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Abstract
Characteristic curves of partial differential equations (PDEs) in general differ from short wave energy rays.
We give conditions for linear, two dimensional second orderPDEs that guarantee an exact correspondence
between characteristics and energy rays. The findings are applied to time-harmonic, zonally-symmetric small-
amplitude equatorial internal waves. It is shown that for a fairly general model of inertia-gravity waves, an
exact characteristic-ray correspondence holds. When characteristics of internal waves, trapped in a meridional
plane, are followed over several boundary reflections, a convergence towards a limit cycle (called equatorial
wave attractor) can generally be found. The results on the characteristic-ray correspondence help to interpret
physically equatorial wave attractors. Recent ideas on energy accumulation by near inertial waves, trapped
on wave attractors at deep ocean sites are confirmed by our results, at least in the short wave (WKB) sense.

Zusammenfassung
Im allgemeinen unterscheiden sich die charakteristischenKurven und die Strahlen der Wellenausbreitung von
partiellen Differentialgleichungen (PDEs). Wir geben hier Bedingungen für lineare, zweidimensionale PDEs
zweiter Ordnung an, die eine exakte Übereinstimmung zwischen charakteristischen Kurven und Wellen-
strahlen garantieren. Die Ergebnisse werden auf zeitlich harmonische, zonal symmetrische, äquatoriale in-
terne Wellen mit kleiner Amplitude angewandt. Es wird gezeigt, dass für ein recht allgemeines Modell von
Schwere-Trägheitswellen, diese exakte Beziehung zwischen charakteristischen Kurven und Wellenstrahlen
gilt. Folgt man Charakteristiken von internen Schwerewellen, die in einer meridionalen Ebene gefangen sind,
über eine Anzahl von Randreflexionen, so zeigt sich für ein solches Netz von Charakteristiken ein Grenzzyk-
lus. Dieser wird äquatorialer Wellenattraktor genannt. Die gefundenen Ergebnisse der Charakteristiken-
Wellenstrahlen-Korrespondenz können helfen, die äquatorialen Wellenattraktoren physikalisch zu inter-
pretieren. Aktuelle Vorstellungen zur Rolle von Wellenattraktoren als „Energiesammelgebiete“ im tiefen
Ozean werden durch unsere Analyse gestützt.

1 Introduction

A feature of equatorial dynamics common to both the
atmosphere and the ocean is the phenomenon of equa-
torially trapped waves. The waves are trapped due to
a changing Coriolis parameter, leading to an exponen-
tial decay of wave amplitude in the meridional direc-
tion (PHILANDER, 1990). In contrast to Kelvin and
Rossby waves that propagate horizontally in the equato-
rial waveguide, internal waves can be trapped in a merid-
ional plane due to their vertical component of propaga-
tion. An example of this kind was discussed by STERN

(1963) for small amplitude zonally symmetric and time-
harmonic equatorial inertial waves. Inertial waves have
similar properties as internal gravity waves, but in con-
trast to the latter they need a stratification in angu-
lar momentum and not in density to propagate. Iner-
tial waves can hence exist in the rotating homogeneous
medium considered by STERN. In the present study,
Stern’s model plays a central role owing to the fact that
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it can be solved exactly for arbitrary boundary geome-
try by the characteristic web method of MAAS and LAM

(1995).
Already BRETHERTON (1964) saw that for certain

frequencies inertial waves may be trapped on periodic
webs of characteristics (referred to as wave attractors).
Such orbits were later studied by STEWARTSON (1971)
and ISRAELI (1972) for the equatorial beta-plane and
recently also for spherical geometry (TILGNER, 1999;
RIEUTORD et al., 2001). Their physical relevance was
shown in a series of laboratory experiments (MAAS

et al., 1997; MAAS, 2001; MANDERSand MAAS, 2003,
2004).

By comparing exact solutions of the inviscid Stern
equation (MAAS and HARLANDER, accepted; HAR-
LANDER and MAAS, submitted) with the corresponding
characteristic web, wave attractors can easily be iden-
tified as singularities of the velocity field. An obvious
interpretation of this observation is that, given an en-
ergy source, kinetic energy (propagating along the char-
acteristics) should pile upad infinitumin regions of con-
verging characteristics. Although the interpretation of
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characteristics as lines of energy propagation appears
straightforward for Stern’s equation, it is problematic for
more general problems. The reason is that rays of energy
propagation result from a short wavelength approxima-
tion to the original equation (frequently called Wenzel,
Kramers, and Brillouin (WKB) or Liouville-Green ap-
proximation in literature) and such rays are in general
not related to the characteristic curves of the original
equation. This was already noted by ECKART (1960):
‘There are two kinds of ray theory whose results are
sometimes identical, sometimes very different. One is
based on the theory of characteristic curves and surfaces
associated with partial differential equations. Its results
are always rigorous and of importance for the theory
of shock waves and for certain technical purposes. The
other theory is rigorous only when the differential equa-
tions have constant coefficients.’ It should be added that
also characteristic curves can give rigorous results only
for a restricted class of equations. The other theory men-
tioned is the WKB theory which in fact is rigorous only
for openconstant coefficient problems. For constant co-
efficient boundary value problems WKB solutions are
approximations (KELLER, 1985).

A robust feature of all the equatorial wave mod-
els studied here (forming certain variations of Stern’s
equation) is the occurrence of wave attractors. Unfor-
tunately, only for Stern’s equation we can pin down the
meaning of wave attractors for the solution. The other
boundary value problems are not separable in terms of
characteristics and exact solutions are not available. A
physical interpretation of the characteristics (e.g. as rays
of energy propagation) is therefore compelling to un-
derstand the role of wave attractors for the equatorial
wave motion. Even more so since there is experimen-
tal evidence that wave breaking and mixing in regions
of convergence of characteristics induces a mean flow
(MAAS, 2001). Equatorial wave attractors might there-
fore help sustain the equatorial ocean current system.
Moreover, some aspects of observed deep ocean spectra
are consistent with the idea of deep ocean point attrac-
tors (VAN HAREN et al., 2002; MAAS, 2001; GERKEMA

and SHRIRA, 2005 a,b).
The purpose of our paper is to derive conditions for

linear second order partial differential equations that
lead to an exact characteristic-energy ray correspon-
dence. After formulating the conditions we inspect dif-
ferent equatorial wave models for such a correspon-
dence. Obviously, for models possessing this correspon-
dence, wave attractors can be interpreted as regions
where energy accumulates and fluid mixing can be ex-
pected.

In section 2 we discuss the mathematical theory un-
derlying characteristic curves and short wavelength en-
ergy rays. Moreover, we derive conditions for an exact
characteristic-ray correspondence. In section 3 we em-

ploy different models describing trapped equatorial in-
ternal waves. One model is a simplification of Stern’s
model, the other two are extensions to Stern’s equation,
including sphericity or stratification. We discuss briefly
exact solutions of Stern’s equation obtained by using the
characteristic web method. The main purpose of section
3 is to verify whether the characteristic-ray correspon-
dence, holding for Stern’s model, can be carried over to
the other models. In section 4 we give explicit results
for the model that adds stratification to Stern’s model
(called stratified Stern equation). This model appears to
be most important for geophysical applications since it
allows for inertia-gravity waves. We discuss and illus-
trate the wave focusing effect which is at the end the
reason for the wave attractor’s energy pile up. Finally,
the validity of the short wavelength assumption for the
stratified Stern equation is verified which legitimates the
application of WKB ray tracing. In section 5 we sum-
marize the results and give conclusions.

2 Mathematical theory

Before we discuss concrete examples let us first develop
a general theory on the correspondence of characteristics
and short wave energy rays.

2.1 Characteristics and rays of energy
propagation

As was mentioned in the introduction, the results of both
ray theories (the theory of characteristics and the the-
ory of energy propagation) are very different in gen-
eral. However, for special cases they are identical, even
for non-constant coefficients problems. A rather general
model for our purpose is the second order linear partial
differential equation

A(Y,Z,σ)ψzz + B(Y,Z,σ)ψzy+C(Y,Z,σ)ψyy

+ D(Y,Z,σ)ψz+E(Y,Z,σ)ψy

+ F(Y,Z,σ)ψ = 0, (2.1)

where the coefficients vary only weakly in meridional
(Y) and vertical (Z) direction, as is indicated by their
dependency on ‘slow’ variables(Y,Z) = ε(y,z), ε ≪ 1.
Note that in general (at least one of) the coefficients de-
pend on frequencyσ also. The reason is that we have
separated a time harmonic part exp(−iσ t) from the un-
known wave field.

2.1.1 Characteristics

Characteristic coordinatesζ = ζ (y,z), η = η(y,z) are
introduced such that (2.1), written in(ζ ,η) coordinates,
has only a mixed second order derivative term. This
leads to the two conditions (MYINT-U, 1987)

A(ζ ,η ,σ) = Aζ 2
z +Bζzζy +Cζ 2

y = 0 (2.2)

C(ζ ,η ,σ) = Aη2
z +Bηzηy +Cη2

y = 0. (2.3)
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Dividing through byξ 2
y (whereξ stands forζ or η),

(2.2) and (2.3) read

A

(

ξz

ξy

)2

+B

(

ξz

ξy

)

+C = 0. (2.4)

Along the curveξ = const., dξ = ξzdz+ξydy= 0 holds,
and therefore

dy
dz

= −ξz

ξy
. (2.5)

Solving (2.4) with respect tody/dz we find the char-
acteristic curves of (2.1) from the ordinary differential
equation

dy
dz

=
1

2A

(

B± (B2−4AC)1/2
)

. (2.6)

We note that characteristics do not depend on coeffi-
cients of zero and first order terms (D to F).

There are several examples of partial differential
equations that can be solved by using the method of
characteristics. Essentially, this method makes use of
the knowledge of certain functions that remain invariant
along the characteristics and that are prescribed at the
boundaries. Solutions can be found by tracing character-
istics back to the boundaries and reading off the values
of these functions. The wave equation is probably the
most simple example of an equation that can be solved
by using characteristics (see section 3.2).

It should be noted that characteristics are not merely
a mathematical tool, they also have a physical interpre-
tation: singularities, arising due to non-regular boundary
data or due to boundary conditions, propagate along the
characteristics.

2.1.2 Energy rays

Short wave energy (or group velocity) rays follow from
the so called Eikonal equation. To derive this equation
from (2.1) we first write the equation in terms ofY and
Z and insert

ψ ∼ ψ0(Y,Z)exp(iθ(Y,Z)/ε), (2.7)

whereψ0(Y,Z) is an unknown slowly varying complex
amplitude, andθ(Y,Z)/ε an unknown fast varying real
phasefunction. In a next step we collect terms of order
ε0, which gives

−n2A−nlB− l2C+ inD+ ilE +F = 0, (2.8)

where we have used the definitions

l :=
∂θ
∂Y

, n :=
∂θ
∂Z

. (2.9)

The Eikonal equation (2.8) is a nonlinear partial differ-
ential equation of first order forθ(Y,Z). By using the

so called characteristic strip equations (ZWILLINGER,
1989), an implicit solution forθ can usually be found
from (2.8). Butθ is usually not needed explicitly since
with the definitions (2.9) and the interpretation ofl andn
as wavenumbers, (2.8) is also a dispersion relation. Of-
ten we have quadratic dependency of the coefficients on
σ and we confine our study to this case. Therefore, (2.8)
can easily be solved forσ to obtain

σ = σ(Y,Z, l ,n). (2.10)

The characteristics of (2.8) are along the group veloc-
ity cgy = dy/dt = ∂σ/∂ l , cgz = dz/dt = ∂σ/∂n. Hence,
the short wave energy rays are given by the differential
equation

dy
dz

=
∂σ/∂ l
∂σ/∂n

, (2.11)

where the numerator is the meridional component of the
group velocity, and the denumerator the vertical compo-
nent.

Comparing (2.6) and (2.11), exact correspondence
between characteristics and energy rays cannot be ex-
pected in general. Contrasting characteristic curves and
energy rays, the latter have a somewhat more straightfor-
ward physical interpretation. In some applications, they
are useful for a qualitative understanding of wave dis-
persion, even if the phaseθ cannot be found explicitly
from the Eikonal equation (2.8) (KAROLY, 1983; HAR-
LANDER et al., 2000; EDWARDS and STAQUET, 2005).

2.2 Correspondence condition for the
general model

A classical example for an equation with exact
characteristic-ray correspondence isσ2pzz + (σ2 −
N2)pyy = 0, describing internal gravity (pressure) waves
in a stratified fluid with frequencyσ less than the con-
stant Brunt-Väisälä frequencyN. In contrast to this
hyperbolic equation, characteristic ray-correspondence
cannot hold for elliptic problems for which characteris-
tic curves are complex but energy rays are real. An ex-
ample of this type is the linear beta plane Rossby wave
equationiσ(ψxx+ψyy)−βψx = 0, whereβ is constant.
Let us now investigate the general problem (2.1), where
the only restriction is the assumption of slowly varying
coefficients. Equation (2.8) then reads

Σ = −A(Y,Z,σ(Y,Z,n, l))n2

− B(Y,Z,σ(Y,Z,n, l))ln−C(Y,Z,σ(Y,Z,n, l))l2

+ D(Y,Z,σ(Y,Z,n, l))in+E(Y,Z,σ(Y,Z,n, l))il

+ F(Y,Z,σ(Y,Z,n, l))

= 0. (2.12)
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By differentiatingΣ with respect tol andn we get

∂Σ
∂ l

=
∂σ
∂ l

γ −2Cl−Bn+ iE = 0, (2.13)

∂Σ
∂n

=
∂σ
∂n

γ −2An−Bl + iD = 0, (2.14)

where

γ = − ∂A
∂σ

n2− ∂B
∂σ

nl− ∂C
∂σ

l2 +
∂D
∂σ

in+
∂E
∂σ

il +
∂F
∂σ

.

(2.15)
From these equations we find for the energy ray

dy
dz

=
∂σ/∂ l
∂σ/∂n

=
2Cl +Bn− iE
2An+Bl− iD

, (2.16)

that differs from (2.6). By assumingD = E = F = 0 and
using (2.12) the right hand side of (2.16) can be reduced
to−n/l . Next we divide (2.12) byl2 and solve the equa-
tion for n/l to find

∂σ/∂ l
∂σ/∂n

= −n
l

=
1

2A

(

B∓ (B2−4AC)1/2
)

, (2.17)

which does correspond to (2.6). Hence we have shown
that for any equation

A(Y,Z,σ)ψzz+B(Y,Z,σ)ψzy+C(Y,Z,σ)ψyy = 0,
(2.18)

with arbitrary coefficientsA, B, C, characteristic curves
correspond to short wave energy rays.

One might ask if the ray-characteristic correspon-
dence of (2.18) cannot artificially be removed by in-
troducing a new dependent variableψ = f (Y,Z)φ . The
equation forφ has the same characteristics as (2.18),
but might have different rays sinceD,E,F are no longer
zero. However, sincef is slowly varying, these terms are
orderε and do not show up in the order one equation
(2.12). Hence, the ray-characteristics correspondence
remains intact under a transformation likeψ = f (Y,Z)φ .

2.3 Ray-characteristic correspondence for
equations withy-dependent coefficients
only

Let us now study the case where all coefficients in (2.1)
depend ony only. In the context of linear equatorial
zonally-uniform internal waves this case is most relevant
since the governing equations are of this type (STERN,
1963; STEWARTSON, 1971; MAAS and HARLANDER,
accepted). Consider

A(y)ψzz + B(y)ψyz+C(y)ψyy+D(y)ψz

+ E(y)ψy +F(y)ψ = 0, (2.19)

whereψ is a function ofy and z, but the coefficients
B,C,D,E,F depend ony (and possibly onσ ) only. Note

that as previously we assume that the coefficients de-
pend only weakly ony, however, for convenience we in-
troduce the slowY andZ coordinates later on. By sepa-
rating they andzdependency and by using the transfor-
mation given by POLYANIN and ZAITSEV (1995) (see
page 129)

ψ = φ(y)exp(inz)exp
(

−
∫

(α1/2)dy
)

,

α1 = (inB+E)/C, (2.20)

wherei =
√
−1 andn is a vertical wavenumber, (2.19)

can be transformed to

φ ′′ +q(y)φ = 0, (2.21)

with

q(y) = α0−α2
1/4−α ′

1/2, α0 = (inD+F−n2A)/C.
(2.22)

Introducing slow space variables(Y,Z) = ε(y,z),
(2.21) reads

ε2φ ′′ +q(Y)φ = 0, (2.23)

whereq(Y) is given by (2.22), written in the slow vari-
able. Note that up to this point we have not made any
approximations. We start approximating by inserting a
short wave (WKB) ansatz into (2.23)

φ ∼ φ0(Y)exp(iθ(Y)/ε), (2.24)

and collecting terms with different orders inε. Keeping
only the lowest orders gives the well known WKB solu-
tion. Its validity depends on the size and variation of the
coefficientq(Y).

We obtain the phaseθ from the order one problem
(called eikonal equation, see HOLMES (1995)), wheren
is now a constant

θ ′ = ±q(Y)1/2. (2.25)

Via the transformation (2.20) we have introduced a
phase function

Ω(Z,Y) = nZ+ i/2
∫

α1(Y)dY+θ(Y), (2.26)

that can be used to write the streamfunction asψ ∼
φ0exp(iΩ/ε). Using the definition

(∂Ω/∂Y,∂Ω/∂Z) = (l ,n), (2.27)

wherel (n) denotes the meridional (vertical) wavenum-
ber, from (2.26) and (2.25) we obtain the dispersion re-
lation

−α2
1

4
−α1il ± + l±

2−q(Y) = 0. (2.28)
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The superscript inl± indicates that the meridional
wavenumber possesses two roots, as is obvious from
(2.25). Writing (2.28) in terms of the coefficientsA to
F by using the definitions forα0 andα1 from (2.20) and
(2.22), we find that the equation can be reduced to the
form

An2 +Bl±n+Cl±
2
= 0 (2.29)

if the three conditions

D =
C
2

(

B
C

)′
, (2.30)

E = F = 0, (2.31)

hold. In section 2.2 we have proven that a dispersion
relation of the form (2.29) (i.e., (2.12) withD = E =
F = 0) has an exact characteristic-ray correspondence.
Therefore we can say that for any second order lin-
ear partial differential equation withy dependent coef-
ficients, characteristics correspond to short wave energy
rays if first, the ansatz (2.24) can be justified, and sec-
ond, the conditions (2.30) and (2.31) hold.

2.4 Separability

Finally, we want to address the question of separability
of (2.19). In general there are two kinds of separabil-
ity. The first one is separability of variables that means a
solution can be written asψ = φ(y)χ(z). We have used
separation of variables in (2.20). As we have shown, this
kind of separability implies a characteristic-ray corre-
spondence only if the conditions (2.30) and (2.31) hold.
Moreover, only for a very restricted class of boundary
value problems (i.e., (2.19) withψ = 0 at a given bound-
ary), solutions can be found by separation of variables.
For example, MOON and SPENCER (1971) list eleven
coordinate systems that can be used to solve Laplace-
and Helmholtz-type boundary value problems where the
boundaries correspond to coordinate lines. If boundaries
deviate from coordinate lines, analytical solutions can
be found to a certain approximation only (HARLANDER

and MAAS, 2004).
The other kind of separability is the separability of

the equation’s operator. This means thatL ψ = 0 (where
L is the linear second order operator of (2.19)) can be
written asP1P2ψ = 0 with the two first order linear
operatorsPi = ai(y,z)∂/∂y+ bi(y,z)∂/∂z, i = 1,2. In
that case we can introduce new coordinates such that
∂η = P1 and ∂ζ = P2 (with ηzζy − ηyζz 6= 0). Then
(2.19) can be written as

ψηζ = 0. (2.32)

This equation has the structure (2.18) withA = C = 0.
Thus, operator separability implies an exact correspon-
dence between characteristics and short wave energy
rays in the characteristic coordinate frame. Moreover,

the problem (2.32) withψ = 0 at the boundary can be
solved for arbitrary boundary geometry by the charac-
teristic web method of MAAS and LAM (1995).

It can be shown that the operator of (2.19) is separa-
ble if

A/C = g(y)2−σ2, B/C = 2g(y),

D/C = g′(y),

E = 0, and F = 0, (2.33)

whereg(y) is an arbitrary function, andσ an arbitrary
constant. Inspection shows that the coefficients (2.33)
satisfy the conditions (2.30) and (2.31) and hence im-
ply an exact characteristic-ray correspondence. How-
ever, these conditions do not depend onA, while opera-
tor separability does. Therefore we can expect that some
equations that do not possess separable operators will
still have an exact characteristic-ray correspondence.

The characteristic coordinates can be found from
(2.6), that reads for the coefficients (2.33)

dy
dz

= (g(y)±σ)−1, (2.34)

as curves of constantη andζ , defined by the solutions
of (2.34) as

η(y,z) =
∫

g(y)dy+σy−z, (2.35)

ζ (y,z) =
∫

g(y)dy−σy−z. (2.36)

Note that (2.32) can easily be transformed to the classi-
cal wave equation

ψŶŶ −ψẐẐ = 0 (2.37)

via the coordinateŝY = (η − ζ )/2, Ẑ = (η + ζ )/2.
In that frame, the characteristics are straight lines with
slope±1.

With respect to hyperbolic boundary value problems,
separation of the operator is more powerful than sep-
aration of variables. To demonstrate this let us con-
sider (2.37) withψ = 0 along a rectangle with length
L and heightH. This problem is separable in terms of
the variables as well as in terms of the operator. This
means that the boundary value problem can be solved
by the separation of variables method as well as by the
characteristic web method. The solution reads simply
ψn = Ansin(nπŶ/L)sin(nπẐ/H), n ∈ N. However, if
one boundary is tilted with respect to the vertical, no
eigenfunctions can be found by separation of variables
for arbitrary tilt. Nevertheless, the operator of the non-
rectangular boundary value problem is still separable;
hence, the problem can still be solved by the character-
istic web method (MAAS and LAM , 1995).
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2.5 Summary

In summary we advise the following strategy to verify
whether an equation possesses an exact characteristic-
ray correspondence: first, check if the equation has the
form of (2.18). If not, but the equation hasy depen-
dent coefficients only, verify whether the equation is
operator separable by inspecting (2.33). If this is not
the case, check the validity of (2.30) and (2.31). If the
conditions fail, the equation under consideration has no
characteristic-ray correspondence.

3 Governing equations for internal
zonally-uniform equatorial waves

Let us now turn to the equations governing zonally sym-
metric equatorial waves confined between a bottom (at
z = 0) and a surface (atz = H). In non-dimensional
form, the linearized, zonally symmetric equations on the
sphere read in Boussinesq approximation1

iσu + cosφw−sinφv = 0, (3.1)

iσv + sinφu = −py, (3.2)

iσw − cosφu = −pz+b, (3.3)

iσb + w = 0, (3.4)

vy + wz = 0. (3.5)

Herey stands for the meridional andz for the vertical
direction, defined by the differential relationsdy= rdφ
anddz= dr, whereφ is latitude andr radius. The zonal,
meridional, and vertical velocity components are de-
noted byu,v,w; b is buoyancy (which is proportional
to density), andp is pressure divided by a constant ref-
erence density. To keep the analysis brief, we do not dis-
cuss the scaling variants that lead to the different ap-
proximations of (3.1)-(3.5) that will be considered be-
low; they are given e.g. by STERN (1963), GILL (1982),
and MAAS and HARLANDER (accepted).

The purpose of the following four sections is to dis-
cuss different equatorial internal wave equations in the
light of the findings above. It will be illustrated that short
wave energy ray-characteristic correspondence is a use-
ful concept for a better understanding of boundary value
problems that lack explicit solutions.

3.1 Standard equation

The standard equatorial beta-plane equation is obtained
from (3.1)–(3.5) when the so-called traditional and
hydrostatic approximations are made (BRETHERTON,
1964; MATSUNO, 1966; PHILLIPS, 1990). The tradi-
tional approximation neglects the second term of (3.1)

1See DUTTON (1986), page 233 for the full system on the sphere, and
VERONIS (1970) or GILL (1982) for the Boussinesq version of the
equatorial beta-plane equation.

and the second term of (3.3); the hydrostatic approxima-
tion neglects the first term of (3.3). Moreover, expanding
sinφ in a Taylor series aboutφ = 0 gives the equatorial
beta-plane that replaces sinφ by y. With these assump-
tions and the introduction of a meridional streamfunc-
tion v = −ψz,w = ψy, (3.1)-(3.5) can be reduced to

ψyy− (σ2−y2)ψzz= 0, (3.6)

referred to as the standard equation. Using the transfor-
mation (2.20) withα0 = n2(σ2 − y2) and α1 = 0, the
equation can be reduced to (2.21) withq(y) = α0, the
Weber equation. Solutions are Hermite polynomials sat-
isfying the boundary conditionsψ = 0 at z = 0,1 and
ψ → 0 for y→±∞ (PHILANDER, 1990). However, the
equation is not operator separable. Nevertheless, (3.6)
has the structure of (2.18) (withB = 0) and characteris-
tics correspond to energy rays.

What kind of solutions can we expect when the
flat boundaries of the standard equation are perturbed?
MAAS and HARLANDER (accepted) showed that the hy-
perbolic nature of (3.6) gives rise to focusing of char-
acteristics and wave attractors even for small bound-
ary perturbation. In contrast to the solutions for flat
boundaries, the focusing prevents the solutions from
being smooth. Although we cannot compute these so-
lutions, neither by separation of variables nor by the
characteristic web method, we still know from the
characteristic-ray correspondence that the energy of
short waves follows characteristics and that therefore
wave attractors should coincide with regions of large ki-
netic energy. This demonstrates that the characteristic
web alone can contain important physical information
if the characteristic-ray correspondence holds.

3.2 Stern’s equation

Another kind of perturbation for the boundary value
problem (3.6) was discussed by STERN (1963). He per-
turbed the problem not via the boundaries but modi-
fied (3.6) such that it allows for non-traditional Corio-
lis effects. In that case wave attractors become generic
too, even for non-perturbed flat boundaries. Surpris-
ingly, wave attractor solutions can be studied explic-
itly for Stern’s model. Stern’s scaling for a homoge-
neous fluid beta-plane version of (3.1)–(3.5) keeps the
non-traditional terms, but the hydrostatic assumption is
made again; that is, just the first term in (3.3) (owing
to hydrostasy) and the second term in (3.4) (owing to
the fluid’s homogeneity) are neglected, sinφ is replaced
by y and cosφ by 1 (equatorial beta-plane). Introducing
a meridional streamfunction, we find from (3.1)–(3.5)
Stern’s equation

ψyy− (σ2−y2)ψzz+2yψyz+ψz = 0. (3.7)
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In contrast to the standard equation, no smooth solutions
can be found satisfying the boundary conditionsψ = 0
for z= 0,1 and fory→±∞. However, the equation has
coefficients (2.33) withg(y) = y. Thus, the operator of
(3.7) is separable and the characteristics correspond to
the rays of short wave energy propagation.

Using (2.35) and (2.36), the characteristic coordi-
nates are

ζ = z− 1
2

y2−σy, (3.8)

η = z− 1
2

y2 +σy. (3.9)

The variables

Ŷ = 2(η −ζ ) = 4yσ (3.10)

Ẑ = 2(η +ζ −σ2) = 2(2z−y2−σ2), (3.11)

transform (3.7) to the standard hyperbolic equation
(2.37). This equation is solved by functions that are
constant on straight characteristicsŶ± Ẑ = const. Note
that (3.10) and (3.11) turn the flat bottom and surface
(z = 0,1) into two displaced parabola. In these coordi-
nates bottom and surface are given as

Ẑb(Ŷ) = −2(Ŷ2/16σ2 +σ2) (3.12)

Ẑs(Ŷ) = Ẑb(Ŷ)+4. (3.13)

In Fig. 1 we consider the characteristic web of two char-
acteristics, launched at(Ŷ, Ẑ) = (0,1/2). The character-
istics reflect at the boundaries and converge towards a
limit cycle, the equatorial wave attractor. In the exam-
ple shown we useσ = 0.9. Recently, HARLANDER and
MAAS (submitted) presented exact solutions of Stern’s
equation by applying the characteristic web method of
MAAS and LAM (1995). By inspecting them it can
be seen that the attractor coincides with the region of
strongest streamfunction gradients. An example demon-
strating this is displayed in Fig. 2. Kinetic energy piles
up along the wave attractor and dissipative and nonlinear
effects should become important in this region, which is
therefore sometimes called an internal boundary layer
(STERN, 1963; HARLANDER and MAAS, submitted).

±3

±2

±1

0

1

2

Z

±6 ±4 ±2 0 2 4 6

Y

Figure 1: Equatorial wave attractor in the(Ŷ, Ẑ) frame forσ = 0.9.

Figure 2: Exact solution of Stern’s equation forσ = 0.9. The stream-

functionψ is shown in thêY, Ẑ frame. In the region inside the wave

attractor banded flow structures can be observed. The velocity is sin-

gular along the wave attractor. More details on the solutions can be

found in HARLANDER and MAAS (submitted).

In the following we extend Stern’s equation. First,
to include extra-tropical regions, and second, to include
stratification. As will become evident, operator sepa-
rability is lost again for these somewhat more general
models. However, it is instructive to check whether these
models keep the characteristic-ray correspondence.

3.3 ‘Spherical’ Stern equation

Employing the same scaling as STERN (1963) (i.e. ne-
glecting the first and last term in (3.3) and the second
term in (3.4)) but avoiding the beta-plane approxima-
tion, some part of the spherical geometry, lost in (3.7),
can be retained. For a thin shell with a large radius,r is
approximately constant. Instead of replacing sinφ by y
(beta-plane) we replace sinφ by siny and cosφ by cosy.
After a transformation of the velocity components and
the introduction of new coordinatesy′,z′ (see appendix
A) we find for the transformed meridional velocity com-
ponent

v̂y′y′ − (σ2−g2)v̂z′z′ +2gv̂y′z′ + v̂z′ = (gv̂)y′ −g2v̂z′ ,
(3.14)

whereg is a function ofy′ alone. This equation has no
characteristic-ray correspondence since neither (2.33)
nor (2.30) and (2.31) hold. On the other hand, if the right
hand side of the equation is neglected (see appendix A),
then the spherical Stern equation possesses a separable
operator, as can be seen by comparing the coefficients
on the left hand side of (3.14) with (2.33). Note that, no
matter whether the right hand side of (3.14) is set to zero
or not, the characteristic curves remain the same. Thus,
the neglect of the right hand side of (3.14) leading to a
separable operator, leaves the characteristics intact.
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3.4 ‘Stratified’ Stern equation

The last equatorial wave model discussed includes strat-
ification which makes it the most relevant model for
atmospheric and oceanic applications. We obtain it by
restoring stratification (N = const.), keeping the non-
traditional terms, assuming non-hydrostasy, but making
the beta-plane assumption. In other words, we keep the
system (3.1)–(3.5) but replace sinφ by y and cosφ by 1
(equatorial beta-plane). Introducing a streamfunction in
the meridional plane, we find from (3.1)–(3.5) the strati-
fied Stern equation (MAAS and HARLANDER, accepted)

ψy′y′ − (σ2−Γy′2)ψzz+2y′ψy′z+ψz = 0, (3.15)

where

y′ = y/Γ1/2, Γ = 1+N2−σ2. (3.16)

Note that (3.15) reduces to Stern’s equation (3.7) forΓ =
1 (for whichy′ = y).

Comparing the coefficients of (3.7) with (2.33) we
see that the operator is not separable forΓ 6= 1. Nev-
ertheless, the characteristic-ray correspondence holds
since the conditions (2.30) and (2.31) are satisfied for all
Γ. (Note that the characteristics change ifΓ is changed.)

Table 1 summarizes our findings on the character-
istic-ray correspondence of the different equatorial wave
models discussed. The standard equation and the strati-
fied Stern equation are of special interest since they do
not have a separable operator but yet possess an exact
characteristic-ray correspondence.

4 Some explicit results for the stratified
Stern equation

It is instructive to apply the results from section 2.3 to a
concrete example. Let us therefore see how the concept
works for the stratified Stern equation.

The section is organized as follows. First, we explic-
itly derive the characteristic-ray correspondence for the
stratified Stern equation, and second, we verify the va-
lidity of the short wave solution.

4.1 Characteristic-ray correspondence

To investigate (3.15) from a short wave (or WKB) point
of view it is useful first to transform the equation via
(2.20) to (2.23), whereα0, α1, andq read in ’slow’ vari-
ables(Y′,Z) = ε(y′,z)

α0 = in−n2(Γ(Y′/ε)
2−σ2),

α1 = in2Y′/ε, q(Y′) =
n2

ε2

[

Y′2(1−Γ)+σ2ε2]

. (4.1)

Then the phase function (2.26) reads

Ω(Z,Y′) = εn
(

Z/ε −Y′2/
(

2ε2)
)

+θ(Y′), (4.2)

whereθ(Y′) is given by integrating the eikonal equation
(2.25). Using the definition (2.27) we obtain the disper-
sion relation

l± = −nY′

ε
±q(Y′)1/2, (4.3)

that can be written as

(Y′2[1+N2−σ2]−σ2ε2)ñ2+2Y′l±ñ+ l±
2
= 0, (4.4)

whereñ= n/ε. We see that the structure of this equation
matches with (2.29), having coefficientsA = (Y′2[1+
N2−σ2]−σ2ε2), B = 2Y′, andC = 1.

The ray path is given from (4.4) by

dY′

dZ
=

∂σ/∂ l±

∂σ/∂n
= − n

l±
. (4.5)

On the other hand, the characteristic curves are given by
(2.6), whereA = Γy′2−σ2, B = 2y′, andC = 1. Using
σ2 from (4.4), (2.6) gives the two possibilities

dy′

dz
=

n
2ny′ + l±

, and
dy′

dz
= − n

l±
. (4.6)

From (4.3) we can see that(2ny′ + l+) = −l− and that
(2ny′+ l−) =−l+; i.e., the first solution of (4.6) is in fact
equal to the second one. Thus we obtain actually two
families of characteristics, as expected. Therefore (and
consistent with our previous results in section 2.3) we
can conclude that there is an exact characteristic-ray cor-
respondence for the stratified Stern equation (3.15); that
is, the characteristic curves are identical to short wave
energy (group velocity) rays.

What is lacking in our analysis so far is an accuracy
measure of the short wave (WKB) approximation (2.24).
If the approximation does not hold, WKB ray tracing,
that is the result of the section 4.1, would not be very
useful. To fill this gap in our line of arguments we will
compute a validity condition for the WKB approxima-
tion. Moreover, we will directly compare exact solutions
with WKB approximations. The analysis will show that
(2.24) is an accurate approximation for free solutions of
(3.15).

4.2 Reliability of the WKB solution

Let us check under which conditions (2.24) can be ex-
pected to be an acceptable solution. A measure for accu-
racy of the WKB solution is given by HOLMES (1995)
as



eschweizerbartxxx

Meteorol. Z.,15, 2006 U. Harlander & L.R.M. Maas: Characteristics and rays 447

Table 1: Operator separability and characteristic-ray correspondence for theequations considered in the text. Note that a separable operator

implies a characteristic-ray correspondence, but not the converse.

equation name equation number separable operator char.-ray correspondence
standard equation (3.6) no yes
Stern’s equation (3.7) yes yes
spherical Stern equation (3.14) no no
stratified Stern equation (3.15) no yes

ERROR MEASURE FOR WKB
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G=0

0

0.02

0.04

0.06

0.08

0.1

0.12
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ln(n)

Figure 3: The WKB error measure (4.7) as a function of the vertical

wavenumbern for different values ofG. Here we usedc = 0, Y′
0 =

−Y′
T/2, Y′

1 = Y′
T/2, σ = 1.

ε [
1
32

( max
Y′

0≤Y′≤Y′
1

| dq/dY′

q3/2
|)

(

4+
∫ Y′

1

Y′
0

| d(lnq)/dY′ | dY′
)

] ≪ 1.,

(4.7)

First, it is important to note that (4.7) is independent ofε
when written in the fast variabley′. Second, it is obvious
that the condition (4.7) is fulfilled ifq′ is small, orq is
large, or both. Third, at so called turning latitudes given
by q(Y′) = 0, the WKB approximation breaks down. For
the stratified Stern equation, turning latitudes are located
aty′T =±σ/(−G)1/2, whereG= 1−Γ = σ2−N2 < 0.

Let us determine for whichΓ and vertical wave
numbersn we can expect accurate solutions. Figure 3
shows the left hand side of (4.7) for different values
of G as a function of ln(n). In this example we used
Y′

0 =−Y′
T/2, Y′

1 =Y′
T/2, σ = 1. For Stern’s equation

(G= 0) the measure is zero for anyn. If G decreases, the
measure increases. Forn < 1 it is violated forG < −2.
Most important, in the intervalY′ ∈ [−Y′

T/2,Y′
T/2], the

condition (4.7) is fulfilled for allΓ if n is sufficiently
large.

Finally, we compare exact solutions of (3.15) with
corresponding WKB approximations. The boundary

value problem (2.23) with the coefficientq given by
(4.1) can be solved analytically. Using

ỹ = y′
[

n2(Γ−1)
]1/4

, φ̃ = φ exp(ỹ2/2), (4.8)

we find
d2φ̃
dỹ2 −2ỹ

dφ̃
dỹ

+(E−1)φ̃ = 0, (4.9)

where

E =
n2σ2

[n2(Γ−1)]1/2
(4.10)

and

m=
1
2

(

n2σ2

[n2(Γ−1)]1/2
−1

)

. (4.11)

Solutions are Hermite polynomialsHm(ỹ), wherem =
1,2,3, · · · ; i.e., for anymwe obtain forφ

φm ∼ Hm(ỹ)exp(−ỹ2/2), (4.12)

referred to as Weber-Hermite function in literature
(BELL, 1968).

On the other hand, the stratified Stern equation (3.15)
has the short wave solution (2.24) with the phase (2.26).
To findφ0 of (2.24) we have to solve the so called trans-
port equation that follows from the orderε problem of
the asymptotic expansion, reading

θ ′′φ0 +2θ ′φ0
′ = −θ ′2φ1 +q(Y′)φ1. (4.13)

Obviously, by using (2.25), the right hand side of this
equation vanishes and we obtain

φ0 =
c

θ ′1/2
, (4.14)

wherec is an arbitrary constant. Hence, (2.24) reads

φ ∼ q(Y′)−1/4 [ a0exp(
i
ε

∫ Y′

q(s)1/2ds)

+ b0exp(− i
ε

∫ Y′

q(s)1/2ds) ] .

(4.15)

Note thatq is positive within the turning latitudes but
becomes negative outside of them. Thereforeb0 has to
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Figure 4: Comparison of exact solutions (solid line) and WKB ap-

proximations (dashed line). In a) we usedσ = 1,m= 2,n= 5, which

gives G = −1. In b) we usedσ = 1, m = 5, n = 20, which gives

G = −400/121. The solutions are plotted for−(49/50)y′T ≤ y′ ≤
(49/50)y′T .

be zero to satisfy the boundary conditionsφ → 0 for
Y′ → ±∞. Fig. 4 shows a comparison between (4.12)
and (4.15) for an even and an oddm. The solutions are
plotted in the range(−49/50)y′T ≤ y′ ≤ (49/50)y′T .
It is obvious that the approximation (4.15) is accurate,
except close to the turning points where the WKB ap-
proximation breaks down. This problem can be solved
by using appropriate connection formulas (FEDORYUK,
1993; HOLMES, 1995).

5 Summary and conclusion

The solutions of Stern’s (1963) boundary value problem
show that wave attractors represent internal boundary
layers (HARLANDER and MAAS, submitted): any en-
ergy input will lead to energy accumulation at the wave
attractor. Although we considered just the linear time
harmonic case here, we can tentatively say that wave
breaking and fluid mixing can be expected there. There-

fore we think that such layers play an important role for
the equatorial dynamics.

Unfortunately, generalized models of zonally sym-
metric and time harmonic equatorial internal waves can-
not be solved for wave attractor frequencies. The ques-
tion arises if characteristics (and wave attractors) of non-
solvable boundary value problems contain similar infor-
mation as for Stern’s solvable problem. To answer the
question we considered one simplified and two gener-
alized ‘Stern’ equations (describing linear zonally sym-
metric equatorial waves) that are, in contrast to Stern’s
original model, not solvable. Nevertheless, for almost all
surface and bottom boundary shapes, wave attractors are
common for all these models.

First, we have formulated general conditions for
an exact relationship between characteristic curves and
short wave energy (group velocity) rays of general spa-
tial wave equations. Second, we have applied the con-
ditions to the equatorial wave equations under consid-
eration. Most important we found that for the strat-
ified Stern equation (that includes stratification and
non-hydrostasy), characteristics agree exactly with short
wave energy rays, a property that holds also for Stern’s
original equation. From this result we can expect that
equatorial wave attractors are important also for equa-
torial inertia-gravity waves, for which we cannot de-
rive exact solutions from characteristic webs. Since the
stratified Stern equation is a rather general model for
zonally symmetric equatorial motion, including strat-
ification and non-traditional terms, features related to
such attractors should be observable in the equatorial
ocean (and maybe also in the equatorial atmosphere)
that shows indeed more symmetry in the zonal than in
the meridional and vertical direction. We have shown
that free solutions of the stratified Stern equation can
be fairly well approximated by the WKB method. This
forms the basis for the ray tracing analysis applied.

Several authors have recently drawn conclusions
from the properties of characteristics alone without hav-
ing solutions of the corresponding boundary value prob-
lem at hand (MAAS, 2001; MAAS and HARLANDER,
accepted; GERKEMA and SHRIRA, 2005b). It was ar-
gued for example that energy density of near inertial
waves should blow up in the deep ocean due to the ex-
istence of point attractors at intersections of the turn-
ing surface with the bottom. In contrast to Stern’s equa-
tion, such point attractors show up if stratification is
considered. The present analysis supports this idea and
shows that indeed energy follows the characteristics and
should therefore accumulate at the point attractors. The
kinetic energy densityE ∼ v2 + w2 = φ0(l2 + n2) reads
by using the results from the WKB analysisE ∼ (l2 +
n2)/(l + ny)1/2. Due to subsequent focusing reflections
at the lower boundary, the wavenumbers blows up when
a wave packet approaches one of the point attractors.
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Whereas the energy density flux (i.e. the group veloc-
ity) goes to zero when the wavenumbers go to infinity,
the energy densityE blows up. Of course, linear theory
breaks down before a wavepacket can reach an attrac-
tor. Very likely, waves will break and fluid mixing will
be enhanced in the vicinity of the attractor. Therefore we
can state that the idea of enhanced deep ocean mixing by
near inertial waves trapped at deep ocean point attrac-
tors is consistent in the WKB sense. This concept might
therefore be helpful to understand abyssally intensified
near inertial motions, recently observed byVAN HAREN

et al. (2002).
Finally, we should comment on the conservation

properties of waves, trapped by a wave attractor. Usu-
ally, the equations describing the propagation of short
wavelength waves form a Hamiltonian system (YANG,
1991). Phase space volume is conserved for such sys-
tems, a property which excludes attractors. However, the
phase space of internal waves, propagating in a merid-
ional plane is four dimensional (y position,z position,
and two corresponding wavenumbersl ,n). Thus, the
existence of an attractor in the projection on the spa-
tial plane does not imply a non-conservative dynamics
(BADULIN and SHRIRA, 1993). In fact, wavenumbers
diverge for a wave propagating towards an attractor and
thus the phase space volume can still be conserved.
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A Derivation of the spherical Stern
model

Introducing

û = ucosy, v̂ = vcosy, ŵ = wcos2y, p̂ = p,
(A.1)

and new coordinates

y′ = ln tan(y/2+π/4), z′ = z, (A.2)

and writing (3.1)-(3.5) in terms of ˆu, v̂, ŵ, p̂ in the coor-
dinatesy′,z′ we find

iσ û + ŵ−g(y′)v̂ = 0 (A.3)

iσ v̂ + g(y′)û = −p̂y′ (A.4)

−û = −p̂z′ (A.5)

v̂y′ + ŵz′ +g(y′)v̂ = 0, (A.6)

whereg(y′) = siny = − tanhy′ is the Gudermann func-
tion (ECKART, 1960). Apart from the third term in the
continuity equation, this system is identical to Stern’s

model. If we eliminate ˆu, ŵ andp̂ we obtain (3.14). If we
expand the velocity components as ˆu = û0 + εû1 + · · · ,
ε ≪ 1, assume a small pressure ˆp = ε p̂1 + ε2p̂2 + · · · ,
and compress the coordinates(y′,z′) = ε(ỹ′, z̃′), the third
term of the continuity equation can be neglected to the
lowest order inε. Then we can introduce a streamfunc-
tion v̂0 = −ψz̃, ŵ0 = ψỹ to find

ψỹỹ− (σ2−g2)ψz̃z̃+2gψỹz̃+ψz̃ = 0. (A.7)

This is Stern’s equation wheng is replaced by ˜y, but re-
mains separable for other choices ofg(y).
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