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Abstract

Characteristic curves of partial differential equatioR®ES) in general differ from short wave energy rays.
We give conditions for linear, two dimensional second of@BEs that guarantee an exact correspondence
between characteristics and energy rays. The findings atiedpo time-harmonic, zonally-symmetric small-
amplitude equatorial internal waves. It is shown that foaialff general model of inertia-gravity waves, an
exact characteristic-ray correspondence holds. Whemcteistics of internal waves, trapped in a meridional
plane, are followed over several boundary reflections, &emgence towards a limit cycle (called equatorial
wave attractor) can generally be found. The results on theacheristic-ray correspondence help to interpret
physically equatorial wave attractors. Recent ideas onggreccumulation by near inertial waves, trapped
on wave attractors at deep ocean sites are confirmed by altsrext least in the short wave (WKB) sense.

Zusammenfassung

Im allgemeinen unterscheiden sich die charakteristisgtugwen und die Strahlen der Wellenausbreitung von
partiellen Differentialgleichungen (PDEs). Wir gebenrtiB@dingungen fir lineare, zweidimensionale PDEs
zweiter Ordnung an, die eine exakte Ubereinstimmung zwisatharakteristischen Kurven und Wellen-
strahlen garantieren. Die Ergebnisse werden auf zeitii@imbnische, zonal symmetrische, dquatoriale in-
terne Wellen mit kleiner Amplitude angewandt. Es wird ggteilass fur ein recht allgemeines Modell von
Schwere-Tragheitswellen, diese exakte Beziehung zwischarakteristischen Kurven und Wellenstrahlen
gilt. Folgt man Charakteristiken von internen Schweresrglbie in einer meridionalen Ebene gefangen sind,
Uber eine Anzahl von Randreflexionen, so zeigt sich fir elich®&s Netz von Charakteristiken ein Grenzzyk-
lus. Dieser wird aquatorialer Wellenattraktor genannte Defundenen Ergebnisse der Charakteristiken-
Wellenstrahlen-Korrespondenz kénnen helfen, die aqiadeor Wellenattraktoren physikalisch zu inter-
pretieren. Aktuelle Vorstellungen zur Rolle von Welleraittoren als ,Energiesammelgebiete” im tiefen
Ozean werden durch unsere Analyse gestiitzt.

1 Introduction it can be solved exactly for arbitrary boundary geome-

) . try by the characteristic web method ofAMs and LAM
A feature of equatorial dynamics common to both t 995).

atmosphere and the ocean is the phenomenon of eqUan|ready BRETHERTON (1964) saw that for certain

torially trapped waves. The waves are trapped due g@qencies inertial waves may be trapped on periodic
a changing Coriolis parameter, leading to an expongflaps of characteristics (referred to as wave attractors).
t!al decay of wave amplitude in the mendlon{_;ll direcg,ch orbits were later studied by SWARTSON (1971)
tion (PHILANDER, 1990). In contrast to Kelvin andgng |sragL) (1972) for the equatorial beta-plane and
Rossby waves that propagate horizontally in the equapg-cenﬂy also for spherical geometry I(ENER, 1999;

rial waveguide, internal waves can be trapped in a men§re y1orp et al., 2001). Their physical relevance was
ional plane due to their vertical component of propaganown in a series of laboratory experiments A&

tion. An example of this kind was discussed BYEBRN ot 41 1997: MiAs. 2001 MANDERS and MAAS. 2003
(1963) for small amplitude zonally symmetric and tim92004’)_ ' ' ' ' ’

harmonic equatorial inertial waves. Inertial waves have By comparing exact solutions of the inviscid Stern
similar properties as internal gravity waves, but in CORguation (MiAS and HARLANDER, accepted; MR-

trast to the latter they need a_stratification iN angy\per and MaAs, submitted) with the corresponding
lar momentum and not in density to propagate. In§paracteristic web, wave attractors can easily be iden-
tial waves can hence exist in the rotating homogeneqys.q a5 singularities of the velocity field. An obvious
medium considered by TERN. In the present study, inierpretation of this observation is that, given an en-
Stern’s model plays a central role owing to the fact th@pgy source, kinetic energy (propagating along the char-
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characteristics as lines of energy propagation appeplsy different models describing trapped equatorial in-
straightforward for Stern’s equation, it is problematic falernal waves. One model is a simplification of Stern’s
more general problems. The reason is that rays of energgdel, the other two are extensions to Stern’s equation,
propagation result from a short wavelength approximencluding sphericity or stratification. We discuss briefly
tion to the original equation (frequently called Wenzegxact solutions of Stern’s equation obtained by using the
Kramers, and Brillouin (WKB) or Liouville-Green ap-characteristic web method. The main purpose of section
proximation in literature) and such rays are in generalis to verify whether the characteristic-ray correspon-
not related to the characteristic curves of the origindence, holding for Stern’s model, can be carried over to
equation. This was already noted b EaART (1960): the other models. In section 4 we give explicit results
‘There are two kinds of ray theory whose results afer the model that adds stratification to Stern’s model
sometimes identical, sometimes very different. One (salled stratified Stern equation). This model appears to
based on the theory of characteristic curves and surfabesmost important for geophysical applications since it
associated with partial differential equations. Its resulédlows for inertia-gravity waves. We discuss and illus-
are always rigorous and of importance for the theotyate the wave focusing effect which is at the end the
of shock waves and for certain technical purposes. Treason for the wave attractor’s energy pile up. Finally,
other theory is rigorous only when the differential equdhe validity of the short wavelength assumption for the
tions have constant coefficients.’ It should be added thstatified Stern equation is verified which legitimates the
also characteristic curves can give rigorous results omgplication of WKB ray tracing. In section 5 we sum-
for a restricted class of equations. The other theory menarize the results and give conclusions.

tioned is the WKB theory which in fact is rigorous only

for openconstant coefficient problems. For constant c@ Mathematical theory

efficient boundary value problems WKB solutions arg ¢ di les | first devel
approximations (KLLER, 1985). efore we discuss concrete examples let us first develop

A robust feature of all the equatorial wave moo@general theory on the correspondence of characteristics
els studied here (forming certain variations of Stern@'d Shortwave energy rays.
equation) is the occurrence of wave attractors. Unfap:1  Characteristics and rays of energy
tunately, only for Stern's equation we can pin down the  propagation

meaning of wave attractors for the solution. The other ) i . .
Agfwas mentioned in the introduction, the results of both

boundary value problems are not separable in terms ) o
y P P ray theories (the theory of characteristics and the the-

characteristics and exact solutions are not available. i . .
physical interpretation of the characteristics (e.g. as rayy ©f €nergy propagation) are very different in gen-
ral. However, for special cases they are identical, even

of energy propagation) is therefore compelling to u

derstand the role of wave attractors for the equator{8f Non-constant coefficients problems. A rather general

wave motion. Even more so since there is experime’??—OdeI for our purpose is the second order linear partial

tal evidence that wave breaking and mixing in regiorfiifférential equation

of convergence of characteristics induces a mean ﬂOWA(Y,Z,a) Wz + B(Y,Z,0)ry+C(Y,Z,0) Py
(MaAs, 2001). !Equatorlal wave attractors might there- + D(Y,Z,0) W+ E(Y.Z,0)u
fore help sustain the equatorial ocean current system.
Moreover, some aspects of observed deep ocean spectra + F(Y,.Z,0)y =0, (2.1)

are consistent with the idea of deep ocean point attrgghere the coefficients vary only weakly in meridional
tors VAN HAREN et al., 2002; Mh\As, 2001; GERKEMA  (Y) and vertical Z) direction, as is indicated by their
and S4RIRA, 2005 a,b). dependency on ‘slow’ variable¥,Z) = £(y,2), £ < 1.
The purpose of our paper is to derive conditions fafote that in general (at least one of) the coefficients de-
linear second order partial differential equations thgend on frequency also. The reason is that we have

lead to an exact characteristic-energy ray corresp@@parated a time harmonic part éxpot) from the un-
dence. After formulating the conditions we inspect diknown wave field.

ferent equatorial wave models for such a correspon- o
dence. Obviously, for models possessing this corresp@al.1 Characteristics

dence, wave attractors can be interpreted as regi@figaracteristic coordinated = {(y,z), n = n(y,z) are
where energy accumulates and fluid mixing can be &xyoduced such that (2.1), written {d, ) coordinates,

pected. _ _ has only a mixed second order derivative term. This
In section 2 we discuss the mathematical theory s to the two conditions (MNT-U, 1987)

derlying characteristic curves and short wavelength en- ) ,
ergy rays. Moreover, we derive conditions for an exact A({,N,0) =A{; +B{{+C{;y = 0 (2.2)
characteristic-ray correspondence. In section 3 we em-c(7 n, o) = An2 + Bn.ny+CnZ = O. (2.3)
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Dividing through byEy2 (whereé stands for{ or n), so called characteristic strip equationSM(ZLINGER,

(2.2) and (2.3) read 1989), an implicit solution foil® can usually be found
; from (2.8). But@ is usually not needed explicitly since
¢&; &2 B with the definitions (2.9) and the interpretation @ihdn
A <Ey> +B <Ey> +C=0 (2:4) as wavenumbers, (2.8) is also a dispersion relation. Of-

ten we have quadratic dependency of the coefficients on
Along the curvel = const, d¢ = &,dz+ &,dy=0holds, g and we confine our study to this case. Therefore, (2.8)
and therefore dy & can easily be solved far to obtain
222 (2.5)
dz & o=0(Y,Zl,n). (2.10)
Solving (2.4) with respect taly/dz we find the char-
acteristic curves of (2.1) from the ordinary differentiarhe characteristics of (2.8) are along the group veloc-

equation ity ¢g, = dy/dt=00/dl, cg, = dz/dt=da/dn. Hence,
q 1 the short wave energy rays are given by the differential
y_ = (Bi (B? —4AC)1/2) . (2.6) equation
dz 2A
dy da/al 211
We note that characteristics do not depend on coeffi- dz da/on’ (2.11)

cients of zero and first order termis o F).

There are several examples of partial differentisthere the numerator is the meridional component of the
equations that can be solved by using the method @Pup velocity, and the denumerator the vertical compo-
characteristics. Essentially, this method makes usengmt.
the knowledge of certain functions that remain invariant Comparing (2.6) and (2.11), exact correspondence
along the characteristics and that are prescribed at Bgween characteristics and energy rays cannot be ex-
boundaries. Solutions can be found by tracing charactegcted in general. Contrasting characteristic curves and
istics back to the boundaries and reading off the valuégergy rays, the latter have a somewhat more straightfor-
of these functions. The wave equation is probably theard physical interpretation. In some applications, they
most simple example of an equation that can be solvee useful for a qualitative understanding of wave dis-
by using characteristics (see section 3.2). persion, even if the phag® cannot be found explicitly

It should be noted that characteristics are not merdfpm the Eikonal equation (2.8) (kRoLy, 1983; HAR-

a mathematical tool, they also have a physical interpfeANDER et al., 2000; BwWARDS and SAQUET, 2005).
tation: singularities, arising due to non-regular boundary

data or due to boundary conditions, propagate along the .
characteristics. 2.2 Correspondence condition for the

general model
2.1.2 Energy rays

_ A classical example for an equation with exact
Short wave energy (or group velocity) rays follow fro”&:haracteristic-ray correspondence @ p,; + (02 —

the so called E_ikona! equation. Tp de_:rive this equatiq\lm)pyy: 0, describing internal gravity (pressure) waves
from (2.1) we first write the equation in terms6fand i, 5 syratified fluid with frequency less than the con-

Z and insert stant Brunt-Vaisala frequenci{. In contrast to this
; hyperbolic equation, characteristic ray-correspondence
~ Po(Y,Z)expif(Y,Z2)/e 2.7 I . .
W~ dolY, 2)explib(Y, 2)/¢), 27 cannot hold for elliptic problems for which characteris-

where (Y, Z) is an unknown slowly varying complextic curves are complex bqt energy rays are real. An ex-
amplitude, and (Y, Z) /e an unknown fast varying real@mple of this type is the linear beta plane Rossby wave

phasefunction. In a next step we collect terms of ord@fuationo(Yxx+ Yyy) — Byx = 0, wheref is constant.
€9, which gives Let us now investigate the general problem (2.1), where

the only restriction is the assumption of slowly varying
—n’A—nIB—1?2C+inD+ilE +F =0, (2.8) coefficients. Equation (2.8) then reads

where we have used the definitions S = —AY,Z,0(Y,Z,n,l))n?
o @’ L. 98 2.9) — B(Y,Z70(Y,Z,n,l))lln—C(Y,Z,G(Y,Z,n,l))l.z
oY 0Z + D(Y,Z,0(Y,Z,n,0))in+E(Y,Z,0(Y,Z,n,1))il
The Eikonal equation (2.8) is a nonlinear partial differ- + F(Y,Z,0(Y,Z,n1))

ential equation of first order fof(Y,Z). By using the = 0 (2.12)
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By differentiatingZ with respect td andn we get that as previously we assume that the coefficients de-
pend only weakly oty, however, for convenience we in-

92 - dﬁy_ 2Cl —Bn+iE =0, (2.13) troduce the slow andZ coordinates later on. By sepa-
Jl Jl rating they andz dependency and by using the transfor-
(22 a—ay—ZAn—BI LiD=0, (2.14)y Mation given by BLYANIN and ZAITSEV (1995) (see
on on page 129)

where _

v = oy explinzexp( - [ (as/2)dy).

__9Ap 0B, 0C, oD OE; OF i

wherei = /—1 andn is a vertical wavenumber, (2.19)

From these equations we find for the energy ra
a dy ray can be transformed to

dy 0g/dl _2CI+Bn—iE .
dz_ do/on  2An+BI—-iD’ (2.16) ¢’ +a(y)e=0, (2.21)

that differs from (2.6). By assumirg=E = F =0 and with
using (2.12) the right hand side of (2.16) can be reduceEj 2 , i 2
to —n/I. Next we divide (2.12) by? and solve the equa-Ay) =do—0ai/4—a1/2, o= (inD+F—n"A)/C.

tion for n/I to find (2.22)
/ Introducing slow space variable®,Z) = £(y, z),

do/dl n 1 (2.21) reads
G0 on =1 = 2a(BF(E-4A02), 217) £2¢/ +q(Y)p =0, (2.23)

\\,/vvhereq(Y) is given by (2.22), written in the slow vari-
ADle. Note that up to this point we have not made any
approximations. We start approximating by inserting a

A(Y,Z,0)Wsr+ B(Y, Z,0) iz + C(Y, Z,0) thyy = O, short wave (WKB) ansatz into (2.23)
(2.18) .
with arbitrary coefficient#\, B, C, characteristic curves ¢~ @(Y)explio(Y)/e),

corresponpl to short_wave energy rays. and collecting terms with different orders énKeeping
One might ask if the ray-characteristic correspo

) rE')'nly the lowest orders gives the well known WKB solu-

. . Yon. Its validity depends on the size and variation of the
troducing a new dependent varialle= f(Y,Z)@. The éaoefficientq(Y).

equation forg has the same characteristics as (2.1 We obtain the phasé from the order one problem

but might have dl_ffere_nt rays sm&_E, F are no longer (called eikonal equation, seedtiMES (1995)), wheren
zero. However, sincé is slowly varying, these terms are

: .1s now a constant
order ¢ and do not show up in the order one equation

(2.12). Hence, the ray-characteristics correspondence elziq(Y>l/2 (2.25)
remains intact under a transformation like= f (Y, Z) . '

which does correspond to (2.6). Hence we have sho
that for any equation

(2.24)

Via the transformation (2.20) we have introduced a

2.3 Ray-characteristic correspondence for phase function

equations with y-dependent coefficients
onl
Y Q(Z,Y) =nz+ i/2/al(Y)dY+ 8(Y), (2.26)

Let us now study the case where all coefficients in (2.1)
depend ony only. In the context of linear equatoria, ot can be used to write the streamfunctionyas-
zonally-uniform internal waves this case is most relevaa'g exp(iQ/¢). Using the definition
since the governing equations are of this typ&gSN,
1963; SEWARTSON, 1971; MAAsS and HARLANDER, (0Q/3Y,0Q/9Z) = (I,n), (2.27)

accepted). Consider
wherel (n) denotes the meridional (vertical) wavenum-
AWz + B(Y)Uyz+C(y) Py +D(Y) ¢, ber, from (2.26) and (2.25) we obtain the dispersion re-
+ EWW+Fy)yP=0, (2.19) Jation

where ¢ is a function ofy and z, but the coefficients 0,12

B,C,D, E,F depend oty (and possibly ow) only. Note — —ouil® +1#2 —q(y) =0. (2.28)
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The superscript inl* indicates that the meridionalthe problem (2.32) withy = 0 at the boundary can be
wavenumber possesses two roots, as is obvious freolved for arbitrary boundary geometry by the charac-
(2.25). Writing (2.28) in terms of the coefficienésto teristic web method of MAs and LAM (1995).

F by using the definitions fosrg anday from (2.20) and It can be shown that the operator of (2.19) is separa-
(2.22), we find that the equation can be reduced to thke if

form

A+ BI*n+CI*2 =0 (2.29) A/C=g(y)*—0o* B/C=2g(y),
A~
if the three conditions D/C=9(y),
, E=0 and F=0, (2.33)
D = € (B 2.30
— 2.\c)’ (2.30) whereg(y) is an arbitrary function, and an arbitrary
E = F=0, (2.31) constant. Inspection shows that the coefficients (2.33)

satisfy the conditions (2.30) and (2.31) and hence im-
hold. In section 2.2 we have proven that a dispersiply an exact characteristic-ray correspondence. How-
relation of the form (2.29) (i.e., (2.12) with = E = ever, these conditions do not dependfmwhile opera-

F = 0) has an exact characteristic-ray correspondentm®.separability does. Therefore we can expect that some
Therefore we can say that for any second order lisguations that do not possess separable operators will
ear partial differential equation with dependent coef- still have an exact characteristic-ray correspondence.
ficients, characteristics correspond to short wave energyThe characteristic coordinates can be found from
rays if first, the ansatz (2.24) can be justified, and s€@-6), that reads for the coefficients (2.33)
ond, the conditions (2.30) and (2.31) hold. g

y -
2.4 Separability a4z = ey +0) g (2.34)

Finally, we want to address the question of separabilify - ,nes of constamt and, defined by the solutions
of (2.19). In general there are two kinds of separabjlz (2.34) as

ity. The first one is separability of variables that means a
solution can be written ag = ¢(y)x(z). We have used
separation of variables in (2.20). As we have shown, this
kind of separability implies a characteristic-ray corre-

spondence only if the conditions (2.30) and (2.31) hold. (g = / 9y)dy—oy—z (2.36)
Moreover, only for a very restricted class of bounda
value problems (i.e., (2.19) witfy = O at a given bound- /
ary), solutions can be found by separation of variablé@! Wave equation

For example, MON and SPENCER(1971) list eleven

coordinate systems that can be used to solve Laplace- Uy — Y53 =0
and Helmholtz-type boundary value problems where the _ N A
boundaries correspond to coordinate lines. If boundarié@ the coordinate’ = (n —{)/2, Z = (n + {)/2.
deviate from coordinate lines, analytical solutions cdR that frame, the characteristics are straight lines with

be found to a certain approximation only4RLANDER ~ Slope=+1. _
and MAAS, 2004). With respect to hyperbolic boundary value problems,

The other kind of separability is the separability ofeParation of the operator is more powerful than sep-
the equation’s operator. This means tiaW = 0 (where aration of variables. To demonstrate this let us con-
Z is the linear second order operator of (2.19)) can Biler (2.37) withyy = 0 along a rectangle with length
written as. 2% Z,( = 0 with the two first order linear L and height. This problem is separable in terms of
operators?; = a;(y,z)8/dy+ bi(y,2)0/dz i = 1,2. In the variables as well as in terms of the operator. This
that case we can introduce new coordinates such tAtgans that the boundary value problem can be solved
oy = 21 andd; = P, (with n,gy — nyZ; # 0). Then by the separation of variables method as well as by the

n(y,2) / g(y)dy+oy—z (2.35)

r
l%ote that (2.32) can easily be transformed to the classi-

(2.37)

(2.19) can be written as characteristic web method. The solution reads simply
Pn = Ansin(nmtY /L) sin(niZ/H), n € N. However, if
Yz =0. (2.32) one boundary is tilted with respect to the vertical, no

eigenfunctions can be found by separation of variables
This equation has the structure (2.18) with=C = 0. for arbitrary tilt. Nevertheless, the operator of the non-
Thus, operator separability implies an exact correspaectangular boundary value problem is still separable;
dence between characteristics and short wave enehgyce, the problem can still be solved by the character-
rays in the characteristic coordinate frame. Moreovasfic web method (MAs and Lam, 1995).
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2.5 Summary and the second term of (3.3); the hydrostatic approxima-

. ) _tion neglects the first term of (3.3). Moreover, expanding
In summary we advise the following strategy to vern‘)éi_nq, in a Taylor series about = O gives the equatorial

whether an equation possesses an exact characterigtéqa_plane that replaces girby y. With these assump-

ray correspondence: first, check if the equation has g5 and the introduction of a meridional streamfunc-
form of (2.18). If not, but the equation hasdepen- gy — — W= t, (3.1)-(3.5) can be reduced to
dent coefficients only, verify whether the equation is

operator separable by inspecting (2.33). If this is not (=)= 0
the case, check the validity of (2.30) and (2.31). If the Yyy S
conditions fail, the equation under consideration has
characteristic-ray correspondence.

(3.6)

Perred to as the standard equation. Using the transfor-
mation (2.20) withag = n?(g? —y?) and a; = 0, the
equation can be reduced to (2.21) wigfy) = ao, the
3 Governing equations for internal Weber equation. Solutions are Hermite polynomials sat-
zonally-uniform equatorial waves isfying the boundary conditiongy = 0 atz= 0,1 and
 — 0 fory — +oo (PHILANDER, 1990). However, the
Let us now turn to the equations governing zonally syrequation is not operator separable. Nevertheless, (3.6)
metric equatorial waves confined between a bottom (@is the structure of (2.18) (wih= 0) and characteris-
z=0) and a surface (at = H). In non-dimensional tics correspond to energy rays.
form, the linearized, zonally symmetric equations on the What kind of solutions can we expect when the
sphere read in Boussinesq approximation flat boundaries of the standard equation are perturbed?
MaAs and HARLANDER (accepted) showed that the hy-

lou + cospw—singv=0, (3.1) perbolic nature of (3.6) gives rise to focusing of char-
iov + singu=—py, (3.2) acteristics and wave attractors even for small bound-
iow — cospu=—p,+Db, (3.3) ary perturbation. In contrast to the solutions for flat
iob + w=0, (3.4) boundaries, the focusing prevents the solutions from
being smooth. Although we cannot compute these so-
v + w,=0. (3.5)

lutions, neither by separation of variables nor by the

Herey stands for the meridional armifor the vertical characteristic web method, we still know from the
direction, defined by the differential relatiody = rd¢g characteristic-ray correspondence that the energy of
anddz= dr, wheregis latitude and radius. The zonal, short waves follows characteristics and that therefore

meridional, and vertical velocity components are d&/ave attractors s_hould coincide with regions of Iarge_ki—_

noted byu,v,w: b is buoyancy (which is proportionalnet'c energy. This de.mc_)nstrates that t_he qharacterlstlc

to density), andp is pressure divided by a constant refyveb alone can cpntaln important physical information

erence density. To keep the analysis brief, we do not dikthe characteristic-ray correspondence holds.

cuss the scaling variants that lead to the different ap-

proximations of (3.1)-(3.5) that will be considered be3.2 Stern’s equation

low; they are given e.g. by1&RN (1963), GLL (1982),

and MaAs and HARLANDER (accepted). Another kind of perturbation for the boundary value
The purpose of the following four sections is to disProblem (3.6) was discussed by &RN (1963). He per-

cuss different equatorial internal wave equations in tfi¢rbed the problem not via the boundaries but modi-

light of the findings above. It will be illustrated that shortied (3.6) such that it allows for non-traditional Corio-

wave energy ray-characteristic correspondence is a ueeffects. In that case wave attractors become generic

ful concept for a better understanding of boundary valt@o, even for non-perturbed flat boundaries. Surpris-

problems that lack explicit solutions. ingly, wave attractor solutions can be studied explic-
itly for Stern’s model. Stern’s scaling for a homoge-
3.1 Standard equation neous fluid beta-plane version of (3.1)—(3.5) keeps the

_ o _non-traditional terms, but the hydrostatic assumption is
The standard equatorial beta-plane equatlo'n'ls obtainggqe again; that is, just the first term in (3.3) (owing
from (3.1_)—(3.5) V\{hen_ the so-called traditional ang, hydrostasy) and the second term in (3.4) (owing to
hydrostatic approximations are madeREBIHERTON  the fluid’s homogeneity) are neglected, iis replaced
1964; MATSUNO, 1966; FHILLIPS, 1990). The tradi- phyy and cosp by 1 (equatorial beta-plane). Introducing
tional approximation neglects the second term of (3.4) meridional streamfunction, we find from (3.1)—(3.5)

1See DuTTON (1986), page 233 for the full system on the sphere, ar%tem S equation
VERONIS (1970) or GLL (1982) for the Boussinesq version of the 2
equatorial beta-plane equation. Yy — (0°— yz) WYz + 2yYn;+ ), = 0. (3.7)
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In contrast to the standard equation, no smooth solutic 4 £ 0 2 4
can be found satisfying the boundary conditiahs= 0 2

for z= 0,1 and fory — +. However, the equation has N\
coefficients (2.33) witlg(y) = y. Thus, the operator of / N
(3.7) is separable and the characteristics corresponc ¢ N
the rays of short wave energy propagation. . D, 58 < / N
Using (2.35) and (2.36), the characteristic coord T 7 /
A % — \\ /

nates are

L <
¢ = Z_éyz_o—ya (3.8)
n = Z—%szroy. (3.9) 4

The variables

5 . Figure 2: Exact solution of Stern’s equation for=0.9. The stream-
Y = 2(’7 N Z) =40 (3.10) function g is shown in the?, Z frame. In the region inside the wave

2 2
Z = 2(n+{—-0°)=2(2z— y—o )s (3-11) attractor banded flow structures can be observed. The velocity is sin-

transform (3.7) to the standard hyperbolic equatic?ﬁul:;?:):?\ii%a!:::]t;al\c/lf:s'\?:lﬁr:;tzgi on the solutions can be

(2.37). This equation is solved by functions that are '

constant on straight characteristi¢s- Z = const Note

that (3.10) and (3.11) turn the flat bottom and surface |n the following we extend Stern’s equation. First,

(z=0,1) into two displaced parabola. In these coordip include extra-tropical regions, and second, to include

nates bottom and surface are given as stratification. As will become evident, operator sepa-
5 ~ rability is lost again for these somewhat more general
ZP(Y) - TZ(AYZ/ 160 +0?) (3.12) mode)lls. Howevgr, it is instructive to check Whethgr these

Z(Y) = Zp(Y)+4 (3.13) models keep the characteristic-ray correspondence.

In Fig. 1 we consider the characteristic web of two char- o ]
acteristics, launched &Y, 2) = (0,1/2). The character- 3-3 ‘Spherical’ Stern equation

istics reflect at the boundaries and converge towards a

limit cycle, the equatorial wave attractor. In the exanfEMPI0YiNg the same scaling agERN (1963) (i.e. ne-
ple shown we use = 0.9. Recently, ARLANDER and 9/€cting the first and last term in (3.3) and the second
MAAS (submitted) presented exact solutions of Sterr§'™ In (3.4)) but avoiding the beta-plane approxima-
equation by applying the characteristic web method BpN: S0me part of the spherical geometry, lost in (3.7),
MAAs and Lam (1995). By inspecting them it cancan be retained. For a thin shell with a large radius,

be seen that the attractor coincides with the region%proximately constant. Instead of replacinggsioy y

strongest streamfunction gradients. An example demdfgté-Plane) we replace sirby siny and cosp by cosy.
er a transformation of the velocity components and

strating this is displayed in Fig. 2. Kinetic ener ile
g Pay d ay b g introduction of new coordinate$ Z (see appendix

up along the wave attractor and dissipative and nonliné \ 7> )
effects should become important in this region, which we find for the transformed meridional velocity com-

therefore sometimes called an internal boundary lay&nent
(STERN, 1963; HARLANDER and MaAsS, submitted). ~ 5> ova . . N 2
Vyy — (0% —g°)Vzz + 2907 +Vz = (g0)y — gz,
P ., (3.14)
R whereg is a function ofy’ alone. This equation has no
characteristic-ray correspondence since neither (2.33)
nor (2.30) and (2.31) hold. On the other hand, if the right
hand side of the equation is neglected (see appendix A),
then the spherical Stern equation possesses a separable
operator, as can be seen by comparing the coefficients
| onthe left hand side of (3.14) with (2.33). Note that, no
| matter whether the right hand side of (3.14) is set to zero
or not, the characteristic curves remain the same. Thus,
Y L the neglect of the right hand side of (3.14) leading to a
Figure 1. Equatorial wave attractor in the, Z) frame foro = 0.9.  separable operator, leaves the characteristics intact.
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3.4 ‘Stratified’ Stern equation Then the phase function (2.26) reads

The last equatorial wave model discussed includes strat- n_ 2 2 /
ification which makes it the most relevant model for QZ,Y)=en (Z/e e/ (2 )> oY), (4.2)

atmospheric and oceanic applications. We obtain it by N ) ) ) .
restoring stratificationN — const), keeping the non- wheref(Y’) is given by integrating the eikonal equation

traditional terms, assuming non-hydrostasy, but makiﬁ%-25)- Using the definition (2.27) we obtain the disper-

the beta-plane assumption. In other words, we keep fHan relation

system (3.1)—(3.5) but replace giby y and cogp by 1 ny’

(equatorial beta-plane). Introducing a streamfunction in I = —— +q(Y)¥?, (4.3)
the meridional plane, we find from (3.1)—(3.5) the strati- €

fied Stern equation (MAs and HARLANDER, accepted) that can be written as

Wy — (0% =Tyt 2Y Py + =0,  (3.15) (Y?[1+N2— 02— 02d)i+2Y 15/ +152 =0, (4.4)

where whereri’=n/&. We see that the structure of this equation
matches with (2.29), having coefficierds= (Y’2[1+
y=y/T"%,  T=1+N"-d% (3.16) N2 - g2 — 02?), B=2Y’, andC = 1.

) The ray path is given from (4.4) by
Note that (3.15) reduces to Stern’s equation (3.7) fer

1 (for whichy =y). dY'  do/dl* n
Comparing the coefficients of (3.7) with (2.33) we 4z = dajon ~ IE (4.5)
see that the operator is not separablelfc£ 1. Nev-
ertheless, the characteristic-ray correspondence hafsisthe other hand, the characteristic curves are given by
since the conditions (2.30) and (2.31) are satisfied for @l 6) whereA = I'y? — 62, B = 2y, andC = 1. Using

Ir. (NOte that the Chal’actel’istiCS ChangE IB Changed.) 0'2 from (44), (26) gives the two possibi”ties
Table 1 summarizes our findings on the character-

istic-ray correspondence of the different equatorial wave  dy n dy n

models discussed. The standard equation and the strati- §; — ny + 1%’ and dz ~ 1E (4.6)
fied Stern equation are of special interest since they do

not have a separable operator but yet possess an egagin (4.3) we can see thé2ny + 1) = —|I~ and that
characteristic-ray correspondence. (2ny +17) = —1*; i.e., the first solution of (4.6) is in fact

equal to the second one. Thus we obtain actually two
families of characteristics, as expected. Therefore (and
consistent with our previous results in section 2.3) we

can conclude that there is an exact characteristic-ray cor-

It is instructive to apply the results from section 2.3 to %espondence for_thg stratified Ste.”‘ eq_uatlon (3.15); that
the characteristic curves are identical to short wave

concrete example. Let us therefore see how the concgﬁt

works for the stratified Stern equation. E\}/s;hyaﬁ;olggIz?ﬁlo‘i:r:t)(/))urragr?él sis so far is an accurac
The section is organized as follows. First, we explic- 9 Y Y

itly derive the characteristic-ray correspondence for easure of the short wave (WKEB) approximation (2.24).

t . . :
stratified Stern equation, and second, we verify the \}t 'gt]?sat%%r?glsﬂﬁtgntﬁgizgfgnhgki’ wfj’ dr%tt[){tcl\r/]gr’
lidity of the short wave solution. o y

useful. To fill this gap in our line of arguments we will
compute a validity condition for the WKB approxima-
tion. Moreover, we will directly compare exact solutions
To investigate (3.15) from a short wave (or WKB) poinf'ith WKB approximations. The analysis will show that
of view it is useful first to transform the equation vid2-24) iS an accurate approximation for free solutions of

(2.20) to (2.23), wherex, ay, andq read in slow’ vari- (3-15)-
ables(Y',Z) = ¢(y,2)

4 Some explicit results for the stratified
Stern equation

4.1 Characteristic-ray correspondence

4.2 Reliability of the WKB solution

i 2 IRY- 2
ao=in—n*(T(Y'/¢) _20 ), Let us check under which conditions (2.24) can be ex-

. L P 2.21 Ppected to be an acceptable solution. A measure for accu-
oy =in2Y'/e, oY) = X [Y (1-T)+o% ] racy of the WKB solution is given by BILMES (1995)
(4.1) as
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Table 1: Operator separability and characteristic-ray correspondence feqtreions considered in the text. Note that a separable operator
implies a characteristic-ray correspondence, but not the converse.

equation name equation number separable operator chaoma@spondence
standard equation (3.6) no yes
Stern’s equation (3.7) yes yes
spherical Stern equation (3.14) no no
stratified Stern equation (3.15) no yes

orz] value problem (2.23) with the coefficiewt given by
(4.1) can be solved analytically. Using
0.1 G=225 - 2 1/4 ~ ~
ERROR MEASURE FOR WKB y= )/ [n (r - l)] y P= fPeXp()’Z/Z), (48)
we find )~ -
dg _.do ~
a7 —2yd—y+(E—1)(p_O, (4.9)
where ” o
E—_ "9 > (4.10)
(" —1)]
and
252
In(n) m= } 7” o 1/2 — . (411)
Figure 3: The WKB error measure (4.7) as a function of the vertical 2 [nz(l' —1)] /

i = 1= . . . ~
wavenumben for different values ofs. Here we used =0, Y'p = Solutions are Hermite ponnomlaHm(y), wherem =

Tr/RYaEYRZ o=t 1,2,3,---; i.e., for anymwe obtain forg
@n ~ Hin(¥) exp(—§7/2), (4.12)
1 dg/dY’ referred to as Weber-Hermite function in literature
elgp ¢ wog@d 2 ) (BELL, 1968).

vy On the other hand, the stratified Stern equation (3.15)

<4+/ | d(Inqg)/dY’ | dy/) ] <1, has the short wave solution (2.24) with the phase (2.26).
Y'o To find @ of (2.24) we have to solve the so called trans-

(4.7) port equation that follows from the orderproblem of

. o the asymptotic expansion, reading
First, it is important to note that (4.7) is independent of

when written in the fast variablg. Second, it is obvious 0" @m+20' @ = _9’2(,;1 +qY) . (4.13)
that the condition (4.7) is fulfilled iff is small, orq is
large, or both. Third, at so called turning latitudes give@bviously, by using (2.25), the right hand side of this
by q(Y’) = 0, the WKB approximation breaks down. Foequation vanishes and we obtain
the stratified Stern equation, turning latitudes are located c
aty't =+0/(—G)Y2, whereG=1—-T = 0d2—N2 < 0. ®= 17 (4.14)
Let us determine for whicH™ and vertical wave 0
numbersn we can expect accurate solutions. Figuredherec is an arbitrary constant. Hence, (2.24) reads
shows the left hand side of (4.7) for different values
of G as a function of In). In this example we used v
/ / / / ’ H
Y'o=—Y'r/2,Y'1=Y'7/2, 0 = 1. For Stern’s equation o~ qY) 4 [aoexp(l/ q(s)Y/2ds)
(G=0) the measure is zero for anylf G decreases, the £
measure increases. Hok 1 it is violated forG < —2. i Y 1/2
Most important, in the intervad’ € [—-Y'1/2,Y't /2], the T boexp(—a a(s)”*ds)].
condition (4.7) is fulfilled for alll" if n is sufficiently (4.15)
large.
Finally, we compare exact solutions of (3.15) wittNote thatq is positive within the turning latitudes but
corresponding WKB approximations. The boundalyecomes negative outside of them. Therefmydas to
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Figure 4: Comparison of exact solutions (solid line) and WKB ap-
proximations (dashed line). In a) we usee-= 1, m=2,n=>5, which
givesG = —1. In b) we useds = 1, m= 5, n = 20, which gives
G = —400/121. The solutions are plotted for(49/50)y' 1 <y <

(49/50)y'r.

be zero to satisfy the boundary conditiops— 0O for

02

04
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fore we think that such layers play an important role for
the equatorial dynamics.

Unfortunately, generalized models of zonally sym-
metric and time harmonic equatorial internal waves can-
not be solved for wave attractor frequencies. The ques-
tion arises if characteristics (and wave attractors) of non-
solvable boundary value problems contain similar infor-
mation as for Stern’s solvable problem. To answer the
guestion we considered one simplified and two gener-
alized ‘Stern’ equations (describing linear zonally sym-
metric equatorial waves) that are, in contrast to Stern’s
original model, not solvable. Nevertheless, for almost all
surface and bottom boundary shapes, wave attractors are
common for all these models.

First, we have formulated general conditions for
an exact relationship between characteristic curves and
short wave energy (group velocity) rays of general spa-
tial wave equations. Second, we have applied the con-
ditions to the equatorial wave equations under consid-
eration. Most important we found that for the strat-
ified Stern equation (that includes stratification and
non-hydrostasy), characteristics agree exactly with short
wave energy rays, a property that holds also for Stern’s
original equation. From this result we can expect that
eqguatorial wave attractors are important also for equa-
torial inertia-gravity waves, for which we cannot de-
rive exact solutions from characteristic webs. Since the
stratified Stern equation is a rather general model for
zonally symmetric equatorial motion, including strat-
ification and non-traditional terms, features related to
such attractors should be observable in the equatorial
ocean (and maybe also in the equatorial atmosphere)
that shows indeed more symmetry in the zonal than in
the meridional and vertical direction. We have shown
that free solutions of the stratified Stern equation can
be fairly well approximated by the WKB method. This
forms the basis for the ray tracing analysis applied.

: : \
Y' — F. Fig. 4 shows a comparison between (4.12) geyeral authors have recently drawn conclusions

and (4.15) for an even and an odd The solutions are
plotted in the rangd—49/50)y+ <Yy < (49/50)y';.

from the properties of characteristics alone without hav-
ing solutions of the corresponding boundary value prob-

It is obvious that the approximation (4.15) is accurat@,y, at hand (MAS, 2001; MaAS and HARLANDER
except close to the turning points where the WKB aRccepted: @RKEMA and SHRIRA 2005h). It was ar-
proximation breaks down. This problem can be solv%qjed for example that energy density of near inertial

by using appropriate connection formulagfoRY UK,

1993; HOLMES, 1995).

5 Summary and conclusion

waves should blow up in the deep ocean due to the ex-
istence of point attractors at intersections of the turn-
ing surface with the bottom. In contrast to Stern’s equa-
tion, such point attractors show up if stratification is
considered. The present analysis supports this idea and

The solutions of Stern’s (1963) boundary value probleffows that indeed energy follows the characteristics and

show that wave attractors represent internal boundéﬂp

uld therefore accumulate at the point attractors. The

layers (HARLANDER and Maas, submitted): any en- Kinetic energy densitfe ~ v2 +w? = g(1? + n?) reads
ergy input will lead to energy accumulation at the waJ@y Using the results from the WKB analysgs~ (1? +
attractor. Although we considered just the linear time®)/ (I +ny)Y/2. Due to subsequent focusing reflections
harmonic case here, we can tentatively say that waithe lower boundary, the wavenumbers blows up when
breaking and fluid mixing can be expected there. The-Wave packet approaches one of the point attractors.
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Whereas the energy density flux (i.e. the group velosrodel. If we eliminates,\Ww andpgwe obtain (3.14). If we
ity) goes to zero when the wavenumbers go to infinitgxpand the velocity components @as=Tg + €01 + - - -,
the energy densit blows up. Of course, linear theorys < 1, assume a small pressype="cp1 + €2po + - -,
breaks down before a wavepacket can reach an attracd compress the coordinatgs Z) = (¥, Z), the third
tor. Very likely, waves will break and fluid mixing will term of the continuity equation can be neglected to the
be enhanced in the vicinity of the attractor. Therefore wewest order inc. Then we can introduce a streamfunc-
can state that the idea of enhanced deep ocean mixingiby Vo = — (s, Wo = ) to find
near inertial waves trapped at deep ocean point attrac-
tors is consistent in the WKB sense. This concept might gy — (02 — g%) Y + 29z + Yz = O. (A.7)
therefore be helpful to understand abyssally intensified
near inertial motions, recently observedisw HAREN This is Stern’s equation whemis replaced by, but re-
et al. (2002). mains separable for other choicesyy).

Finally, we should comment on the conservation
properties of waves, trapped by a wave attractor. Usy-
ally, the equations describing the propagation of Shj%teferences

wavelength waves form a Hamiltonian systemac, BADULIN, S. I., V.I. HRIRA, 1993: On the irreversibility

1991). Phase space volume is conserved for such SySst internal-wave dynamics due to wave trapping by mean
tems, a property which excludes attractors. However, théfiow innomogeneities. 1. Local analysis. — J. Fluid Mech.
phase space of internal waves, propagating in a merid251, 21-53.

ional plane is four dimensionay (position,z position, BEeLL, W. W., 1968: Special functions. — D. Van Nostrand
and two corresponding wavenumbéts). Thus, the  Company, Ltd, London, 247 pp. o
existence of an attractor in the projection on the spBRETHERTON F. P., 1964: Low frequency oscillations
tial plane does not imply a non-conservative dynamiﬁtrappe‘j near the equator. — Telll§ 181-185,

(BADULIN and S$HRIRA, 1993). In fact, wavenumbers UYTOTrENélJf |5qu 1986: The ceaseless wind. — Dover, New

diverge for a wave propagating IOWQFdS an attractor apdyart, C., 1960: Hydrodynamics of oceans and at-
thus the phase space volume can still be conserved.  mospheres. — Pergamon Press, Oxford, London, New York
and Paris, 290 pp.
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