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a b s t r a c t

Stratified and rotating fluids support obliquely propagating internal waves. A symmetry-breaking shape
of the fluid domain focuses them on a wave attractor. For a trapezoidal basin, it is here shown how to
determine the internalwave field analytically. This requires solving thewave equation on a closed domain
– an ill-posed Cauchy problem – whose solution exhibits a remarkable self-similar spatial structure.
These results are relevant for mixing and mean flow generation in oceans, atmospheres and stars whose
symmetry is generally broken and where internal waves are tidally forced.

© 2008 Elsevier B.V. All rights reserved.
Internal gravity waves play an important role in transporting
energy, momentum, heat and chemicals in naturally stratified
fluids as lakes, oceans and planetary and stellar atmospheres.
Moreover, these waves have a great similarity to inertial waves
arising in rotating homogeneous fluids, to electron-cyclotron
waves in magnetized fluids, and to any combination of these [1].
In all these media, waves propagate obliquely relative to the
stratifying direction (set by gravity, rotation, or magnetic field
vector), under an angle that is fixed by the wave’s frequency.
Therefore the shape of the fluid domain exerts a big influence
on these waves [2]. Generally, symmetry-breaking produced
by any boundary that is neither parallel nor perpendicular
to the stratifying direction, leads to wave focusing and the
formation of a singularity of the wave field, which acts as a
wave attractor [3]. Wave attractors, derived in an ideal fluid
context, have relevance for real, viscous fluids too [4–6]. They
enforce localized mixing that generates mean transport of matter,
heat and momentum [5,7]. Wave attractors were originally
constructed by an algorithmic method [2], which precludes the
exact computation of derivatives that determine the local fluid
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velocity field. They have subsequently been found in numerical
(viscous) computations, both on small [8] and large scales [7,9,10],
but these results are necessarily approximative.
In this paper, an exact analytic wave attractor field is

determined for the first time, enabling computation of its velocity
field. As an analytical novelty, a self-similar spatial structure
is obtained. This echoes a remarkable periodicity of its Fourier
expansion coefficients, related to the presence of the Weierstrass
function [11].
Let x, z denote horizontal and vertical Cartesian coordinates,

where z is antiparallel to gravity. In the vertical plane, upon
scaling, the streamfunction of a monochromatic internal wave
field, ψ(x, z), is governed by the wave equation [3]:

ψxx − ψzz = 0. (1)

The streamfunction needs to vanish (ψ = 0) at the boundary ∂D,
but this requirement leaves the streamfunction underdetermined.
When also its normal derivative is prescribed, this (Cauchy)
boundary value problem (BVP) becomes ill-posed [10]. The wave
equation is here cast strictly in spatial coordinates, to be solved
over a finite region of space. Interestingly, the companion initial
value problem (replacing z by time t), leaving future behavior
unspecified, was found to feature wave focusing as well, as
when the wave equation is solved for x ∈ [0, L(t)], on a one-
dimensional string of variable length L(t) [12,13]. Exact results
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show the collapse of the initial wave function due to focusing
reflections at the moving boundary [14–16]. However, applied
to electromagnetic waves, the rate at which the wall moves is
required to be less than the speed of light (dL/dt < 1, in scaled
coordinates). In contrast, in the present physical setting, reflection
towards negative z is not prohibited, and, in fact, needs to occur on
a domain of finite size, which gives a twist to the present problem.
Therefore, alternative solution procedures were looked at, such
as a Fourier expansion method [17,18]. This led to an infinite
matrix equation for the Fourier coefficients that was truncated
and inverted numerically. That numerical solution mimicked the
algorithmic one quite well, with the bonus of yielding analytic
information on the corresponding velocity field, but at the expense
of having to solve a large matrix equation. The aim of the present
paper is to show that this infinite matrix equation can, in fact, be
solved exactly.
The trapezoidal domain D, considered here, consists of a

horizontal rigid-lid surface, z = 0, a vertical side wall, x = −1,
a horizontal bottom, z = −τ , when x ∈ [−1, 0], and a single
sloping side wall, z = τ(x− 1), when x ∈ (0, 1]. Wave frequency,
stratification rate and aspect ratio are all lumped together in the
single parameter τ which one can think of simply as the depth [2].
Consider a single particular depth, τ = 3/2, which yields a
symmetric, square-shapedwave attractor [4] and look for a Fourier
series solution [17]:

ψ =

∞∑
n=1

an sin nπ
(x+ 1)
τ

sin nπ
z
τ
. (2)

In terms of characteristic coordinates, ζ± = x + 1 ± z, employed
in the algorithmic approach, this can be written as:

ψ =
1
2

∞∑
n=1

an

(
cos nπ

(
ζ−

τ

)
− cos nπ

(
ζ+

τ

))
,

which shows that the solution is of typeψ(x, z) = f (ζ−)− g(ζ+),
for arbitrary functions f and g . Following these characteristics, it
was found that the BVP posed so far is underdetermined [2]. One
still needs to prescribe functions f and g , related to the normal
derivative of the streamfunction, in two so-called fundamental
intervals [2]. This feature will be recovered in the present analytic
derivation too. Clearly, each Fourier mode not only satisfies the
governing equation, but also correctly vanishes at surface (z = 0),
vertical wall (x = −1), and bottom (z = −τ ). Therefore, Fourier
coefficients an are determined by vanishing of the streamfunction
along the slope z = τ(x − 1), x ∈ (0, 1). Inserting τ = 3/2 and
transforming x = (1+ ξ)/2, this interval maps to ξ ∈ (−1, 1) and
the origin ξ = 0 shifts to the reflection point of the attractor. The
latter boundary condition then reads
∞∑
n=1

an

(
cos nπ

(
1
2
+
ξ

6

)
− cos nπ

(
1
2
+
5ξ
6

))
= 0.

By denoting

F(ξ) =
∞∑
n=1

an cos nπ
(
1
2
+
ξ

6

)
(3)

this shows that F(ξ) satisfies a linear functional equation:

F(ξ) = F(5ξ). (4)

This equation implies that once F is given for ξ ∈ (1/5, 1), F(ξ) ≡
F+0 (ξ) say, its shape is repeated in compressed form in subsequent
intervals, ξ ∈ (5−(n+1), 5−n), in which F(ξ) ≡ F+n (ξ) =
F+0 (5

nξ). A second such interval exists for negative ξ , with similar
implications given any arbitrary prescription of F(ξ) ≡ F−0 (ξ)
for ξ ∈ (−1,−1/5). Note that recursive determination of F
never brings us quite to the asymptote, ξ = 0. Hence, F(0) is
left unspecified, entirely in correspondence with the algorithmic
solution procedure.
Each solution, F(ξ) = F a(ξ) + F s(ξ), separates into an

antisymmetric, F a(ξ), and a symmetric part, F s(ξ), where

F a(ξ) =
1
2
(F(ξ)− F(−ξ)), F s(ξ) =

1
2
(F(ξ)+ F(−ξ)),

for ξ > 0. Taking F−0 (−ξ) = F
+

0 (ξ), for ξ ∈ (1/5, 1), and applying
recursion equation (4) for |ξ | < 1/5,we get F a(ξ) = 0, so that F(ξ)
is symmetric. This implies a2k+1 = 0, for k ∈ N, and F simplifies to

F s(ξ) =
∞∑
k=1

(−1)ka2k cos kπ
ξ

3
. (5)

Conversely, taking F−0 (−ξ) = −F
+

0 (ξ) we obtain F
s(ξ) = 0 and

F(ξ) is antisymmetric, implying a2k = 0, k ∈ N, and

F a(ξ) =
∞∑
k=0

(−1)k+1a2k+1 sin
(
(2k+ 1)π

ξ

6

)
. (6)

For this particular choice of τ , even and odd indexed coefficients
an neatly associate with even and odd functions F s(ξ) and F a(ξ)
respectively.
Specifying F±0 (ξ), for ξ ∈ (1/5, 1) and ξ ∈ (−1,−1/5)

respectively, equivalent to specifying F a,s(ξ) for ξ ∈ (1/5, 1), one
may now regard F(ξ) as given for all ξ ∈ (−1, 1), excluding ξ = 0.
The remaining task is to extract its Fourier coefficients an from (3).
Transform to a symmetric description on ξ ∈ (1/5, 1) by letting
s = (5ξ − 3)/2. This interval is then situated in s ∈ (−1, 1), on
which

F a,s(s) =
∞∑
l=0

(α
a,s
l sin lπs+ β

a,s
l cos lπs)

is specified by choosingαa,sl andβ
a,s
l arbitrarily. However, allα

a,s
l =

0. This follows by inserting the inverse relation, ξ = (2s+3)/5, on
interval s ∈ (−1, 1) into F(5ξ) which, by (4), is identical to F(ξ),
as then

F(5ξ) =
∞∑
n=1

an cos nπ
(
1
2
+
5ξ
6

)
=

∞∑
n=1

(−1)nan cos nπ
( s
3

)
.

This is a sum over even functions of s, requiring the vanishing
of odd expansion coefficients, αa,sl = 0. This implies one
is free to prescribe F a,s(s) in s ∈ (0, 1) only. The original
problem becomes well-posed when F±0 (ξ) are prescribed over
ξ ∈ (3/5, 1), and (−1,−3/5) respectively, which were therefore
termed fundamental intervals [2]. In the algorithmic solution
procedure, the symmetry on the interval s ∈ (−1, 1) follows
directly from the fact that the characteristic emanating from s = 0
connects upon a single surface reflection to a corner point, so that
characteristics on either side reflect symmetrically. Here, consider
a particular, symmetric case, looked at before numerically [17],
obtained by choosing all coefficients zero, except for βs1 = 1. Given
this choice, F s0(ξ) = − sin(5πξ/2), and using the recurrence and
symmetry relations, F s(ξ) is determined for all ξ ∈ (−1, 1), with
the exception of ξ = 0.
The Fourier coefficients need to be recovered from Eq. (5).

However, the cos kπξ/3, that multiply these coefficients, are not
a complete set of Fourier modes on ξ ∈ (−1, 1). But, using a well-
known expansion ([19], Eq. (1.60)), that employs the convention
ε0 = 1, ε1,2,3,... = 2, one has

cos kπ
ξ

3
=

∞∑
n=0

(−1)kΓnk cos nπξ, (7)
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where

Γnk ≡ −
3k
π
sin
(
kπ
3

)
(−1)nεn
k2 − 9n2

.

Thus, expressing each of the fractional Fourier modes in terms of
orthonormal Fourier modes on ξ ∈ (−1, 1), by projection one
obtains a matrix equation

∞∑
k=1

Γnka2k = Fn, (8)

with Fn the Fourier coefficients of the known function F(ξ).
Truncating and numerically inverting Eq. (8), an approximate
solution of this semi-infinite dimensional matrix equation was
found for a finite number of a2k [17].
However, one can in fact circumvent this truncation and

inversion and obtain exact expressions for Fourier coefficients
a2k. Using functional equation (4), one may specify F(ξ) =
− sin(πξ/2) for 1 < ξ < 3 too. This extension allows
transforming ξ = 3ν, so that the cosine expansion
∞∑
k=1

(−1)ka2k cos kπν = F(3ν)

is now cast as a complete set of Fourier modes on ν ∈ (−1, 1).
Hence, the Fourier modes follow by projection:

a2m = 2(−1)m
∫ 1

0
cos(mπν)F(3ν)dν,

where integration is over positive ν only, using the symmetry of
F(ν). Returning to integration over ξ , this splits into two integrals,
one, S1, between 0 and 1, and an end term, S2, over the region
with which ξ was extended. By using the fact that the prescribed
functions in ξ ∈ (5−(n+1), 5−n) are compressed copies of the
interval ξ ∈ (1/5, 1), the first integral is written as an infinite sum,
so that

a2m =
2
3
(−1)m+1(S1 + S2),

where

S1 =
∞∑
n=0

∫ 5−n

5−(n+1)
cos(mπξ/3) sin(5n+1πξ/2)dξ

and

S2 =
∫ 3

1
cos(mπξ/3) sin(πξ/2)dξ .

When the integrals over ξ ∈ (5−(n+1), 5−n) are mapped to
ξ ′ ≡ 5nξ ∈ (1/5, 1), one finds, by exchanging integration and
summation,

S1 =
∫ 1

1/5

[
∞∑
n=0

5−n cos(5−nmπξ ′/3)

]
sin(5πξ ′/2)dξ ′.

The sum within square brackets is a Weierstrass function

W (x) =
∞∑
n=0

an cos bnπx,

celebrated as an example of a continuous, nowhere differentiable
function for 1 > a > 0, ab > 1 [11]. In the present application, a =
b = 1/5, rendering ab < 1, and one thus samples this Weierstrass
function outside its nondifferentiable regime. Nevertheless, as
seen later on, the resulting Fourier spectrum still retains a special
structure, which must lie at the origin of the spatial self-similarity
of the streamfunction field [3].
Fig. 1. Spectral energy contained in wave number m, Em = m2a22m , versus log5 m,
form = 1, 2, . . . , 10 000 (dots). For clarity, the dots are connected by straight lines.

Fig. 2. Streamfunction field (2) computed on a 500 × 500 grid for τ = 3/2,
employing 1000 Fourier modes (10). Each Fourier mode consists of an infinite sum,
truncated at 10 terms.

Returning to the original order of integration and summation,
and carrying out the two remaining integrations, incorporating the
last term into the first sum and by shifting its index, this can, using

bn ≡
3
2
5n, (9)

be expressed as

a2m =
2m(−1)m

π

∞∑
n=0

sin
(
mπ
2bn

)(
1

m2 − b2n
−

1
m2 − b2n+1

)
. (10)

This series converges rapidly and the first 75 terms are identical
to those determined numerically [17]. Using (2), the total kinetic
energy, E ≡

∫
D ∇ψ

2dxdz = 2π2
∑
∞

m=1 Em, equals the sum of the
spectral contributions Em = m2a22m, proportional to the squared
Fourier coefficients, see Fig. 1. Apart from confirming a m−1 drop-
off of Fourier coefficients a2m [17], this displays an interesting
log 5 periodicity. Inspection reveals that for m = 3k, k = 1, 2,
4, . . . , a2m = 5a10m exactly. For m = 3k − 1 and m = 3k − 2 this
is only approximately so (and better so in the limit k→∞).
With even Fourier coefficients given by (10) and vanishing

odd coefficients, Eq. (2) represents the first exact analytic self-
similar solution of a boundary value problem for the wave
equation. Fig. 2 displays the streamfunction, which is similar to
that obtained by the algorithmic [4] and numerical methods [17].
It is continuous and differentiable over domain D, although in
this inviscid description its derivative grows without bound on
approach of the square-shaped attractor that spawns from the
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undetermined midpoint, x = 1/2. As is evident from Fig. 1, its
total energy diverges with increasing number of modes taken into
account. In real fluids, viscosity will regularize the wave field and
the infinite sum (2)will be effectively truncated at somemaximum
mode number,M , determined by viscosity, stratification and basin
size [6,10].
Interestingly, inserting (10) into streamfunction field (2), the

sum over the Fourier modes can in fact be evaluated, albeit
leading to discontinuous functions. While the ability to obtain
velocity fields (by computing derivatives) is then lost, it leads to a
more rapid evaluation of the streamfunction field and also reveals
the connection with the characteristic (algorithmic) method. This
derivation rests on using trigonometric identities to obtain eight
sums of type akin to that in Eq. (7), ([19], Eq. (1.62)),

2
π

∞∑
m=1

(−1)mm
m2 − b2

sinmπσ =
−sin bπσ
sin bπ

S(σ ), (11)

where S(σ ) = sign[mod (σ + 1, 4)/2 − 1] and mod (a, b) =
a mod b. When applying (11) to (10), and writing bn in (9) as
bn = 3/2 + 6kn, with kn ∈ N, the denominator of its right-hand
side, sin(bnπ) = −1, always. Inserting the resulting expressions
for a2m, as well as a2m+1 = 0, for m ∈ N, into (2), one obtains,
using trigonometric identities, and exchanging the order of the two
remaining summations,

ψ(x, z) =
1
4

∞∑
n=0

(fn(x+ 1− z)− fn(x+ 1+ z)), (12)

where

fn(ζ ) ≡ (cos(2π5nζ )− cos(2π5n+1ζ ))

×

[
S
(
5−n + 4ζ
3

)
+ S

(
5−n − 4ζ
3

)]
.

As is evident from the presence of block function S(σ ), this
contains discontinuous functions, leading in general to aliasing
problems upon evaluating this expression. However, over a 2 × 2
square encompassing the fluid domain, aliasing can be avoided if
one takes grid points at (xi+1, zj+2) = (1/4+i, j)5−N , for integers
i, j running from 0 to 2×5N , whereN = nmax+1 and nmax denotes
the maximum n at which (12) is truncated.
In summary, it has been shown how an exact, analytic wave

attractor field can be constructed. Remarkably, this possesses a
self-similar spatial structure which echoes a log-periodicity of its
Fourier coefficients, related to the presence of the Weierstrass
function. While this attractor field is here obtained for a particular
trapezoidal fluid domain only, it uncovers how such self-similar
patterns might be constructed under more general circumstances.
This generalization is, however, beyond the scope of this paper.
Apart fromoffering a benchmark againstwhich to test the accuracy
of numerical methods [8,17], the analytic method, described in
this paper, promises to be useful in situations that are beyond
the realm covered by the exact algorithmic method [2], such as
in three-dimensional, viscous and nonlinear settings. It may help
establish the strength and location of mixing and mean transport
generation in oceans, atmospheres and stars, as e.g. due to focusing
of tidally generated waves [5,7]. A case in point is that given the
log-periodicity of the total energy, its truncation at the actual
truncation scale M might explain why experimentally observed
wave attractors seem to lack fine structure andmight explain their
saturation level [4,6].
Finally, the presence of singularities in waves in stratified,

rotating or magnetized media, considered here, is analogous to
those arising in classical wave systems, such as the vibrating
cavity [14–16]. Interestingly, the vibrating cavity was argued to
be relevant for black hole (Hawking) radiation, the nonstationary
Casimir effect and photon creation by vacuum fluctuations [20].
This analogy suggests a deeper connection between these wave
types, that should be exploited. Based on former results [2,4],
it predicts e.g. a fractal dependence of wave solutions on the
parameters specifying the motion L(t) of the cavity wall.
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