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Abstract Using tomographic synthetic schlieren, we are

able to reconstruct the three-dimensional density field of

internal waves. In this study, the waves are radiating from

an oscillating sphere positioned eccentrically at the surface

of a paraboloidal domain filled with a uniformly stratified

fluid. We find that the prediction by ray tracing corresponds

well with the observed intensities of the wave field.

Remarkably, for a specific value of the forcing frequency,

we observe convergence of internal wave energy to an

internal wave attractor. The attractor is found to dominate

fluid motion in the plane perpendicular to the plane span-

ned by the symmetry axis and the oscillator position.

1 Introduction

Stably stratified fluids support internal waves that travel

under an angle with respect to gravity (Görtler 1943). This

angle is determined solely by the frequency of the forcing

and the background stratification (LeBlond and Mysak

1978). In a uniformly stratified fluid, a periodic disturbance

causes the wave energy to radiate out in an internal wave

cone. In an essentially two-dimensional (2D) setting, this

cone is reduced to the well-known St. Andrew’s cross

(Mowbray and Rarity 1967) that led to the concept of

internal wave beams (Thomas and Stevenson 1972; Tabaei

and Akylas 2003). In quasi two-dimensional laboratory set-

ups, these internal wave beams were observed as generated

by oscillating cylinders or slopes converting surface waves

into internal waves (Mowbray and Rarity 1967; Sutherland

et al. 1999; Baines 1974; Gostiaux et al. 2006; Echeverri

et al. 2009). In the two-dimensional setting, the dispersion

relation predicts that upon reflection at sloping walls,

focussing or defocussing of the wave energy of these

beams will occur (Dauxois and Young 1999; Mercier et al.

2008). In enclosed domains focussing dominates and leads

to the formation of internal wave attractors (Maas and Lam

1995). This theory has been verified in experimental

studies, again using a quasi 2D laboratory set-up (Maas

et al. 1997; Hazewinkel et al. 2008, 2010a).

All these laboratory experiments were in reality three-

dimensional (3D), but domain and source were chosen such

that the waves were essentially uniform in the transverse

direction. Most studies employed schlieren methods and

PIV (Particle Image Velocimetry), assuming the 2D

structure valid up to first order (Hazewinkel et al. 2010a).

One of the canonical papers on internal waves (Mowbray

and Rarity 1967) was in fact observing the internal wave

cone from an oscillating stick but the schlieren method
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used could not resolve this fully three-dimensional wave

field. The observations seem to be in a plane. Up till now,

only preliminary experimental work on the 3D observation

of axisymmetric internal wave structures from oscillating

and falling spheres has been presented (Onu et al. 2003;

Yick et al. 2006), but no rigorous experiments have been

performed on the full 3D internal wave field structure.

Meanwhile, from the theoretical and numerical side,

internal wave focussing has been considered in three

dimensions (Maas 2005; Bühler and Muller 2007;

Drijfhout and Maas 2008). The full three-dimensional

structure of the internal wave field may lead to patterns

that are not axisymmetric. Such patterns cannot be

observed by standard schlieren techniques but can be

reconstructed using tomography. Predicting the patterns set

by a simple disturbance in a three-dimensional enclosed

domain is a mathematical difficulty and wave fields have

so far only been approached by ray tracing from a point

source (Maas 2005). For some specific parameters, this ray

tracing reveals the formation of internal wave attractors,

i.e. limit cycles where all rays converge. However, as ray

tracing does not take phase and interference processes into

account, it remains uncertain if 3D domains allow for

attractors.

Although the full tomographic reconstruction of internal

wave patterns in an enclosed stratified fluid has not been

considered before, the general problem of tomographic

reconstruction of density distributions from deflection and

schlieren data has been studied before. The 3D density

distributions have been reconstructed for a supersonic jet

(Faris and Byer 1988), the temperature field in gas-flows

(Agrawal et al. 1998) and the concentration field around a

growing crystal (Srivastava et al. 2005). In all these

experiments, the reconstruction is based on beam deflection

by a density perturbation, the principle also underlying

synthetic schlieren (Dalziel et al. 2000) (sometimes known

as Background Oriented Schlieren (BOS) (Richard and

Raffel 2001)). In this paper, we present the use of tomo-

graphic synthetic schlieren (Goldhahn and Seume 2007) to

reconstruct the 3D internal wave patterns from an oscil-

lating sphere positioned eccentrically in a paraboloidal

domain with a linearly stratified fluid.

2 Experimental set-up

2.1 Synthetic schlieren

For the experiments, we use a paraboloidal tank of depth 300

mm and radius r = 300mm at the top (see Table 1 and Fig. 1).

The tank is filled with a fluid which has a linear density

gradient q0(z) in the vertical z to fluid height H. The strati-

fication is characterized by buoyancy frequency

N ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�gq�1� dq0=dz
p

, with g the acceleration due to gravity

and q* the constant reference density of water. This is

achieved with the use of two, computer controlled,

Masterflex peristaltic pumps. The paraboloidal tank is

mounted in a larger square tank which is filled with water to

compensate for the distortions of the parabolic shaped tank.

The distortions of the parabolic tank with the stratification

are most dramatic at the bottom, where also the stratified

fluid has its highest density. Optically, the optimal situation

would be to have the same density stratification in both

tanks; however, this would potentially lead to internal wave

patterns in both tanks, a far from optimal situation. For these

reasons, we fill the outer tank with fluid having the highest

density of the stratification in the paraboloidal tank. In this

way, we can observe a random dot pattern behind the two

tanks on a light bank. This enables us to use synthetic

schlieren (Dalziel et al. 2000) to measure the internal wave

motion in inner (paraboloidal) tank. Synthetic schlieren

relies on the apparent distortion of this background dot

pattern due to refractive index changes resulting from den-

sity perturbations q when looking through the tank.

The use of synthetic schlieren for a three-dimensional

density perturbation needs extra attention. Previously,

Scase and Dalziel (2006) studied full three-dimensional

internal wave patterns in an integrative manner. Although

they were not able to resolve the three-dimensional struc-

ture of the field, they were able to compare observation

with a breadth-averaged (along the line of sight) result

from a three-dimensional theoretical prediction. We follow

their approach to find the dot-displacement vector C by

tracing light rays through a medium with refractive index

n(x, y, z) over width W (the fluid) and distance B to the dot

pattern. For simplicity in this discussion we shall ignore the

refractive index interfaces between media, although note

that necessary corrections (Dalziel et al. 2007) are included

Table 1 Parameters of experiment

Parabolic tank

Height 300 mm

Radius R 300 mm

Distance camera L 8,500 mm

Fluid surface

Height H 290 mm

Radius 295 mm

Buoyancy frequency N 2.2 rad�s-1

Forcing

Radius sphere 40 mm

Radial position sphere 0.55R

Amplitude vertical oscillation 10 mm

Exp. 1: period T 5.3 s

Exp. 2: period Tattractor 4.3 s
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in the computation employed for the results. The linearized

optics, assuming small deflections to the path of light, give

d2C
dx2

¼ rðy;zÞn
n�

; ð1Þ

where rðy;zÞ ¼ o
oy;

o
oz

� �
. The coordinates are the optical axis

of the camera x, horizontal y and the vertical z. The origin of

the coordinates is in the center of the tank and n* is the

reference value of the refractive index. The displacements are

found by integration by parts (see Appendix 1 for details),

C ¼ rðy;zÞ
n�

Bþ 1

2
W

� �
Whni þ

ZW=2

�W=2

xndx

2
64

3
75; ð2Þ

where hni ¼ W�1
RW=2

�W=2 ndx, the average refraction

through the tank. This equation shows that the sensitivity of

synthetic schlieren is increased by increasing the distance

to the dot pattern (B) (Dalziel et al. 2000). For essentially

two-dimensional perturbations of thin experiments

(B � W),
RW=2

�W=2 xndx is negligible. For a not-so-thin

experiment, the sensitivity of the observations will depend

on the location of the perturbations in the tank, the closer to

the camera, the more sensitive. However, the ‘thin exper-

iment’ approximation remains valid for any B, W whenever

n is symmetric about x = 0.

To a good approximation, there is a linear relation

between the refractive index and the density q, such that

rðy;zÞn ¼ b
n�
q�
rðy;zÞq; ð3Þ

with b & 0.184 (Weast 1981). This means that by

measuring the apparent displacement vector C we can

find the changes in the perturbation density gradient field

C ¼ b
rðy;zÞ
q�

Bþ 1

2
W

� �
Whqi þ

ZW=2

�W=2

xqdx

2
64

3
75: ð4Þ

Under the ‘thin experiment’ approximation, the displa-

cements are obtained as gradient components of the density

field, r(y,z)hqi. However, the tomographic reconstruction

will be presented in terms of the buoyancy perturbation

fields

hbðy; zÞi ¼ g

q�
r�1

ðy;zÞðhq� q0iy; hq� q0izÞ; ð5Þ

after integration of the gradient fields (Hazewinkel et al.

2010a).

To record the apparent displacement of the dots, we

use a Jai CV-M4?CL camera (1.3 MPixel monochrome).

In order to minimize the parallax, the camera is posi-

tioned at distance L from the tank and is protected from

disturbances in the air by a tent covering most of this

optical path. Using an unperturbed reference image, the

perturbed position of the dots is translated into corre-

sponding density changes. For this comparison and data

processing the DigiFlow software (Dalziel Research

Partners, Cambridge) is used.

2.2 Tomographic reconstruction

In this section the general principles of tomography are

explained; see the Appendix 2 for details. For the tomo-

graphic reconstruction of the 3D internal wave field, we

need to observe the experiment from many different view

angles. Here we will restrict ourselves to angles of rotation

/ about the vertical axis. For any view angle the ray

deflection is measured parallel to the x0-axis, the line of

sight. This indicates the introduction of the orthogonal

coordinates x0 ¼ xcos/þ y sin/; y0 ¼ �x sin/þ y cos/,
rotated at view angle / from the original coordinates in the

x, y plane. The original y, z plane at / = 0� is the plane

spanned by symmetry axis and the oscillator position. The

synthetic schlieren observations lead to projec-

tions\ b(y, z)[ of the fully three-dimensional b(x, y, z)

field, per view angle /. We will denote these projections as

pðy0; z;/Þ ¼
Z1

�1
bðx0 cos/� y0 sin/; x0 sin/

þ y0 cos/; zÞdx0; ð6Þ
where b(x, y, z) = 0 outside the paraboloidal tank. The

reconstruction will be by means of the inverse Radon

transformation or convolution-backprojection (CBP)

algorithm (Faris and Byer 1988; Kak and Slaney 1988), see

Appendix 2 for details. At every level z the reconstruction

becomes

Fig. 1 Photograph of the experimental set-up. The paraboloidal tank

is visible in the center of the larger rectangular outer tank. The

oscillating sphere, that can be lowered into the fluid, is located above

the tank to the right of the center, and the dot pattern on the light bank
is behind the tank
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bðx; yÞ ¼
Z2p

0

½pðg;/Þ � kðgÞ��x sin/þy cos/d/; ð7Þ

with kðgÞ ¼ R1
0

Y 0e�2pıY 0gdY 0 and convolution

½aðgÞ � bðgÞ�s ¼
R1
�1 aðgÞbðg� sÞdg. The transformation

has become standard in all sorts of tomography and is

implemented in Matlab in the image analysis toolbox as the

function iradon.m. The function offers a routine to invert the

projections, and provides simple ways of applying filters.

2.3 Forcing of the waves

Using the symmetry of the paraboloidal tank, the require-

ment of many view angles is identical to observing from

the same angle but rotating the oscillating sphere under an

angle / about the axis of the tank. This latter, more con-

venient arrangement is achieved by installing a hub,

holding an arm, above the center of the tank. The arm can

be rotated about the hub. The vertical oscillator mounted

on the arm, drives the sphere of diameter a = 40 mm at a

surface position r = 0.55R. When at rest, the sphere is

above the fluid at viewangle /. Before the oscillation, the

sphere is lowered into the fluid, such that it is just below

the surface; after the oscillation it is brought back to its

original position above the fluid. For the tomographic

reconstruction, views on the same plane, i.e. view angles

/ and / ? 180�, are in theory identical. This means that

only the view angles between 0� and 180� with a certain

interval are needed to reconstruct the internal wave pattern.

However, we anticipate a small effect of
RW=2

�W=2 xqdx and

perform experiments with the source on both sides of

x = 0. We view angles in regions [0�, 180�) and

[180� ? d//2, 360� ? d//2) with a d/ degrees interval.

Under the ‘thin experiment’ approximation, this is identical

to a d//2 resolved spatial pattern in a 0�–180� region.
A typical experiment is as follows. In a given stratifi-

cation, we take a reference image before the sphere is

lowered into the fluid, just below the surface. This is fol-

lowed by oscillating the sphere at a given off-centered

position with radius r and given angle / = 0 for 30 periods

T at frequency x : 2p/T, capturing 32 frames per oscil-

lation. When finished, the sphere is brought out of the fluid

again and the angle is increased by / ? 92. Then, the

system is allowed to settle for 2 minutes, typically twice

the time needed for the internal waves to dissipate in the

fluid. After this pause, the process is repeated from taking

the reference onward. The following view angles are

/ ? 182 and / ? 270, after which the arm is returned to

the initial / and the whole loop is repeated for

/ = / ? d/, until the views are overlapping. In the

present paper d/ = 4� giving 90 views of the experiment.

3 Results

We present data from an experiment with forcing fre-

quency x. Although set-up and typical modus operandi are

explained in the previous sections, we will highlight some

of the crucial steps in this (time consuming) routine.

Running the experiment for all angles with interval

d/ = 4� takes about 11 h. We verify that the stratification

remains constant throughout the experiment. Only at the

surface, a shallow mixed layer is found, but its maximum

depth is less then 15 mm. We analyze the last three periods

of the oscillation of all separate experiments and perform

harmonic analysis (HA) at the forcing frequency. This

results in a complex projection p(y0, z) of the density field

for every angle /, of which the real part is shown in Fig. 2

for four values of / (for a better overview of the projec-

tions, more values of / are shown in Fig. 8 in Appendix 3).

The common picture arises with a source from where the

internal waves radiate under the typical angle h, a half

version of the familiar 2D St. Andrew’s cross (Görtler 1943;

Mowbray and Rarity 1967). From all view angles, the

beams reflect from the walls and weaken in amplitude

further away from the source. The patterns seen are dif-

ferent per view angle /, but all feature the reflection into

the surface corners where the waves weaken due to defo-

cussing. Notice that although the data from different angles

reveal different patterns, the waves always have the same

angle with the vertical in the synthetic schlieren data.

Using these projections p(y0, z), we perform the tomo-

graphic reconstruction for every level z following Eq. 7. As

an example, we show the reconstruction of b(x, y, z = H/2).

First, we obtain all projections p(y0, /), Fig. 3a, and

reconstruct b(x, y, z = H/2), Fig. 3b. Clearly seen in the

reconstruction is part of an internal wave ring on the left.

Note that this example presents only the reconstruction of

the real part of the complex projections. The reconstruction

is naturally done for both real and imaginary part and

combined again to form the complex b(x, y, z = H/2). This

means that also temporal (phase) information can be found

from the reconstruction.

The next step in the analysis is then to build the full

three-dimensional field using the highest angular resolu-

tion. The spatial patterns in the paraboloidal tank are most

easily appreciated when plotting some slices of the real

component of the reconstruction, Fig. 4. It is seen that the

internal wave ring (actually, the cone), grows wider and

wider in the downward direction, and that the reflections

from the walls distort the circular shape. To understand this

picture, we add rays coming from a point source at a

location approximately at the position of the sphere in the

experiment, Fig. 4b. We plot the first five reflections, and

note that the rays and reconstruction coincide closely, at

least globally. Local convergence of rays leads to a higher
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response of the fluid seen in the amplitude plot, and the

rays connect regions of equal phase, Fig. 4c,d.

Here we have elected to reconstruct the 3D buoyancy

field b(x, y, z). Until recently, most synthetic schlieren data

were presented in terms of the vertical component of the

gradient field, as this comes naturally from the observations

(Hazewinkel et al. 2010a). However, we feel it is more

desirable to work with the buoyancy field obtained upon

integration of by0 and bz. We tried the reconstruction of

by0(x, y, z) and bz(x, y, z) but found that due to the sym-

metries in the observations, the reconstruction of by0(x, y, z)

is not possible. Since our oscillation is in the vertical, the

wave beams close to the source in the observed by0(y
0, z)

are not mirror-symmetric along the vertical through the

source. This means an ideal and naı̈ve reconstruction is

zero. However, reconstruction of bz(x, y, z), related to the

perturbation in N, is possible. In cases where the interest of

the data is in the fine structure of the internal wave field

this may be the preferred field, due to the highlighting of

fine scales as result of the derivative.

4 Observations of a 3D attractor

By following the first few reflections of some rays, we

obtain a fair approximation of the wave structure.

Following the rays for some more reflections leads, for

some frequencies, to attractors (Maas 2005). We select

such a frequency, xattractor, for experiment 2 and leave all

other settings as in the previous experiment. Again, upon

inspection of the snapshots of the observations after har-

monic analysis, Fig. 5, we find the half St. Andrews cross

(again, an overview showing more projections in found

in Appendix 3). Compared to Experiment I, the main

Fig. 2 Selection of projections

p(y0(/), z) after harmonic

analysis at the forcing frequency

of experiment I, more

projections are shown in Fig. 8

in Appendix 3. The contour

lines are the values defined in

grey scale

Fig. 3 a Projection p(y0(/),
z = H/2) and b reconstruction

of b(x, y, z = H/2) with angular

resolution 4� for the data of

experiment I
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difference is that there seems to be a background pattern,

persistent in all views, corresponding with the attractor

path we find from ray tracing and experiments in a para-

bolic channel (Hazewinkel et al. 2010b). This pattern is

particularly visible in the all projections of the planes

perpendicular to the source, / = 80�–100�, and in the

planes aligning with the source, / = 0�–20� (see four of

these shown in Fig. 5). We then proceed, as in the previous

experiment, to reconstruct the 3D density disturbance and

compare it with ray tracing from a cone at the surface.

In the 3D reconstruction, Fig. 6a, the main signal shows

the structure as found from the first 6 reflections (gray rays)

Fig. 4 Sliceplot of b(x, y, z) in
Experiment I. a Real part of

HA, b real part of HA including

rays from point at surface for 5

reflections, c amplitude and

d phase from HA

Fig. 5 Same as 2 but now for

experiment II, more projections

are shown in Fig. 9 in

Appendix 3
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of the incoming internal wave cone. Again the internal

wave cone is deformed by reflection from the walls leading

to energy focussing near the wall opposite to the oscillating

sphere. The region of focussing of the rays corresponds

with the region of strong internal wave motion, the black

and white region in Fig. 6a. There remain some regions,

however, where there is a dominant signal that has no ray

convergence in the first reflection, indicated by the two

arrows. These regions correspond to the region where

attractors are found after about 30 reflections of the rays,

indicated by the red rays indicating reflections 30–50 in

Fig. 6b. Note that the ray tracing leads to a convergence of

rays on attractors near the vertical plane perpendicular to

the vertical plane of the forcing and the middle of the tank.

5 Sensitivity of results

The reconstructions in previous sections were done with

rather high angular resolution, d/ = 4�. To investigate the

sensitivity of the reconstruction to the angular resolution

d/, the reconstruction is also performed with a subset of

the projections. The reconstructions for d/ = 12�, 24�
show that, with relatively limited views, a rough idea of the

field can still be reconstructed, though the reconstruction

loses sensitivity as the views overlap less, Fig. 7b,c.

Comparing several reconstructions at a circle with radius
4
9
R with increasing d/ (Fig. 7d), we see that the recon-

struction can not be trusted anymore for d/ C 36�. From
this resolution onwards, the reconstruction gives rise to

spurious patterns at the magnitude of the signal. Although

the above reconstructions were done after the harmonic

analysis of the data, this step is not necessary. A snapshot

that is underlying the reconstruction of Fig. 7a is shown in

7e, showing very a very similar pattern at at a different

phase. This allows the analysis of non-periodic events, such

as the initial transients, to be reconstructed.

In order to check if the ‘thin experiment’ approximation is

still valid for our not-so-thin experiment, we could compare

observations with the source in front and back (/ = 90� and
/ = 270�) of the tank, as for a ‘thin experiment’ these would

be identical. However, we did not capture these overlapping

views (see Sect. 2.3). Instead, we choose to perform the

reconstruction again, exploiting the symmetry of our

experiment in a different way. Knowing the symmetry of our

wavefield about x = 0 we perform a new reconstruction by

simply converting all /[ 180�?/0 = / - 180�. We

compare this ‘thin experiment’ reconstruction with the

reconstruction as presented in previous sections, along

the x-axis, b(x, 0, H/2) see Fig. 7f. The solid line gives the

reconstruction as in previous sections, the dotted line gives

the reconstruction under the thin experiment assumption.

As expected, the original reconstruction had a different

value of b in front and back of the tank, due to the sensitivity

change. This difference is largely removed in the new

reconstruction. Both reconstructions are equal along y.

However, the differences are small and do not change the

qualitative shape.

Using the symmetry once more, we can also average

observations from / and 180� - /, by horizontally flip-

ping one of the two. This means we can remove any error

related to the tank not being perfectly normal with the line

of sight. In doing so, we find that this ‘centered’ recon-

struction is not very different from the thin experiment

reconstruction. This indicates the alignment of the camera

is not of major importance for the reconstruction, though it

may be optimized by ensuring that the middle of the tank is

in the middle of the view.

6 Discussion and conclusion

The three-dimensional internal wave field from a spherical

oscillator in a paraboloidal domain was successfully

reconstructed using tomographic synthetic schlieren.

However, the data were not captured instantaneously but

rather in a succession of separate experiments exploiting

the symmetries of the domain. This could be done as the

Fig. 6 Comparison of reconstructed buoyancy perturbation in exper-

iment II with ray tracing showing a the first six reflections (gray rays)
and b after 30–50 reflections (red rays). The arrows in (a) indicate
motion associated with the attractors found in (b)
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stratification was very stable and experiments prove highly

repeatable, even over many hours. In an attempt to quantify

the minimal angular resolution needed, we find that from

d/[ 36� the patterns reconstructed suffer greatly from the

resolution. However, it seems that even for resolutions

coarser than this value the reconstruction will show key

features as some angular resolutions fit the pattern better

than others.

The reconstruction of the full 3D internal wave field

from the oscillating sphere at the surface compares well

with ray tracing the internal wave cone from a point source

at the same position. At points where rays converge, the

observed wave energy peaks. However, the fact that the ray

tracing works well may also come as a surprise since

information about amplitude and phase, and the effect of

viscosity, cannot be found by means of this technique.

Clearly visible in the observations are the decay of the

amplitude of the internal wave cone as it radiates outwards,

and phase structure discontinuities where many reflecting

waves come together. However, the ray tracing does

predict convergence of wave energy onto attractors,

for specific forcing frequencies, at locations that in the

observations also reveal strong wave motion.

In addition to considering the stationary internal wave

field, the initial development of the internal wave field is

accessible. Unfortunately the presentation of the evolution

of 3D data proves very difficult to present in a 2D envi-

ronment, and is beyond the scope of this paper. However,

one may also look into the dynamics of growth and satu-

ration of the patterns, as has been done for the 2D internal

wave attractor (Hazewinkel et al. 2008). In recent years

also tomographic PIV measurements are in development,

e.g. the measurement of inertial waves by Messio et al.

(2008). Eventually, the reconstructed data from synthetic

schlieren should be compared with three-dimensional PIV

measurements as was done for the two-dimensional case by

Hazewinkel et al. (2010a).

As demonstrated by Maas (2005), the distribution of

attractors is dependent on the location of the source and of

the frequency. For a centered source, the attractors are

Fig. 7 Reconstruction of

b(x, y, z = H/2) in experiment I

with angular resolution

a 4�, b 12� and c 24�.
d Reconstructions at different

angular resolution along a circle
with radius 4

9
R. e Snapshot of the

recontruction. f Reconstruction
b(x, y = 0, z = H/2) as in
previous sections (solid line),
for the thin experiment (dash-
dot line) and the centered

experiment (dotted line)
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equally spread out over all vertical planes according to the

ray tracing. Even though the rays end up on attractors, their

distribution ensures that they are not seen as a localized

effect. In our case, we have chosen for a parameter setting

where most of the attractors end up near the vertical plane

that is perpendicular to the vertical plane through the

source and the center. Ideally, whole parameter regimes

should be scanned (by changing the source location and/or

forcing frequency) to see if the ray tracing remains a

reliable predictor of the internal wave patterns. However,

the amount of data per experiment and long iterative

procedures make it rather cumbersome to scan whole

parameter regimes. Although this is merely a time- and

cpu-consuming issue, it might help if optimization schemes

for limited angle data sets could be implemented. The field

of tomographic inversions is a very active and new meth-

ods are likely to bring new possibilities.

In conclusion, we have presented experiments in which

we were able to reconstruct the 3D internal wave field in a

paraboloidal tank with an off-centered oscillating sphere at

the surface. In addition to showing the principle of tomog-

raphy to work, we have demonstrated that ray tracing is a

useful tool in the prediction of the internal wave patterns. In

a second experiment, we confirmed that the internal wave

patterns in 3D converge onto internal wave attractors.
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Appendix 1

Equation 2 is derived from

d2C
ds2

¼ rðy;zÞ
n�

n; ð8Þ

where s is the along view coordinate and s = 0 at the front

of the tank. We ray trace light through the refractive

perturbations in the tank, s = [0, -W] and to the dots

pattern behind the tank, s = [ -W, -W -B]. This means

that apparent displacement vector

C ¼
Z�B�W

0

Zs

0

d2C
ds02

ds0ds � rðy;zÞ
n�

Z�B�W

0

Zs

0

nds0ds: ð9Þ

Between the tank and the dot pattern the rays are straight

(no refraction; n = 0), so that the integral can be split

C ¼ rðy;zÞ
n�

Z�W

0

Zs

0

nds0dsþ
Z�B�W

�W

Z�W

0

nds0ds

2
4

3
5: ð10Þ

Integrating by parts leads to

C ¼ rðy;zÞ
n�

s

Zs

0

nds0

2
4

3
5
�W

0

�
Z�W

0

s0nds0 � B

Z�W

0

nds0

2
4

3
5;

ð11Þ
which, since s = x - W/2, leads to

C ¼ rðy;zÞ
n�

Bþ 1

2
W

� �
W\n[ þ

ZW=2

�W=2

xndx0

2
64

3
75; ð12Þ

Eq. 2, where\ n[ = W-1$-W/2
W/2 ndx, the line of sight

average of n.

Appendix 2

For completeness, we summarize here the ‘standard’

approach to tomographic reconstruction (Faris and Byer

1988). The starting point for the reconstruction is a slice

considered at z = z0 and the measured projection obtained

upon integrating the deflection fields resulting from a

general refraction function f(x, y, z). In the new coordinates

x0, y0, both functions of /, the x0-axis is chosen to be par-

allel with the rays in that projection. This means that the

projection p(y0, /) can be written as

pðy0;/Þ ¼
Z1

�1
f ðx0 cos/� y0 sin/; x0 sin/þ y0 cos/Þdx0;

ð13Þ
where the interest is in obtaining the as yet unknown

function f(x, y) from the observed projection p(y0, /). In
order to find the inverse, a Fourier transform of the

projection is performed

PðY 0;/Þ ¼
Z1

�1
pðy0;/Þe�2pıY 0y0dy0 � IFY 0 ðpðy0;/ÞÞ; ð14Þ

where the capital letters denote functions and coordinates

in the wavenumber domain. Substituting for p(y0, /),
expression Eq. 13, gives

PðY 0;/Þ ¼
Z1

�1

Z1

�1
f ðx0 cos/� y0 sin/; x0 sin/

þ y0 cos/Þdx0e�2pıY 0y0dy0: ð15Þ
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This expression can be rewritten in the un-rotated

coordinates x, y using the relations x0 ¼ x cos/þ y sin/
and y0 ¼ �x sin/þ y cos/:

PðY 0;/Þ ¼
Z1

�1

Z1

�1
f ðx; yÞe�2pıY 0ð�x sin/þy cos/Þdxdy ð16Þ

The integral is recognized as the 2-D Fourier transform in

wavenumbers ðk ¼ �Y 0 sin/; l ¼ Y 0 cos/Þ
PðY 0;/Þ ¼ IFk;lðf ðx; yÞÞ: ð17Þ
Note that the left-hand side is not expressed in variables

k, l but in polar wavenumber coordinates Y0, /.
Nevertheless, expressing the inverse Fourier transform in

coordinates Y0, / it is possible to find f(x, y). This inverse is

f ðx; yÞ ¼ IF�1
k;l ðPðY 0;/ÞÞ

¼
Z2p

0

Z1

0

Y 0PðY 0;/Þe2pıY 0ð�x sin/þy cos/ÞdY 0d/: ð18Þ

Here Y0 is the Jacobian from the Cartesian to polar

wavenumber coordinate transformation. This result shows

that, from the projections, the original function f(x, y) can

be found. With kernel

kðgÞ ¼
Z1

0

Y 0e�2pıY 0gdY 0; ð19Þ

and expression (14), Eq. (18) can be written as a

convolution

f ðx; yÞ ¼
Z2p

0

½pðg;/Þ � kðgÞ�y0ð/Þd/; ð20Þ

where the definition of convolution ½aðgÞ � bðgÞ�s ¼R1
�1 aðgÞbðg� sÞdg is used. This explains the name of the

algorithm, convolution back-projection. The reconstruction

can be written differently when realistic measurements,

with limited spatial resolution, are concerned. Then the

maximum value of Y0 is the Nyquist wavenumber 1=ð2Dy0Þ,
and a filter can be applied to cut off the higher

wavenumbers.

Appendix 3

Figures 8 and 9.

Fig. 8 Some more projections of experiment I, in addition to Fig. 2

Exp Fluids

123



References

Agrawal AK, Butuk NK, Gollihalli SR, Griffin D (1998) Three-

dimensional rainbow schlieren tomography of a temperature

field in gas flows. Appl Opt 37:479–485

Baines PG (1974) The generation of internal tides over steep

continental slopes. Philos Trans Royal Soc 277A:27–58

Bühler O, Muller C (2007) Instability and focusing of internal tides in

the deep ocean. J Fluid Mech 588:1–28

Dalziel SB, Hughes GO, Sutherland BR (2000) Whole field

density measurements by ’synthetic schlieren’. Exp Fluids

28:322–335

Dalziel SB, Carr M, Sveen KJ, Davies PA (2007) Simultaneous

synthetic schlieren and PIV measurements for internal solitary

waves. Meas Sci Technol 18:533–547

Dauxois T, Young WR (1999) Near critical reflection of internal

waves. J Fluid Mech 390:271–295

Drijfhout S, Maas LRM (2008) Impact of channel geometry and

rotation on the trapping of internal tides. J Phys Oceanogr

37:2740–2763

Echeverri P, Flynn MR, Winters CB, Peacock T (2009) Low-mode

internal tide generation by topography: an experimental and

numerical investigation. J Fluid Mech 636:91–108

Faris GW, Byer RL (1988) Three-dimensional beam-deflection

optical tomography of a supersonic jet. Appl Opt 27:5202–5212

Goldhahn E, Seume J (2007) The background oriented schlieren

technique: sensitivity, accuracy, resolution and application to a

three-dimensional density field. Exp Fluids 43:241–249
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