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ABSTRACT

This study examines quasigeostrophic Rossby eigenmodes of homogeneous as well as stratified oceans. An-
alytical studies of Rossby basin modes are usually done by using simple basin geometries. Simple means that
solutions are available by applying a separation ansatz in looking for basin modes. Here the focus is on half-
trapezoidal geometry, in particular on a stratified ocean with a half-trapezoidal (zonal) cross section. In this
case, separation is not possible. However, approximate solutions can be found. Different approximations are
discussed: one related to linearization of the boundary conditions, one related to a sight change in boundary
geometry, and one that uses an asymptotic expansion. It is shown that the widely used ‘‘linearized boundary
conditions’’ give wrong results for low-frequency modes. The reason is that weak asymmetries of the basin are
neglected and wave energy is therefore distributed too homogeneously in the basin. Although the basin’s geometry
used deviates only slightly from a square and the eigenvalue spectrum corresponds well with that of a square
basin, eigenmodes can still differ greatly.

1. Introduction

An important problem in geophysical fluid dynamics
is the study of the eigenvalue spectra and the eigen-
modes for large-scale models of atmospheres and
oceans. In general, this examination is done numeri-
cally—for example, by finite differences (Holland
1978), finite elements (Platzman 1978), or spectral
methods (Sheremet et al. 1997). The reasons for doing
so can be complicated basin boundaries, simple bound-
aries but a complicated model, or complicated bound-
aries and model both. All numerical techniques, though
powerful, have limitations. For example, a large number
of ‘‘numerical experiments’’ are necessary to test the
effect of parameter changes on the solutions. In contrast,
analytical solutions give a complete description that
helps one to understand the nature of modes found nu-
merically and that can be used to test numerical
schemes. Therefore it is still important to complete our
knowledge on analytical solutions of models of geo-
physical fluid dynamics.

Free quasigeostrophic Rossby modes, relevant in
oceanography, have been investigated analytically for
different boundary geometries and flow conditions—for
example, fluids at rest in closed basins (Flierl 1977;
Pedlosky 1987) and jet flows along coastlines (Harlan-
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der et al. 2000, 2001). Special geometries have been
chosen to keep the problems tractable analytically.
LeBlond and Mysak (1978) and Pedlosky (1987) discuss
rectangular basins, and Flierl (1977) has solved the
problem for circular geometry; an isosceles right tri-
angle (Polyanin 2002) or an equilateral triangle
(McCartin 2003) would also be suitable, that is, would
also give a separable equation. Here we focus on a weak-
ly nonseparable problem by using a nearly rectangular
basin (see Fig. 1). We consider two-dimensional baro-
tropic and baroclinic situations.

Our interest lies in the effects of small changes in
basin geometry on the eigenmodes of the classical
Helmholtz equation with homogeneous Dirichlet bound-
ary conditions. Therefore, the barotropic model version
describes solutions corresponding to R * L, where R is
the deformation radius and L is the basin length scale
(McWilliams 1977; Flierl 1977). [For quasigeostrophic
reduced gravity models R K L holds. In that case the
model equation can be transformed to a nonhomoge-
neous Helmholtz equation with homogeneous Dirichlet
boundary conditions (LaCasce and Pedlosky 2002).
Note that for this case the solutions of the homogeneous
problem are still important, because they are needed to
construct solutions for the full problem (see Polyanin
2002, p. 492).] On the other hand, with the baroclinic
situation mentioned above, we mean a continuously
stratified fluid enclosed in an infinite, north–south-ori-
ented open channel with a half-trapezoidal cross section
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FIG. 1. Basin geometry for the (top) barotropic and (bottom) baroclinic situations discussed
in the text: x corresponds to the zonal direction, y corresponds to the meridional direction, and
z corresponds to the vertical direction. In the lower part of the figure, we assume that the lateral
sidewalls deviate from being strictly vertical.

(see Fig. 1, bottom). In section 2 it will be shown that
this model too can be reduced to the Helmholtz equation
and that- homogeneous Dirichlet boundary conditions
are appropriate. After that, we continue by discussing
eigensolutions of the classical Helmholtz problem for
the half-trapezoidal domain obtained by using different
approximations. For simplicity, we restrict the study to
dimension two; that is, we neglect meridional variation
in the baroclinic 3D model. First, we consider the so-
called linearized boundary condition in which, for ex-
ample, w[t, x, h(x)] 5 uhx is replaced by w(t, x, h0) 5
uhx, where u is horizontal velocity, w is vertical velocity,
h is bottom topography, and h0 is mean depth (Rhines
1970; Pedlosky 1987; Straub 1994). Second, we slightly
deform the basin’s boundary to a certain disk segment
to get a separable problem. Last, we use an asymptotic
form of the equation but for the actual boundary shape.
We address the following questions: how does modifi-
cation of the basin’s geometry affect 1) the spectrum of
the eigenvalues and 2) the shape (or ‘‘dressing’’) of the
eigenmodes? We will show that the widely used ‘‘lin-

earized boundary condition’’ leads to wrong low-fre-
quency modes, even for small boundary slopes. An im-
portant question related to ocean eigenmodes is whether
those modes fulfill additional integral constraints of the
flow. We will discuss this point for both models (see
sections 2 and 3).

The paper is organized as follows. In section 2, we
describe how to derive the Helmholtz equation for the
barotropic and baroclinic cases considered. We inves-
tigate also under which conditions integral constraints
are not violated. In section 3, we study different solu-
tions corresponding to different approximations. Last,
in section 4 we discuss our results and end with a brief
conclusion.

2. Model

a. Barotropic situation

Let us first focus upon the linearized barotropic qua-
sigeostrophic potential vorticity equation on the b-plane
(Pedlosky 1987, p. 144),
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] ]c(x, y, t)
2[¹ c(x, y, t) 2 Fc(x, y, t)] 1 b 5 0, (1)

]t ]x

where c is the geostrophic streamfunction, = 5 (]/]x,
]/]y)is the two-dimensional nabla operator (x denotes
zonal direction and y is meridional direction), b is a
constant related to the beta-plane assumption, and F 5

L2/gD, with f 0 being Coriolis parameter, L being2f 0

length scale, g being constant of gravity, and D being
mean ocean depth. Using c 5 (x, y) exp{2i[(x/2v)ĉ
1 (vbt)]}, where v denotes frequency, we obtain the
Helmholtz equation

2 2ˆ¹ ĉ(x, y) 1 K ĉ(x, y) 5 0, (2)

with K̂2 5 (1/4v2) 2 F. At the boundary D generally
c(x, y, t) 5 G(t) is applied. Then G(t) is determined
such that mass conservation,

] g ]
h dx dy 5 c dx dy 5 0, (3)E s E]t f ]t0A A

is fulfilled, where A is the model domain and hs is the
relative height of the free surface, related to c through
the geostrophic balance. However, Flierl (1977) showed
that for moderate values of F a homogeneous Dirichlet
boundary condition, (x, y) 5 0 at D, is appropriateĉ
also. In such a model we have typically L & R, where
L denotes the basin scale and R is the Rossby defor-
mation radius. [The situation F 5 0 corresponds to a
rigid-lid assumption when deriving (1).] As mentioned
in the introduction, F k 1 has been used in recent
studies of quasigeostrophic thermocline dynamics.
However, it should be noted that F actually must be at
most order 1 to be consistent with the barotropic qua-
sigeostrophic model. This model is derived through a
perturbation analysis using the small Rossby number as
perturbation parameter (Pedlosky 1987). A model pa-
rameter larger than order 1 affects the analysis and
would lead to a different model. For large F, a planetary
geostrophic model should be more suitable to describe
Rossby wave dynamics than a quasigeostrophic model
is.

It is worth mentioning that Gerdes and Wübber (1991)
have used homogeneous Dirichlet boundary conditions
c 5 0 instead of the exact condition c 5 G(t) in their
3D quasigeostrophic numerical model of the North At-
lantic Ocean. They argue that, for ocean basins that are
open at the northern and southern side, homogeneous
Dirichlet boundary conditions avoid the occurrence of
unrealistic oscillating boundary currents, leading to an
eddy potential energy that is 3 times that in a corre-
sponding primitive equation model. Viewed in this light,
even if F . 1, homogeneous Dirichlet boundary con-
ditions might be a proper choice for quasigeostrophic
models of semiclosed ocean basins.

Note further that the basin shown in the top panel of
Fig. 1 can be rotated to any angle g without changing
the solutions of (2). However, the first part of the carrier
wave then reads

exp[2i(x cosg 2 y sing)/2v], (4)

and therefore (3) depends on g. In the following we are
interested in solutions of (2), that fulfill homogeneous
Dirichlet boundary conditions, as well as (3). It should
be mentioned that for more general settings, for ex-
ample, with a small Rossby deformation radius and re-
lated time-dependent boundary conditions, the modes,
as well as the constraints, depend on g (LaCasce and
Pedlosky 2002).

b. Baroclinic situation

The Helmholtz equation with homogeneous boundary
conditions is important also in the baroclinic case as we
show in the following. The baroclinic quasigeostrophic
model linearized about a state of rest (see Pedlosky
1987, p. 375) is

2] ] c ]c ]c
21 21 2S 2 (SH ) 1 ¹ c 1 b 5 0, (5)h2[ ]]t ]z ]z ]x

where H is a constant-density scale height, S 5 (N 2D2)/
( L2), b 5 (b0Lf 0)/U, and N, L, D, U, r0, f 0, and b0

2f 0

are dimensional constants. They stand for Brunt–Väisälä
frequency, length scale, fluid thickness scale, velocity
scale, mean density, Coriolis parameter, and beta-plane
parameter, respectively. As lateral and vertical boundary
conditions,

(u, y) · n 5 0 and (6)

w(z 5 h) 5 J [c, h(x, y)] (7)

are generally used, where J(A, B) 5 ]A/]x ]B/]y 2 ]A/
]y ]B/]x, (u, y, w) are the velocity components, h is
topography, and n is the unit normal vector perpendic-
ular to the walls. The streamfunction c is related to the
velocity components as

2]c ]c 1 ] c
u 5 2 , y 5 , and w 5 2 . (8)

]y ]x S ]t]z

Using (x, y) 5 2S 1/2(x9, y9), z 5 2z9, and t 5
(2S 1/2b)21t9, we transform (5) to

] 2 ]c ]c
2¹9 c 2 1 5 0, (9)1 2]t9 H ]z9 ]x9

where =9 5 (]/]x9, ]/]y9, ]/]z9). Further,

]c ]c
1/2 21 1/2 21u 5 2(2S ) , y 5 (2S ) , and

]y9 ]x9

2] c
21/2w 5 2bS . (10)

]t9]z9

In terms of the vertical velocity, (9) reads as

] 2 ]w ]w
2¹9 w 2 1 5 0. (11)1 2]t9 H ]z9 ]x9

Let us now assume symmetry in the meridional direc-
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tion; that is, all meridional derivatives vanish.1 Then =9
simplifies to =9 5 (]/]x9, ]/]z9). The continuity equation
connecting the vertical velocity to the ageostrophic hor-
izontal motion reads for a flow independent of y9 as

]u ]wa21/2S 1 5 0. (12)
]x9 ]z9

In addition to c we can now introduce an ageostrophic
streamfunction x:

]x ]x
1/2u 5 2S and w 5 . (13)a ]z9 ]x9

In the following we drop the primes. Using the trans-
formation (LeBlond and Mysak 1978)

x 5 x̂(x, z)L(x, z, t), where L(x, z, t)

z x
5 exp 2 i 1 vt , (14)1 2[ ]H 2v

(to remove the first-order derivatives), we obtain from
(11), (13), and (14):

]
2 2[L(x, z, t)(¹ x̂ 1 K x̂)] 5 0, (15)

]x

where K 2 5 1/(4v2) 2 1/H 2. The boundary conditions
for an arbitrary xz cross section read (ua, w) · n 5 0;
that is; x 5 G(t)along the boundary. Here G(t) can be
found from mass conservation. This constraint reads for
the baroclinic quasigeostrophic model as

`1 ]
r dx dz dy 5 w dx dz dy 5 0, (16)E E E1 2S ]t V 2` A

where V and A are volume and area (of the xz cross
section) covered by the basin. To obtain (16) we used
the fact that in quasigeostrophic flows the vertical ve-
locity w [see (8)] as well as the density r 5 2]c/]z
can be computed from the geostrophic streamfunction
c. If we introduce x into (16) we obtain

]x
w dx dz 5 dx dzE E ]xA A

5 [x(b, z, t) 2 x(a, z, t)] dz 5 0, (17)E
because x(b, z, t) 5 x(a, z, t) 5 G(t), where x 5 a and
b are the locations of the two lateral boundaries. It is
obvious that (16) is fulfilled for any choice of G(t).
Without loss of generality we assume G(t) 5 0.

We find that for a y independent flow, the solution of
(5) can be obtained by solving

1 Note that in this case the nonlinear term in the quasigeostrophic
model vanishes; that is, the solutions presented are also valid for the
nonlinear model.

2 2¹ x̂ 1 K x̂ 5 0, (18)

with

x̂ 5 0 at D,

in full analogy to the barotropic situation.
Equations (2) and (18) correspond to the classical

Helmholtz equations with homogeneous Dirichlet
boundary conditions. This equation can be found in
many fields of mathematical physics, for example, as
the harmonic acoustic wave equation, the harmonic
Maxwell equation, and the harmonic elastic wave equa-
tion (Nedelec 2001). It plays a dominant role also in
the field of water surface waves and quantum mechanics
(Stöckmann 1999).

3. Results

Let us consider an almost rectangular domain shown
in Fig. 1. This is either an ocean basin filled with a
barotropic fluid seen from above or the zonal xz cross
section of a channel-like ocean filled with a stratified
fluid. In the first case, the northern coastline is not purely
zonal; in the second situation, we consider a basin with
bottom topography. However, as said before, with the
restrictions made, both situations are mathematically
equivalent; that is, both cases are treated when (18) is
solved.

a. Solving (18) by simplifying the lower boundary
condition

We assume that the sloping boundary is given by h
5 h0 1 ax, where h0 as well as a K 1 are constants.
The vertical velocity w can be expanded in a Taylor
series around the mean depth h0,

]w
w(t, x, z) 5 w(t, x, h ) 1 | (z 2 h ) 1 · · · (19)0 z5h 00]z

Arguing that for z ø h, w as well as z 2 h0 are O(a),
we obtain to order a: w(t, x, h) ø w(t, x, h0). For small
slopes, (7) is therefore simplified by assuming

w(z 5 h ) 5 J[c, h(x)];0 (20)

that is,

x̂ 5 0 at D0 (21)

in (18), where D0 corresponds to the (dashed) rectangle
shown in Fig. 1 and not to the original half-trapezoidal
geometry.

This assumption is usually considered to be consistent
with the quasigeostrophic assumption (Rhines 1970)
and is applied in many conceptual studies (Pedlosky
1987; Straub 1994). However, using this simplification
the originally nonseparable problem turns separable, and
this might be the reason why that approximation can be
found so frequently in theoretical studies. Note that the
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same arguments hold for the barotropic situation by re-
placing w and z0 by y and y0.

Let us assume a box bounded by x 5 0 and p in the
horizontal direction and bounded in the vertical direc-
tion by z 5 0 and p. Applying (20), we use the sepa-
ration ansatz 5 f(x) sinnz, n ∈ N, which fulfills thex̂
approximated top/bottom boundary condition. It re-
mains

2f 1 k̂ f 5 0,xx (22)

where k̂2 5 K 2 2 n2. We find f 5 A cosk̂x 1 B sink̂x.
Last, by applying the boundary conditions, we get
A 5 0 and k̂ 5 k ∈ N. To summarize the findings,

x̂ 5 B sinkx sinnz, k ∈ N, n ∈ N, and

(23)

1 1
2 2 2K 5 2 5 k 1 n . (24)

2 24v H

Note that although the baroclinic model is mass con-
serving, this constraint holds in the barotropic situation
for even meridional wavenumbers only.

b. Solving (18) by deforming the lateral boundaries

Converting (18) to polar coordinates (r, u), we get

1 1
2x̂ 1 x̂ 1 x̂ 1 K x̂ 5 0. (25)rr r uu2r r

In the following we solve this equation not for the asym-
metric box shown in Fig. 1, but for a segment of a wedge
with an angle m. The upper surface is considered hor-
izontal, whereas the slope of the bottom is determined
by m. In the lateral direction the segment is bounded
by two circles with radii r1 and r2. With the assumption
that r2 2 r1 5 p and that the arclength r2m 5 p, r1

and r2 are determined by the slope m.
It is obvious that the lateral sidewalls are curved now,

in contrast to the lateral walls in Fig. 1; however, for m
→ 0, the segment under consideration converges to the
box considered in section 3a. The purpose is to compare
modal solutions in the segment for small m (large r2)
with the solutions given in section 3a (see section 4).
Picking 5 f sin(npu/m) with n ∈ N (which fulfillsx̂
the top/bottom boundary conditions), we obtain

21 np
f 1 f 1 1 2 f 5 0, (26)r9r9 r9 1 2[ ]r9 mr9

where r9 5 Kr. This is Bessel’s equation with the general
solution

f 5 AJ (Kr) 1 BY (Kr),n n (27)

where n 5 (np)/m. The function Jn(Yn) is called Bessel
function of the first (second) kind (Abramowitz and Ste-
gun 1965). Using the lateral boundary conditions, K
follows from

J (Kr )Y (Kr ) 2 J (Kr )Y (Kr ) 5 0,n 1 n 2 n 2 n 1 (28)

and the solution is determined, up to a constant A, as

B 5 2[J (Kr )/Y (Kr )]A.n 1 n 1 (29)

Note that, in the barotropic situation, (16) is fulfilled if
the basin is symmetric with respect to the zonal direction
(i.e., u ∈ [2m, m]). We will discuss differences of so-
lution (27) and (23) in section 4 and will point out the
physical meaning of their discrepancy for oceanic Ross-
by waves.

c. Solving (18) by simplifying the equation

Let us consider that the upper and lower boundaries
for (18) are given by z 5 0, 2G(e2x). We require e K
1. In making the ansatz

x̂ 5 f(x) sin{n̂(x)[z 1 G(x)]}, (30)

the vertical boundary conditions are fulfilled if

np
n̂(x) 5

G(x) (31)

with

n ∈ N.

To order e we find

2e f 2 qf 5 0,XX (32)

where q 5 n̂2 2 K 2 and X 5 ex. For general G, this
equation can be solved by using the Wentzel–Kramers–
Brillouin approximation. However, assuming that G is
a linear function of x, an analytical solution of (32)
exists.

We consider G 5 p 1 ax, with lateral walls at x 5
0 and 2p, and e2 5 a 5 tanm. We obtain

1/2 1/2f(x) 5 AG J (KG/a) 1 BG Y (KG/a),n n (33)

with n 5 /(2a) and the boundary condi-2 2 2Ïa 1 n p
tions f(2p) 5 f(0) 5 0. The eigenvalue K and A, B
can be found by applying (28) and (29).

The eigenvalue spectrum can be computed more eas-
ily if we use

2np 2a
2 2n̂ 5 ø n 1 2 x , (34)1 2 1 2p 1 ax p

which is a good approximation if a is small (Zaitsev et
al. 2001). In that case we obtain

2 2f(x9) 5 AAi(2K9 2 x9) 1 BBi(2K9 2 x9), (35)

where Ai and Bi are the Airy functions (Abramowitz
and Stegun 1965), x9 5 x, 5 (n2a/2p)1/3, and K9 5ã ã
(K 2 2 n2/4)/ 2. The eigenvalues K9 are given byã

2 2 2 2Ai(2K9 1 ãp)Bi(2K9 ) 2 Bi(2K9 1 ãp)Ai(2K9 )

5 0. (36)
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TABLE 1. Eigenvalues for different modes (i.e., different k) and
different vertical wavenumbers n. Here m 5 0.1 and H 5 F 5 1.

Solution k n K k v

(27)
(33)
(23)
(35)

2
2
2
2

1
1
1
1

2.2602
2.2608
2.2361
2.2584

—
—
2
—

0.2022
0.2022
0.2041
0.2024

(27)
(33)
(23)
(35)

3
3
3
3

4
4
4
4

5.1769
5.1776
5.0000
5.1599

—
—
3
—

0.0948
0.0948
0.0980
0.0951

(27)
(33)
(23)
(23)
(35)

1
1
1
3
1

9
9
9
9
9

9.3927
9.3936
9.0554
9.4868
9.3806

—
—
1
3
—

0.0529
0.0529
0.0549
0.0524
0.0530

(27)
(33)
(23)
(23)
(35)

2
2
2
4
2

9
9
9
9
9

9.6953
9.6969
9.2195
9.8488
9.6599

—
—
2
4
—

0.0513
0.0513
0.0539
0.0505
0.0515

4. Discussion and conclusions

We now want to compare solutions (27), (33), and
(35), which take the slope in geometry into account,
with (23), which actually does not. First we specify the
slope m and the vertical wavenumber n. Second, we
compute the corresponding eigenvalue K and the related
eigenmode by using (27), (33), or (35). Then we can
proceed in two ways: either we compare modes di-
rectly—that is, solutions with the same number of nodes
in the vertical and horizontal directions but with pos-
sibly different frequencies (method 1)—or we choose k
in (24) such that the frequencies correspond best and
accept that the number of crests and troughs in the hor-
izontal direction, k, might differ (method 2).

Table 1 shows some eigenvalues K for different k and
different choices of vertical wavenumber n. It can be
seen that, using method 2, the eigenvalues K (and fre-
quencies) are similar when the approximate solutions
(27), (33), (35), or (23) are employed. Using method 1,
eigenvalues differ when n increases.

The important thing is that, no matter which com-
parison method is used, the eigenfunctions correspond-
ing to (27), (33), or (35) differ from (23) when n in-
creases. When the linearized boundary condition from
section 3a is applied, the corresponding eigensolutions
are always symmetric in both spatial directions. This
holds only for small vertical wavenumbers n in (27),
(33), or (35). As demonstration we plotted mode 2, with
n 5 1 in Fig. 2 [Fig. 2a corresponds to (33), and Fig.
2b corresponds to (23)], and mode 1, with n 5 9 in Fig.
3 [Fig. 3a corresponds to to (33), and Fig. 3b corre-
sponds to (23) by using comparison method 1]. We find
that (i) eigensolutions agree well when approximations
(27) and (33) are used (not shown) and (ii) left-right
symmetry breaking is not captured when (23) is applied.
Note that symmetry is lost although the condition n K
2p/(aL) is not violated; even with n 5 9 we still handle

solutions that are usually considered consistent with the
linearized boundary condition discussed in section 3a.
Fig. 3 shows that an amplitude maximum establishes
itself in the deep part of the domain and the zonal wave-
length increases toward the shallow region. The mode
seems to be trapped at the right wall, that is, no energy
can reach the shallow part of the basin.

Figure 4 shows the first nine eigenvalues K computed
from (36) (crosses) and from (23) (circles) using n 5
1 (lower curve), n 5 4 (middle curve), and n 5 9 (upper
curve). For small vertical wavenumbers n the eigen-
values K are virtually the same, but even for large wave-
numbers the relative difference is small (see also Table
1). In contrast, the eigenfunctions can become very dif-
ferent as can be seen by comparing Fig. 3a with Fig.
3b. Note that the approximation (34) does not affect the
solution, as can be seen by comparing it with (23) and
(33). Note further that, for a given n, the most significant
asymmetry occurs for the first modes (low number of
eigenvalue in Fig. 4) and not for the very low frequency
modes.

What can be learned from this study? First, we found
that it can be dangerous to use the linearized boundary
condition. The reason is that even weak asymmetry can
have a prominent effect on higher modes; for example,
boundary trapped waves can be found, but only when
the exact and not the linearized boundary conditions are
applied. Second, breaking the symmetry of the basin
removes degeneracy from the eigenvalue spectrum (see
Fig. 4), which opens the possibility for beat phenomena
with long time scales (see discussion below). Last but
not least, the model we presented (a 2D baroclinic model
formulated in terms of ageostrophic vertical stream-
function instead of geostrophic horizontal streamfunc-
tion) appears to be new.

The first two points are maybe the most important
ones from an oceanographic point of view, and we will
discuss them in greater detail in the following. From
(23) and (24) we see that, for the box-shaped symmetric
basin, different eigenfunctions can correspond to the
same eigenvalue, e.g., n 5 1 and k 5 4 give the same
K as n 5 4 and k 5 1 do. Such spectra are called
degenerate. In contrast, the degeneracy is removed when
the domain with the sloping wall is considered (see also
Fig. 4). However, if the symmetry is weakly broken, the
former degenerate eigenvalues are close together in the
nondegenerate spectrum. Therefore the corresponding
eigenmodes will usually be excited together, giving rise
to beat phenomena. This condition means that, even
when the eigenfrequencies of such modes are large in
comparison with climate time scales, the beat oscillation
can introduce low-frequency variability. We think that
such almost degenerate basin modes should be taken
into account in studies of interannual to interdecadal
variability signals.

Let us now turn to the first point mentioned above.
As we have seen, low-frequency modes can look very
different for symmetric or slightly nonsymmetric basins,
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FIG. 2. Mode-2 solution of (a) (33) and (b) (23). Vertical wavenumber is n 5 1, m 5 0.1.

even for small slopes. In physical terms, the symmetry
breaking can be understood in terms of wave energy
propagation. Energy ray steepening for upslope prop-
agating waves is a well-known effect in acoustics (Jen-
sen et al. 2000). For larger vertical wavenumbers, the
rays of the Rossby wave group velocity have a large
tilt with respect to the zonal direction. If such waves
propagate upslope, they experience multiple reflections
at the sloping surface, which leads to a steepening of

the group velocity vectors. If the number of reflections
is sufficient, the rays show turning points before reach-
ing the wall located at the shallow part of the basin.
This phenomenon explains the increase of amplitude
and also the occurrence of shadow zones close to the
left boundary in Fig. 3a. In Fig. 5 we give a typical
example of a trapped Rossby wave (group velocity or
energy flux) ray. The energy propagates back and forth
along a periodic (not closed) orbit. Such rays are ex-



SEPTEMBER 2004 2093N O T E S A N D C O R R E S P O N D E N C E

FIG. 3. Mode-1 solution of (a) (33) and (b) (23). Vertical wavenumber is n 5 9, m 5 0.1.

cluded if the half trapezoidal basin is approximated by
a rectangle, and therefore the modes are erroneously
always symmetric. On the other hand, asymmetric so-
lutions appear to be captured well when the approxi-
mations (27), (33), and (35) are applied.2

2 Note that wave attractors discussed by Mass et al. (1997) for
internal gravity waves do not exist for Rossby waves because of
different reflection laws. When Rossby waves hit a boundary, the

Energy propagation of extratropical Rossby waves
over slowly varying zonal topography has received in-
creased attention recently, motivated by altimeter data
analysis by Chelton and Schlax (1996). For example,
Tailleux and McWilliams (2002) studied long Rossby

angle of reflection is equal to the angle of incidence. Such reflection
excludes the existence of wave attractors.
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FIG. 4. The first nine eigenvalues computed by using (36) (crosses)
and (23) (circles), where n 5 1, 4, and 9. The slope corresponds to
m 5 0.1. The lowest curve corresponds to n 5 1, the curve in the
middle corresponds to n 5 4, and the upper curve corresponds to n
5 9. The crosses are connected by solid lines for clarity.

FIG. 5. Group velocity ray of a boundary trapped mode. Such rays
are not possible when the actual basin shape is approximated by a
square.

wave propagation by using a planetary geostrophic two-
layer model without mean flow and friction but with a
mountain ridge aligned in the north–south direction. We
can create a comparable (but linearly stratified) situation
using the baroclinic model by mirroring the basin shown
in Fig. 1b along the vertical boundary at the shallow
side. Removing then the vertical wall in the center we
constructed a simple model with a ‘‘midocean ridge,’’
similar to the situation described by Tailleux and
McWilliams. Because of the symmetry, the eigensolu-
tions we described above are also solutions for the en-
larged basin. Thus, we obtain the interesting result that
high-energy (short wavelength) modes, excited at the
lateral walls, cannot cross the ridge. This result might
complement findings from planetary geostrophic mod-
els, which are not able to capture the synoptic-scale
Rossby waves.

Rossby wave propagation in an ocean basin filled with
a barotropic fluid is frequently discussed in the context
of western boundary currents. Long waves propagate
westward, are reflected at western boundaries, and turn
to short waves. Some part of the energy accumulates at
the western boundary; another part propagates eastward
as short Rossby waves. Whether these short waves can
be reflected at the eastern boundary depends on the
basin’s geometry. For example, for basins that become
narrower to the east, reflection is not necessary to trans-
form short eastward-propagating waves to longer waves,
able to transport energy westward. As implied by this
study, geometry-related turning might also be important.
The same holds in the 2D baroclinic context for upslope
propagating free waves. Low-frequency waves cannot
reach the wall upslope, even for gentle topography.
These effects are not captured using the linearized
boundary condition.

Primeau (2002) recently studied Rossby wave dy-

namics in trapezoidal basins similar to the one shown
in the upper panel of Fig. 1. However, the basins focused
on by Primeau change width in the meridional direction.
Moreover, Primeau focused on the effect of basin shape
on resonant mode excitation using a 1½-layer dissipative
model with a very small deformation radius (i.e., large
F). In contrast, for the barotropic model, we focused
here on the inviscid situation discussed, for example,
by Flierl and not on ‘‘long-wave basin modes’’ dis-
cussed by Primeau or LaCasce and Pedlosky (2002).

Last, we mention that we have neglected mean cir-
culation and viscosity in our analysis. Nevertheless, the
solutions can be interpreted as ‘‘unperturbed’’ Rossby
eigenmodes, useful as a starting point for stability anal-
ysis (Sheremet et al. 1997).

Considering the eigenvalue spectrum in Fig. 4 for the
square and the half-trapezoidal basin, one might also
expect very similar eigenfunctions. As we have shown,
this is not the case. For many years it has been debated
whether there is a one-to-one correspondence between
boundary shape and eigenvalue spectrum (Kac 1966).
It has surprisingly been shown that such a correspon-
dence does not exist (Gordon et al. 1992). Here, in
contrast, we have discussed an example in which bound-
ary shape and eigenvalue spectra are very similar but
eigenfunctions differ considerably.
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