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Abstract

Enclosed rotating homogeneous +uids support waves that are restored by Coriolis forces. These waves
propagate obliquely through the +uid under a -xed angle with respect to the rotation axis which is set by
the ratio of the frequency of the wave and the inertial frequency (twice the angular frequency of the tank).
In the particular case that boundaries are either parallel, or perpendicular to the rotation axis, eigenmodes
may be expected. An example is Kelvin’s (1880) axial can. However, the spatial structure of these waves
can still be quite complicated, as shown here for waves in a ‘horizontal’ rectangular parallelepiped. The
container’s rigid horizontal top and bottom surfaces allow for modal expansion in the vertical, each mode
being governed by the ‘inertial’ analogs of surface Poincar9e and Kelvin waves. Combining these, as in
the Taylor problem of re+ecting surface Kelvin waves, one -nds both the eigenfrequencies as well as the
typical amphidromic structure (phase lines circling around nodal points) of the resulting inertial wave pattern
in dependence of the remaining two parameters: the horizontal and vertical aspect ratios. This entails the
approximative determination of eigenvalues of an in-nite matrix equation, obtained with the Proudman–Rao
method. It appears that certain speci-c frequencies persist as eigenfrequency for di;erent aspect ratios, albeit
belonging to di;erent eigenmodes. Surprisingly, these correspond to the eigenfrequencies of an in-nitely
long channel of waves lacking along-channel structure. Inertial wave patterns are presented by means of
the amplitude and phase of the internal elevation -eld (related to the axial velocity component) and of the
two horizontal velocity components. These reveal predominant anticyclonic turning of phase and currents;
maximum elevation and current amplitudes detached from the solid walls; and, occasionally, a nearly sloshing
type of response (nodal lines, instead of points).
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PACS: 47:32

Keywords: Rotating +uid; Inertial waves; Amphidromes; Parallelepiped; Degeneracy

∗ Tel: +31-222-369419; fax: +31-222-319674.
E-mail address: maas@nioz.nl (L.R.M. Maas).

0169-5983/$30.00 c© 2003 Published by The Japan Society of Fluid Mechanics and Elsevier B.V.
All rights reserved.
doi:10.1016/j.+uiddyn.2003.08.003

FLUID DYNAMICS RESEARCH is now available from the IOP Publishing website http://www.iop.org/journals/FDR

mailto:maas@nioz.nl
http://www.iop.org/journals/FDR


374 L.R.M. Maas / Fluid Dynamics Research 33 (2003) 373–401

1. Introduction

Apart from short potential waves, a host of long, rotationally modi-ed gravity waves, such as
Kelvin and Poincar9e waves, feature in geophysical +uid dynamics (Krauss, 1973; LeBlond and
Mysak, 1978; Hendershott, 1981; Hutter, 1993). In a homogeneous +uid these waves are ‘external’
in the sense that their maximum elevations are (formally) reached at the surface. On a rotating plane
(of angular frequency �), such waves may, in the presence of non-uniform depth, be accompanied
by Rossby waves, which are restored by a +uid column’s tendency to conserve potential vorticity.
One may thus have the impression that in a uniformly rotating, uniform depth, homogeneous +uid
the former external gravity waves are the only low-frequency waves possible, their trapping to the
boundary seemingly a necessity, imposed by the elliptic nature of the governing equation. However,
this skips a class of ‘internal’ wave modes, which have maximum vertical displacements in the
interior of the +uid, and which vanish at the surface. These waves, of frequencies below the inertial
frequency, f = 2�, exist by virtue of non-hydrostatic e;ects, are solely restored by Coriolis forces
and are known as (elastoid) inertial, or gyroscopic waves (Kelvin, 1880; Bjerknes et al., 1933; Fultz,
1959). These should not be confused with the ‘inertial waves’ in the oceanographic literature, where
this term is often used to designate rotationally modi-ed internal gravity waves of frequencies slightly
above or at the inertial frequency (Fu, 1981). The ellipticity ‘constraint’ of surface trapping is escaped
since inertial waves are governed by a hyperbolic equation, Poincar9e’s equation (Greenspan, 1968).
Inertial waves proper are often neglected in thin-+uid systems as ocean and atmosphere because they
have small wave lengths, and because of the strati-cation of these media. The scale length of the
inertial waves is the depth-scale of the vertical mode considered, which is therefore small, making the
waves more susceptible to viscous degradation. Relative to this length scale, long waves thus appear
only when their frequencies approach the inertial frequency f. However, for ‘fat bodies’ of +uid
(Lighthill, 1966), like the earth core, stellar interiors and in some industrial applications, it is natural
to consider these waves over a broader subinertial frequency range. Interestingly, suggestions on the
oceanic relevance of inertial waves have recently appeared, based on observations in a well-mixed
deep layer of the Meditteranean (van Haren and Millot, 2003).

Inertial waves were -rst discovered theoretically in an axial cylinder (Kelvin, 1880) that can be
considered of -nite height, owing to the axial periodicity of the solutions. The axial ‘can’ with
or without concentric inner cylinder is still one of the two, fully con-ned geometries (containers)
for which the governing hyperbolic equation with oblique-derivative boundary conditions has been
exactly solved. The other container for which regular solutions are found is the axial spheroid
(Bryan, 1889). A particular subclass of these solutions, the so-called toroidal modes, lacking radial
displacements, also survive in the spherical shell (Malkus, 1967; Rieutord et al., 2000), but this
denumerable set of regular waves co-exists with a continuum of singular (or focusing) waves that
constitute the generic wave response in +uid--lled rotating containers (Rieutord et al., 2000). Indeed,
since inertial waves propagate obliquely with respect to the rotation axis, any container having a
side wall that is neither parallel nor perpendicular to the axis of rotation, and whose shape thus
breaks the ‘local re+ectional symmetry’, is prone to focus these waves (Phillips, 1963; Maas, 2001).
In that respect, the spheroid is exceptional, because of its apparent ability to exactly compensate
focusing re+ections with defocusing re+ections. From this point of view, only the occurrence of
regular modes in the non-focusing, axial can could actually have been anticipated. Yet, within the
class of non-focusing containers, owing to its axisymmetry, even this container is special as it lacks
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the typical amphidromic structure: the presence of nodal points around which phase lines circle.
The appearance of such amphidromic points will be discussed here by computing the inertial wave
pattern in a rectangular parallelepiped: a cube stretched in two directions. Despite its innocuous shape,
the rectangular parallelepiped does not seem to have been discussed with regards to inertial waves
before. This container is non-focusing when its faces are again taken parallel or perpendicular to the
rotation axis. The sensitiveness of the resulting regular wave pattern to the container’s orientation
can be anticipated from results in a slightly tilted, rectangular tank that is in-nitely long in one
horizontal direction (HHiland, 1962), and a corresponding sensitiveness to tilting of a cylindrical
tank (Fultz, 1959; Wood, 1966; Scott, 1974; Thompson, 1979). Addition of an in-nitesimal slope
moreover opens the spectrum of Rossby waves.

Each of these theoretical results on inertial waves has been accompanied by observations, such
as in the axial cylinder (Fultz, 1959; McEwan, 1970; Manasseh, 1992; Manasseh, 1996; Kobine,
1995), slightly tilted cylinder (Thompson, 1979), sphere (Aldridge and Toomre, 1969), tilted spheroid
(Malkus, 1968; Vanyo et al., 1995), (truncated) cone (Beardsley, 1970), and, interestingly, in both
the non-tilted and tilted rectangle (experiments by Fultz, discussed in KMuchemann, 1965). Apart
from verifying the predicted eigenfrequencies of inertial waves in an axial can (Fultz, 1959) and
their oblique propagation (McEwan, 1970), these experiments typically show the long-time instability
of the wave system (resonant collapse), variably attributed to resonant triad interactions (McEwan,
1971) supported by an observed subharmonic growth (Kobine, 1995), inertial instability (Kerswell,
1995; Lifschitz and Fabijonas, 1996), or centrifugal instabilities, owing to continued pumping and
subsequent ampli-cation of the standing wave pattern (Maas, 2001). The tank is often slightly
tilted to produce perturbations at half the Coriolis frequency, but this set-up appears to generate
remarkably strong mean +ows too (Malkus, 1968; Manasseh, 1996; Thompson, 1979; KMuchemann,
1965). Manasseh (1994), deeming second-order recti-cation of inertial waves in the boundary layer
too weak to be responsible for a mean +ow exceeding the +ow associated with these waves, expressed
the need for an ampli-cation mechanism. It can be argued that geometric focusing of inertial waves,
brought about by tilting of the boundaries, might just be such a mechanism. Observations of inertial
waves in a tank of rectangular horizontal shape, having one sloping side wall, indeed not only
shows the focusing of these waves, but also the generation of a mean +ow at exactly the spot
where the focusing was argued to be most prominent (Maas, 2001). A reinterpretation in terms of
focusing inertial waves also seems warranted to explain the measured spectral response of inertial
waves in the truncated cone (Beardsley, 1970; Maas et al., 1997). The observations (Maas, 2001;
Manders and Maas, 2003) clearly require a theoretical description of inertial waves in a tilted
rectangular parallelepiped (a ‘box’). However, as inertial waves have not even been discussed in
the non-tilted box, we here provide such a description in a horizontal box (Section 4). Contained
inertial waves will appear as the -nal case of such waves considered in Section 3 in (1) an in-nite
layer, with rotation axis perpendicular to the rigid surface and bottom, (2) an in-nite channel and
(3) a half-in-nite channel (see Fig. 1). The specialist reader may choose to skip Sections 3.1–3.4
altogether, as similar results can be found in the literature. We incorporate them here in order to
make the text self-contained and to be able to draw the analogy to rotationally modi-ed surface
gravity waves, presenting the inertial waves as inertial Poincar9e and Kelvin waves (Section 3).
Yet, the waves considered here are purer in the sense that there is just one restoring mechanism
involved, due to the Coriolis force. Consequently, in a box we need not consider the e;ect of varying
the rotation ‘strength’ (the Coriolis frequency), as it is the only relevant frequency around. This
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(a) (b)

(d)(c)

(f)(e)

Fig. 1. Geometries for which inertial waves have been computed: (a) axial cylindrical can and (b) axial spheroid. Here
inertial waves will be discussed in an in-nite layer compressed between two parallel planes (c), in an in-nite channel
(d), a half-in-nite channel (e) and in a box (f).

contrasts with surface gravity waves where this frequency can be compared to the eigenfrequency
of the gravest, non-rotating mode of a rectangle (Rao, 1966). Also in distinction with surface waves
increasing con-nement does not lead to an isolated frequency spectrum, as one might naively expect.
Inertial waves in a box have a dense frequency spectrum, which, moreover, is degenerate. In this
respect, this is quite analogous to the case of (hydrostatic) internal gravity waves con-ned to a
box in both non-rotating (see the appendix) and rotating strati-ed +uids (BMauerle, 1998). However,
while two-dimensional solutions of non-rotating internal gravity waves ‘automatically’ satisfy the
impermeability conditions, because their rectilinear currents can be made parallel to vertical walls,
this is no longer the case when the medium rotates and an intricate coupling of waves occurs, as
illustrated by the con-ned inertial waves considered in this study. The adjustment of their circularly
polarised currents to vertical side walls may therefore be more representative for the adjustment
of gravito-inertial waves in 3D rotating containers, having elliptically polarised currents, and yet is
simpler because of the absence of gravitational restoring.

Section 5 provides a discussion of the relevance of the results.

2. Governing equations

Small-amplitude waves in a homogeneous +uid that is rotating uniformly with angular frequency
�∗ about a vertical axis aligned in the z∗ direction (asterisks denoting dimensional quantities) are
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governed by the linearised, inviscid equations of motion on an f∗-plane (where f∗ = 2�∗):

@u∗
@t∗

− f∗v∗ =− 1
�∗

@p∗
@x∗

; (2.1)

@v∗
@t∗

+ f∗u∗ =− 1
�∗

@p∗
@y∗

; (2.2)

@w∗
@t∗

=− 1
�∗

@p∗
@z∗

; (2.3)

@u∗
@x∗

+
@v∗
@y∗

+
@w∗
@z∗

= 0: (2.4)

Here (u∗; v∗; w∗) are the velocity components in the three Cartesian directions (x∗; y∗; z∗), while �∗
is the homogeneous density and p∗ the reduced pressure (relative to the hydrostatic pressure).
In an in-nite medium, the spatial structure of monochromatic waves ˙ exp(−i�∗t∗) is thus

governed by Poincar9e’s equation (Poincar9e, 1885; Poincar9e, 1910; Cartan, 1922; Greenspan, 1968)

@2p∗
@x2∗

+
@2p∗
@y2∗

−
(
f2∗
�2∗

− 1
)

@2p∗
@z2∗

= 0; (2.5)

obtained by combining (2.1)–(2.4). Plane waves ˙ exp i(k∗ · x∗), with k∗ = (k∗; l∗; n∗), lead to the
dispersion relation

�∗
f∗

=± n∗
(k2∗ + l2∗ + n2∗)1=2

=±sin�; (2.6)

where � is the angle which the wave vector makes with the plane perpendicular to the rotation
axis. For frequencies �∗ ¡f∗, the hyperbolic nature of the Poincar9e equation avoids the solution
being boundary-trapped. Displacements will be largest in the interior of the +uid domain, resulting
typically in a cellular wave pattern (Bjerknes et al., 1933). Plane waves propagate obliquely through
the +uid, with an angle that is -xed with respect to the rotation axis (GMortler, 1944; Oser, 1958;
McEwan, 1970). In the presence of a sloping boundary, this may therefore result in focusing of
these waves, as observed experimentally (Maas, 2001; Manders and Maas, 2003).

Presently, we consider the container to have boundaries that respect the local re+ectional symmetry
of re+ecting characteristics so that the walls are either exclusively parallel or perpendicular to the
rotation axis. Starting with a +at, rigid bottom (z∗=−H∗) and surface (z∗=0), perpendicular to the
rotation axis, we require the vertical velocity to vanish there (w∗ =0 at z∗ =0, −H∗). The presence
of the rigid surface removes the gravitational restoring force (and external gravity waves). Together,
these boundaries enforce standing modes in the vertical and we make the dynamically consistent
ansatz that the waves are given by

w∗ =
∞∑
n=1

@�n∗
@t∗

sin
n�z∗
H∗

; (2.7)

(u∗; v∗; p∗) =
∞∑
n=1

(un∗; vn∗; pn∗) cos
n�z∗
H∗

: (2.8)
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Here subscript n refers to the nth vertical mode. This omits a steady, degenerate n= 0 geostrophic
mode, which has w0∗ = 0, �∗f∗v0∗ = @p0∗=@x∗, �∗f∗u0∗ =−@p0∗=@y∗, @u0∗=@x∗ + @v0∗=@y∗ = 0, for
which the pressure -eld acts as a streamfunction, and which is not further considered here. The am-
plitude of the nth internal vertical elevation mode is denoted by �n∗. Substitution of these expansions
in Eqs. (2.1)–(2.4) leads to

@un∗
@t∗

− f∗vn∗ =−Hn∗
@3�n∗
@x∗@t2∗

; (2.9)

@vn∗
@t∗

+ f∗un∗ =−Hn∗
@3�n∗
@y∗@t2∗

; (2.10)

@�n∗
@t∗

+ Hn∗
(
@un∗
@x∗

+
@vn∗
@y∗

)
= 0; (2.11)

with e;ective depth

Hn∗ ≡ H∗=n�; (2.12)

after eliminating the pressure amplitude, which, from (2.3), reads

pn∗ = �∗Hn∗
@2�n∗
@t2∗

: (2.13)

Eqs. (2.9)–(2.11) are analogous to the familiar, linearised long wave equations (LWE), except that
wave acceleration (Hn∗@t∗t∗) at the right-hand sides of Eqs. (2.9) and (2.10) replaces gravitational
acceleration g∗, see LeBlond and Mysak (1978). The similarities and di;erences with the LWE will
be further discussed in the next section.

3. Wave solutions

Picking just one particular mode, n, Eqs. (2.9)–(2.11) are non-dimensionalized by taking e;ective
depth, Hn∗, and inertial frequency f∗ as length and frequency scales, respectively. Thus, writing
(u; v)= (un∗; vn∗)=Hn∗f∗, �= �n∗=Hn∗, t= t∗f∗, �=�∗=f∗ and (x; y)= (x∗; y∗)=Hn∗, the dimensionless
equations, employing the subscript-derivative convention, become

ut − v+ �ttx = 0; (3.1)

vt + u+ �tty = 0; (3.2)

�t + ux + vy = 0: (3.3)

By cross-di;erentiation of the momentum equations we obtain the polarization equations, relating
velocity and elevation -elds:

(@tt + 1)u=−@tt(�tx + �y); (3.4)

(@tt + 1)v=−@tt(�ty − �x): (3.5)
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These equations, combined with (3.3), yield

[1 + (1− �)@tt]�t = 0; (3.6)

where Laplacian � = @xx + @yy. The horizontal spatial structure of monochromatic waves ˙ exp
(−i�t) is thus determined by a Helmholtz equation

(�+ �2)(u; v; �) = 0; (3.7)

where

�2 =
1
�2 − 1 (3.8)

and, for inertial waves, �¡ 1. Horizontal velocities are now given by

u= �−2(−i��x + �y); (3.9)

v= �−2(−i��y − �x): (3.10)

At vertical walls these give rise to oblique-derivative boundary conditions, similar as for external
long waves. A di;erence with the LWE is the de-nition of �2, Eq. (3.8), which, for external
waves (scaled with the Rossby deformation radius, (g∗H∗)1=2=f∗), reads �2−1, with �¿ 1. Another
di;erence is that the vertical mode number n of the inertial waves is hidden in the (dimensionless)
size of the basin, so that a container of given size has a double in-nite number of horizontal modes
(one single in-nite number for each vertical mode), while the external modes of the LWE have only
a single in-nite number of modes. The issue whether amongst the double in-nite inertial modes
there is a degeneracy (eigenfrequency multiplicity) will be addressed later on.

3.1. Plane inertial Poincar8e waves

A vertically standing mode, (2.7) and (2.8), may propagate horizontally as a plane wave, of
the form exp i(kx + ly − �t). Such a wave solves Eqs. (3.1)–(3.3) provided frequency and wave
number satisfy the following dispersion relation (Tolstoy, 1973; Yamagata, 1978; Brekhovskikh and
Goncharov, 1993):

� =
1

(1 + k2 + l2)1=2
=

1
(1 + �2)1=2

; (3.11)

where, by convention, we adopt positive frequencies only. Note that if we would have scaled the
wave numbers just with H∗=�, instead of Hn∗, a factor n (n2) would show up in the numerator
(denominator), in agreement with (2.6). From (3.8) the second identity is obtained, and identi-es
� = (k2 + l2)1=2 as the amplitude of the horizontal component of the wave number vector k =
(k; l) ≡ �(cos �; sin �). This dispersion relation shows the familiar property that inertial waves are
low-frequency waves �¡ 1 (�∗ ¡f∗). The fact that the frequency does not depend on the horizontal
wave vector direction � reveals the isotropy of the f-plane (invariance of (3.1)–(3.3) to rotation in
horizontal plane). The phase velocity vector of the horizontally propagating wave is aligned with
the group velocity vector in this plane. Their magnitudes are given by c=�=�=�−1(1+�2)−1=2 and
cg =d�=d�=−�(1+�2)−3=2, respectively, which shows that phase and energy propagate in opposite
directions. The group velocity has an absolute maximum at � = 2−1=2, where |cg|= 2=33=2 (Fig. 2).



380 L.R.M. Maas / Fluid Dynamics Research 33 (2003) 373–401

0 1 2 3 4

0.2

0.4

0.6

0.8

1

1.2

1.4

0 1 2 3 4

0.2

0.4

0.6

0.8

1

cg

c

 
� �

�

c = cg

(a) (b)

Fig. 2. (a) Dispersion relation of inertial Poincar9e (solid) and inertial Kelvin (dashed) waves giving frequency versus
wave number amplitude �. (b) Corresponding phase velocity (c) and group velocity (−cg) as a function of wave number
amplitude. For IK waves, c =−cg.

3.2. Inertial Kelvin wave

It is interesting to consider whether Eqs. (3.1)–(3.3) allow for inertial Kelvin (IK) waves, in the
presence of a vertical wall, at x = 0, say. External Kelvin waves are semi-geostrophic, non-dispersive
waves, having velocities parallel to the wall (LeBlond and Mysak, 1978). Searching for IK-solutions
of Eqs. (3.1)–(3.3), we thus set u= 0. Consequently, these waves need to satisfy

− v=−�ttx; (3.12)

vt =−�tty; (3.13)

�t + vy = 0: (3.14)

Combining the last two equations one -nds

@t(v− vyy) = 0; (3.15)

which, together with (3.12), shows that along-wall velocities v either grow or decay with along-wall
distance y. From these equations it follows that a plane IK wave is a purely transversal wave
(particle motion perpendicular to wave motion) of form

u= 0; v= V exp[− y + i(x=� − �t)]; �= i
v
�
; (3.16)

provided it satis-es the dispersion relation

� = 1=k: (3.17)

Here V is an undetermined (complex) amplitude. As for the plane inertial waves, considered in the
previous section, energy propagates (cg =−k−2) in a direction opposite to the phase (c = k−2). IK
waves thus decay in the direction of increasing y, while propagating their phase in the direction of
increasing x (and vice versa, for waves growing with y). As the boundary at x=0 is not employed
at all (other than to impose the condition u=0 in a natural way), in retrospect, this IK wave is more
properly considered as being trapped to y=0 and propagating in x (energy propagation in negative
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x-direction). At the same time, however, such a wave cannot exist by itself, since it does not satisfy
the impermeability condition (v = 0) at the latter boundary. Strictly speaking, therefore, free IK
waves do not exist. In Section 3.4, we will show that Inertial Kelvin waves may, however, play a
crucial role when inertial Poincar9e (IP) waves re+ect o; a wall perpendicular to their propagation
direction (at y = 0, say).

3.3. Inertial Poincar8e waves in a channel

In the presence of a vertical wall at x = 0, plane IP waves exist when the velocity component
perpendicular to that wall vanishes, u= 0. From the polarization equation (3.4), this requires

�xt + �y = 0 at x = 0: (3.18)

In the horizontal plane, inertial waves re+ect specularly. Hence, a pair of incoming and re+ected
waves, that have identical frequency � and along-wall wave number l,

�= Zi exp i(−kx + ly − �t + �) + Zr exp i(kx + ly − �t − �); (3.19)

needs to satisfy −��x + l�= 0 at x = 0, or,

Zi(ik� + l) exp(i�) + Zr(−ik� + l) exp(−i�) = 0: (3.20)

Hence, Zi=Zr equals the ratio of a quantity and its complex conjugate, and therefore equals a complex
exponential, and the re+ected wave thus has the same amplitude as the incident wave, Zr=Zi ≡ Z=2,
su;ering only a loss of phase �. Perpendicular to the wall, the resulting wave is therefore of standing
type

�= Z cos(kx − �) exp i(ly − �t) = Z ′
(
cos kx +

l
�k

sin kx
)
exp i(ly − �t); (3.21)

provided exp(−2i�)=(k�− il)=(k�+il), or �=tan−1(l=k�), so that tan �=� tan�, where, recall, �
is the direction of the wave number vector in the horizontal plane with respect to the cross-channel
(x) direction. With the latter expression for � (and a transformed amplitude Z ′ = Z cos�), from
(3.9), the velocity component perpendicular to the wall becomes

u= ikZ ′ �3

1− �2

(
1 +

(
l
�k

)2)
sin kx exp i(ly − �t); (3.22)

so that IP waves can exist also in a channel of (non-dimensional) width L when cross-channel wave
numbers are quantized:

k ∈
{
km =

m�
L

}
; m∈{1; 2; 3; : : :}: (3.23)

The along-channel velocity component of the combined IP waves is, from (3.10),

v= Z ′
(
−l� cos kx +

1
k
sin kx

)
exp i(ly − �t): (3.24)
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Fig. 3. Top view of one wave length segment of a channel which is in-nitely long in y-direction and of dimensionless
width L = 4 in x-direction. It shows phase (solid) and amplitude (dashed lines) of the vertical displacement -eld of a
pair of equal amplitude, mode-1, up and down channel propagating Poincar9e modes of frequency � = 0:7. Amplitudes
are maximum at the saddle nodes of phase lines, located on the channel axis, at 1/4 and 3/4 wavelength. Rotation axis,
designated by �, points out of the paper.

The phase lines ly − �t = const: propagate in positive y-direction (energy in negative y-direction).
At -xed instance t, any single channel mode will have phase line y=const:, which is perpendicular
to the channel walls. Because of the asymmetry caused by Coriolis forces this is no longer true for
a combination of up and down-channel propagating inertial Poincar9e waves, such as shown for two
of equal magnitude in Fig. 3. It displays the typical amphidromic nature of the combined wave sys-
tem, characterized by phase lines circling anticyclonically (i.e. clockwise) around nodal points where
vertical elevation vanishes, similar to the well-known phase pattern displayed by counterpropagating
(external) Kelvin (LeBlond and Mysak, 1978) or Poincar9e waves (Krauss, 1973; Mortimer, 1974;
Hutter, 1993). Such phase pattern was -rst conjectured long ago by (Whewell, 1833) to comprehen-
sively describe observed tidal elevation patterns, see (Cartwright, 1999). Amphidromic patterns were
recently recognized to occur also in the vertical plane, in 2D obliquely propagating internal waves
(deWitt et al., 1986; Gerkema, 2001), and in quantum mechanical wave systems (Berry, 1987).

3.4. Inertial Poincar8e channel waves re9ecting from a vertical wall

Rewrite the general dispersion relation, (2.6), replacing k by km, Eq. (3.23). Then, the along-
channel wave number is determined by

lm =±(�−2 − 1− k2m)
1=2 ≡ ±(�−2 − �−2

m )1=2; (3.25)

where the cut-o; frequency is

�m = (1 + k2m)
−1=2 ¡ 1: (3.26)
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For any given � and m, these IP channel waves share the property with the external Poincar9e channel
waves that they are restricted in frequency space. In this case they can exist as propagating waves
(l2m ¿ 0) only if their frequency is less then the cut-o; frequency �m. Notice that frequencies may
equal these bounding frequencies, �m, and then represent waves that are uniform in along-channel
direction (l= 0), which are standing in the cross-channel plane. All propagating IP waves, though,
are bounded from above by �1. For any given frequency �¡�1, the higher cross-channel modes
(m∈{M;M + 1; : : :}) will always be trapped, where M is the smallest m for which �m ¡�. This is
relevant for the case that an incoming Poincar9e wave, whose energy propagates along the negative
y-direction (lm ¿ 0), re+ects from a perpendicular wall at y = 0. Apart from the directly re+ected
wave of the same, but oppositely signed wave number, discussed in the previous paragraph, some of
its energy may be scattered into the IK and higher mode IP waves. The IK wave is always evanescent,
but the other IP waves will be evanescent only when the incoming wave is a fundamental mode
(m= 1) of frequency � that lies in the interval, �2 ¡�¡�1 ¡ 1. If �¡�2, however, some energy
may leak to lower-mode, propagating channel IP waves. The re+ection problem is similar to that
considered by (Taylor, 1921), concerned with Kelvin wave re+ection at the dead end of a tidal
channel, except that the incoming wave here necessarily has to be of the above IP type.

Let us consider the re+ection at y = 0 of an m = 1 wave coming from positive y. The total
along-channel velocity is then composed of an incoming wave (of unit amplitude) of the form
(3.24) having along-channel wave number +l1, a trapped IK wave, see (3.16), and an in-nite sum
of ‘re+ected’ IP waves, again of the form (3.24) but with negative sign of along-channel wave
number. Dropping a common factor exp(−i�t), these three contributions read

v=
(
−l1� cos k1x +

1
k1

sin k1x
)
exp(il1y)

+ v0 exp(−y + ix=�) +
∞∑
m=1

vm

(
lm� cos kmx +

1
km

sinkmx
)
exp(−ilmy); (3.27)

where the amplitudes of the IK wave (v0) and the re+ected IP waves (v1;2; :::) need to be determined
by the condition v = 0 at y = 0. Since the IP modes with mode number m¿ 1 are all trapped, we
set in that case

lm =−i(�−2
m − �−2)1=2 ≡ −ism (sm ¿ 1): (3.28)

The undetermined wave amplitudes are estimated by means of the collocation method (see LeBlond
and Mysak, 1978). In this method the in-nite sum is truncated to include just M −1 channel modes.
Evaluating the boundary condition at M x-positions along the wall, yields M equations, from which
the M unknown (complex) amplitudes v0 : : : vM−1 can be obtained by matrix inversion. Convergence
of the solution has to be checked a posteriori. Following this recipe, the solution in Fig. 4 is
obtained with M = 21. Fig. 4a shows the amplitude and phase of the vertical displacement -eld �.
Phase propagates in clockwise direction, so that we infer that energy propagates anticlockwise. The
response yields a complex amplitude v1 = exp i�1, which, correctly, is of unit magnitude, expressing
that there is no leakage to other modes that propagate energy out of the channel. The phase-delay
�1 of the re+ected wave, corresponds to the fact that some of the energy is stored in the boundary
waves at the end wall that help maintain the impermeability condition at y = 0. Both the IK,
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Fig. 4. Top view of: (a) phase (solid) and amplitude (dashed) of the vertical displacement -eld of a mode-1, down-channel
propagating Inertial Poincar9e mode of frequency � = 0:7 in a channel of dimensionless width L = 4, re+ecting from a
vertical wall at y= 0. During re+ection, IK and IP waves are excited, that are trapped in the y-direction. Phase lines are
given every 30◦, which rotate anticyclonically around the amphidromes at the central axis (the rotation axis, �, is out of
the paper); (b) horizontal current ellipses traversed during one period.

as well as the m=2; 3 trapped IP waves have fairly strong amplitudes. Fig. 4b shows corresponding
horizontal velocity ellipses at a number of positions. These are traversed clockwise, and their normal
components correctly vanish at the boundaries.

4. Inertial waves in a rectangular parallelepiped

In this section a solution is sought for the nth vertical mode in a rectangular parallelepiped. We
will use the Proudman–Rao spectral method (Proudman, 1916; Rao, 1966), designed for rotationally
modi-ed surface gravity waves in regions of arbitrary cross-section, and here altered for our purpose
to the study of pure inertial waves. We will closely follow Rao’s application to a rectangular domain,
for which geometry the method was, for the case of surface gravity waves, -rst checked to compare
favourably up to at least 3 digits with results obtained by a completely di;erent method (Taylor,
1921), not further discussed here.

4.1. The Proudman–Rao spectral method

The method employs a Helmholtz decomposition of the velocity -eld, whose velocity potential
and streamfunction -elds can be expanded in the eigenfunctions of two eigenvalue problems. The
time-dependent expansion coeQcients are dynamically coupled in a way that can probably be calcu-
lated explicitly for simply-shaped containers only. Proudman (1916) did this for the axial cylinder,
of both uniform and paraboloidal depth shape, and retrieved results as listed in an earlier edition of
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Lamb (1932). Rao (1966) used the method to retrieve and extend Taylor’s results for rotationally
modi-ed gravity waves in the rectangle (Taylor, 1921). Here we will brie+y describe the method as
applied to pure inertial waves in a rectangular parallelepiped.

Aiming to solve (3.1)–(3.3), the horizontal velocity -eld v = (u; v) is split in an irrotational
(v� =−∇�) and a non-divergent (v = k̂ ×∇ ) part (Helmholtz decomposition):

v = v� + v : (4.1)

Here k̂ is a (vertical) unit vector, aligned with the rotation axis. The impermeability requirement at
the boundary, v · n = 0, where n denotes the outward-directed normal, translates into a requirement
that @�=@n= 0 and  = 0 at the boundary. The velocity potential �, streamfunction  and vertical
elevation -eld � are represented as

�=
∑
(

p(�(; (4.2)

 =
∑
(

q( (; (4.3)

�=
∑
(

r(�(; (4.4)

where ( ≡ (k; l) represents a (binary) ordering index, indicating a pair of (generalized Fourier)
modes, with mode numbers k and l (zero or positive integers) in x and y direction, respectively.
Notice that each normal mode (eigenfunction corresponding to a particular eigenfrequency) thus con-
sists of an in-nite sum of such Fourier modes. Expansion coeQcients p(, q(, r( are time-dependent,
while �( and  ( are internally orthogonal (real) spectral spatial functions. The latter are determined
as the solutions of two elliptic operators (as (3.7), but with simpler boundary conditions)

S�( + *(�( = 0;
@�(

@n
= 0 at boundary; (4.5)

S ( + +( ( = 0;  ( = 0 at boundary: (4.6)

Self-adjointness of these operators implies that *( and +( are real. From the continuity equation
(3.3), it follows that

�( = *1=2( �(: (4.7)

De-ning consistently

v�( =−∇�(; (4.8)

v ( = k̂ ×∇ (; (4.9)

orthogonality of these functions can be established, employing partial integration and use of boundary
conditions:∫

v�( · v�, dA= *(

∫
�(�, dA= .(,A; (4.10)
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∫
v ( · v , dA= +(

∫
 ( , dA= .(,A: (4.11)

Here A represents the horizontal cross-sectional area. Also∫
�(�, dA= (*(*,)1=2

∫
�(�, dA= .(,A: (4.12)

Using this, the expansion coeQcients can be de-ned as projections of the velocity -eld on these
functions:

p( ≡ 1
A

∫
v�( · v� dA=

1
A

∫
v�( · v dA; (4.13)

q( ≡ 1
A

∫
v ( · v dA=

1
A

∫
v ( · v dA; (4.14)

r( ≡ 1
A

∫
�(� dA: (4.15)

By inserting the expansions of the velocity and elevation -elds in Eqs. (3.1)–(3.3), multiplying
these equations by the orthogonal spatial functions and by subsequently integrating over the spatial
domain, evolution equations for the spectral expansion coeQcients result. Coupling of modes is due
to the non-vanishing of the following integrals:

a(, =− 1
A

∫
v�( · k̂ × v�, dA; (4.16)

b(, =− 1
A

∫
v�( · k̂ × v , dA; (4.17)

c(, =− 1
A

∫
v ( · k̂ × v�, dA: (4.18)

Thus, the following equations result:

dp(

dt
= 1(

d2r(
dt2

+
∑
,

(a(,p, + b(,q,); (4.19)

dq(

dt
=
∑
,

c(,p,; (4.20)

dr(
dt

=−1(p(; (4.21)

where 1( = *1=2( . For the rectangular domain (06 x6Lx, 06y6Ly) the solutions of (4.5) and
(4.6) are

�( = 2(1−1
( cos(k�x=Lx) cos(l�y=Ly) (4.22)

and

 ( = 21−1
( sin(k�x=Lx) sin(l�y=Ly); (4.23)
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where

+( = *( = 12( = �2

(
k2

L2
x
+

l2

L2
y

)
(4.24)

and Neumann symbol 2( equals 21=2 when kl=0, and 2 otherwise. Taylor (1921) found that normal
modes are either symmetric (so that arbitrary F(x; y)=F(Lx−x; Ly−y)) or antisymmetric (F(x; y)=
−F(Lx − x; Ly − y)). This was asserted by Rao (1966) by noting that a(, vanishes if ( and ,
have opposite symmetry (the symmetry or antisymmetry of the characteristic functions �(;  ( being
determined by k+l being even, or odd). Note that ‘symmetric’ -elds here refer to a point symmetry
of the velocity potential, streamfunction and vertical elevation -eld with respect to the centre of the
basin, to which correspond antisymmetric velocity -elds, by Eqs. (4.8) and (4.9) (and vice versa).
Therefore, Rao (1966) distinguishes the following two cases: antisymmetric modes, for which k + l
is odd, which is achieved by either ( ≡ (k; l), having k odd and l even, or (′ ≡ (k ′; l′), having k ′
even and l′ odd; and symmetric modes, for which k+l is even, achieved by either ( ≡ (k; l), having
k odd and l odd, or (′ ≡ (k ′; l′), having k ′ even and l′ even. Again, as Rao (1966) notes, coupling
vanishes if both modes belong to the same ( group, or to the same (′ group. These two groups have a
di;erent re+ectional, or line symmetry. Here F(x; y) is said to be x-symmetric (+) or x-antisymmetric
(−) when F(Lx − x; y) =±F(x; y). With a similar de-nition for y-(anti)symmetry, �( and  (′ have
x-antisymmetry and y-symmetry, while �(′ and  ( have x-symmetry and y-antisymmetry. With this
distinction, separate evolution equations for ( and (′ modes need to be distinguished and leads, in
comprehensive notation, to

dp=dt =Nd2r=dt2 + (Ap′ + Bq′); dq=dt = Cp′; dr=dt =−Np; (4.25)

dp′=dt =N′d2r′=dt2 − (ATp+ CTq); dq′=dt =−BTp; dr′=dt =−N′p′: (4.26)

Here superscript T denotes a transpose, and a vector like p denotes the column-vector pi ≡ p(i .
Integer i refers to a speci-c ordering of the (, that is, of the subclass on the (k; l) lattice associated
with this symmetry. In the same vein, a matrix like A = aij = a(i(′j , while N = 1(i.ij denotes the
diagonal matrix.

For the rectangle, the matrix coeQcients reduce to (Rao, 1966)

a((′ =
42(2(′(k ′2l2 − k2l′2)

LxLy1(1(′(k2 − k ′2)(l2 − l′2)
; (4.27)

b((′ =
−82(1(k ′l′

�21(′(k2 − k ′2)(l2 − l′2)
; (4.28)

c((′ =
82(′1(′kl

�21((k2 − k ′2)(l2 − l′2)
: (4.29)

Inserting the ansatz

(p; q; r′) = (P;Q;R′) sin �t; (4.30)

(p′; q′; r) = (P′;Q′;R) cos �t; (4.31)
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into the spectral equations, leads upon elimination of

(Q;Q′;R;R′) =
1
�
(CP′;B′P;NP;−N′P′) (4.32)

to the following equations:

(�2(I +N2)− BBT)P− �AP′ = 0; (4.33)

− �ATP+ (�2(I +N′2)− CTC)P′ = 0; (4.34)

where I is the identity matrix and � the undetermined normal mode frequency. Non-trivial solutions
occur when the determinant of the matrix multiplying the columnvector X=(P;P′) vanishes. Because
of the quadratic appearance of eigenfrequency �, this classi-es as a quadratic eigenvalue problem.
Abbreviating Eqs. (4.33) and (4.34) as

(�2M2 + �M1 +M0)X = 0 (4.35)

with obvious meanings of matrices M0;1;2, this can be rewritten as a ‘normal’ generalized eigenvalue
problem (Bai et al., 2000)

AY = �BY; (4.36)

where

A =

[
0 I

−M0 −M1

]
; B =

[
I 0

0 M2

]
(4.37)

and columnvector Y = (X; �X), which can be solved with a general purpose eigenvalue solver (as
Matlab’s). After checking the code, by applying it to the LWE, and comparing with published
eigenfrequencies (Taylor, 1921; Rao, 1966), it was used for the determination of eigenfrequencies
and corresponding eigenvectors of inertial waves in a rectangular parallelepiped. Some results are
discussed in the next section.

4.2. Numerical results

4.2.1. Mode truncation
In order to obtain numerical results, the in-nite system of equations has to be truncated. Conver-

gence of eigenvalues was observed by increasing the amount of Fourier modes I taken into account.
Here (i =(ki; li), with i=1; 2; : : : ; I etc. The total number I depends on the amount of ‘lattice lines’,
N+1, incorporated. The jth point (06 j6 n) on the nth lattice line (06 n6N ) de-nes the integer
pairs (i =(ki; li) or (′i =(k ′i ; l′i) of the ith (i= n(n+1)=2+ j+1) Fourier mode included. As we will
truncate while incorporating a number of full lattice lines, so that j = n = N , the total amount of
Fourier modes taken into account is I =(N=2+1)(N +1). For antisymmetric modes the prescription
reads ki = l′i =2(n− j)+1, li = k ′i =2j, so that ki + li = k ′i + l′i =2n+1 are both odd. For symmetric
modes ki=2(n− j)+1, li=2j+1, and k ′i =2j, l′i=2(n− j), so that ki+ li=2(n+1) and k ′i + l′i=2n
are both even. Index value n = 0 refers to the -rst lattice ‘line’, which consists of just one point.
(Note that this convention implies that in the symmetric case k ′1 = l′1 = 0, in other words, that the
corresponding -elds are spatially constant. We will require the matrix coeQcients belonging to this
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Fig. 5. (a) Convergence of -rst four eigenvalues corresponding to the asymmetric modes of a �× � square, as a function
of the number of lattice lines N . (b) Same eigenvalues as a function of the (dimensionless) size of a square basin, L
divided by �.

term to vanish identically, a11 = b11 = c11 = 0. This point is formally incorporated in the summations
to facilitate a symmetric treatment between primed and unprimed modes.)

There are two dimensionless (geometric) parameters left in the problem, the width Lx and length
Ly, or, alternatively, the size L= (L2

x + L2
y)

1=2 and aspect ratio Ly=Lx. Added to this is a truncation
parameter N which, according to the scheme layed out above, determines the amount of spatial modes
I taken into account. We aim at choosing an N such that computations do not turn unwieldy, yet are
suQciently accurate. For a number of choices of geometric parameters, convergence of eigenvalues
was established to occur to within 5 decimal places at N = 12, corresponding to I = 91 Fourier
modes for each normal mode of -xed frequency (see Fig. 5a). This value was used for subsequent
calculations. With the corresponding approximate velocity and elevation -elds, numerical versions
of the left-hand sides of Eqs. (3.1) and (3.2) can be computed. Because of numerical errors these
residual -elds di;er from 0 (and show Gibb’s phenomenon close to the boundary). The 2-norm of
the computed residual -eld amounts typically to 5 percent of the norm of a typical term on the
left-hand side.

4.2.2. Eigenfrequencies
Increasing the size of the basin L leads to a monotonic increase of eigenfrequencies, until for

large basins these crowd just below the inertial frequency 1 (dimensionally: 2�∗), see Fig. 5b.
The plot of eigenfrequencies versus aspect ratio (Fig. 6) shows several remarkable features.

Asymptotically (Ly=Lx�1), from the highest frequency downward, it reveals an alternation of anti-
symmetric (solid) and symmetric modes (dashed lines). The (anti) symmetry refers to that of the
elevation -eld �. Moreover, despite the fact that eigenfrequencies in general change with changing
aspect ratio, following a particular mode (line), there are certain -xed frequencies that continue
to play a role as eigenfrequency, albeit shifting from one spatial mode to the next. These are the
plateaus, the horizontal lines at �=�m, m=1; 2; 3; : : : ; several of which can be recognized in Fig. 6.
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Fig. 6. Eigenvalues of -rst 50 modes as a function of aspect ratio, Ly=Lx for Lx = 2� . From the highest frequency
down, these alternatingly depict the asymmetric (solid) and symmetric (dashed) elevation modes. Stars and circles, and
frequencies �1;2;3;4, are discussed in the text.

This is remarkable, as, for very elongated containers, these truly act as natural frequencies, being
independent of the exact aspect ratio. The values of these natural frequencies are, surprisingly, given
by Eq. (3.26), which for Lx = 2� read �m = (1 + (m=2)2)−1=2, m∈{1; 2; 3; 4; : : :}. These are the
frequencies corresponding to modes that are ‘structureless’ (have vanishing wave number) in the
container’s longest direction. As variation of frequency with varying aspect ratio can also be inter-
preted as a variation with varying (available) wave length, the occurrence of frequency plateaus also
implies zero group velocity of that mode, in line with the idea that the mode is standing.

Solid curves (corresponding to antisymmetric modes) never cross each other. Neither do dashed
curves (symmetric modes). Only neighbouring solid and dashed curves may cross, leading at inter-
section points to an unambiguous degeneracy of the eigenfrequency. This pattern is also displayed in
eigenfrequency curves of long, rotationally modi-ed internal gravity waves contained in a rectangular
basin (BMauerle, 1998).
In the discussion of the available parameters, that of the vertical mode number n was suppressed.

It is present in the depth Hn=H=n� with which width Lx and length Ly were scaled, and which was
held -xed until now. However, a true basin only has its geometric parameters -xed, and we thus
need to consider the e;ect of changing n. A change in n only a;ects the size and not the aspect
ratio. If, for instance, we change from mode n=1 to mode n=2, the apparent width and length are
both doubled. As Rao (1966) remarks, matrices A;B and C, Eqs. (4.27)–(4.29), depend only on the
aspect ratio, and are hence not a;ected by this change in vertical mode number. In contrast, matrices
N and N′ are a;ected, so that it is a priori not clear whether there will be a degeneracy (multiplicity)
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of eigenfrequencies, as in the 2D case (Maas and Lam, 1995), or as for internal gravity waves in
the 3D case (see the appendix). The presence of this degeneracy allowed, in this 2D case, for a dual
picture of these waves. These could either be considered as a set of vertically standing modes, or as
an internal wave beam (Maas and Lam, 1995; Gerkema, 2001). Also, it led, in the 2D case, to the
notion of a fundamental interval on the bounding surface, over which an arbitrarily chosen pressure
-eld speci-ed the otherwise non-unique solution. Whether multiplicity of eigenfrequencies still exists
in the present 3D case, and whether the generalisation of the 2D interval, namely a fundamental
area, can presently be found is not known. However, it is worthwhile to note that we can interpret
the curves in Fig. 6 also as those belonging to the second vertical mode (n = 2) of a container
of length, width and depth: � × Ly=2 × H . The -rst antisymmetric mode of the -rst vertical mode
(n = 1) of such a container, is given by the line traced by the circles (asymptote at �2 = 2−1=2).
This mode is seen to partially overlap with successive n = 2 modes (solid lines), implying (near)
degeneracy of the eigenfrequency. The line traced out by stars is the -rst antisymmetric (n = 1)
eigenfrequency curves of a container measuring 2� × Ly=2 × H , so that two of these containers -t
in, side by side, in the original container, as seen from the perspective of the second vertical mode.
Clearly, these curves again partially overlap with those of the second vertical mode (dashed lines),
implying near-degeneracy.

4.2.3. Elevation and velocity <elds
When a vertical mode is picked, n=1 say, and the basin is scaled with the corresponding vertical

scale, the eigenfrequencies are determined, and the corresponding elevation amplitude and velocity
-elds can be plotted. [Note that the actual vertical elevation is depth dependent, due to the vertical
mode dependence, as in (2.7).] Counting from the top down, the -rst three modes are shown in
Fig. 7 in a rectangular horizontal cross-section of the 2�×� rectangular parallelepiped. Modes 1 and
3 have antisymmetric elevation (left) and symmetric velocity (right) -elds, and vice versa for mode
2. The pictures present the following information. In the elevation -eld � (at the left), colouring
and dashed lines represent elevation amplitudes. Deep blue corresponds with zero elevation, red
with maximum amplitudes. Phase lines (every 30◦) are solid. They end in nodal (zero elevation)
points and show that phase is circling around the amphidromes in either clockwise or anticlockwise
direction. All amphidromes on the middle axis (y = �=2) are traversed in a clockwise sense, all
others (close to y = 0 and �) in anticlockwise sense. Orthogonal crossing of phase lines (as e.g.
in the centre of the rectangle for mode 2) imply equal phases on all four branches, implying that
the whole red central region of mode 2 rises and sinks in unison. Antisymmetry of the elevation
-eld of e.g. mode 1 is evident from a 180◦ phase change between mirror images about the centre
point.

The velocity -eld (u; v) (at the right-hand side of Fig. 7) contains, in principle, four independent
parameters. Each component has an amplitude and a phase. At each individual location these can
be represented in terms of a velocity ellipse, as e.g. in (Taylor, 1921), expressed in terms of four
other parameters: maximum amplitude, umax, ellipticity umin=umax, orientation of the main axis, 7 and
phase (with respect to this local orientation) 8 (Prandle, 1982). The ellipticity varies between −1
(circular clockwise, deep blue), and +1 (circular anticlockwise, red), while it represents rectilinear
motion when it is zero (green). The green colour at the boundary tells the velocity is rectilinear
there. Separate consideration of the inclination shows the velocity vector to be everywhere parallel
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Fig. 7. Top view of elevation (left) and horizontal velocity (right) -elds of a 2� × � rectangle, for mode 1, � ≈ 0:657
(top); mode 2, � ≈ 0:564 (middle); and mode 3, � ≈ 0:477 (bottom). The rotation vector points out of the paper towards
the reader; the tank thus moves anticlockwise. For further explanation, see main text.

to the sides. Maximum velocity (umax) is represented by dashed lines. Phase lines will be discussed
below.

The J th mode appears to have J cells of strong current maxima. These are each of a clockwise
nature (negative ellipticities). At the sides, these are accompanied by a number of anticlockwise
cells, separated by curves along which motion is rectilinear (zero ellipticity). Velocity amphidromes
(locations where both u = v = 0) occur, of course, in the four corners of the basin, but may also
occur elsewhere, as e.g. for mode 2, in the centre of the basin.

Each current ellipse can be viewed as the summation of two counterrotating circular currents
of particular amplitude W± and phase �±, of the same frequency as that of the mode considered
(Prandle, 1982; Maas and van Haren, 1987). The positive sign refers to cyclonic (i.e. anticlockwise)
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rotation of the current vector (and vice versa for negative sign). When the eigenvectors are found,
working backwards through the de-nitions, also the horizontal velocity components are obtained, and
can be written as u=Us sin(�t)+Uc cos(�t) and v=Vs sin(�t)+Vc cos(�t), with the spatial amplitudes
(U; V )s;c then known. The amplitudes W± and phases �± of the counterrotating velocity vectors are
related to the Cartesian representations thereof, Wc± =W± cos �±, and Ws± =W± sin �±, themselves
determined by Wc± = (Uc ± Vs)=2; Ws± = (Vc ∓ Us)=2. When the counterrotating velocity vectors
co-align, maximum current is obtained (umax =W++W−); when they are in antiphase, the minimum
current obtains (umin = W+ − W−). Phase lines, �±, circle around the nodes of the corresponding
circular velocity amplitude -elds; those of the clockwise (−) component (solid lines) around the
deep red spots (where clockwise amplitude vanishes, W− = 0), and those of the anticlockwise (+)
component (dotted lines) around the deep blue spots (where W+ = 0). The orientation and phase
can then, as discussed above, in principle be obtained from these simply as 7 = (�− + �+)=2 and
8 = (�− − �+)=2. These are, of course, somewhat diQcult to determine from the graphs and the
de-nition of phase 8, relative to the local orientation 7, renders this quantity somewhat less useful
as a globally relevant parameter, which has therefore not been directly visualised here. However,
the present graphs are useful in showing the intricate -ne structure developing close to the walls,
even for the lowest (i.e., highest frequency) modes. A similar sharp reversal of phase, close to the
boundaries, can actually also be discerned in Taylor’s solution of re+ecting surface Kelvin waves
(Taylor, 1921). Note that the phase is nearly constant in the blue cells, e.g. in the centre of the
rectangle for the -rst mode. The deep blue color indicates that the ellipticity is dominated by the
clockwise component, and the solid phase lines of this component are nearly uniformly zero. In other
words, for mode 1, at time zero say, all currents in this blue area point towards positive y, and
rotate clockwise at the same rate, in unison. The currents lead the elevation -eld by �=2 (zero phase
for this mode being the horizontal line, to the left of the centre), but lag the vertical acceleration
-eld, which drives the currents.

Comparing elevation and corresponding currents leads to the -nal observation that these -elds act
‘complementary’, in the sense that where elevation -eld varies in phase, velocities have uniform
phase, as the example of the -rst mode showed, and vice versa, as the elevation and currents
of the second mode show near the centre of the tank. This implies that truly 3D amphidromes,
u= v= w(=− i��) = 0, have not been found in the interior.
Fig. 8 shows the same -elds for the -rst 4 modes of the � × � square (so that, for the -rst

vertical mode, the 3D box is a cube). Modes 1 and 4 correspond to v-symmetric modes, modes 2
and 3 to v-antisymmetric modes. Of course, the -elds are all x − y symmetric, although there is
an interesting ‘competition of symmetries’ visible: the circular symmetry, re+ecting the invariance
of the governing equations to rotation, and the square symmetry, owing to the shape of the basin.
The currents in the central amphidromes of modes 3 and 4 now turn anticlockwise, which is evident
from the dominant anticlockwise (red) ellipticity, in the centre of the right lower two diagrams.

Another point of interest is the occurrence of a circle where phase lines cluster and the amplitude
(nearly) vanishes (see elevation -eld of modes 2 and 4). This is reminiscent of the regular nodal
lines occurring in non-rotating sloshing modes. Similar lines are visible in the velocity -elds of
modes 3 and 4 (where dotted phase lines cluster around circles of vanishing anticlockwise current
component, W+ = 0).

Another view of the velocity -eld can be o;ered by representing amplitudes and phases of the
counterrotating circular components directly, as done in Fig. 9 for mode 4. Remarkably, the phase
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Fig. 8. As Fig. 7, for a � × � square. The eigenfrequencies of the -rst 4 modes are 0:547; 0:418; 0:369; 0:341.
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Fig. 9. Velocity amplitudes W± (top) and phases �± (bottom) of anticlockwise (+, left) and clockwise (−, right) rotating
circular components of mode 4 in the � × � square.

of the anticlockwise (+) component (lower left) is nearly binary, which represents a sloshing mode,
with a nodal (zero-amplitude) circle over which the phase ‘jumps’ ≈ 180◦. The clockwise (−)
component, by contrast, shows a regular progression of phase. Amplitude patterns show a square
symmetry, rotated over 45◦ with respect to each other, and are displaced radially. The corner regions
are clearly locations of adjustment.

5. Summary and discussion

Rotating +uids support inertial waves, restored by Coriolis forces. Despite the concise way in
which these waves can be described, very few fully con-ned geometries are known for which the
governing, linearised equations have been completely solved. These are restricted to the axial can
(with or without inner cylinder) (Kelvin, 1880), and the axial spheroid (Bryan, 1889) (of which
only the subclass of toroidal modes survives in a spherical shell). To this we here add the horizontal
rectangular parallelepiped. It is an interesting geometry, because it lacks the rotational symmetry
which led to separable solutions in the previous containers. The present case is highly analogous to
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that of rotationally modi-ed, long surface gravity waves, studied at the beginning of the previous
century (Poincar9e, 1910; Proudman, 1916; Taylor, 1921). Equations quite similar to the long wave
equations (governing these gravity waves) are obtained for each of the vertical modes that exist by
virtue of non-hydrostatic e;ects in a +uid layer having top and bottom perpendicular to the rotation
axis. In this case, vertical acceleration in the wave -eld replaces the acceleration of gravity, which is
fully removed from the problem (by employing a reduced pressure). All reference to the particular
vertical mode (n) is subsequently removed, since the depth scale of that mode (H∗=n�) can be
used to scale the remaining equations. The resulting horizontal problem is solved in the unbounded
domain, in the in-nite and half-in-nite channel, and in a fully contained rectangular parallelepiped,
depending on the number of vertical walls (parallel to the rotation axis) that are added.

In the unbounded +uid layer it shows the existence of a continuum of plane low-frequency waves
that are longer the closer they are to the inertial frequency (2�∗). With one vertical boundary, two
plane waves can be combined into the analog of Poincar9e waves (here termed inertial Poincar9e
waves), such that the velocity component normal to this wall vanishes. This velocity component
then vanishes also at a number of other lines, parallel to this wall, so that vertical walls can be -tted
in there too and these waves constitute channel modes. Searching for inertial Kelvin (IK) waves,
it is found that a decaying wave mode can be obtained, but it has particle motion in the direction
of decay, making it incompatible with a solid boundary, so that free IK waves do not exist. During
the re+ection of channel inertial Poincar9e waves from an end wall, however, such trapped waves
do play a role, in combination with higher inertial Poincar9e modes, which (above a certain mode
number) are also trapped. In the -nal case, where another end wall is added, and we thus consider the
waves in a rectangular parallelepiped, discretisation of the eigenfrequencies occurs. The wave system
corresponding to each particular vertical mode, and each resulting eigenfrequency, can then either be
cast as a combination of an in-nite set of channel inertial Poincar9e waves, together with two inertial
Kelvin waves (Taylor’s approach; results not shown here), or as a combination of two intertwined
in-nite sets of spatial Fourier modes (Proudman–Rao approach). The two approaches both lead to
in-nite matrix eigenvalue problems, which give similar results upon truncation of the matrices.

In line with the domain of in-nite extent, eigenfrequencies creep up to the inertial frequency when
the size is increased. This, of course, also occurs for the higher vertical modes, as the apparent
domain size (the -xed length and width being scaled with the height scale of that mode) then
increases. Varying the aspect ratio, paradoxically, a particular (in-nite) discrete set of frequencies
of the in<nitely long channel seems to be favoured, namely that of modes having along-channel
uniformity. While the particular mode associated with any of these eigenfrequencies varies with
varying aspect ratio, that eigenfrequency persists. The resulting ‘elevation’ (vertical displacement)
and horizontal velocity -elds typically show amphidromic structures, where phase lines end in nodal
(zero displacement, or velocity) points. The lowest modes show a complementarity of elevation and
velocity -elds, elevation -elds lagging velocity -elds (owing to the fact that vertical acceleration
gradients drive the motion). In comparison to the surface gravity waves, maximum displacements
(vertical velocities) now occur in the central portions of the +uid domain, not on the (vertical)
boundaries. The waves sometimes take on a propagating form, sometimes a standing, sloshing form
(as in the axial can). The overall impression is that of a central ‘free’ wave system (of multiple
cells), to which ‘wave boundary layers’ are added in order to meet the impermeability requirements.

The existence of (linear) wave solutions does not guarantee their stability. Indeed, for the axial
can the inertial waves (in this context often also referred to as Kelvin modes) were shown to be
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actually unstable to short wavelength perturbations of oblique orientation (Lifschitz and Fabijonas,
1996, perhaps related to the observed resonance collapse (McEwan, 1970). Beautiful experiments
exist in which the axial wall of the can is deformed elliptically, or triangularly, demonstrating
how through triad interaction higher spatio-temporal modes and, in particular, also (zero frequency)
steady patterns, like vortices and mean current structures are generated (Malkus, 1989; Eloy et al.,
2000). Quite likely these stability results extend to the rectangular parallelepiped, considered here.
Indeed, the resulting singularity (growth of amplitude of standing wave pattern, or development of
small scales, Lifschitz and Fabijonas, 1996) is of precisely the same nature as that predicted when
deformations of the container shape break the local re+ectional symmetry (Maas, 2001). As argued
in the introduction, focusing of wave energy (small scales) will then develop. When, however, some
remaining symmetry exists, standing modes, consisting of strictly periodic characteristics (global
resonances) may still occur, that will grow in amplitude when driven (Maas and Lam, 1995). While
the observed focusing onto a rectangularly shaped attractor (in the experiment of Maas,2001), is
correctly predicted with a 2D model, this yields no information of the structure of these waves on
this ‘wave attractor manifold’ in the direction parallel to the slope, particularly with the presence
of vertical end walls, to which, as in the present study, the circular currents have to adjust. We
may speculate that the waves, once collapsed on this manifold, may still propagate along it, bearing
perhaps some of the features of the present study, as e.g. amphidromes and near-uniformity in
along-slope direction. Indeed, further observations (Manders and Maas, 2003) suggest a strong phase
change in the velocity -eld occurring very close to the end wall, similar to that encountered in several
of the low modes discussed here in the rectangular parallelepiped.

It is signi-cant that associated with these wave-breakdowns, strong mean +ows are often generated
(Fultz, 1959; Thompson, 1979; Manasseh, 1996; Maas, 2001), perhaps the result of triad interaction,
as discussed above, or due to mixing of +uid that is strati-ed in angular momentum, leading to the
creation of shocks in the angular momentum pro-le, manifesting itself, in the rotating frame, as a
mean +ow (Maas, 2001).
Finally, the relevance of these type of waves to the natural environment is not clear-cut. Rotating

water bodies as oceans and lakes are not only generally density-strati-ed, but even when they seem
homogeneous, the weakest measurable strati-cation still often has stability frequencies in excess of
the very weak inertial frequency (2�), associated with the rotation of the earth (van Haren et al.,
1999). This serves to remind us that in nature waves in the hyperbolic wave regime generally occur
as (internal) gravito-inertial waves. Only in convectively unstable circumstances (as in lakes and
seas subject to intensive cooling (van Haren and Millot, 2003), or in the earth’s liquid outer core),
may the idealisation of an unstrati-ed +uid arise naturally, and may the presently studied waves
have some direct relevance (outside that in conditioned laboratory circumstances). With respect to
that, perhaps also observations in the ocean’s surface layer of a strong spectral peak, close to the
critical frequency, and puzzlingly small horizontal scales thereof (of 20–10 km, e.g. (Fomin and
Yampol’skiy, 1975; d’Asaro, 1984)), are not without signi-cance. Despite their small-scale (order
of the water depth) there seems to be no intrinsic reason to neglect these waves completely, such
as enforced by the hydrostatic approximation (neglecting the left-hand side of Eq. (2.3)). Indeed, it
is clear that the waves can get arbitrarily long close to, but just below the cut-o; frequency 2�∗.
Krauss (1973) observes that the hydrostatic approximation has been made ever since Laplace, but
that a real motivation (except for the tautological statement that it applies to waves that are long
compared with water depth) is absent. Indeed, for this reason the approximation has been criticized
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by Solberg (1936), when looking into these inertial ‘cellular’ waves, and it was argued to, moreover,
destroy the notion of wave attractors (Maas, 2001). The failure of Laplace’s Tidal Equations to even
adequately model long surface waves in the presence of topographic variations was addressed by
Chapman (1982), and Chapman and Hendershott (1982).

Indirectly, this study may however be of relevance for elucidating the structure of contained
gravito-inertia waves, as it is again rotation that will provide a coupling between the otherwise
separable Fourier modes. This will not alleviate the need to consider the fact that in any natural
container the delicate local re+ectional symmetry, of the ‘horizontal’ container employed here, will
be broken, which requires determining the wave structure on 3D attractors, possibly endowed with
amphidromic structures and ‘wave boundary layers’, and its contribution relative to that of other
supported wave modes (as Rossby waves).
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Appendix. Internal gravity waves in a rectangular parallelepiped

In a non-rotating, uniformly strati-ed (constant stability frequency N ) +uid, the spatial structure
of the pressure -eld of monochromatic internal gravity waves of frequency � (06 �6N ) is again
governed by a hyperbolic equation

pxx + pyy −
((

N
�

)2
− 1

)−1

pzz = 0: (5.1)

This follows from the momentum equations and material conservation of density, leading to i�(u; v; w
(1 − N 2=�2)) =∇p, together with incompressibility. For these waves, however, the impermeability
condition (u ·n=0), at walls that are either parallel or perpendicular to gravity, is simply a Neumann
condition, requiring the vanishing of the normal pressure gradient @p=@n at each of these walls. For
the rectangular parallelepiped (of size H ×Lx ×Ly) this implies the existence of separable solutions,

p= pkln cos k�x=Lx cos l�y=Ly cos n�z=H (5.2)

for integer k; l; n, satisfying the equation and boundary conditions with undetermined amplitudes pkln,
provided the wave numbers relate to the frequency by

�
N

=
(
1 +

(n=H)2

(k=Lx)2 + (l=Ly)2

)−1=2

: (5.3)

Clearly, if the original (k; l; n) is replaced by (k ′; l′; n′) = j(k; l; n), this leaves the eigenfrequency
una;ected, and for integer j, also the boundary conditions. The eigenfrequency is therefore (in-nitely)
degenerate. A second degeneracy exists for rational aspect ratios Ly=Lx=q=r, where q; r are co-prime.
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Replacing the original (k; l; n) by (k ′; l′; n′), with k ′ = r2l, l′ = q2k, and n′ = rqn, again leaves the
eigenfrequencies unchanged. (For square basins this simply comes down to an exchange k ↔ l.)
These two independent degeneracies suggest that the 2D notion of a fundamental interval, over
which an arbitrarily prescribed pressure uniquely determines the amplitudes of the Fourier coeQcients
(Maas and Lam, 1995), carries over to the 3D case in the existence of a fundamental area. In the
2D case, the pressure values in the fundamental interval also uniquely de-ned the partial pressures
carried invariantly along each periodic web of connected characteristics, thus providing an exact
alternative (and, in fact, more general) representation of the solution. As the characteristics in 3D
are conical blades, the analogy between the Fourier representation on the one hand, and a beam-wise
representation is here not as clearcut and requires further investigation.
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