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Preface

This is my 4th year project at UCL, supervised by Prof. E. Johnson. This
project started at the Royal Netherlands Institute of Oceanography (NIOZ)
under the supervision of Prof. L. Maas and Miss A. Rabitti where experiments
were carried out with a rotating flat box which was to extend into the full
project. Not all of the instrumentation was functioning so the project evolved
to include more theory and has inspired what you will see below.

The animations (obviously) cannot be seen on a piece of paper, so I’ve
put them on a website, http://www.ucl.ac.uk/~zcahdl5/project.html along
with all the data files from the experiments, Matlab and Mathematica code, pic-
tures and assorted other files generated during the computations.

The project is split into the following parts:

Motivation Pictures from other experiments and an explanation of some of
the different terms used during the project.

Experiments Here the analysis of the experiments at NIOZ is included, even
though they didn’t all go to plan they are all included for the sake of complete-
ness.

Flat Box This utilises separation of variables to look at inertial waves inside
a flat, rectangular duct. This is also the starting point for investigating inertial
waves in a semi-trapezoid.

2D simple attractor in a semi-trapezium Here a similar method to [Maas
and Harlander, 2007] is followed to find wave attractors for the 2D case (k = 0)
in terms of pressure.

3D attractor in a semi-trapezium This chapter extends the previous into
the third dimension for a given k, specified to be either decaying or propagating
downstream.
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1.1. INTRODUCTION CHAPTER 1. MOTIVATION

1.1 Introduction

We will first look at inertial waves and highlight the differences between these
and the more commonly seen surface and acoustic waves. Then wave focusing
and ensuing wave attractors found in experiments will be introduced. From
here the basic outline of how the project will develop will be described.

1.2 A Brief Introduction to Inertial waves

Inertial waves are also called gyroscopic waves, they are waves caused by the
effects of rotation. Whereas for a surface wave the restoring force is gravity, for
inertial waves the restoring force is the Coriolis force; similarly inertial waves
travel through the body of the fluid, which is a notable difference to surface
waves.

The frequency of inertial waves, ω, is less than the inertial frequency, f .
Where f is twice the rotation rate, Ω. The dispersion relation of these inertial
waves is,

ω =
±m√

k2 + l2 +m2
= sinψ (1.1)

where k, l, m are the wavenumbers in the x, y, z directions and for simplicity

denote k =

 k
l
m

.

We can see that this can be written as a sine function, forming a cone. This
is best demonstrated with a diagram and calculation of the group and phase
velocities, cg and cp.

5



1.3. FOCUSING OF INERTIAL WAVES CHAPTER 1. MOTIVATION

Cones of cp, cg and k from Manders and Maas [2004]

cg = ∇ω (1.2)

=
m2

ω3

(
−k,−l, k

2 + l2

m

)
(1.3)

cp =
ω

|k|2
k (1.4)

=
ω

|k|2
(k, l,m) (1.5)

cp · cg =
m2

ω2|k|2
(−k2 − l2 + k2 + l2) (1.6)

= 0 (1.7)

So cp ⊥ cg, which is the complete opposite of surface waves where cp||cg.
For example,

1.2 A typical surface wave, a ripple on a pond. From Maas [2005]

1.3 Focusing of Inertial Waves

Since these waves can only travel in certain directions dictated by the cones seen
above, if we look in a non-symmetric domain these waves are either focused or
defocused by reflection. Take the the semi-trapezoid seen in this diagram below,
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1.3. FOCUSING OF INERTIAL WAVES CHAPTER 1. MOTIVATION

1.3: Inertial wave focusing in a semi-trapezoid, from Maas [2001]

1.3: Description below, from Maas [2001].

The top figure in 1.3 is a 2D example where the cone is reduced to two
directions, z = ±x. All non-degenerate waves focus in the wave attractor,
LKNM. Take three examples, z = −x at X, z = −x at Y and z = x at X. It
is seen by following the dashed lines on the diagram that these focus on the
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1.3. FOCUSING OF INERTIAL WAVES CHAPTER 1. MOTIVATION

attractor and they all travel in the same clockwise direction, as indicated by
the arrow. For a different rotation frequency the angle would be such that the
degenerate attractor PQ would form. As displayed in the figures (c) and (d)
of the second figure. Here it is thought viscous damping removes almost all
structure.

Now for the second figure in 1.3 encompassing (a)-(d). The following descrip-
tion is taken almost verbatim from Maas [2001] with only minor alterations to
write it as prose instead of a caption for the figure.

(a) is a top view of the right half of the container, with the sloping wall
visible in the upper half of the figure. The bottom and sloping wall have been
supplemented with a 2 cm grid (distorted along the slope). Dye has been injected
through a number of holes (of diameter ≈ 1 mm) in the glass top lid, at 14 cm
from the vertical glass wall, at the right (y = 0). Modulation period is 32.4 s.
Dye pictures, shown here, are taken at the moment that the dye reaches its most
rightward position over the slope. In (b) the picture was taken 6 modulation
periods after that in (a), showing the clear leftward spreading of dye over the
central part of the slope in the upper half of the figure (revealing a cyclonic mean
flow, i.e. in the same direction as the anti-clockwise background rotation). (c)
is as in (a), but with modulation period 37.7 s. Dye injections have additionally
been made at some holes in the centre, and on the lower left of this figure.
Likewise (d) is as in (c), but taken 5 periods later. Dye seems to have spread
diffusively. No signs of significant mean flow were observed in this case.

1.4: PIV of x2 + z2, kinetic energy. From Manders and Maas [2003]

In 1.4 it is clear that there is a concentration of energy on the slope where the
waves focus, this energy gradually dissipates as it travels around the attractor.

There is clearly something to look into here. Most of the papers available
look into the 2D stratified, non-rotating case; however this paper will look into
the three dimensional rotating case. The first step is to look at a domain where
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separation of variables is valid and then perturb the boundary to look at 2D
rotating flow before extending this to three dimensional, rotating flow. This
three dimensional approach has not been found in any of the literature to date.
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Chapter 2

Experiments
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2.1. SET-UP CHAPTER 2. EXPERIMENTS

2.1 Set-Up

The apparatus was set up as in the two figures of 2.1. The flow in all cases is in
the direction from pressure sampling point 7 to 8 and sampling points 5 and 6
were connected to the pressure sensor. The rotation was anti-cyclonic (clockwise
looking from above) and an increase in voltage output from the pressure sensor
corresponds to higher pressure at sampling point 6.

Drawing of set-up of experiment
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2.1. SET-UP CHAPTER 2. EXPERIMENTS

Photo of set-up of experiment

Pump Comet - Geoinline 0-11V
Flow meter N/A (broken)

Container Perspex 200x100x97mm
Ducts 8mm Internal Pump→7 30cm, 8→pump 20cm

Pressure sensor GE Druck - LPM 5480 -2 – 2 mbar,
output 0-10V, precision 8x10−4bar

Computer Labview 6 (National Instruments)
Circuit National Instruments CB-68LP

Table NIOZ designed, motor KMF WD251 (Electro ABI)

12



2.2. RESULTS CHAPTER 2. EXPERIMENTS

2.1.1 Calibration

No direct calibration was done however the calibration using the same equipment
done in a previous paper was

q[l/min] = 0.4572Vq + 0.0639

Ω[rad/s] = 1.004VΩ − 0.2942

2.2 Results

In the following plots there is one plot per table voltage and then the output
for the spectral density computed using a fast fourier transform is displaced
vertically for each pump voltage. So the third line up on the second plot will
be the third pump voltage and the second table voltage.

2.2.1 Good data

This was the first set of data obtained, which appears to be very good.

ex-27-08-10 01

2Hz 100s

Table speeds 0-10 in steps of 1, 0
Pump speeds 0, 2-6 in steps of 4/9, 0

Pressure vs. Time Colour chart

Table voltage 0 Table voltage 1
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2.2. RESULTS CHAPTER 2. EXPERIMENTS

Table voltage 2 Table voltage 3

Table voltage 4 Table voltage 5

Table voltage 6 Table voltage 7

Table voltage 8 Table voltage 9
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2.2. RESULTS CHAPTER 2. EXPERIMENTS

Table voltage 10

The colour chart ties in very well with [Maas, 2007] so looks to be a reliable
set of data.

2.2.2 Different sample rates

Testing three sample rates: 2Hz; 4Hz; 8Hz for 100s

ex-30-08-10 01

2Hz, 100s.
Table speeds 0, 5-10 in steps of 1, 0
Pump speeds 0, 8-10 in steps of 2/5, 0

Pressure vs. Time Colour Chart

Table voltage 0 Table voltage 5
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2.2. RESULTS CHAPTER 2. EXPERIMENTS

Table voltage 6 Table voltage 7

Table voltage 8 Table voltage 9

Table voltage 10

These results show that there is little variation in any of the spectral densities
or in the colour charts with pump voltage. Also the pressure vs. time plot is
very noisy, this is seen in all of the following experiments until it was realised
that the pump was faulty. Up until that point the data is mostly useless. The
useful data resumes at “Repeating ‘Good Data’ to check pump” (Pg 36) and
the experiments between here and then are included only for completeness.

Two useful things to come out of this experiment is that it has been seen
that at least 4Hz is needed to get a full range for the spectral densities and
that without the excitation of the pump there are no peaks seen in the spectral
density - so these can be viewed as “control” experiments.

ex-30-08-10 02

Repeat of ex-30-08-10 01 with 4Hz 100s

16
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Pressure vs. Time Colour Chart

Table voltage 0 Table voltage 5

Table voltage 6 Table voltage 7

Table voltage 8 Table voltage 9
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2.2. RESULTS CHAPTER 2. EXPERIMENTS

Table voltage 10

ex-30-08-10 03

Repeat of ex-30-08-10 01 with 8Hz 100s

Pressure vs. Time Colour Chart

Table voltage 0 Table voltage 5

Table voltage 6 Table voltage 7
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Table voltage 8 Table voltage 9

Table voltage 10

2.2.3 Wide spectrum (fine)

ex-30-08-10 04

A long experiment looking over the whole range available over the maximum
permitted value of twenty steps. 2Hz 100s

Table speeds 0-10 in steps of 1/2, 0
Pump speeds 0, 2-10 in steps of 2/5, 0

Pressure vs. Time Colour Chart
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Table voltage 0 Table voltage 1

Table voltage 2 Table voltage 3

Table voltage 4 Table voltage 5

Table voltage 6 Table voltage 7
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Table voltage 8 Table voltage 9

Table voltage 10 Table voltage 11

Table voltage 12 Table voltage 13

Table voltage 14 Table voltage 15
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Table voltage 16 Table voltage 17

Table voltage 18 Table voltage 19

Table voltage 20

2.2.4 Wide Spectrum

Five identical experiments designed to test the repeatability of the data. ex-
01-09-10 02 was stopped early to allow time for ex-01-09-10 03. All at 2Hz
100s

Table speeds 0-10 in steps of 1, 0
Pump speeds 0 2-11 in steps of 1, 0

ex-31-08-10 01
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Pressure vs. Time Colour Chart

Table voltage 0 Table voltage 1

Table voltage 2 Table voltage 3

Table voltage 4 Table voltage 5
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Table voltage 6 Table voltage 7

Table voltage 8 Table voltage 9

Table voltage 10

ex-31-08-10 02

Pressure vs. Time Colour Chart
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Table voltage 0 Table voltage 1

Table voltage 2 Table voltage 3

Table voltage 4 Table voltage 5

Table voltage 6 Table voltage 7
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Table voltage 8 Table voltage 9

Table voltage 10

ex-31-08-10 03

Pressure vs. Time Colour Chart

Table voltage 0 Table voltage 1
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Table voltage 2 Table voltage 3

Table voltage 4 Table voltage 5

Table voltage 6 Table voltage 7

Table voltage 8 Table voltage 9
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Table voltage 10

ex-01-09-10 01

Pressure vs. Time Colour Chart

Table voltage 0 Table voltage 1

Table voltage 2 Table voltage 3

28



2.2. RESULTS CHAPTER 2. EXPERIMENTS

Table voltage 4 Table voltage 5

Table voltage 6 Table voltage 7

Table voltage 8 Table voltage 9

Table voltage 10

ex-01-09-10 02
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Pressure vs. Time Colour Chart

Table voltage 0 Table voltage 1

Table voltage 2 Table voltage 3

Table voltage 4 Table voltage 5
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Table voltage 6 Table voltage 7

2.2.5 Focused 2-6

ex-01-09-10 03

A closer look at the same range used in [Maas, 2007]. 2Hz 100s
Table speeds 0, 2-6 in steps of 4/19, 0
Pump speeds 0 2-6 in steps of 4/19, 0

Pressure vs. Time Colour Chart

Colour chart with average value Table voltage 0
taken for table 511/19 pump 2
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Table voltage 2 Table voltage 24/19

Table voltage 28/19 Table voltage 212/19

Table voltage 216/19 Table voltage 31/19

Table voltage 35/19 Table voltage 39/19

Table voltage 313/19 Table voltage 317/19
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2.2. RESULTS CHAPTER 2. EXPERIMENTS

Table voltage 42/19 Table voltage 46/19

Table voltage 410/19 Table voltage 414/19

Table voltage 418/19 Table voltage 53/19

Table voltage 57/19 Table voltage 511/19
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Table voltage 515/19 Table voltage 6

2.2.6 Displaced

ex-02-09-10 01

This was attempted after the tank was displaced 7cm (2.76”) in the direction
6→5, initialisation file identical to ex-31-08-10 01.

At this point the analysis of the data comparing different sample rates was
used and a sample rate of 4Hz was decided upon. So this experiment is taken
at 4Hz, 100s.

Table speeds 0-10 in steps of 1, 0
Pump speeds 0 2-11 in steps of 1, 0

Pressure vs. Time Colour Chart

Table voltage 0 Table voltage 1
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Table voltage 2 Table voltage 3

Table voltage 4 Table voltage 5

Table voltage 6 Table voltage 7

Table voltage 8 Table voltage 9
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Table voltage 10

2.2.7 Repeating ‘Good Data’ to check pump

After the following it was realised that the experiment taken on Friday (ex-27-
08-10 01) (Pg 13) contained useful data, however all experiments proceeding this
did not due to a fault with the pump. The pump was fixed and we repeated the
one experiment we had good data from, ex-27-08-10 01, to check our apparatus.
This was measured at 4Hz for 100s.

Table speeds 0-10 in steps of 1, 0
Pump speeds 0, 2-6 in steps of 4/9, 0

ex-03-09-10 01

Pressure vs. Time Colour chart

Table voltage 0 Table voltage 1
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Table voltage 2 Table voltage 3

Table voltage 4 Table voltage 5

Table voltage 6 Table voltage 7

Table voltage 8 Table voltage 9
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Table voltage 10

2.2.8 Comparison

A short piece which compares “Good Data” (Pg 13) and “Repeating ‘Good
Data’ to check pump” (Pg 36) before comparing the results.

Good data Repeating Good data
Pressure vs. Time Pressure vs. Time

Good data Repeating Good data
Colour chart Colour chart

Difference in ∆ p
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When we look at the data the values are proportional to each other and
when they are plotted next to each other the similarities are obvious. From this
it would appear our techinal problems are solved.

2.2.9 After I Left

This is data sent to me by Anna Rabitti after I left Holland, measured at 4Hz
for 200s.

ex-08-09-10 01

Initialisation file identical to ex-27-08-10 01.
Table speeds 0-10 in steps of 1, 0
Pump speeds 0, 2-6 in steps of 4/9, 0

Pressure vs. Time Colour chart

Table voltage 0 Table voltage 1

Table voltage 2 Table voltage 3
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Table voltage 4 Table voltage 5

Table voltage 6 Table voltage 7

Table voltage 8 Table voltage 9

Table voltage 10

This is an excellent piece of data and there seems to be a large number of
peaks between around 0.2 in all of the spectral densities.

ex-08-09-10 02

Initialisation file identical to ex-27-08-10 01.
Table speeds 0-10 in steps of 1, 0
Pump speeds 0, 2-6 in steps of 4/9, 0
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Pressure vs. Time Colour chart

Table voltage 0 Table voltage 1

Table voltage 2 Table voltage 3

Table voltage 4 Table voltage 5
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Table voltage 6 Table voltage 7

Table voltage 8 Table voltage 9

Table voltage 10

This is another top experiment, and ties in very well with the last.

ex-09-09-10 01

Initialisation file identical to ex-27-08-10 01.
Table speeds 0-10 in steps of 1, 0
Pump speeds 0, 2-6 in steps of 4/9, 0
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Pressure vs. Time Colour chart

Table voltage 0 Table voltage 1

Table voltage 2 Table voltage 3

Table voltage 4 Table voltage 5

Table voltage 6 Table voltage 7
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Table voltage 8 Table voltage 9

Table voltage 10

Sadly this experienced the sudden unexpected change in pressure Leo Maas
found in some of the experiments deemed ‘Historic Data’, which were completed
before I arrived. I can see little use to be obtained from this experiment.

ex-09-09-10 02

Initialisation file identical to ex-27-08-10 01.
Table speeds 0-10 in steps of 1, 0
Pump speeds 0, 2-6 in steps of 4/9, 0

Pressure vs. Time Colour chart
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Table voltage 0 Table voltage 1

Table voltage 2 Table voltage 3

Table voltage 4 Table voltage 5

Table voltage 6 Table voltage 7
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Table voltage 8 Table voltage 9

Table voltage 10

This experiment has suffered a similar fate to that of the previous experiment
and the results still seem unusable.

ex-10-09-10 01

Initialisation file identical to ex-27-08-10 01.
Table speeds 0-10 in steps of 1, 0
Pump speeds 0, 2-6 in steps of 4/9, 0

Pressure vs. Time Colour chart
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Table voltage 0 Table voltage 1

Table voltage 2 Table voltage 3

Table voltage 4 Table voltage 5

Table voltage 6 Table voltage 7

Table voltage 8 Table voltage 9
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Table voltage 10

This experiment looks satisfactory. For pump rates 7 and 8 a low frequency
wave manifests itself, upon closer inspection we can see that this is also included
in ex-08-09-10_01 Pg 39 and ex-08-09-10_02 40; however it seems much more
dominant in this experiment.

ex-10-09-10 02

Initialisation file ex-10-09-10 02.

This was taken as a very long, very detailed experiment; which sadly did not
go to plan.

Table speeds 0, 1-10 in steps of 9/20, 0
Pump speeds 0, 2-6 in steps of 1/5, 0

Pressure vs. Time Colour chart

Table voltage 0 Table voltage 1
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Table voltage 19/20 Table voltage 19/10

Table voltage 27/20 Table voltage 28/10

Table voltage 31/4 Table voltage 37/10

Table voltage 43/20 Table voltage 43/5
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Table voltage 51/20 Table voltage 51/2

Table voltage 519/20 Table voltage 62/5

Table voltage 617/20 Table voltage 73/10

Table voltage 73/4 Table voltage 81/5
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Table voltage 813/20 Table voltage 91/10

Table voltage 911/20 Table voltage 10

Beyond the aesthetic of the colour chart this experiment does not seem
particularly useful.

2.3 Discussion

The experiments above were, in the most part, of little use. However some of
them showed real promise and it was a pity that they were blighted by the
difficulties that arose.

The few good experiments highlight that there are some modes which are
more exciting than others and that these all seem to be of low frequency.

51



Chapter 3

Flat Box

52



3.1. INTRODUCTION CHAPTER 3. FLAT BOX

3.1 Introduction

This chapter will look at a rigid rectangular duct in the x-direction and some
of the waves within it.

3.2 Wave Solutions

The linearised equations to be used are:

ut − fv = −px (3.1)

vt + fu = −py (3.2)

wt = −pz (3.3)

ux + vy + wz = 0 (3.4)

3.2.1 k 6= 0

Rescale to remove f, putting t = f t̂ and p = fp̂ then dividing through by f in
(3.1) & (3.2).

Suppose form u = û(y, z) ei(kx− ωt), consequently p = p̂(y, z) ei(kx− ωt)
Then, dropping hats

−iωu− v = −px (3.5)

−iωv + u = −py (3.6)

−iωw = −pz (3.7)

iku+ vy + wz = 0 (3.8)

Solve for w

Remove pressure terms by cross differentiation and (for k 6= 0) rearrange conti-
nuity to obtain

(3.6)x − (3.5)y 0 = iωuy + vy + iku+ ωkv (3.9)

(3.6)z − (3.7)y 0 = uz − iωvz + iωwy (3.10)

(3.7)x − (3.5)z 0 = iωuz + vz + ωkw (3.11)

u =
i

k
(vy + wz) (3.12)

Remove u from (3.9) — (3.11) using continuity (3.12)

0 = −ω
k

(vyy + wzy)− wz + ωkv (3.13)

0 =
1

k
(vyz + wzz)− ωvz + ωwy (3.14)

0 = −ω
k

(vyz + wzz) + vz + ωkw (3.15)
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3.2. WAVE SOLUTIONS CHAPTER 3. FLAT BOX

Find an equation for v in terms of w

ω(3.14) + (3.15) 0 = (1− ω2)vz + ω2wy + ωkw (3.16)

i.e. vz = − ω

1− ω2
(ωwy + kw) (3.17)

Substitute (3.17) into (3.14) to obtain

wyy −
1− ω2

ω2
wzz = k2w (3.18)

Let w = Y (y)Z(z)ei(kx−ωt) and divide by Y Z

Y ′′

Y
− 1− ω2

ω2

Z ′′

Z
= k2 (3.19)

Look for plane waves in y and z direction, let Y = A1 eily and Z = A2 eimz

The dispersion relation can be found by simply substituting Y and Z into
(3.19) to give

k2 = −l2 +
1− ω2

ω2
m2 (3.20)

ω2 =
m2

k2 + l2 +m2
(3.21)

i.e. ω =
±m√

k2 + l2 +m2
= ± sin θ (3.22)

w = A1 ei(kx+ ly +mz − ωt) (3.23)

Solve for specific boundary conditions

Attempt a solution with w of the form:

w = A1(B1 cos ly +B2 sin ly)(C1 cosmz + C2 sinmz) ei(kx− ωt) (3.24)

Need w = 0 at z = 0, H so m = nwπ
H where nw ∈ Z

However ∀nw < 0 sin nwπH z = − sin
|nw|π
H z. So both terms will be absorbed

together when finding the amplitudes, hence take nw ∈ N ∪ {0}.

w = A2(B1 cos ly +B2 sin ly) sin
nwπ

H
z ei(kx− ωt) (3.25)

where A2 = A1C2

Using (3.17)

v =
ω

1− ω2

A2H

nwπ
cos

nwπ

H
z [(kB1 + lωB2) cos ly + (kB2 − lωB1) sin ly] ei(kx− ωt)

(3.26)
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Figure 3.1: Flat rectangular duct

v
∣∣
y=0

= 0 =⇒ kB1 + lωB2 = 0 =⇒ B1 = − lω
k
B2

v =
ω

1− ω2

A3H

nwπ
(k +

l2ω2

k
) sin (ly) cos

nwπ

H
z ei(kx− ωt) (3.27)

where A3 = A2B2

v
∣∣
y=L

= 0 =⇒ l = nvπ
L where nv ∈ N ∪ {0}

v =
ω

1− ω2

A3Hk

nwπ
(1 + (

nvωπ

kL
)2) sin

nvπ

L
y cos

nwπ

H
z ei(kx− ωt) (3.28)

w = A3(sin
nvπ

L
y − nvωπ

kL
cos

nvπ

L
y) sin

nwπ

H
z ei(kx− ωt) (3.29)

Let sin
nvπ

L
y − nvωπ

kL
cos

nvπ

L
y = r sin (

nvπ

L
y − θ) (3.30)

r2 = 1 + (nvωπ
kL

)2 and θ = arctan nvωπ
kL

∈ [0, π2 )

So putting (3.30) into (3.29)

w = A3 r sin (
nvπ

L
y − θ) sin

nwπ

H
z ei(kx− ωt) (3.31)

From (3.12) u can be found using (3.28) & (3.31)

u = A3[
iω

1− ω2

Hnv
Lnw

(1 +
(nvωπ
kL

)2

)

cos
nvπ

L
y + i

rnwπ

kH
sin (

nvπ

L
y − θ)] cos

nwπ

H
z ei(kx− ωt) (3.32)
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u =


[ iω
1−ω2

Hnv

Lnw
r2 cos

nvπ

L
y + i rnwπ

kH sin (nvπ
L y − θ)] cos nwπ

H z
ω

1−ω2
Hk
nwπ

(1 + (nvωπ
kL )2) sin nvπ

L y cos nwπ
H z

r sin (nvπ
L y − θ) sin

nwπ

H
z

A3 ei(kx− ωt)

(3.33)

ω =
±nwπ

H√
k2 + (nvπ

L )2 + (nwπ
H )2

(3.34)

where r2 = 1 + (nvωπ
kL

)2 and θ = arctan nvωπ
kL

∈ [0, π2 )

u can be rewritten as

u = iA3[
ω

1− ω2

Hnv
Lnw

(1 +
(nvωπ
kL

)2

) cos
nvπ

L
y

+
nwπ

kH
(sin

nvπ

L
y − nvωπ

kL
cos

nvπ

L
y)]

cos
nwπ

H
z ei(kx− ωt) (3.35)

i.e.

u = iA3[(
ω

1− ω2

Hnv
Lnw

(1 +
(nvωπ
kL

)2

)− nvnwωπ
2

k2LH
) cos

nvπ

L
y

+
nwπ

kH
(sin

nvπ

L
y)] cos

nwπ

H
z ei(kx−ωt) (3.36)

Let

λ2 =

(
ω

1− ω2

Hnv
Lnw

(1 +
(nvωπ
kL

)2

)− nvnwωπ
2

k2LH

)2

+
(nwπ
kH

)2

(3.37)(
ω

1− ω2

Hnv
Lnw

r2 − nwπ

kH
tan θ

)2

+
(nwπ
kH

)2

(3.38)

α = arctan
ω

1−ω2
Hnv

Lnw
r2 − nwπ

2

kH tan θ
nwπ
kH

(3.39)

Then

u = iA3λ sin (
nvπ

L
y + α) cos

nwπ

H
z ei(kx−ωt) (3.40)

To summarise, for k 6= 0 (3.33) becomes

u =

 iλ sin (nvπ
L y + α) cos nwπ

H z
ω

1−ω2
Hk
nwπ

r2 sin nvπ
L y cos nwπ

H z

r sin (nvπ
L y − θ) sin nwπ

H z

A3 ei(kx− ωt)

ω =
±nwπ

H√
k2 + (nvπ

L )2 + (nwπ
H )2
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where

θ = arctan
nvωπ

kL
(3.41)

r2 = 1 + (
nvωπ

kL
)2 (3.42)

= 1 + tan2 θ (3.43)

α = arctan
ω

1−ω2
Hnv

Lnw
r2 − nwnvπ

3ω
k2HL

nwπ
kH

(3.44)

λ2 =

(
ω

1− ω2

Hnv
Lnw

r2 − nwnvωπ
2

k2HL

)2

+
(nwπ
kH

)2

(3.45)

=
(nwπ
kH

tanα
)2

+
(nwπ
kH

)2

(3.46)

λ = ±nwπ
kH

secα (3.47)

The factor i in u betrays the fact that u is π/2 out of phase with v and w.

3.2.2 k = 0

As before rescale to remove f, putting t = f t̂ and p = fp̂.

Solving for w

Suppose form u = û(y, z) e−iωt, consequently p = p̂(y, z) e−iωt

Then, dropping hats

iωu+ v = 0 (3.48)

−iωv + u = −py (3.49)

−iωw = −pz (3.50)

vy + wz = 0 (3.51)

(3.49)z − (3.50)y

uz − iωvz + iωwy = 0 (3.52)

Putting (3.48) into (3.52) gives

1− ω2

ω2
vz + wy = 0 (3.53)

Using (3.51)z and (3.53)y

1− ω2

ω2
wzz − wyy = 0 (3.54)

The same as above, this time with k = 0. Similarly take w of form w =

D1 ei(ly +mz − ωt)

The dispersion relation is found to be:
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0 =
1− ω2

ω2
m2 − l2 (3.55)

ω2 =
m2

l2 +m2
(3.56)

ω =
±m√
l2 +m2

= ± sinβ (3.57)

So far it looks much the same as k 6= 0 however u, v and w are considerably
simpler after applying boundary conditions.

Solving for specific boundary conditions

Let w = D1(E1 cos ly + E2 sin ly)(F1 cosmz + F2 sinmz) e−iωt

w = 0 at z = 0, H =⇒ F1 = 0, m =
nowπ
H , now ∈ N ∪ {0}

Let D2 = D1F2

w = D2(E1 cos ly + E2 sin ly) sin (
nowπ

H
z) e−iωt (3.58)

Using (3.53) to find v

v =
ω2

1− ω2
D2

Hl

nowπ
(−E1 sin ly + E2 cos ly) cos (

nowπ

H
z) e−iωt (3.59)

v = 0 at y = 0, L =⇒ E2 = 0, l =
novπ
L where nov ∈ N ∪ {0}

Let D3 = D2E1

v = −D3
ω2

1− ω2

Hnov
Lnow

sin (
novπ

L
y) cos (

nowπ

H
z) e−iωt (3.60)

Consequently from (3.48)

u = −iD3
ω

1− ω2

Hnov
Lnow

sin (
novπ

L
y) cos (

nowπ

H
z) e−iωt (3.61)

To summarise, for k = 0

u =

−i ω
1−ω2

Hno
v

Lno
w

sin (
no
vπ
L y) cos (

no
wπ
H z)

− ω2

1−ω2

Hno
v

Lno
w

sin (
no
vπ
L y) cos (

no
wπ
H z)

cos (
no
vπ
L y) sin (

no
wπ
H z)

D3e−iωt (3.62)

ω =
±now√(

H
L n

o
v

)2
+ now

2

= ± sinβ

where nov, n
o
w ∈ N ∪ {0}

v and w are in opposite directions and there remains a factor of i in u
indicating a π/2 phase shift.
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3.3 Waves of the same frequency

3.3.1 k = 0

If two waves are looked at, W1 and W2, such that W1 has nv, nw j times that
of W2 it is seen

ωW1
=

±jnow√(
H
L (jnov)

)2
+ (2now)

2
=

±now√(
H
L n

o
v

)2
+ now

2

= ωW2

For unique ω take nov, n
o
w coprime; or more generally take pov, p

o
w such that(

nov
now

)
= j

(
pov
pow

)
where j = (nov, n

o
w) ∈ N

uj =

−i ω
1−ω2

Hpov
Lpow

sin (j
povπ
L y) cos (j

[powπ
H z)

− ω2

1−ω2

Hpov
Lpow

sin (j
povπ
L y) cos (j

powπ
H z)

cos (j
povπ
L y) sin (j

powπ
H z)

D3,j e−iωt

∑
j

uj =



−i ω
1−ω2

Hpov
Lpow

∑
j

D3,j sin (j
povπ

L
y) cos (j

powπ

H
z)

− ω2

1−ω2

Hpov
Lpow

∑
j

D3,j sin (j
povπ

L
y) cos (j

powπ

H
z)∑

j

D3,j cos (j
povπ

L
y) sin (j

powπ

H
z)


e−iωt
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4.1 Introduction

This chapter will first derive the governing equations to be used for the rest of
the project and then will look into simple wave attractors in the 2D case of the
semi-trapezium used in Maas and Harlander [2007].

4.2 Governing equations

Using the previous governing equations (3.5) - (3.7)

u = − 1

1− ω2
(ωkp+ py) (4.1)

v =
i

1− ω2
(kp+ ωpy) (4.2)

w = − i

ω
pz (4.3)

Which substituted into the continuity equation (3.8) gives:

0 = − ik

1− ω2
(ωkp+ py) +

i

1− ω2
(kpy + ωpyy)− i

ω
pzz (4.4)

0 =
1

1− ω2
(−ωk2p+ ωpyy)− 1

ω
pzz (4.5)

0 = pyy −
1− ω2

ω2
pzz − k2p (4.6)

Let

z =

√
1− ω2

ω
ẑ =⇒ ∂

∂z
=

∂ẑ

∂z

∂

∂ẑ
=

ω√
1− ω2

∂

∂ẑ

Then (4.6) becomes

pyy − pẑẑ − k2p = 0 (4.7)

The Telegraph equation is:

pyy − pẑẑ + α2p = 0 (4.8)

So for propagating waves
(
eikx

)
α = ±ik and for waves that decay down

channel
(
e−kxandk > 0

)
a change that can be easily made by mapping k 7−→ ik

so ±α = k ∈ R.

4.2.1 Simplifying to 2D

This simplification can be made by setting k=0, so the waves neither propagate
nor decay downstream. This means our governing equation (4.7) reduces to the
Poincaré equation:

pyy −
1− ω2

ω2
pzz = 0 (4.9)

pyy − pẑẑ = 0 (4.10)
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and our velocities (4.1) - (4.3) reduce to:

u = − 1

1− ω2
py (4.11)

v =
iω

1− ω2
py (4.12)

w = − i

ω
pz = − i√

1− ω2
pẑ (4.13)

For a square of side length π the flat box (3.62) provides:

u =

 −i ω
1−ω2

nv

nw
sinnvy cosnwz

− ω2

1−ω2
nv

nw
sin (nvy) cosnwz)

cosnvy sinnwz

D3,ne−iωt (4.14)

Using (4.11)−(4.14), p can be solved for in terms of y and z, the exponential
term is omitted for tidiness.

p = −1− ω2

iω

∫
ω2

1− ω2

nv
nw

sinnvy cosnwz y + f(z) (4.15)

= iω

∫
nv
nw

sinnvy cosnwz y + f(z) (4.16)

= − iω

nw
cosnvy cosnwz + f(z) (4.17)

pz = iω cosnvy sinnwz + f ′(z) (4.18)

iωw = iω cosnvy sinnwz (4.19)

Yielding f ′(z) = 0, w.l.o.g. take f(z) = 0.
Hence a single mode of pressure can be described as:

p = − iω

nw
cosnvy cosnwzD3,ne−iωt (4.20)

Simple substitution of p into our governing equation (4.9) yields n2
w =

ω2

1−ω2n
2
v which, upon writing n = nv gives us an improved p:

p = − i
√

1− ω2

n
cosny cos

nω√
1− ω2

zD3,ne−iωt (4.21)

In terms of ẑ

p = − i
√

1− ω2

n
cosny cosnẑD3,ne−iωt (4.22)

p can be written as a Fourier series over the domain

p =

(∑
n

an cosny cosnẑ

)
e−iωt (4.23)

Satisfying governing equation (4.10)
Implying our u, v and w are
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u =
1

1− ω2

(∑
n

nan sinny cosnẑ

)
e−iωt (4.24)

v = − iω

1− ω2

(∑
n

nan sinny cosnẑ

)
e−iωt (4.25)

w =
i√

1− ω2

(∑
n

nan cosny sinnẑ

)
e−iωt (4.26)

4.3 Boundaries

Figure 4.1: Semi-trapezium from Maas and Harlander [2007]

Let the angle between the slope and the horizontal be α.
First check boundary conditions on the flat walls at y = 0, z = 0 and z = π

using (4.25) and (4.26).
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v = − iω

1− ω2

(∑
n

nan sinn0 cosnẑ

)
e−iωt (4.27)

= 0 (4.28)

w =
i√

1− ω2

(∑
n

nan cosny sinn0

)
e−iωt (4.29)

= 0 (4.30)

w =
i√

1− ω2

(∑
n

nan cosny sinnπ

)
e−iωt (4.31)

= 0 (4.32)

So our p satisfies the boundary conditions on the vertical and horizontal
walls, v = 0 at y = 0 and w = 0 at z = 0, π. Now choose an to satisfy no normal
flow on the slope,

u · n = 0 i.e. w = −v tanα (4.33)

The ẑ co-ordinate along the slope is,

ẑ = (y − π +
π

2
cotα) tanα = (y − π) tanα+

π

2
(4.34)

From (4.23), p along the slope is,

p =

(∑
n

an cosny cosn(y − π) tanα+
nπ

2

)
e−iωt (4.35)

Firstly putting (4.25) and (4.26) into (4.33) yields:

w = −v tanα (4.36)

i√
1− ω2

(∑
n

nan cosny sinnẑ

)
= tanα

iω

1− ω2

(∑
n

nan sinny cosnẑ

)
(4.37)

√
1− ω2

ω

(∑
n

nan cosny sinnẑ

)
= tanα

(∑
n

nan sinny cosnẑ

)
(4.38)

Then using (4.34)

0 =
∑
n

nan

[√
1− ω2

ω
cosny sinnẑ − tanα sinny cosnẑ

]
(4.39)

=
∑
n

nan

[√
1− ω2

ω
cosny sinn((y − π) tanα+

π

2
)

− tanα sinny cosn((y − π) tanα+
π

2
)

]
(4.40)

v can now be prescribe freely on the fundamental intervals, the characteris-
tics carry this information from these three regions; completely specifying p in
the whole domain.
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4.4 Numerical approximation

For N̂ = J1 +J2 +N , where J1 is the number of points on the first fundamental,
J2 on the second and N on the lower half of the slope then our an can be solved
for numerically to form an approximate p:

p ≈

 N̂∑
n=1

an cosny cosnẑ

 e−iωt (4.41)

4.4.1 Example

This will be illustrated with an example, take tanα = 3/2 so the lower left
corner is at co-ordinate ( 2π

3 , 0) and the upper right is at ( 4π
3 , π). Our (4.34)

becomes

ẑ = (y − π)
3

2
+
π

2
=

3y

2
− π (4.42)

So our (4.40) shortens to,

0 =

N̂∑
n=1

an

[√
1− ω2

ω
cosny sin (

3

2
ny − nπ)− 3

2
sinny cos (

3

2
ny − nπ)

]
(4.43)

v is prescribed to be v = sin 3y on the first fundamental interval and v =
− sin 3y on the second.

To summarise, choose points J1, J2 and N and solve for the N̂ Fourier
co-efficients. The equations are reiterated here for simplicities sake with the
first equation garnered from the first fundamental internal with y ∈ (0, π3 ) and
z = π; the second from the second fundamental interval with y ∈ (π, 4π

3 ) and
z = π and the third and final equation from the lower half of the slope with
y ∈ ( 2π

3 , π) and ẑ = 3
2y − π.

0 =
iω

1− ω2

 N̂∑
n=1

nan sinny(−1)n

+ sin 3y (4.44)

0 =
iω

1− ω2

 N̂∑
n=1

nan sinny(−1)n

− sin 3y (4.45)

0 =

N̂∑
n=1

an

[√
1− ω2

ω
cosny sin (

3

2
ny − nπ)− 3

2
sinny cos (

3

2
ny − nπ)

]
(4.46)

This can be solved in Matlab and then plotted in Mathematica, the code is
found in the appendix or can be downloaded from the website (http://www.
ucl.ac.uk/~zcahdl5/project.html).

Here is one example of this for J1 = J2 = 40 and N = 8. Notice the fine
structure around the attractor. In the stratified, non-rotating case this has been
solved without the approximation of inverting the large matrix numerically and
a fractal structure has been found where the attractor reflects off the walls, see
[Maas and Harlander, 2007].
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Figure 4.2: Contour plot of pressure
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5.1 Introduction

This chapter will extend the previous to k 6= 0 and also examine the propagating
and decaying modes of the waves.

5.2 Governing Equations

Using the Telegraph equation (4.7) for k 6= 0 our approximate solution (4.23)
does not satisfy. However if p is taken of the form

p =

(∑
n

an cos n̂y cosnẑ

)
e−iωt (5.1)

where
n̂2 = n2 − k2

then the Telegraph equation is satisfied.
Compute v and w from (4.2) and (4.3) it is found that

v = − iω

1− ω2

(∑
n

an [k cos n̂y − ωn̂ sin n̂y] cosnẑ

)
e−iωt (5.2)

w =
i√

1− ω2

(∑
n

nan cos n̂y sinnẑ

)
e−iωt (5.3)

However at y = 0, the vertical wall, v 6= 0. So our boundary conditions are
not satisfied.

To take an alternative view of this, formulate v itself as

v =

(∑
n

an sin n̂y cosnẑ

)
e−iωt (5.4)

From which p can be found by solving the differential equation (4.2) and
from that w too.

p =
i(1− ω2)

ω

[∑
n

an
n̂ cos n̂y − k

ω sin n̂y(
k
ω

)2
+ n̂

cosnẑ

]
e−iωt (5.5)

w = −
√

1− ω2

ω

[∑
n

nan
n̂ cos n̂y − k

ω sin n̂y(
k
ω

)2
+ n̂

cosnẑ

]
e−iωt (5.6)

Clearly v = 0 at y = 0 and w = 0 at z = 0, π. Also the p formed still
satisfies the Telegraph equation, as does the new v (5.4).

5.3 Numerical Solutions

So again look for an approximate numerical solution, this time in terms of v.
Taking v of the form
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v ≈

(∑
n=1

N̂an sin n̂y cosnẑ

)
e−iωt (5.7)

As before w = −v tan alpha on the slope. In this case skipping straight to
tan alpha = 3

2 to display an example which will procure the following boundary
condition on the lower half of the slope:

0 =

N̂∑
n=1

an

[
sin
(√

n2 − k2y
)

cos

(
3n

2
(y − 2π

3

)
−2n

3

√
1− ω2

ω

√
n2 − k2 cos

(√
n2 − k2y

)
− k
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(√
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)(
k
ω

)2
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(
3n

2
(y − 2π

3
)

)]
(5.8)

Where n̂ has been written in it’s full form (5.2). Recall eikx was used so k
purely real corresponds to propagating waves, purely imaginary produces e−kx

corresponding to decaying waves and complex k gives rise to a mixture of the
two.

In our fundamental intervals the same conditions as the two dimensional
case are prescribed, v = sin 3y in the first and v = − sin 3y in the second, this
will give us:

0 =

(∑
n

an sin
(√

n2 − k2y
)

(−1)n

)
− sin 3y (5.9)

0 =

(∑
n

an sin
(√

n2 − k2y
)

(−1)n

)
+ sin 3y (5.10)

We are now in possession of three equations written in N̂ terms which can be
solved using the boundary collocation method outlined in [Maas and Harlander,
2007] for our an. To summarise the equations from our boundary conditions
and the prescription in the fundamental intervals:

0 =

(∑
n

an sin
(√

n2 − k2y
)

(−1)n

)
− sin 3y (5.11)

0 =

(∑
n

an sin
(√

n2 − k2y
)

(−1)n

)
+ sin 3y (5.12)

0 =
∑
n
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)]
(5.13)
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5.3. NUMERICAL SOLUTIONS CHAPTER 5. 3D

On the website (http://www.ucl.ac.uk/~zcahdl5/project.html) there
are many examples of u and v for different values of k as well as animations of
how contour plots and 3D plots of the velocity profile vary with time. Here I
shall show just three pictures (which may look similar but have subtly different
animations) for the values k = 1.5, k = 1.5i and k = 1.5 + 1.5i.

k = 1.5

k = 1.5i
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k = 1.5 + 1.5i
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CHAPTER 6. DISCUSSION

In this project we have looked for wave attractors in a homogeneous, ro-
tating, infinite duct. These are caused by a breaking of symmetry, which is -
unfortunately - commonly not seen in most laboratory experiments where the
geometry chosen precludes wave focusing. [Maas, 2001] views the more serious
problem to be that most theoretical descriptions of wave motion in geophysics
also eliminate focusing due to a combination of the ’traditional‘ and hydrostatic
approximations.

Inertial waves have a dense set of frequencies which does not follow eigen-
modes, strikingly different to that seen in surface or acoustic waves. Another
difference is that upon reflection of surface waves the wavelength is fixed, but
not the direction. Whereas for inertial waves the waves will reflect following
strict rules of direction and correspondingly their wavelength will change. In-
ertial waves are dominated by wave attractors in all but the most symmetric
domains (cylinders, spheres and cuboids). Here there is a spatial singularity
where wave energy increases without bound until checked by viscous and non
linear processes [Rieutord et al., 2001, Maas, 2005].

The focusing in this paper was first demonstrated using experiments before
being derived for a fixed downstream wavenumber in a three dimensional do-
main. One problem of the method used here is that as n tends towards a value
such that n2 − k2 = 0 then we tend towards a singularity. This equation is
not integrable by any method found, including the use of Mathematica, which
means our choice of k is restricted. Whilst this does not affect us for k imaginary
or complex corresponding to decaying downstream and a mixture of decaying
and propagating, it does affect us for k real; where k real corresponds for purely
propagating downstream.

Further research from here seems to belong to two main paths. Firstly a
better approximation to the solution, which can again be split into two sections.
One of which would be to reduce the condition number of the large matrix which
was inverted to find the co-efficients of the approximate solutions using p and
later using v. This could possibly follow an energy minimisation method such
as that of [Swart et al., 2007]. The second section of this improved solution
would be to try and remove the division by zero encountered whilst trying to
satisfy no normal flow on the sloped wall.

Secondly, this method could be used to generate the basic building blocks of
a three dimensional closed domain. This could be accomplished though a sum
over k with boundary conditions of no normal flow at the end walls.

The following is from Maas [2005]: The ubiquitous presence of inertial os-
cillations in the oceans might perhaps be due to wave attractors [Maas, 2001].
These attractors may play a decisive role in geophysical media as the ocean, at-
mosphere, liquid outer core of the earth, other planets or stars [Ogilvie and Lin,
2003], because the waves that approach them localize energy onto small scales
where they contribute to mixing and drive mean ?ows. These processes may for
the same reason be relevant in industrial applications, like turbomachinery.

I would like to thank my supervisor here at UCL, Ted Johnson, for all of
his help and support with the project and for going above and beyond what
I could ever have expected of him by setting up with Leo Maas six weeks at
NIOZ over the summer. I am indebted to Leo Maas and Anna Rabitti for their
continuing help and supervision not just during my stay at NIOZ but also after
I left. Finally I would like to thank Sven Ober at NIOZ for his help with the
experiments and the technical problems that arose.
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A.1. FLAT BOX APPENDIX A. CODE

Here is the Matlab and Mathematica code for all parts of the project.
The matrix “a” generated by Matlab is the matrix of co-efficients an which
is exported under a suitable name, e.g. for J1 = J2 = 40, N = 8 and
k = 1.5 + 1.5i “a” would be exported as a .mat file using the command
save 40-40-8_clipped_k=1.5+1.5i.mat a with the exceptions that there is
no mention of k in the 2D case and in some of the earlier examples on the
website clipped isn’t mentioned as it was a later improvement. Whilst the
Mathematica code is written for the file paths on my personal computer with
its own directory paths it should be obvious where to substitute in your own.

These Matlab and Mathematica as well as the pictures, animations and
matrices of co-efficients generated can be found and downloaded on the project
page of my website at http://www.ucl.ac.uk/~zcahdl5/project.html

A.1 Flat box

Below is the Mathematica code for the sum of different waves of the same
frequency, also found here http://www.ucl.ac.uk/~zcahdl5/Project/Flat_

box/Non-unique_modes_of_u_for_k=0_flat_box.nb.
Firstly a manipulate code to get a rough idea of what is going on:

Manipulate[Plot3D[Re[Sum[(Sin[j*m*z]*Sin[j*n*y])/(E^(I*t)*j),

{j, 1, N}]], {y, 0, Pi}, {z, 0, Pi}], {N, 1, 200, 1},

{t, 0, 2*Pi, Pi/8}, {n, 1, 10, 1}, {m, 1, 10, 1}]

Then export for a different ratio of sides or co-prime eigenmodes from (1,1)
to (5,5).

picts = Table[Plot3D[Re[Sum[(Sin[j*y]*Cos[j*z])/(E^(I*t)*j),

{j, 1, 100}]], {y, 0, Pi}, {z, 0, Pi},

PlotRange -> {{0, Pi}, {0, Pi}, {-2, 2}}],

{t, 0, 2*Pi - Pi/32, Pi/32}];

Export["C:\\Temp\\k=0 non-unique modes\\1y1z.avi", picts]

Export["C:\\Temp\\k=0 non-unique modes\\1y1z.gif", picts]

picts = Table[Plot3D[Re[Sum[(Sin[j*y]*Cos[2*j*z])/(E^(I*t)*j),

{j, 1, 100}]], {y, 0, Pi}, {z, 0, Pi},

PlotRange -> {{0, Pi}, {0, Pi}, {-2, 2}}],

{t, 0, 2*Pi - Pi/32, Pi/32}];

Export["C:\\Temp\\k=0 non-unique modes\\1y2z.avi", picts]

Export["C:\\Temp\\k=0 non-unique modes\\1y2z.gif", picts]

picts = Table[Plot3D[Re[Sum[(Sin[j*y]*Cos[3*j*z])/(E^(I*t)*j),

{j, 1, 100}]], {y, 0, Pi}, {z, 0, Pi},

PlotRange -> {{0, Pi}, {0, Pi}, {-2, 2}}],

{t, 0, 2*Pi - Pi/32, Pi/32}];

Export["C:\\Temp\\k=0 non-unique modes\\1y3z.avi", picts]

Export["C:\\Temp\\k=0 non-unique modes\\1y3z.gif", picts]

picts = Table[Plot3D[Re[Sum[(Sin[j*y]*Cos[4*j*z])/(E^(I*t)*j),

{j, 1, 100}]], {y, 0, Pi}, {z, 0, Pi},
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PlotRange -> {{0, Pi}, {0, Pi}, {-2, 2}}],

{t, 0, 2*Pi - Pi/32, Pi/32}];

Export["C:\\Temp\\k=0 non-unique modes\\1y4z.avi", picts]

Export["C:\\Temp\\k=0 non-unique modes\\1y4z.gif", picts]

picts = Table[Plot3D[Re[Sum[(Sin[j*y]*Cos[5*j*z])/(E^(I*t)*j),

{j, 1, 100}]], {y, 0, Pi}, {z, 0, Pi},

PlotRange -> {{0, Pi}, {0, Pi}, {-2, 2}}],

{t, 0, 2*Pi - Pi/32, Pi/32}];

Export["C:\\Temp\\k=0 non-unique modes\\1y5z.avi", picts]

Export["C:\\Temp\\k=0 non-unique modes\\1y5z.gif", picts]

picts = Table[Plot3D[Re[Sum[(Sin[2*j*y]*Cos[j*z])/(E^(I*t)*j),

{j, 1, 100}]], {y, 0, Pi}, {z, 0, Pi},

PlotRange -> {{0, Pi}, {0, Pi}, {-2, 2}}],

{t, 0, 2*Pi - Pi/32, Pi/32}];

Export["C:\\Temp\\k=0 non-unique modes\\2y1z.avi", picts]

Export["C:\\Temp\\k=0 non-unique modes\\2y1z.gif", picts]

picts = Table[Plot3D[Re[Sum[(Sin[2*j*y]*Cos[2*j*z])/(E^(I*t)*j),

{j, 1, 100}]], {y, 0, Pi}, {z, 0, Pi},

PlotRange -> {{0, Pi}, {0, Pi}, {-2, 2}}],

{t, 0, 2*Pi - Pi/32, Pi/32}];

Export["C:\\Temp\\k=0 non-unique modes\\2y2z.avi", picts]

Export["C:\\Temp\\k=0 non-unique modes\\2y2z.gif", picts]

picts = Table[Plot3D[Re[Sum[(Sin[2*j*y]*Cos[3*j*z])/(E^(I*t)*j),

{j, 1, 100}]], {y, 0, Pi}, {z, 0, Pi},

PlotRange -> {{0, Pi}, {0, Pi}, {-2, 2}}],

{t, 0, 2*Pi - Pi/32, Pi/32}];

Export["C:\\Temp\\k=0 non-unique modes\\2y3z.avi", picts]

Export["C:\\Temp\\k=0 non-unique modes\\2y3z.gif", picts]

picts = Table[Plot3D[Re[Sum[(Sin[2*j*y]*Cos[4*j*z])/(E^(I*t)*j),

{j, 1, 100}]], {y, 0, Pi}, {z, 0, Pi},

PlotRange -> {{0, Pi}, {0, Pi}, {-2, 2}}],

{t, 0, 2*Pi - Pi/32, Pi/32}];

Export["C:\\Temp\\k=0 non-unique modes\\2y4z.avi", picts]

Export["C:\\Temp\\k=0 non-unique modes\\2y4z.gif", picts]

picts = Table[Plot3D[Re[Sum[(Sin[2*j*y]*Cos[5*j*z])/(E^(I*t)*j),

{j, 1, 100}]], {y, 0, Pi}, {z, 0, Pi},

PlotRange -> {{0, Pi}, {0, Pi}, {-2, 2}}],

{t, 0, 2*Pi - Pi/32, Pi/32}];

Export["C:\\Temp\\k=0 non-unique modes\\2y5z.avi", picts]

Export["C:\\Temp\\k=0 non-unique modes\\2y5z.gif", picts]

picts = Table[Plot3D[Re[Sum[(Sin[3*j*y]*Cos[j*z])/(E^(I*t)*j),

{j, 1, 100}]], {y, 0, Pi}, {z, 0, Pi},

PlotRange -> {{0, Pi}, {0, Pi}, {-2, 2}}],
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{t, 0, 2*Pi - Pi/32, Pi/32}];

Export["C:\\Temp\\k=0 non-unique modes\\3y1z.avi", picts]

Export["C:\\Temp\\k=0 non-unique modes\\3y1z.gif", picts]

picts = Table[Plot3D[Re[Sum[(Sin[3*j*y]*Cos[2*j*z])/(E^(I*t)*j),

{j, 1, 100}]], {y, 0, Pi}, {z, 0, Pi},

PlotRange -> {{0, Pi}, {0, Pi}, {-2, 2}}],

{t, 0, 2*Pi - Pi/32, Pi/32}];

Export["C:\\Temp\\k=0 non-unique modes\\3y2z.avi", picts]

Export["C:\\Temp\\k=0 non-unique modes\\3y2z.gif", picts]

picts = Table[Plot3D[Re[Sum[(Sin[3*j*y]*Cos[3*j*z])/(E^(I*t)*j),

{j, 1, 100}]], {y, 0, Pi}, {z, 0, Pi},

PlotRange -> {{0, Pi}, {0, Pi}, {-2, 2}}],

{t, 0, 2*Pi - Pi/32, Pi/32}];

Export["C:\\Temp\\k=0 non-unique modes\\3y3z.avi", picts]

Export["C:\\Temp\\k=0 non-unique modes\\3y3z.gif", picts]

picts = Table[Plot3D[Re[Sum[(Sin[3*j*y]*Cos[4*j*z])/(E^(I*t)*j),

{j, 1, 100}]], {y, 0, Pi}, {z, 0, Pi},

PlotRange -> {{0, Pi}, {0, Pi}, {-2, 2}}],

{t, 0, 2*Pi - Pi/32, Pi/32}];

Export["C:\\Temp\\k=0 non-unique modes\\3y4z.avi", picts]

Export["C:\\Temp\\k=0 non-unique modes\\3y4z.gif", picts]

picts = Table[Plot3D[Re[Sum[(Sin[3*j*y]*Cos[5*j*z])/(E^(I*t)*j),

{j, 1, 100}]], {y, 0, Pi}, {z, 0, Pi},

PlotRange -> {{0, Pi}, {0, Pi}, {-2, 2}}],

{t, 0, 2*Pi - Pi/32, Pi/32}];

Export["C:\\Temp\\k=0 non-unique modes\\3y5z.avi", picts]

Export["C:\\Temp\\k=0 non-unique modes\\3y5z.gif", picts]

picts = Table[Plot3D[Re[Sum[(Sin[4*j*y]*Cos[j*z])/(E^(I*t)*j),

{j, 1, 100}]], {y, 0, Pi}, {z, 0, Pi},

PlotRange -> {{0, Pi}, {0, Pi}, {-2, 2}}],

{t, 0, 2*Pi - Pi/32, Pi/32}];

Export["C:\\Temp\\k=0 non-unique modes\\4y1z.avi", picts]

Export["C:\\Temp\\k=0 non-unique modes\\4y1z.gif", picts]

picts = Table[Plot3D[Re[Sum[(Sin[4*j*y]*Cos[2*j*z])/(E^(I*t)*j),

{j, 1, 100}]], {y, 0, Pi}, {z, 0, Pi},

PlotRange -> {{0, Pi}, {0, Pi}, {-2, 2}}],

{t, 0, 2*Pi - Pi/32, Pi/32}];

Export["C:\\Temp\\k=0 non-unique modes\\4y2z.avi", picts]

Export["C:\\Temp\\k=0 non-unique modes\\4y2z.gif", picts]

picts = Table[Plot3D[Re[Sum[(Sin[4*j*y]*Cos[3*j*z])/(E^(I*t)*j),

{j, 1, 100}]], {y, 0, Pi}, {z, 0, Pi},

PlotRange -> {{0, Pi}, {0, Pi}, {-2, 2}}],

{t, 0, 2*Pi - Pi/32, Pi/32}];
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Export["C:\\Temp\\k=0 non-unique modes\\4y3z.avi", picts]

Export["C:\\Temp\\k=0 non-unique modes\\4y3z.gif", picts]

picts = Table[Plot3D[Re[Sum[(Sin[4*j*y]*Cos[4*j*z])/(E^(I*t)*j),

{j, 1, 100}]], {y, 0, Pi}, {z, 0, Pi},

PlotRange -> {{0, Pi}, {0, Pi}, {-2, 2}}],

{t, 0, 2*Pi - Pi/32, Pi/32}];

Export["C:\\Temp\\k=0 non-unique modes\\4y4z.avi", picts]

Export["C:\\Temp\\k=0 non-unique modes\\4y4z.gif", picts]

picts = Table[Plot3D[Re[Sum[(Sin[4*j*y]*Cos[5*j*z])/(E^(I*t)*j),

{j, 1, 100}]], {y, 0, Pi}, {z, 0, Pi},

PlotRange -> {{0, Pi}, {0, Pi}, {-2, 2}}],

{t, 0, 2*Pi - Pi/32, Pi/32}];

Export["C:\\Temp\\k=0 non-unique modes\\4y5z.avi", picts]

Export["C:\\Temp\\k=0 non-unique modes\\4y5z.gif", picts]

picts = Table[Plot3D[Re[Sum[(Sin[5*j*y]*Cos[j*z])/(E^(I*t)*j),

{j, 1, 100}]], {y, 0, Pi}, {z, 0, Pi},

PlotRange -> {{0, Pi}, {0, Pi}, {-2, 2}}],

{t, 0, 2*Pi - Pi/32, Pi/32}];

Export["C:\\Temp\\k=0 non-unique modes\\5y1z.avi", picts]

Export["C:\\Temp\\k=0 non-unique modes\\5y1z.gif", picts]

picts = Table[Plot3D[Re[Sum[(Sin[5*j*y]*Cos[2*j*z])/(E^(I*t)*j),

{j, 1, 100}]], {y, 0, Pi}, {z, 0, Pi},

PlotRange -> {{0, Pi}, {0, Pi}, {-2, 2}}],

{t, 0, 2*Pi - Pi/32, Pi/32}];

Export["C:\\Temp\\k=0 non-unique modes\\5y2z.avi", picts]

Export["C:\\Temp\\k=0 non-unique modes\\5y2z.gif", picts]

picts = Table[Plot3D[Re[Sum[(Sin[5*j*y]*Cos[3*j*z])/(E^(I*t)*j),

{j, 1, 100}]], {y, 0, Pi}, {z, 0, Pi},

PlotRange -> {{0, Pi}, {0, Pi}, {-2, 2}}],

{t, 0, 2*Pi - Pi/32, Pi/32}];

Export["C:\\Temp\\k=0 non-unique modes\\5y3z.avi", picts]

Export["C:\\Temp\\k=0 non-unique modes\\5y3z.gif", picts]

picts = Table[Plot3D[Re[Sum[(Sin[5*j*y]*Cos[4*j*z])/(E^(I*t)*j),

{j, 1, 100}]], {y, 0, Pi}, {z, 0, Pi},

PlotRange -> {{0, Pi}, {0, Pi}, {-2, 2}}],

{t, 0, 2*Pi - Pi/32, Pi/32}];

Export["C:\\Temp\\k=0 non-unique modes\\5y4z.avi", picts]

Export["C:\\Temp\\k=0 non-unique modes\\5y4z.gif", picts]

picts = Table[Plot3D[Re[Sum[(Sin[5*j*y]*Cos[5*j*z])/(E^(I*t)*j),

{j, 1, 100}]], {y, 0, Pi}, {z, 0, Pi},

PlotRange -> {{0, Pi}, {0, Pi}, {-2, 2}}],

{t, 0, 2*Pi - Pi/32, Pi/32}];

Export["C:\\Temp\\k=0 non-unique modes\\5y5z.avi", picts]
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Export["C:\\Temp\\k=0 non-unique modes\\5y5z.gif", picts]

A.2 2D

A.2.1 Matlab code

This is fairly well explained during the actual Matlab file, the actual file can be
found here http://www.ucl.ac.uk/~zcahdl5/Project/2D/p2Dtrap.m

clear all;

close all;

nJ1=40; nJ2=40; nJ3=8; omega=0.5;

nJ12=nJ1+nJ2; N=nJ12+nJ3;

clipped=true;

%J1 y values along first fundamental interval,

%J2 along the second and J3

%is along lower half of slope.

%nJ1 is number of intervals along J1,

%likewise with nJ2 and nJ3

%Clipped true or false chooses whether to

%include the end points of the intervals or not.

%Omega is the wave frequency.

if clipped==true;

J1=linspace(pi/(3*nJ1),pi/3-pi/(3*nJ1),nJ1);

J2=linspace(pi+pi/(3*nJ2),4*pi/3-pi/(3*nJ2),nJ2);

J12(1:nJ1)=J1; J12(nJ1+1:nJ12)=J2;

J3=linspace(2*pi/3,pi,nJ3);

elseif clipped==false;

J1=linspace(pi/(3*nJ1),pi/3,nJ1);

J2=linspace(pi,4*pi/3,nJ2);

J12(1:nJ1)=J1; J12(nJ1+1:nJ12)=J2;

J3=linspace(2*pi/3,pi,nJ3);

end

% For A.a=b where A is NxN matrix of sums,

%a is the co-efficients of these

% sums (to be solved for) and b is our specified values

%Define A

A=zeros(N,N);

for n=1:N

for m=1:nJ12

A(m,n)=(3/2)*(1i*omega/(1-omega^2))*n*

sin(n*J12(1,m))*((-1)^n);

end
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for m=1:nJ3

A(nJ12+m,n)=n*(((2/3)*(sqrt(1-omega^2)/omega)*cos(n*J3(1,m))*

sin((3*n/2)*(J3(1,m)-(2*pi/3))))-

(sin(n*J3(1,m))*cos((3*n/2)*(J3(1,m)-(2*pi/3)))));

end

end

%Define b

b=zeros(N,1);

for n=1:nJ1

b(n,1)=sin(3*J1(n));

end

for n=1:nJ2

b(nJ1+n,1)=-sin(3*J2(n));

end

%Zero for n=nJ12+1:N

%A.a=b implies a=A\b

a=A\b;

After this had been run the following command would be used to save a to
the default folder save 40-40-8_clipped.mat a

A.2.2 Mathematica code

This is also at http://www.ucl.ac.uk/~zcahdl5/Project/2D/Create_plots_
2D.nb and gives an output of pictures and animations. To choose between what
you do and don’t want simply remove the (* and *) which is the Mathematica
code to ignore what is contained within. The sloped wall has to be drawn on
manually.

a = {Flatten[Import["C:\\Temp\\40-40-8_clipped.mat"]]};

Dimensions[a]

(*set upper limit of n as dimension of a*)

f = Table[Cos[n y] Cos[n z], {n, 1, 88}];

p = a.f;

Dimensions[p] (*Check =1*)

(*density=DensityPlot[Im[p],{y,0,4 \[Pi]/3},{z,0,\[Pi]},

MaxRecursion->6]*)

(*contour = ContourPlot[Im[p], {y, 0, 4 \[Pi]/3}, {z, 0, \[Pi]},

MaxRecursion -> 4]*)

(*If MaxRecursion is increased we get a more accurate plot,

but it will take longer and require more memory*)

N[2 \[Pi]/3] (*The y value for where the wall intersects z=0*)
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A.3 3D

A.3.1 Matlab Code

This is well described by the comments in the file and the method for ex-
porting into Mathematica is exactly the same as before with the slightly more
complicated naming criteria highlighted above. This file can be found here
http://www.ucl.ac.uk/~zcahdl5/Project/3D/v3Dtrap.m

clear all;

close all;

nJ1=40; nJ2=40; nJ3=8; omega=0.5; clipped=true; k=0.5+0.5i;

nJ12=nJ1+nJ2; N=nJ12+nJ3;

%J1 y values along first fundamental interval,

%J2 along the second and J3

%is along lower half of slope.

%nJ1 is number of intervals along J1,

%likewise with nJ2 and nJ3.

%Clipped true or false chooses whether to include

%the end points of the intervals or not.

%Omega is the wave frequency.

%For k=... it is actually ik=... becuase we started

%off with exp{ikx) so propagating waves set k real,

%decaying waves set Re(k)=0, Im(k)>0 so we get

%exp(i^2 Im(k) x)=exp(-Im(k)x) decaying.

%So rate of decay is Im(k) hence Im(k)<0 is

%actually a growing exponential.

%Re(k^2) cannot be an integer unless Re(k^2)>N

%e.g. k=1 is propagating with wave number 1,

%k=i is decaying like e(-x), k=2+3i

%is decaying like e(-3x) and propagating with wave number 2.

if clipped==true;

J1=linspace(pi/(3*nJ1),pi/3-pi/(3*nJ1),nJ1);

J2=linspace(pi+pi/(3*nJ2),4*pi/3-pi/(3*nJ2),nJ2);

J12(1:nJ1)=J1; J12(nJ1+1:nJ12)=J2;

J3=linspace(2*pi/3,pi,nJ3);

elseif clipped==false;

J1=linspace(pi/(3*nJ1),pi/3,nJ1);

J2=linspace(pi,4*pi/3,nJ2);

J12(1:nJ1)=J1; J12(nJ1+1:nJ12)=J2;

J3=linspace(2*pi/3,pi,nJ3);

end

%For A.a=b where A is NxN matrix of sums,

%a is the co-efficients of these sums

%(to be solved for) and b is our specified values

%Define A
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A=zeros(N,N);

for n=1:N

nhat=sqrt(n^2 - k^2);

for m=1:nJ12

y=J12(1,m);

A(m,n)=sin(nhat*y)*((-1)^n);

end

for m=1:nJ3

y=J3(1,m);

A(nJ12+m,n)=sin(nhat*y)*cos((3*n/2)*y - n*pi)

- (2*n/3)*((sqrt(1 - omega^2))/omega)*(nhat*cos(nhat*y)

- (k/omega)*sin(nhat*y))/((k^2)/(omega^2) + nhat^2)

*sin((3*n/2)*y - n*pi);

end

end

%Define b

b=zeros(N,1);

for n=1:nJ1

b(n,1)=sin(3*J1(n));

end

for n=1:nJ2

b(nJ1+n,1)=-sin(3*J2(n));

end

%Zero for n=nJ12+1:N

%A.a=b implies a=A\b

a=A\b;

After this a is exported again using a similar command to above which can
then be imported using Mathematica to create plots.

A.3.2 Mathematica code

This can also be found here http://www.ucl.ac.uk/~zcahdl5/Project/3D/

Create_plots_3D.nb and can produce contours plots - which were found to be
far superior to density plots - and animations of these with respect to time. It
can also produce animations of 3D plots of the velocity profile. Plots of the
pressure term were found to be inferior to those of the horizontal velocity, v,
and plots of the downstream velocity profile, u, have some of the best detail.

a =
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{Flatten[Import["C:\\Temp\\40-40-8_clipped_k=1.5+1.5i.mat"]]};

Dimensions[a]

(*set upper limit of n as dimension of a*)

\[Omega] = 0.5; k = 1.5 + 1.5*I;

vtrig = Table[Sin[n*y]*Cos[Sqrt[n^2 - k^2]*z], {n, 1, 88}];

ptrig =

Table[((I*(1 - \[Omega]^2))/\[Omega])

*((Sqrt[n^2 - k^2]*Cos[Sqrt[n^2 - k^2]*y]

- (k/\[Omega])*Sin[Sqrt[n^2 - k^2]*y])/

((k/\[Omega])^2 + n^2 - k^2))*Cos[n*z],

{n, 1, 88}];

utrig = Table[I*((k*Sqrt[n^2 - k^2]

*((1 - \[Omega]^2)/\[Omega]^2)*Cos[Sqrt[n^2 - k^2]*y]

+ (n^2/\[Omega])*Sin[Sqrt[n^2 - k^2]*y])/

((k/\[Omega])^2 + n^2 - k^2))*Cos[n*z], {n, 1, 88}];

(*For pictures use these two*)

contourv = ContourPlot[Re[v*E^(I*\[Omega])],

{y, 0, (4*Pi)/3}, {z, 0, Pi}, MaxRecursion -> Automatic];

contouru = ContourPlot[Re[u*E^(I*\[Omega])],

{y, 0, (4*Pi)/3}, {z, 0, Pi}, MaxRecursion -> Automatic];

(*For 2D animations use these*)

contourv = Table[ContourPlot[Re[v*E^(I*\[Omega]*t)],

{y, 0, (4*Pi)/3}, {z, 0, Pi}, MaxRecursion -> Automatic],

{t, 0, (2*Pi)/\[Omega] - Pi/8, Pi/8}];

Export

["R:\\Project\\40-40-8_clippedv_k=1.5+1.5i_omega=0.5.gif",

contourv]

contourv =.

contourp = Table[ContourPlot[Re[p*E^(I*\[Omega]*t)],

{y, 0, (4*Pi)/3}, {z, 0, Pi}, MaxRecursion -> Automatic],

{t, 0, (2*Pi)/\[Omega] - Pi/8, Pi/8}];

Export

["R:\\Project\\40-40-8_clippedp_k=1.5+1.5i_omega=0.5.gif",

contourp]

contourp =.

contouru = Table[ContourPlot[Re[u*E^(I*\[Omega]*t)],

{y, 0, (4*Pi)/3}, {z, 0, Pi}, MaxRecursion -> Automatic],

{t, 0, (2*Pi)/\[Omega] - Pi/8, Pi/8}];

Export

["R:\\Project\\40-40-8_clippedu_k=1.5+1.5i_omega=0.5.gif",

contourp]
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contouru =.

For a 3D animation of the velocity profile, run this

a={Flatten[Import["C:\\Temp\\40-40-8_clipped_k=1.5+1.5i.mat"]]};

\[Omega] = 0.5; k = 1.5 + 1.5*I;

vtrig = Table[Sin[n*y]*Cos[Sqrt[n^2 - k^2]*z], {n, 1, 88}];

v = a . vtrig;

Export["C:\\Temp\\3D_40-40-8_clippedv_k=1.5+1.5i_omega=0.5.gif",

Table[Plot3D[Re[v*E^(I*\[Omega]*t)], {y, 0, (4*Pi)/3},

{z, 0, Pi}, PlotRange -> {-5000, 5000}],

{t, 0, (2*Pi)/\[Omega] - Pi/8, Pi/8}]]
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