [Lt] – [L0] and, moving the last term on
the left-hand side of Eqn 17 to the right hand side, we get

ð1þ DÞð½Lt� � ½L0�Þ ¼ K 0½L0�ðxþ ½L0� � ½Lt�Þ ð18Þ
We define

K 0 ¼ ð1þ DÞk ð19Þ
which introduces a normalised stability constant, k.

Inserting Eqn 19 into Eqn 18, we thus need to solve a

quadratic in [L0], as also shown by Wu and Jin,[37]

½Lt� � ½L0� ¼ k½L0�ðxþ ½L0� � ½Lt�Þ ð20Þ
Because k[L0]. 0, the positive root is used

2k½L0� ¼ �ð1þ kðx� ½Lt�ÞÞ þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1þ kðx� ½Lt�ÞÞ2 þ 4k½Lt�

q
ð21Þ

Defining a normalised sensitivity (s):

s ¼ SD

1þ D
ð22Þ

from Eqns 13 and 17 we find

I ¼ sx

1þ k½L0� ð23Þ

Inserting Eqn 21 in the denominator, finally leads to a rela-
tion between measured current (I) and total dissolved Fe (x):

I ¼ 2sx

ð1þ kð½Lt� � xÞ þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1þ kðx� ½Lt�ÞÞ2 þ 4k½Lt�

q
Þ

ð24Þ
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Fig. 2. The relationship between the Fe concentration used as input data and the resultingK0 and a-values. On the horizontal axis the
difference in Fe concentration (nM) between two calculations, on the vertical axis the difference in resultingK0 and a. The data are from
Thuroczy et al.[55]DFe¼ [FeUNF] – [Fedis],DlogK

0 ¼ logK0
UNF – logK

0
dis,Dlog a equals log a, derived from unfiltered Fe, minus log a,

derived from dissolved Fe. FeUNF is Fe measured in unfiltered samples after conservation at pH¼ 2 for at least half a year.
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Fitting thisEqn24 to I (measured currents) v. x (total dissolved

Fe), results in s, k and [Lt]. FromEqn 22 it follows that S is nearly
equal to s because D/(1þD)E 1 (in the case of 10mM TAC,
D¼ 102.4 with respect to Fe0). From Eqn 19, K0 is calculated by
multiplying kwith 1þDED and, when expressed in moles per
litre, with 109 (because nanomoles were used instead of moles).

To extend the method to two ligands makes the math-
ematics complicated. A possibility is to use the one ligand fit

to estimate S and then continue with the non-linear method,
fitting Eqn 12[34,71] with only four parameters instead of five
(because S is then known). Alternatively, as we propose to do

here, we can exchange the role of the dependent and independent
variables, I and x. For this, we can rewrite Eqn 20 as

x

1þ k½L0� ¼
½Lt�
½L0� � 1

� �
1

k
ð25Þ

With Eqn 23, we infer

½Lt�
½L0� ¼ 1þ k

I

s
ð26Þ

and get a relation between [L0] and current I:

½L0� ¼ ½Lt�
1þ kI

s

ð27Þ

Inserting Eqn 27 into Eqn 23, we obtain the inverse relation

between x and I:

x ¼ I
1

s
þ k½Lt�
sþ kI

� �
ð28Þ

This expression is interesting because it contains two line-
arisations in the limits that I is very small (I- 0) or very large

(I-N). The former limit, I- 0, can only be obtained in
samples that have a very large [L0]. In this case, it reduces to

x ! Ið1þ k½Lt�Þ=s ð29Þ

or, inversely,

I ! sx=ð1þ k½Lt�Þ ð30Þ

which is similar to Eqn 23 except for a replacement of [L0] by
[Lt] (red dotted line in Fig. 3). This implies small yet non-zero

[FeL], because [FeL] � [L0] is assumed, allowing for the
approximation [FeL]¼K0 [L0][Fe0] , K0 [Lt][Fe0].

In the latter limit, I-N, the ligands are saturated with Fe,

[Fe0] increases and Eqn 26 simply becomes

x ! ½Lt� þ I=s ð31Þ

or

I ! sðx� ½Lt�Þ ð32Þ

represented as a blue dotted line in Fig. 3. This applies when
[FeL] is negligible compared to (1þD)[Fe0]. It also implies that
in samples with small [L0], samples with saturated ligands, k can
hardly be estimated.

Slopes and x-intercept of these two asymptotes give us
estimates for s, [Lt] and the product k[Lt], from which we

retrieve k and hence K0. As mentioned in the section The ligand
exchange method, the van den Berg–Ružić and Scatchard
linearisation methods also provide estimates for [Lt] and K0,
but do so at the expense of treating the ratio of two unknown
variables as an independently measured quantity, without deter-
mining S. Eqn 28 shows that in reality there will be a smooth
transition between these two limits (Fig. 3). Non-linear fitting

allows determination of all three unknown parameters, even
in cases where the two asymptotes are not strictly reached in
the data.

The method employed in the two subsequent sections is an
easy-to-perform non-linear regression, with either least-
squares regression using the computer program R or any other

fitting program or simple regression.[72] It calculates the
standard deviations (s.d.) of the fitted parameters. It is well
suited for the estimation of three or (if two ligands are

assumed) five parameters out of a fairly small number of
observations. Just as in Hudson et al.,[35] peak current heights
I (nA), and concentrations of x (nM), i.e. total dissolved Fe
present in the sub-samples (¼ added Fe þ [Fedis]) are entered

into the regression without any previous data handling.
Programs like Matlab, R, Systat and Scientist can easily
handle the fitting and supply the fitted parameters with

standard deviations of the fit. In the appendix the method is
given for R (v2.10.1, www.Rproject.org). Apart from the non-
linear fit, the calculation and graphical representation of the

two linearised forms, Eqn 7 and 8, are also programmed with
the main reason to facilitate the detection of the presence of
two ligands. Comparison with the linearised forms facilitates
the detection of a possible overestimation of S due to among

others the presence of nearly saturated ligands.[73]

15

10

5

0

0 2 4

x, total dissolved Fe (nM)
6 8

I (
nA

)
Fig. 3. The titration and non-linear fit of the Langmuir model (the fitted

line discussed in this paper) of sampleM (circles) and P (squares).Measured

current in peak heights (nA) on the y-axis representing the Fe bound by the

known added competing ligand and on the x-axis total dissolved Fe (x)

the natural dissolved Fe concentration [Fediss]þ added Fe (nM). For sample

M the red dotted line represents Eqn 30, the linearisation of Eqn 28 where

I- 0. The blue dotted line represents Eqn 32, the linearisation of Eqn 28

where I-N (see text). M and P are stations form the W Atlantic

GEOTRACES cruises (2010–2011) (see text).
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Model for two or more ligands

In this inverse form, the determination ofmore than one ligand is

possible as the relation in Eqn 26 can be extended. To see
this, consider the iron balance, expressing total dissolved iron,
x¼ added Fe þ [Fedis], as

x ¼ ½FeAL� þ ½Fe0� þ ½FeL1� þ ½FeL2� þ . . .

¼ ½Fe0�ð1þ Dþ K 0
1½L02� þ K 0

2½L02� þ . . .Þ ð33Þ

where, in the second expression, we made use of Eqn 4 and of
the equilibrium expressions for individual ligands, labelled by

subscripts i¼ 1, 2, y

K 0
i ¼

½FeLi�
½Fe0�½L0

i�
ð34Þ

Normalising each of K0
i¼ (1þD)ki, as before, allows us to

split off a common factor (1þD):

x ¼ ð1þ DÞ½Fe0� 1þ
X

ki½L0
i�

� �
¼ I

s

� �
1þ

X
ki½L0

i�
� �

ð35Þ

where we used Eqn 13 and 22 to rewrite (1þD)[Fe0]¼ I/s, and
where S is summation over i.

We now write the [L0
i] in terms of current I. To do so, we use

the equilibrium expressions in Eqn 34,

½L0
i� ¼

½FeLi�
½Fe0�K 0

i

¼ s½FeLi�
Iki

¼ s

Iki
ð½Lti� � ½L0

i�Þ ð36Þ

which we rewrote in the penultimate expression using Eqn 13,

and where in the last expression we use ligand mass balances,
[Lti]¼ [L0

i]þ [FeLi].
Solving Eqn 36 for [L0

i],

½L0
i� ¼ s=ðsþ IkiÞ½Lti� ð37Þ

We finally rewrite Eqn 35 as

x ¼ I
1

s
þ k1½Lt1�
sþ k1I

þ k2½Lt2�
sþ k2I

þ . . .

� �
ð38Þ

adding similar terms when more ligands are present. This indi-
cates that dissolved iron (x) may be expected to show Nþ 1
linear regimes, when N different ligands are present and when
stability constants and ligand concentrations differ sufficiently.

However, the x v. I plot will never be as revealing as the
Scatchard plot to study by visual inspection the heterogeneity of
the ligands in titration results.

The number of titration points

The non-linear fitting has to estimate three parameters (S, K0 and
[Lt]) if one ligand is present. If two ligands are present, five

parameters (S, K0
1 and [Lt1], K

0
2 and [Lt2]) have to be estimated

using the available titration points. We did a sensitivity study on
the influence of the number of titration points, irrespective of the
other sources of errors using GEOTRACES data from a cruise in

the West Atlantic (2010–2011). These titrations contained 14
titration points measured in duplicate to give a total of 28

observations, of the following 14 Fe additions: 0, 0.2, 0.4, 0.6, 0.8,

1, 1.2, 1.5, 2, 2.5, 3, 4, 6 and 8 nM Fe. We selected two samples:

1. Sample M that fitted the Langmuir model closely (station

11 bottle number 22, 49-m depth: S¼ 1.361� 0.017,
logK0 ¼ 12.22� 0.11, [Lt]¼ 1.28� 0.06 nEq of M Fe,
[Fedis]¼ 0.103� 0.004 nM), containing a fairly large

[L0]¼ 1.18 nEq of M of Fe,
2. Sample P that fitted the Langmuir model closely but

contained almost saturated ligands (station 24 bottle number
16, 302-m depth: S¼ 1.85� 0.017, logK0 ¼ 11.99� 0.27,

[Lt]¼ 0.36� 0.06 nEq of M of Fe, [Fedis]¼ 0.269�
0.005 nM) with [L0] of 0.09 nEq of M of Fe.

For these samples the fitting program randomly removed Fe

additions, starting with removing 1, up to 10 titration points
(thus reducing the number Fe additions from 14 to 4, which
measured in duplicate reduced the number of observations from

28 to 8) and applied the non-linear regression to see how the size
of the titration data affects the obtained value. Subsequent
analysis for S,K0 and [Lt] was repeated 30 times for each number

of titration points that was randomly removed (from 1–10). For
some titrations after removal of a certain number of data points
the model could not converge. This influences the number of

estimated values being #30 times (Fig. 4a–d).
For data that are closely fitted by the Langmuir model, either

with high or low [L0], the standard deviation of the estimated
parameters [Lt] andK

0 is directly linked to the number of observa-

tions. The median of the estimates does not show a large change
with increasing removal of titration points (Fig. 4). A difference
between themean value and themedian in the sample indicates the

presence of outliers. In sample P,with almost saturated ligands, the
estimates of [Lt] (Fig. 4c) and to a lesser extent also of logK0

(Fig. 4d) are apparently more susceptible for outliers, especially

after more than three points have been removed (n# 10).
Sample P has few observations where K0 can be determined.

K0 is determined where competition between the ALs and natural
ligands occurs, thus by the data points lying in the curved part of

the titration near the red dotted line in Fig. 3 (described by Eqn
30). [Lt] is determined by the position of the straight part of the
titration near the blue dotted line in Fig. 3 (Eqn 32). We expect

that the number of observations in those different parts (curved
and straight) of the titration curve have consequences for the
reliability of K0 and [Lt]. We therefore estimated the effect of

removal of titration points in the straight part and in the curved
part of the titration.We divided the data points of each sampleM
and P in two groups, data points where the natural ligands were

unsaturated to just saturated and data points where the natural
ligands were saturated with Fe. This division was done by visual
inspection and was supported by the intercept of Eqns 30 and 32
for the data of both samples. We removed titration points until

n¼ 2 (Fig. 5). The results showed for both curved and straight
parts that removal increased the standard deviation of the
estimates. [Lt] is hardly sensitive to the number of titration points

in the curved part, but is sensitive to the number of titration points
in the straight part (Fig. 5c, d). The standard deviation of the
estimates of K0 is especially sensitive to the number of titration

points for the sample with the almost saturated ligands where the
number of titration points in the curved part is already small
(maximum of five Fe additions) (Fig. 5a, c).

If two ligands are present the sum of both ligands has the
same reliability as [Lt], indicated by the straight part. However,
three parameters ([Lt1], K

0
1 and K

0
2) now have to be estimated by

the number of titration points in the curved part.
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Comparison of the old non-linear fit with the new non-linear
fit determining three parameters, S, K0 and [Lt] assuming
one ligand

Thuróczy et al.[43,44] produced large datasets of organic speci-
ation of dissolved Fe over the whole water column in the Arctic
(Arc) and the Atlantic sector of the Southern Ocean (ANT).
These were obtained by voltammetry using TAC as an added

ligand.[27] Their data were subjected to non-linear regression
after estimation of S by linear regression to the last points of the
titration[34] and to the newmethod presented here. Note that [L0]
is calculated not by Eqn 2, but by repeated calculations of Eqns
4, 5 and 6, including the inorganic species here with the inor-
ganic a-value of 1010, ([Fedis]¼ [Fe3þ] (1þ 1010þbFeAL [AL]þ
K0 [L0]), using Newton’s algorithm.[75]

The application of the non-linear fit of the solution of the
Langmuir equation to obtain K0, [Lt] and S results in larger S

values as observed earlier for Cu.[35,36] For the Arc samples[44]

the corrected S is 1.097 times higher than the uncorrected S and

consequently [Lt] is 1.27 times higher, logK0 0.995 times
(n¼ 126), whereas in the ANT samples[43] the corrected S is
1.017 larger, [Lt] 1.09 higher and no difference in logK0 was
observed (n¼ 147). This difference in the change in S between

the Arc and ANT samples is related to the concentration of [L0]
(Fig. 6). The S becomes larger with increasing [L0]. This can be
explained by the competition between natural ligands and AL,

expressed by comparing a toD. The higher [L0], the larger is the
competition with the AL and thus the correction of S is larger.

The mean [L0] is 0.695 nEq of M Fe (s.d.¼ 0.301 n¼ 147)

for ANT and 1.564 (s.d.¼ 0.906, n¼ 126) for Arc. The[43,44]

datasets contain three different size fractions, unfiltered sam-
ples, ,0.2 mm and ,1000 kDa over the whole water column.
The ratio of corrected S over uncorrected S (Scor/Sold) was
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slightly lower for the fraction,1000 kDa compared to the other

fractions. This relates directly to the smaller [L0] in this fraction.
Moreover, this correction ratio was larger in the surface samples
and again this is explained by the larger [L0] there.

As a consequence, changes due to the correction factor are
larger in the surface and the total dissolvable fractions (as an

illustration: in the surface#200mofArc themean Scor/Sold varies

between 1.291 and 1.0771 as mean of deep samples, .200m).
We calculated the relationship between Scor/Sold and the

change in the results for [Lt] and logK0 using the ratio of the

values obtained with the corrected S and the conventionally
obtained S (Fig. 7). We found, as can be expected, a significant
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Fig. 7. The correction factor as a ratio of Scor/Sold of the correctedS (Scor) and S obtained by the conventionalmethod

of linear regression of the last straight part of the titration (Sold), v. the ratio of the results in total ligand concentration

([Lt]) and log conditional binding constant (logK
0) calculatedwith both S values.[43,44] (a) Scor/Sold v. [Ltcor]/[Ltold] for

the Arctic data; (b) Scor/Sold v. logK
0
cor/logK

0
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positive relation with the change in [Lt] and a negative relation
with the change in logK0. The relationship with logK0 is less
significant than with [Lt] and the slope is small, logK0 is less
sensitive to the correction.

The distinction between two ligand groups

Recent papers[35,37,38] from the last decade describe quite

complicated ways to calculate the ligand characteristics of two
ligands from titration data. Although we do not doubt the exis-
tence of more than one ligand group we will discuss whether a

sophisticated calculation is warranted considering the combi-
nation of interferences discussed above combined with the few
titration points, generally only 10. If we look at published data,
the characteristics of the ligand groups that have so far been

distinguished (Table 1, adapted from Gledhill and Buck[40])
hardly make a distinction into two groups possible. The data
show a large overlap, which is not attributable to the different

methods used (Table 1).
The distinction of more than one ligand group requires more

titration points, as five parameters have to be estimated (S, K0
1,

K0
2, [Lt1] and [Lt2]). This is difficult, if not impossible, when the

ligands are near saturation. The curved part in Fig. 3 is enlarged
in Fig. 1c, the Scatchard plot: if two ligands exist, two linear
regions with different slopes can be recognised showing the

increasing saturation of two ligand groups.[45,59] To speak of two
linear regions intersecting at an angle in the Scatchard plot is a
simplification, because they are not linear, instead there is a

relationship with two linear regions separated by a curved part
where both ligand groups compete. The a values (ai) of the two
ligand groups reflect the competition for the added Fe and with

decreasing [L0
1], a1 of the strong ligand becomes smaller and the

weaker ligand becomes more competitive.
Similar to what Ibisanmi et al.[38] showed theoretically

as a matter of illustration, a ligand concentration of 0.2 nM is
difficult to estimate if additions with Fe are done in concentra-
tions larger than 0.2 nM. Fig. 5a shows that under our experi-
mental conditions, in order to be able to calculate the ligand

characteristics of a ligand group with whatever method with a
certain amount of precision (degrees of freedom), a minimum of
11 data points is necessary, below this number an unpredictable

relationship exists between the number of data points and the
standard deviation of logK0. Fig. 5c shows that under our
experimental conditions at least five points are necessary in

the curved part to give a reliable relationship between the

number of data points and the standard deviation of logK0 and
Fig. 5d shows that under our experimental conditions, below
four data points in the straight part of the titration, a steep

negative linear relationship exists between the number of data
points and the standard deviation of the ligand concentration.
This is valid for the determination of the ligand characteristics of

one ligand group, therefore it is advisable to use at least 12 data
points to obtain proper estimates of S, [Lt] and logK0 and a
possible identification of a second ligand group. Critical simple
data evaluation using the raw titration data and a Scatchard

linearisation plot can detect whether the data quality is high
enough. This means that if after analysis and data interpretation
the strongest ligand is only determined by one data point, the

sample needs to be analysed for a second time with an adapted
titration scheme to improve the precision of the determination of
the strongest ligand. When the ligands in a sample are saturated

or almost saturated with Fe, only the total ligand concentration
can be calculated because no curvature, hence no competition, is
measured. The non-linear regression will indeed not be able to

give a value for K0 or will give a value with a large standard
deviation. The linearised form of the van den Berg–Ružić
algorithm will give values for K0 with incorrect small standard
deviations (if noise in the data is low).

In deeper water, the ligands are more saturated with Fe and
this may explain why two ligand groups are predominantly
found in surface waters. It might not be true that they do not exist

in deepwaters, but because the strong ligands are saturated there
and because the weaker ligand group competes too, competition
with the added ligand does not reveal its presence. In surface

waters the dissolved Fe concentrations are lowest and [L0] is
highest enabling detection of more than one ligand.

Conclusions

We devised a new and easy way to calculate ligand
characteristics.

For one ligand group, the ligand exchange method using the
Langmuir equation works well, although the decrease in Fe as a

result of sampling and underestimations of [Lt] and K attribut-
able to unknown irreversible bound Fe concentrations has to be
acknowledged. Competition for the same ligand by metals other

than Fe might give an interference with the results that we are
not aware of. The correction of S for incomplete saturation of the
ligands during a titration is advised especially in samples with

high excess L (i.e. high [L0]). [L0] is high in the surface ocean,

Table 1. Published data in which two ligands (L1 and L2) could be distinguished

After Gledhill and Buck.[40] (NN, 1-nitroso-2-napthol; SA, salicylaldoxime; TAC, 2-(2-thiazolylazo)-p-cresol)

Range in

logK1

Range in

logK2

Source and added

ligand used

Characterisation L1 Characterisation L2 Location

12.3–13.6 11–12 Ibisanmi et al.[38] TAC 25–200-m depth L2 is characterised as the sum

of the weaker ligands SL
Southern Ocean

11.8–13.9 10.7–11.8 Buck et al.[54] SA River origin, surface Marine origin Columbia River estuary,

San Francisco Bay

11.1–12.0 9.8–10.8 Buck and Bruland[74]

SA

Regulating Fe concentrations,

present in whole water column

Shelf sediments Bering Sea

12.4–13.1 11.4–11.9 Cullen et al.[53] TAC Only in surface in two size

fractions

Whole water column in two

size fractions

Atlantic Ocean

12.4–12.5 11–11.1 Nolting et al.[71] NN At a depth of 300–800m Whole water column Pacific Southern ocean

12.1–13 11.1–11.9 Rue and Bruland[76] SA Produced by phytoplankton Whole water column Equatorial Pacific

12.7–13.2 11.3–11.8 Rue and Bruland[26] SA First detection of L1; only present

in top 300m, where Fe,L1

Present whole water column Central N Pacific
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where Fe consumption and ligand production and also (photo)

oxidation and reduction occur. Correction increases [Lt] and
decreases K0.

As previously pointed out,[7,40,55] [L0] is a proper parameter

to characterise the ligand concentration because it does not
depend on the concentration of dissolved Fe. The concentration
[L0] also affects the precision of the calculated ligand character-
istics. If the concentration of [L0] is low the [L0] will be saturated
after only a few Fe additions. The precision in the calculation of
the ligand characteristics will decrease with a decreasing
amount of titration steps before [L0] saturation. Therefore it is

advisable to include information about the amount and concen-
trations of the Fe additions used for a titration. It is important to
carefully describe when and under which conditions samples for

dissolved Fe were taken, it is advisable to sample for dissolved
Fe from the same sample bottle as where the sample for organic
speciation is kept and to sample just before organic speciation is
measured. For the calculation of two different Fe binding

organic ligands a critical data evaluation is essential, and it
might be necessary to repeat the analysis with a different Fe
addition scheme in order to be able to calculate the parameters

with better statistical precision. If a repeated analysis is not
possible, added information on how the titrationwas executed as
advised above is essential to allow better estimations with future

tools and knowledge.
We can conclude that for data that follow the model of the

Langmuir model the standard deviation of the estimated para-

meters [Lt] and K0 is directly linked to the number of observa-
tions. Under our experimental conditions our sensitivity study
on the effect of the number of titration points on the standard
deviations of the estimated parameters showed that at least four

titration points are needed per ligand in the curved part and also
four titration points are needed in the linear part after the ligands
are saturated with the added Fe.
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Appendix 1.

Script file to calculateMetal-ligands characteristics using non-linear Gerringa–Maas, linear van den Berg–Ruzic and linear Scatchard. To use it copy paste the

below code into a R script file and follow the instructions. R code lines are in bold. You activate them by Ctrl R.

Warning: check when copy–pasting this text that all symbols are correctly pasted in your R script files. Problems may arise with symbols such as:

‘‘smart quotes’’, ¼, ,�, þ, ., ,.

For updates contact Micha Rijkenberg (micha.rijkenberg@nioz.nl).

# SCRIPT

# Script file for the calculation of metal ligand characteristics for 1 ligand: Micha J.A. Rijkenberg & Loes J.A. Gerringa

# Some code lines can only be used in R in a Microsoft Windows environment

# Version 22 Mar 2013 (made in R version 2.10.1)

# The database that you use needs minimal three columns:

# column 1 with heading ‘‘statbot’’ contains the sample code, e.g. st11b24

# column 2 with heading ‘‘tMe’’ contains the total metal concentration for each titration point.

# column 3 with heading ‘‘peak’’ contains the measured response I (nA)

# Example of database (if you want to try, transfer these titrations in an excel sheet in the working directory you set below, remove the # in front of

# every line and save as tab delimited txt file and call it ‘‘Example.txt’’.)

#statbot tMe peak

#st11b22 0.102 0.01973

#st11b22 0.102 0.02419

#st11b22 0.102 0.008

#st11b22 0.302 0.02407

#st11b22 0.302 0.01664

#st11b22 0.502 0.05885

#st11b22 0.502 0.06315

#st11b22 0.702 0.1993

#st11b22 0.702 0.2168

#st11b22 0.902 0.2114

#st11b22 0.902 0.268

#st11b22 1.102 0.3683

#st11b22 1.102 0.4577

#st11b22 1.302 0.5055

#st11b22 1.302 0.5267

#st11b22 1.602 0.7499

#st11b22 1.602 0.8883

#st11b22 2.102 1.315

#st11b22 2.102 1.386

#st11b22 2.602 1.799

#st11b22 2.602 1.964

#st11b22 3.102 2.721

#st11b22 3.102 2.659

#st11b22 4.102 3.734

#st11b22 4.102 4.023

#st11b22 6.102 6.534

#st11b22 6.102 6.86

#st11b22 8.102 9.25

#st11b22 8.102 9.315

#st24b16 0.269 0.339

#st24b16 0.269 0.357

#st24b16 0.269 0.377

#st24b16 0.469 0.578

#st24b16 0.469 0.647

#st24b16 0.669 0.678

#st24b16 0.669 0.714

#st24b16 0.869 1.129

#st24b16 0.869 1.085

#st24b16 1.069 1.380

#st24b16 1.069 1.536

#st24b16 1.269 1.743

#st24b16 1.269 1.660

#st24b16 1.469 2.086

#st24b16 1.469 2.164

#st24b16 1.769 2.734

A critical look at calculating Fe binding by ligands

129

http://micha.rijkenberg@nioz.nl


#st24b16 1.769 2.746

#st24b16 2.269 3.560

#st24b16 2.269 3.561

#st24b16 2.769 4.574

#st24b16 2.769 4.646

#st24b16 3.269 5.688

#st24b16 3.269 5.557

#st24b16 4.269 7.241

#st24b16 4.269 7.321

#st24b16 6.269 10.720

#st24b16 6.269 10.960

#st24b16 8.269 14.820

#st24b16 8.269 14.570

# You can add multiple titrations to one database. The samples will be selected via ‘‘statbot’’.

# to clear the workspace (i.e. remove defined data sets from working directory etc.)

rm(list5ls())

# to set your working directory fill in the address of your working folder here below; use ‘‘/’’ instead of ‘‘\’’ in the address!!

setwd(‘‘E:/address of working directory’’)

# Libraries necessary to perform the calculations you can download them using the coding e..g.:

# install.packages(‘‘nlme’’, dependencies¼TRUE)

library(nlme)

library(MASS)

# The code or the source file with the function ‘‘MeLcalc’’ can be found in Appendix B.

source(‘‘Library_MeLcalc.r’’)

# To open your database fill in your filename, open the txt file with data ‘‘filename.txt’’

ligand ,- read.table(‘‘Example.txt’’,header5T)

names(ligand)

table(ligand$statbot)

#################################################

# tot get the initial metal values used: just activate (Ctrl R) all code lines here below until ‘‘######’’

# minMe¼minimum Me concentration in titration

# maxMe¼maximum Me concentration in titration

vec ,- as.vector(unique(ligand$statbot))

inM ,- matrix(round(99,0),ncol53,nrow5length(vec))

colnames(inM) ,- c(‘‘statbot’’,‘‘minMe’’,‘‘maxMe’’)

for(i in 1:length(vec)){

inM[i,1] ,- vec[i]

xM ,- subset(ligand, statbot 55 vec[i])

inM[i,2] ,- min(xM$tMe)

inM[i,3] ,- max(xM$tMe)

}

inM ,- as.data.frame(inM)

inM

#################################################

############################################################################################################################

# Explanation of the parameters that you have to fill in here below

# data: the dataframe used

# sample: the sample used, name of the sample, e.g.‘‘st11b24’’

# Me: the concentration metal (Me) of the sample

# linMe: the tMe concentration above which the titration curve becomes linear

# alphaLig: you give an alpha of a competing ligand, e.g. alphaLig¼K0Fe(TAC)2*[TAC]^2,
# if you give a value for alphaLig than CLig will not be included in the calculation.

# or you indicate that you work with TAC and Fe (pH¼ 8.05), e.g. alphaLig¼ ‘‘TAC_Fe’’,

# or you indicate that you work with SA and Cu (pH¼ 8.05), e.g. alphaLig¼ ‘‘SA_Cu’’,

# or you indicate that you work with NN and Fe (pH¼ 8.05), e.g. alphaLig¼ ‘‘NN_Fe’’

# if you use ‘‘TAC_Fe’’ or ‘‘SA_Cu’’ you have to include the concentration

# of the competing ligand, e.g. CLig¼ 10^-6

# CLig: the concentration of the added known ligand in moles per litre.

# alphaMe: the inorganic side reaction coefficient for Me0

############################################################################################################################
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# provides you with the information about the samples and the minimum and maximum Me concentrations

# the minimum Me concentration is most likely the concentration in your 0 nM Me addition sample and

# represents therefore the Me concentration of your sample that you have to fill in here below

table(ligand$statbot)

inM

# Here you have to fill in the information for the titration data that you now work with. You don’t have

# to do that within the the function MeLcalc here below. Explanation for what to fill in see here above.

data5 ligand

sample5 ‘‘st11b22’’

Me5 0.102

linMe5 2

alphaLig5 ‘‘TAC_Fe’’

CLig5 10^-5

alphaMe5 10^10

# Activate (Ctrl R) this function here below to calculate the ligand characteristics. It will use the data as filled in here just above.

# After activation you see the results in the R console and you can just go like this (without copying) to an excel sheet and paste (Ctrl V) the results in Excel.

# The S calculated from the non-linear Gerringa–Maas fit (S auto) is used for the van den Berg–Ruzic and Scratchard linearisation.

# If the Gerringa–Maas fit does not work it will use the slope of the linear part of the titration (as defined by linMe) as S (S manual).

MeLcalc(data5data, sample5sample, Me5Me, linMe5 linMe, alphaLig5 alphaLig, CLig5CLig , alphaMe5 alphaMe)

#### If you have to remove datapoints from your titration curve go further here below #####

# to remove outliers

# the titration you work with is already selected just use Ctrl R to activate the coding here below

lig2 ,- subset(ligand, statbot 55 sample);lig2

# If you want to copy_paste the data of your full titration curve to an excel sheet activate below coding line,

# go to excel file, use ctrl V to paste in excel file

write.table(lig2,‘‘clipboard’’,sep5‘‘\t’’,col.names5T,row.names5T)

# create plot and identify outliers by moving you mouse over the points in the graph and clicking on the data that you want to remove

# select the line of code here below and activate (Ctrl R).

windows(10,5); par(mfrow5c(1,2)); plot(lig2$peak , lig2$tMe, las51, pch519); tmp ,-identify(lig2$peak, lig2$tMe, pch519)

# if you finish selecting datapoints use your right mouse click on the graph and select stop, otherwise you can’t go further

# Don’t close the graph yet, leave it

# go further here below

# remove data and create new database by just selecting the code line here below and activate (Ctrl R),

# the adapted graph will appear next to the original one

lig ,- lig2[-c(tmp),]; plot(lig$peak , lig$tMe, las51, pch519)

# Analyse your titration curve again but now without the datapoints that you removed,

# just activate the below code line, no further changes necessary, use ctrl V to paste the new data in your excel sheet

MeLcalc(lig, sample5sample, Me5Me, linMe5 linMe, alphaLig5 alphaLig, CLig5CLig , alphaMe5 alphaMe)

# If you want to save the adapted dataset of this titration activate below code line and paste in excel sheet

write.table(lig,‘‘clipboard’’,sep5‘‘\t’’,col.names5T,row.names5T)

### END SCRIPT

Appendix 2.

Source code for the function ‘‘MeLcalc’’ to calculate Metal-ligands characteristics using non-linear Gerringa–Maas, linear van den Berg–Ruzic and linear

Scatchard. To use the source code copy paste the below code into a R script file and save as ‘‘Library_MeLcalc.r’’ in your working directory. R code lines are in

bold.

# START SOURCE CODE

# To calculate MeL characteristics made by Micha J.A. Rijkenberg & Loes J.A. Gerringa

# The S calculated from the non-linear Gerringa–Maas fit is used for the van den Berg–Ruzic and Scratchard linearisation.

# If the Gerringa–Maas fit does not work it will use the slope of the linear part of the titration (as defined by linMe) as S.

# The log K of the metal-ligand binding is given with respect to the metal ion.

# FUNCTION

# Explanation of the parameters that you have to fill in here below

A critical look at calculating Fe binding by ligands

131



# data: the dataframe used

# sample: the sample used, name of the sample, e.g.‘‘st11b24’’

# Me: the concentration metal (Me) of the sample

# linMe: the tMe concentration above which the titration curve becomes linear

# alphaLig: you give an alpha of a competing ligand, e.g. alphaLig¼K0Fe(TAC)2*[TAC]^2,
# if you give a vlaue for alphaLig than CLig will not be included in the calculation.

# or you indicate that you work with TAC and Fe (pH¼ 8.05), e.g. alphaLig¼ ‘‘TAC_Fe’’,

# or you indicate that you work with SA and Cu (pH¼ 8.05), e.g. alphaLig¼ ‘‘SA_Cu’’,

# or you indicate that you work with NN and Fe (pH¼ 8.05), e.g. alphaLig¼ ‘‘NN_Fe’’

# if you use ‘‘TAC_Fe’’ or ‘‘SA_Cu’’ you have to include the concentration

# of the competing ligand, e.g. CLig¼ 10^-6

# CLig: the concentration of the added known ligand in moles per litre.

# alphaMe: the inorganic side reaction coefficient for Me0

# For example: MeLcalc(data, sample¼‘‘st11b24’’, Me¼ 0.6, linMe ¼2.5, alphaLig¼ ‘‘TAC’’, CLig¼ 10^-5, alphaMe¼ 10^10)

MeLcalc,- function(data, sample, Me, linMe, alphaLig, CLig, alphaMe){

#######################################

# 1) Calculation of alpha

# if a value for alpha is give this value will be used throughout the coding

alphaLig25 alphaLig

# if ‘‘TAC_Fe’’ was chosen the alpha would be calculated from the logBFeTAC2 and the TAC concentration CLig

if(alphaLig 55 ‘‘TAC_Fe’’) {alphaLig25 10^12.4*CLig^2}

# if ‘‘SA_Cu’’ was chosen the alpha would be caluclated from the logBCuSA1, logBCuSA2 and the SA concentration CLig

if(alphaLig55 ‘‘SA_Cu’’) {alphaLig25 (10^9.57*CLig)1 (10^14.57*CLig^2)}

# if ‘‘NN_Fe’’ was chosen the alpha would be caluclated from the logBFeNN3 and the NN concentration CLig

if(alphaLig55 ‘‘NN_Fe’’) {alphaLig25 (5.12*10^16.2)*CLig^3}

# the K0Fe3þ(NN)3 of 5.12 10^26 is for a pH of 7.90 and a alpha Fe0 ¼ 9.8 therefore the K0Fe0(NN)3 is 5.1210^16.2 (J. A. Hawkes, M. Gledhill,

# D. P. Connelly, E. P. Achterberg, Characterisation of iron binding ligands in seawater by reverse titration. Analytica Chimica Acta 2013, 766, 53.

# doi:10.1016/j.aca.2012.12.048)

alphaT,- alphaLig2 * alphaMe

# to terminate all warning messages

options(warn5-1)

############################################################################################################################

# 2) Fill in the station.bottle in which you are interested, e.g. station 11 bottle 24 is ‘‘st11b24’’!

station.bottle5 sample

##################################################

lig5 subset(data, statbot 55 station.bottle)

attach(lig)

############################################################################################################################

# 3) Determine S for van den Berg/Ruzic and Scatchard methods

# concentration tMe (nM) above which linear part of the curve exists, you can change this value according to the individual samples and

# run the graph part here below to see the effect of the change

above.tMe5 linMe

# Graph

sublig5 subset(lig, tMe. above.tMe)

x11(12,10)

layout(matrix(c(1,2,3,4), 2, 2, byrow5TRUE), heights5c(1,1))

par(mar5c(5,8.5,4,2)10.1) #c(bottom, left, top, right)

mx ,- max(lig$tMe)11

plot(lig$peak , lig$tMe, las51,xlab5‘‘total Me (nM)’’, ylab5 ‘‘I (nA)’’,pch516, col5‘‘red’’,main5station.bottle,xlim5c(0,mx))

points(sublig$peak, sublig$tMe, pch516, col5‘‘blue’’)

abline(lm(sublig$peak, sublig$tMe))

sens5lm(sublig$peak , sublig$tMe)

mtext(paste(‘‘R^2 5’’,round(summary(sens)[9][[1]],4)), side53, lin5-1.5, adj50.05, cex50.7)

mtext(paste(‘‘S manual 5’’,round(summary(sens)[4][[1]][[2]],4)), side53, lin5-3, adj50.05, cex50.7)

legend(‘‘bottomright’’, legend5 c(‘‘non linear data’’,‘‘defined linear data’’), col5c(‘‘red’’,‘‘blue’’),pch5c(16,16),cex50.8, bty5‘‘n’’)

# S to be used for van den Berg–Ruzic and Scatchard method when the non-linear fit fails

# takes automatically the S as determined by linear regression here above

Sbrs5 round(summary(sens)[4][[1]][[2]],4)
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#################################################

# Method: Nonlinear Gerringa_Maas

## Nonlinear fit 1 ligand, S, K, L automatically estimated

# create progress bar, a vector with initial values for S, K and L

vec ,- seq(from50.5, to515, by52)

pb ,- winProgressBar(title5 ‘‘progress bar’’, min5 0, max5 length(vec), width5 300)

Sys.sleep(0.5)

# sets the stringency of the gnls non linear fit

gnlsControl(maxIter5100, nlsMaxIter5100, msMaxIter5100)

for(i in 1:length(vec)){

S5vec[i]

# Progress bar

Sys.sleep(0.1)

setWinProgressBar(pb, i, title5paste( round(i/length(vec)*100, 0),

‘‘% of vector for K,L and S explored for 1 ligand’’))

for(j in 1:length(vec)){

K5vec[j]

for(k in 1:length(vec)){

L5vec[k]

model5 try(gnls(peak ,(2*S*tMe)/((11K*(L-tMe))1sqrt(((11K*(tMe-L))^2)14*K*L)), data5lig, start5 list(S5 S,K5K,L5L)),

silent5TRUE)

# if the model ends up in an error it goes to the next round of S, K and L in the given vector

if(summary(model)[2][[1]] 55 ‘‘try-error’’) next

# terminates the loop

if(summary(model)[4][[1]][[2]] > 0) break

}

if(summary(model)[2][[1]] 55 ‘‘try-error’’) next

if(summary(model)[4][[1]][[2]] > 0) break

}

if(summary(model)[2][[1]] 55 ‘‘try-error’’) next

if(summary(model)[4][[1]][[2]] > 0) break

}

Sys.sleep(1)

close(pb) # to close the progress bar

ModelGood,- 0

if(summary(model)[2][[1]] 55 ‘‘try-error’’){ Sbrsaut ,- Sbrs} else {

ModelGood,- 1

# calculation log K,

#10^21.4¼ 10^12.4 * 10^9, 10^9 is from nmol to mol, 10^12.4 is alpha TAC¼ 10^22.4 * (10^-5)^2

Knl5 summary(model)[4][[1]][[2]]*10^9*alphaT

logKnl5 log10(Knl)

# calculation logK.SE, the standard error of log K,: logK.SE¼ ((log10(K)-log10(K-SE))þ(log10(KþSE)-log10(K)))/2

logKal5 log10(summary(model)[4][[1]][[2]])

logKmse5 log10(summary(model)[4][[1]][[2]]-summary(model)[20][[1]][[5]])

logKpse5 log10(summary(model)[4][[1]][[2]]1summary(model)[20][[1]][[5]])

logK.SE5 ((logKal - logKmse)1(logKpse-logKal))/2

#Sbrsaut¼ summary(model)[4][[1]][[1]]*((1þ(alphaLig2þalphaMe))/(alphaLig2þalphaMe))

Sbrsaut5 summary(model)[4][[1]][[1]]

mtext(paste(‘‘S auto 5’’, round(summary(model)[4][[1]][[1]],4), sep5 ‘‘’’), side53, lin5-4.5, adj50.05, cex50.7)

}
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#################################################

# Method: van den Berg–Ruzic

# [Fe3þ]/[FeL]¼ [Fe3þ]/[Lt]þ 1/[Lt]*KFeL

Me3pplus5 lig$peak/(Sbrsaut*alphaT)

MelabL5Me3pplus/(tMe-(lig$peak/Sbrsaut))

# Linear regression

bergruzic5 lm(MelabL , Me3pplus)

summary(bergruzic)

# Calculation total L (FeLþL-)

totalL5 1/summary(bergruzic)[4][[1]][[2]]

# Calculation log K

logKMeL5 log10(summary(bergruzic)[4][[1]][[2]]*10^9/summary(bergruzic)[4][[1]][[1]])

#################################################

# Method: Scatchard

# FeL/Fe3þ¼ - K*FeLþK*Lt

Me3plus5 (lig$peak/(Sbrsaut*alphaT)*10^-9)

MeL5 (tMe - (lig$peak/Sbrsaut))*10^-9

MeLlab5MeL/Me3plus

# Linear regression

scatchard5 lm(MeLlab , MeL)

summary(scatchard)

# calculation total L

# x-intercept¼ [Lt]

stotalL5 (-1*summary(scatchard)[4][[1]][[1]])/summary(scatchard)[4][[1]][[2]]

# calculation log KMeL

# y-intercept¼KMeL * [Lt]

slogKMeL5 log10(summary(scatchard)[4][[1]][[1]]/stotalL)

###################################################

# Graphs

plot(lig$peak , lig$tMe, las51, xlab5‘‘total Me (nM)’’, ylab5 ‘‘I (nA)’’, pch516, col5‘‘red’’, main5station.bottle,xlim5c(0,mx))

mtext(‘‘Method: Nonlinear Gerringa]Maas’’, side53, lin50.5, adj50.0, cex50.7)

if(ModelGood 55 0) {

mtext(‘‘Model did not work!’’, side53, lin5-1.5, adj50.5, cex51, col5‘‘red’’)

mtext(‘‘S manual was used for’’, side53, lin5-3, adj50.5, cex50.8, col5‘‘red’’)

mtext(‘‘Berg]Ruzic & Scatchard!’’, side53, lin5-4, adj50.5, cex50.8, col5‘‘red’’)

}

if(ModelGood 55 1) {

MyData1 ,- data.frame(tMe5seq(from5min(lig$tMe),to5max(lig$tMe),length510))

P1 ,- predict(model, newdata5MyData1)

lines(MyData1$tMe, P1, lty51,col51)

}

plot(Me3pplus, MelabL, las51, xlab5expression(Me^‘‘x1’’,(M)), ylab5 ‘‘’’ , pch516, col5‘‘red’’, main5station.bottle)

title(ylab5expression(Me^‘‘x1’’, ‘‘/ ’’,MeL), line55.5)

mtext(‘‘Method: van den Berg]Ruzic’’, side53, lin50.5, adj50.0, cex50.7)

mtext(paste(‘‘R^2 5’’,round(summary(bergruzic)[9][[1]],4)), side53, lin5-1, adj50.05, cex50.7)

if(summary(bergruzic)[4][[1]][[2]]. 0){

mtext(paste(‘‘y 5’’, round(summary(bergruzic)[4][[1]][[2]],2),‘‘x 1’’,round(summary(bergruzic)[4][[1]][[2]],1), sep5‘‘ ’’), side53,

lin5-2, adj50.05, cex 50.7, col5‘‘black’’)

} else {

mtext(paste(‘‘y 5’’, round(summary(bergruzic)[4][[1]][[2]],2),‘‘x -’’,-1*round(summary(bergruzic)[4][[1]][[2]],1), sep5‘‘ ’’), side53,

lin5-2, adj50.05, cex 50.7, col5‘‘black’’)

}

abline(bergruzic)
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plot(MeL, MeLlab, las51, xlab5‘‘MeL (M)’’, ylab5 ‘‘’’, pch516, col5‘‘red’’, main5station.bottle)

mtext(‘‘Method: Scatchard’’, side53, lin50.5, adj50.0, cex50.7)

mtext(paste(‘‘R^2 5’’,round(summary(scatchard)[9][[1]],4)), side53, lin5-1, adj50.05, cex50.7)

title(ylab5expression(MeL,‘‘/’’,Me^‘‘x1’’), line55.5)

abline(scatchard)

#####################################################

# Table

results ,- matrix(99,ncol513,nrow53)

results5 as.data.frame(results, row.names5c(‘‘Gerringa_Maas’’, ‘‘vandenBerg_Ruzic’’,‘‘Scatchard’’) )

colnames(results) ,- paste(c(‘‘station.bottle’’,‘‘S auto’’,‘‘S.SE’’,‘‘S.p’’, ‘‘logK’’, ‘‘logK.SE’’,‘‘LogK.p’’,

‘‘totalL’’,‘‘totalL.SE’’,‘‘totalL.p’’, ‘‘non Fe bound.L’’, ‘‘Me’’, ‘‘S manual’’))

results[1,1] ,- station.bottle

if(ModelGood 55 1) {

results[1,2] ,- Sbrsaut

results[1,3] ,- summary(model)[20][[1]][[4]]

results[1,4] ,- summary(model)[20][[1]][[10]]

results[1,5] ,- logKnl

results[1,6] ,- logK.SE

results[1,7] ,- summary(model)[20][[1]][[11]]

results[1,8] ,- summary(model)[4][[1]][[3]]

results[1,9] ,- summary(model)[20][[1]][[6]]

results[1,10] ,- summary(model)[20][[1]][[12]]

results[1,11] ,- summary(model)[4][[1]][[3]]-Me

results[1,12] ,- Me

results[1,13] ,- NA

} else {

results[1,2] ,- NA

results[1,3] ,- NA

results[1,4] ,- NA

results[1,5] ,- NA

results[1,6] ,- NA

results[1,7] ,- NA

results[1,8] ,- NA

results[1,9] ,- NA

results[1,10] ,- NA

results[1,11] ,- NA

results[1,12] ,- NA

results[1,13] ,- NA

}

results[2,1] ,- station.bottle

results[2,2] ,- Sbrsaut

results[2,3] ,- NA

results[2,4] ,- NA

results[2,5] ,- logKMeL

results[2,6] ,- NA

results[2,7] ,- NA

results[2,8] ,- totalL

results[2,9] ,- NA

results[2,10] ,- NA

results[2,11] ,- totalL-Me

results[2,12] ,- Me

results[2,13] ,- Sbrs

results[3,1] ,- station.bottle

results[3,2] ,- Sbrsaut

results[3,3] ,- NA

results[3,4] ,- NA

results[3,5] ,- slogKMeL

results[3,6] ,- NA

results[3,7] ,- NA
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results[3,8] ,- stotalL*10^9

results[3,9] ,- NA

results[3,10] ,- NA

results[3,11] ,- (stotalL*10^9)-Me

results[3,12] ,- Me

results[3,13] ,- Sbrs

write.table(results,‘‘clipboard’’,sep5‘‘\t’’,col.names5T,row.names5T)

results

}

# END SOURCE CODE
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