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By means of a multiple-scale analysis of the shallow water equations for a uniformly rotating, stratified fluid,
subject to a time-periodic advection over a smail-amplitude topography, it is shown that the inciusion of
quasi-nonlinear advection by the barotropic (tidal) current is a necessary ingredient of the dynamics, once
the internal wave length, the barotropic tidal excursion amplitude and the topographic wave length are all of
the same order of magnitude. The basic set of equations describing the generation of internal tides by the
interaction of barotropic tidal currents and topography thus derived, is extended with damping both by
bottom- and internal fiction. The effect of bottom fiction is parametrized in a Rayleigh damping term for
each of the separate vertical modes, thereby allowing the vertical structure of the baroclinic tidal currents to
remain expressible in terms of vertical modes. The spectral forcing equation for damped internal motions is
then derived. Finally the characteristic roots (dispersion relation) of the homogeneous spectral equation are
discussed and summarized in a dispersion diagram. It is shown that these consist in general of two damped
gravity wave modes and a transient, the asymptotic regimes of which are discussed. The transient gives rise,
among other things, to baroclinic residual currents which are the subject of a second paper, whereas the
structure of the quasi-nonlinear gravity wave modes is treated in a third part.

KEY WORDS: Tide-topography interaction; stratified shelf sea, multiple-scale analysis, quasi-nonlinear
advection; normal modes, modal damping, free modes.

1. INTRODUCTION

The interaction of tides and topography can be classified according to the various
ratios of the horizontal length scales involved. The ratio of the topographic length
scale to the tidal wave length or external Rossby deformation radius controls
principally the dispersive properties of the tidal waves, giving rise to topographic
wave trapping, shelf resonances and topographic Rossby waves. The topographic
length scales involved in this process are typically of the order of a hundred
kilometers or more. At smaller topographic length scales, from several to fifty
kilometers say, dynamical processes controlled by two other tidal length scales
arise. These length scales are the barotropic tidal excursion amplitude and the
baroclinic tidal wave length, the ratios of which to the topographic length scale
govern the two types of tide-topography interactions. Up to now these interactions
have been treated in literature in two, quite separate, ways. First, it was already
recognized by Zeilon (1912) that this type of interaction must be the primary
source of internal tides in a stratified sea, due to a resonant matching of
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topographic length scales and the internal gravity wave length. Zeilon (1912) also
recognized the matching of the barotropic tidal excursion amplitude and the
internal wave length and thereby was the first to discuss the quasi-nonlinear
advective effects of the barotropic current on the internal wave, giving rise to
superharmonics in the internal tides. Whereas the internal tides discussed by
Zeilon (1912) are propagating gravity waves, a second type of interaction between
the barotropic tide and smali-scale topographic features must be classified as
topographically bounded vorticity “waves” that, by means of vorticity advection,
give rise to residuals and superharmonics of the basic tidal frequency in the
barotropic tidal velocity field, as first recognized by Huthnance (1973). Here again
it is the matching of the barotropic tidal excursion amplitude and the topographic
length-scale that is determining the response. All this suggests that there could be
a unifying approach that captures these processes in a single formulation in which
quasi-nonlinear advection plays a principal role. Apart from a further discussion of
the influence of advection on internal tides in the form of gravity waves, such a
theoretical frame could also give the baroclinic structure of residual currents, a
subject on which there is no literature as far as we know.

Before seeking the most simple setting that stili encompasses all these aspects, it is
worthwhile to have a look at the different theoretical approaches, mainly analytical, to
the problem of tide-topography interactions that have been discussed before. To that
end we have devised the two literature matrices given in Tables la and lb, dealing with
the barotropic vorticity modes and internal tidal gravity waves. These easily show
which principal choices are to be made here and have been made by others. First, there
is the difference between a finite-amplitude topography and a smali-amplitude
topography. The first applies to the continental slope, the second more or less to
topographic features on the continental shelf, like tidal sand ridges or to features at the
ocean bottom. We should like to deal with both, but the analytical difficulties for a
finite-amplitude topography are severe. For residual currents this approach leads only
to analytical resuits for a step-topography (Loder, 1980) and even then, the method of
approximation to be used, harmonic truncation, has its flaws (Young, 1983; Maas et
al., 1987). For a continuously stratified fluid the difficulties of a finite-amplitude
topography, particularly a step, are augmented by the occurrence of (super)critical
bottom slopes (Baines, 1974), which can perhaps only be circumvented by a two-layer
approximation. For a smail-amplitude topography, though, all these drawbacks
disappear. The response ofbarotropic vorticity modes can be calculated exactly in this
case (Zimmerman, 1978, 1980; Maas et al., 1987), the bottom slope of a small
amplitude topography is subcritical, i.e. less than internal wave particle motion
(characteristic slope), implicitly and it has already been shown that the linear theory
for a continuously stratified fluid (Cox and Sandstrom, 1962) can as easily be extended
to the quasi-nonlinear regime (Beli, 1975; Hibiya, 1986) as for the two-layer
approximation (Zeilon, 1912). Moreover, any shape of the topography can be dealt
with by Fourier transformation. Thus, for simplicity, we are willing to pay a price in
that our resuits for a smail-amplitude topography, a step for instance, can at best only
give a qualitative picture of effects near finite-amplitude topographies occurring in
reality, as for instance at the continental slope. However, particularly for the discussion



TIDE-TOPOGRAPHY INTERACTIONS 1 3

Table la Matrix classifying various theoretical analytical approaches to
barotropic tide-topography interactions, producing topographically bounded
residual currents and overtides

Vertical amplitude Finite Small
of topography amplitude amplitude

Horizontal
length scale
of topography

.tidal excursion Huthnance (1973) (implicit in finite
amplitude amplitude approach)

ctidal excursion Loder (1980) (idem)
amplitude

all scales Zimmerman (1978, 1980)

L Maas et al. (1987)

Tabie 1h Matrix classifying various theoretical approaches to baroclinic tide-topography interactions,
producing intemal gravity waves of tidal period and, in the quasi-nonlinear regime, of internal overtides.
[N2= (5 means a (two or three)-layer approximation]

Vertical amplitude Finite amplitude Small amplitude
of topography

stratification (N2) constant (5 constant (5

slope subcritical (super) critical
“flat” “steep”

linear regime Rattray et al. Rattray Cox! (Implicit
(excl. barotropic (1969) (1960) Sandstrom in finite
advection) Baines (1973) Baines (1974) (1962) ampl., (5)

Prinsenberg
et al. (1974)

‘ Sandstrom (1976)

Baines (1982)

quasi nonhnear Pingree et BeIl (1975)
regime (mcl. al. (1983) Hibiya (1986) Zeilon
barotropic Wilmott/ (1912)
advection) Edwards

(1987)

of baroclinic residual currents, where any theory is lacking, the price seems not too
high.

A second choice to be made is that between a continuously stratified fluid and a two
layer approximation. Evidently now, once a smali-amplitude approximation for the
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topography has been chosen, the former seems a logical choice, as it is in principle able
to resolve the vertical structure completely. Even when a linearly stratified fluid is
adopted for simplicity, as we do here, the response of the different vertical modes gives
a qualitative insight into the behaviour of the modal structure of any other form of
stratification.

Finally we have to face the incorporation of advection by the barotropic tidal
current as this is our principal subject. In the theory of baroclinic internal tides
advection has up to now been discarded completely for a finite amplitude topography
(Baines, 1973, 1974, 1982; Sandstrom, 1976; Rattray, 1960), the exception being a
recent numerical study by Wilmott and Edwards (1987), extending an earlier
discussion by Pingree et al. (1983). The option to deal with advective effects either
perturbatively or by harmonic truncation in this case, as in the theory of barotropic
vorticity modes—Huthnance (1973) and Loder (1980), respectively—seems never to
have been considered. For a small amplitude topography, however, barotropic
advection can be incorporated in full, as the expansion is basically in the topographic
amplitude, rather than in a parameter characterizing non-linear advection. This
applies both to the barotropic vorticity modes (Zimmerman, 1978, 1980; Maas et al.,
1987) as to internal gravity waves (Zeilon, 1912; Bell, 1975; Hibiya, 1986). The
principal aim of the multiple-scale analysis given in chapter 2 of this paper is to derive
this incorporation in a mathematically consistent way and to proof that whenever the
three length-scales involved—tidal excursion amplitude, internal wavelength and
topographic length scale—are of the same order of magnitude, the incorporation is
necessary. This regime is called the “continental shelf regime” which should apply on
the shelf or, in the context of a finite-amplitude continental slope, on the shelf-side of
the slope. The regime for which the matching concerned no longer applies is termed the
“deep-sea regime” and this should apply to the ocean side of the continental slope,
where usually the barotropic tidal excursion amplitude is an order of magnitude
smaller than on the shelf, whereas the internal wavelength is larger in the deeper fluid.

In a frictionless fluid, as discussed in the multiple-scale analysis in Section 2, the
barotropic tidal current, advecting the depth-dependent baroclinic structures, is itself
independent of depth. This, of course, is a very convenient property for an analytical
theory, that one should like to retain when fiction is included. This poses a problem, as
bottom fiction in a shallow sea certainly makes the barotropic current depth
dependent, whereas it creates an additional depth-dependency in the baroclinic
currents. Both give rise to vertical mode coupling, that one should like to circumvent in
order to retain the possibility of describing the baroclinic vertical structure in terms of
superposition of mutually independent vertical modes. In two-dimensional barotropic
models of tide-topography interaction, dealing with vertically integrated horizontal
velocities—actually the zeroth order vertical mode—one neglects differential
advection altogether, whereas the frictional effects on the topographically induced
currents is parametrized by a simple Rayleigh damping term (Huthnance, 1973;
Zimmerman, 1978, 1980) albeit sometimes augmented with a nonuniform damping
coefficient to account for a spatially varying tidal amplitude (Loder, 1980). One should
like to keep this for baroclinic tidal currents as well. In Section 3 we show that in the
limit of weak friction, the effects of the bottom boundary layer on the vertical modes
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can indeed be parametrized by a Rayleigh damping term independent ofmode number
and that frictional mode coupling vanishes. As to the neglect of differential advection
by the barotropic current, it has been shown (Zimmerman, 1986) that in terms of
vorticity dynamics this neglect excludes the occurrence of frictionally induced
horizontal vorticity, the subsequent tilting of horizontal vortex-lines in the vertical
direction and the tilting of vertical vortex-lines in the horizontal direction. All this
leads to the absence ofany vertical structure in the barotropic topographically induced
velocity field, particularly to the absence of cross-isobath residual circulation.
However, in the baroclinic situation there is first the ever present solenoidal generation
of horizontal vorticity that can be tilted in the vertical direction by differential vertical
velocities induced by the topography, secondly the baroclinic vertical shear that may
tilt vertical (planetary) vorticity in the horizontal direction and third a depth
dependent horizontal divergence that leads to depth-dependent stretching of vertical
vortex lines. All this gives rise to depth-dependent, topographically induced, velocity
fields even when the barotropic advecting current is only represented by its vertically
averaged value. Thus, using a depth-independent barotropic current, together with a
Rayleigh damping of vertical modes, means effectively that we are only looking at the
vertical structure of internal tidal motions due solely to baroclinic effects, a point that is
particularly relevant for the discussion of the “vorticity modes” in the second part of
this study (Maas and Zimmerman, 1988), where we shall also compare frictionally and
baroclinically induced vertical structure more closely.

In summary then, we discuss the response of a linearly stratified fluid to depth
independent advection by an oscillatory barotropic flow over a small-amplitude
topography in terms of frictionally damped vertical modes, particularly in the regime
where the tidal excursion amplitude and the internal wavelength are of the same order
and match the horizontal topographic length scale. In this sense our theory is a
unification of the theoretical studies encased by dashed lines in Table la,b. The specific
spectral forcing equation is derived in Section 5, whereas the characteristic roots of its
homogeneous part are discussed in Section 6, showing that the free modes consist of
damped gravity waves and a topographically bounded transient, the dispersion
relation of which is summarized in Figure 2. The specific results for the forced response
due to the transient, the “vorticity modes”, including the baroclinic residual
circulation, is discussed in a second part of this study (Maas and Zimmerman, 1988;
referred to later as II) and the forcing of quasi-nonlinear internal gravity waves in a
third part (Maas and Zimmerman, 1989; referred to later as III). The reader who is not
interested in the formal justification of our basic equations (2.45) and (4.39) may just
take these as his starting point and proceed with Section 5 and the subsequent parts II
and III.

2. A MULTIPLE-SCALE ANALYSIS OF THE SHALLOW WATER
EQUATIONS

Our starting point is the inviscid shallow water equations for a stratified, uniformly
rotating, Boussinesq fluid. This implies hydrostatic balance in the vertical direction
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and the neglect of density variations in the inertial terms of the momentum equations.

The complete set reads:

Ou Ou Ou ôu 1 Op
— + u, — + — +

— —
fv + ---- —- = 0,

ôt 8x &v
OV 0V 0v 0v 1 Op
— + u —t + v — + — + fU + = 0,
ôt ac,, ov

(2.1)
0z

OU 0v 0w
__! + — + —- =0,
0x &v ôz

+ u + v -- + w -- = 0
0t

* 0x
* * 0z

Here u = (u,v) and w denote the horizontal and vertical components of the velocity

field given with respect to an orthogonal, rotating coordinate frame x = (x,y), z

with z vertically upwards. The pressure is denoted by p, the density by p, which
contains the constant reference density and p(x,t), its spatial and temporal

variation. The Coriolis frequency f is assumed to be constant, since the scale of the

phenomena we are interested in is much smaller than the scale associated with

variations in f• Finally, t, denotes time. These equations are accompanied by the

boundary conditions:

0c
w = —t- + u —- + v —-

* 0t 0x ôy at

P P*atmosphere’ (2.2)

OH OH
w= —u*-,—- —v-——-, at z,= —H(x,y).

y

Here is the elevation of the surface above mean sea level, while H(x,y)

gives the bottom profile.

2.1. Scaling of the governing equations

Equation (2.1—2) are made non-dimensional by the following scaling:

UH0
u=Uu, w*=__L_w, p=jipgH0, *=‘ (2.3)

*
=

‘,
H =H0H, t = — 1t, z = Hz.
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Here U is the velocity amplitude of the barotropic tidal wave, H0 a typical depth, a the
frequency of the barotropic tidal wave, and L the barotropic wave length scale. The
latter is assumed to be much larger than the baroclinic wave length scale l; i.e. if

L =(gH0)112o1, i = NHoo, with “ = (gzp/H0p)112, (2.4)

,/\ \1/2

-=1--:-) 1, (2.5)
L \PJ

where Ap is the scale of density variations p in the vertical. Here the Brunt-Vâisala
frequency, N, is nondimensionalized by the scale of the density variations as
N = NN(z), such that in the constant Brunt—Viisâlâ model, to be used later, N(z) =1.
The disparity in scales can be explored in a multiple scale analysis in the horizontal
coordinates in the spirit of Pediosky (1984) and Maas et al. (1987). Let

x=lx+LX, (2.6)

and define

P (2.7)
\i3X 8)2) \8X 8Y)

Substituting (2.3) and (2.6) in (2.1—2) using (2.4) and (2.7) gives:

x u+(V+5)p=0,

(2.8)

=0,
ôz

=0,

and

= —

ôt
at z=e

P = Patmosphere’ (2.9)

at z=—H.

Here j is the vertical unit vector, f= f/cr and e = U/rL =10/L, where l is the
barotropic tidal excursion amplitude. In fact e is equivalent to the external Froude
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number. It is assumed to be a small parameter in all situations (e 41). We then have to
make an assumption about the relative magnitude of and 5. This choice is a crucial

one as it will turn out to separate the purely linear (“deep-sea”) regime from the quasi
nonlinear (“continental shelf”) regime in which advection by the barotropic tide plays

an essential role in the dynamics of the internal motions. The latter occurs when e and ô

are of the same order of magnitude, which is equivalent tol = O(l). On the other hand,
for 4 5, — = 0(ô), say—advective effects are negligible (l 4l). As the latter regime
is a natural asymptote of the former, we shall deal with = O(5) here. To this end we set
=ôl0/l and for the moment absorb the latter ratio of length scales as nondimensional

amplitude in each of the velocity components u and w and sealevel variations . This
ratio will reappear when we finally set up the spectral evolution equation for modal
amplitudes in Section 5. Then (2.8) and (2.9) read:

2[+u (V+ô)u+Sw +fj x ö)p=O, (2.lOa)

(2.lOb)

(V+5u+ö=O, (2.lOc)

ôp (2.lOd)
ôt

and boundary conditions

w=+u.(V+ö1 (2.lla)
ôt at z=X,

P = Patmosphere J (2.1 ib)

ôw=—uV+5)H at z=—H. (2.llc)

We shall often use the integrated forms of (2. lOb,c) which read, making use of (2.11)

and of Leibniz’ rule concerning the interchange of differentiation and integration:

p(z) = p(5) + $ p(x,z’)dz’, (2.12)

(2.13)
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2.2. Perturbation expansions

As to the variations in bottom topography we shall assume that these are only
functions of the “fast” coordinate, x, as we are particularly interested in topographic
length scales of the order of the tidal excursion amplitude or the internal wave length.
Moreover we shali exclusively deal with a “smail-amplitude” topography here,
assuming variations in depth to be of order (5= 0(e) relative to the mean depth. The
latter being 0(1), we then have:

H(x)= 1+ôH1(x). (2.14)

We now expand into a perturbation series

_

(5n(n) (2.15)

where stands for each of the field variables u, w, p, , p and H. These series are
substituted in (2. 1O)—(2. 13). Note that (static) variations in density are given in order of
magnitude by tp*/p=t(52,which implies that the series for p reads:

p = 1+ (52p(2)+ (53(3) (2.16)

Order (50

To zeroth order in (5 we then have from (2.lOb) and 2.12)

P°PaZ, (2.17)

where Pa is the atmospheric pressure at z =0, assumed to be constant. In the same way
(2. lOc) implies

(2.18)

Order (51

To first order in (5,(2. lOa) with (2.17), in combination with (2. lOb) and (2.12), give the
equivalence of pressure perturbations and variations in sea level varying only on the
“slow” coordinate:

pm=c°)(X,t). (2.19)

The continuity equation (2.lOc) at this order reads:

(2.20)
ôz

Together with the boundary condition (2.1 lc),

=
— u° VH(x), z = — 1, (2.2 1)
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this suggests to split-up the vertical velocity in parts varying on the “fast” scale and on
the “slow” scale:

8
—— +Vu’=0, (2.22)

ôz

—— +u°=0, (2.23)

=
— VH, z = —1 (2.24)

w°=0, z=—1 (2.25)

To first order in 5 the integrated continuity equation (2.13) reads:

ro
— + V $ u’ dz + u°( — 1)H1+ u°(O)° 1+ $ u°dz = 0, (2.26)

L-i J -1

which gives for variations on the “slow” coordinate:

°

—-— + $ u° dz = 0, (2.27)

and on the “fast” coordinate:

V $u1dz+u°(— 1)H1 =0. (2.28)

Thus, the horizontal velocity perturbations u’ are induced by topographic variations
on the fast coordinate.

Boundary condition (2.1 la) at order 5 gives, making use of (2.19),

w°= —, z=O, (2.29)

which implies that w°(O) = 8°/8t and Wf(O) = 0. The latter is the justification for the
rigid lid approximation for all motion that is organized on the fast coordinate (small
scale).

Order 2

We now turn to eq. (2. lOa,b,d) to second order in 5 (the continuity equation, in this
higher order not being of relevance, is dropped):

——— + fj x &° + Vp + = 0, (2.30a)
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(2)
= _(2), (2.30b)

ôz

(2)

—— +u°Vp2=O. (2.30c)

Separating out the part dependent only on the “slow” coordinate, (2.30a) gives the
familiar equation of motion for the barotropic flow:

—--— (2.31)

As 8°/8z=0 this implies the independence of u° on z, hence (2.27) reads:

+Ç u°=0. (2.32)

The part in (2.30a) depending only on the “fast” coordinate, Vp2= 0, implies
=p2(X,z, t) and therefore from (2.30b)

p2=p2(X,z). (2.33)

Thus, up to this order, perturbations in density belong to the static background that
may vary, horizontally, only on large length scales.

Order 5
Finally we turn to order & in (2. 10)—(2. 13). Equation (2.10) then reads:

+ u(°L Vu1+ u(°L + fj x + Vp3+ Çp(2) 0, (2.34a)

(3)

—--— +p=O, (2.34b)8z

(3) (2)

+ u(°L Vp3+uVp2+ w° ——— = 0, (2.34c)8t ôz

making use of (2.18) and (2.33). Also here we can make a separation between equations
that apply to fast and slow scale variables. As the latter describe a nonlinear correction
to the zeroth order barotropic motion given by (2.3 1)—(2.32) which is not of interest
here, we shail only give the equations applying to the variables depending on the fast
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coordinate. That part of (2.34) reads:

—-—+ u° Vu1+ fj x u’ + Vp3= 0, (2.35a)

(3)

——- +p3=0, (2.35b)
ôz

(2.35e)

(3) (2)

+ u° Vp3+ —--— = 0. (2.35d)
t3t ôz

In order now to separate vertical motions forced by the external barotropic flow (We)

over the varying depth from those that are due to free internal waves (WJ, a further

subdivision of w» is applied:

= w° + (2.36)

such that the bottom boundary condition (2.24) is split-up in:

— 1) = W°( — 1) + w°( — 1). (2.37)

with

W°(—I)= —u°VH1 (2.38)

and

w°(— 1)=O. (2.39)

1f now the horizontal velocity vector is separated in the same way:

(2.40)

the u field obeys

+ u° Vu + fj x u+ Vp = 0 (2.4 1)

together with

(2.42)
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Now, from (2.35b), for p=0,=2)is independent of z. Then also u is z
independent so that a vertical integration of (2.42) gives using (2.38)

V u= — u(OL (2.43a)

and

w°(z) = zu° VH’. (2.43b)

2.3. Equations governing barotropic and baroclinic fields

Taking the curl of (2.41), using (2.43), gives the barotropic equation for the vertical
vorticity:

(j V x u) + u° V(j V x u1)+ f(u(°L VH1)= 0, (2.44)

which has been derived and discussed before by Zimmerman (1978, 1980) and Maas et
al. (1987). Now, in the presence of density stratification we have a baroclinic field as
well, which obeys:

+ u° Vu + fj x u + Vp3= 0, (2.45a)

8
(3)

—--+p=O, (2.45b)
8z

V,u1)+__t_ =0, (2.45c)

8 (3) d (2) d (2)

——— + u° Vp3+ w° —--- = — w° —-—
=zu0VH’N2(z). (2.45d)

dz

dz

where the latter equality follows from (2.43b) and N2(z) = —dp2/dz. Equations (2.45),
together with the boundary conditions,

w° = 0 at z = 0 and — 1, (2.46)

constitute the quasi-nonlinear shallow water equations for a stratified fluid. It shows
particlarly that whenever the expansion parameters e = U/rL =l0/L and 5 = l/L are
the same order of magnitude, i.e, if the tidal excursion amplitude of the barotropic tide
and the internal wave length are of the same order of magnitude and both are
comparable to the horizontal topographic length scale, the incorporation of the
dashed underlined terms in (2.45) is necessary. These terms describe the advective
action of the externally imposed barotropic tidal wave. Hence advection of internal
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motions by the barotropic tide occurs concurrently with its forcing given in the right
hand side of (2.45d). As the matching of topographic scales with those of the barotropic
tidal excursion amplitude and the internal wavelength is characteristic for features on
the continental shelf or near the continental slope, we shail eau the regime = O($) for
which (2.45) and (2.46) apply, the “continental shelf regime”. For more gentie
topographies in the deep sea, = O(52) say, it can easily be shown, along the same way
as that leading to (2.45), Maas (1987), that the dashed terms in (2.45) drop out. This
“deep sea regime” is the one studied by Cox and Sandstrom (1962), whereas (2.45)
basically is the starting point of Bel! (1975), Hibiya (1986) and, in its two layer
approximation, of Zeilon (1912), as well as of II and III. For completeness it should be
noted that the “deep sea regime” for a finite amplitude topography (Baines, 1973, 1974,
1982; Sandstrom, 1976) is obtained by dropping the dashed terms in (2.45) and
replacing one of the boundary conditions in (2.46) by

w°= —u°VH° at z= —H°(x),

as the depth is now supposed to have 0(1) variations. The latter means that in (2.1) the
vertical velocity component has to be scaled with UH0/11rather than UH0/L, so that w
should be replaced by 5 1w in (2.8) and (2.9). Setting = 0(Ô2)then leads to the result
as mentioned above (Maas, 1987), when following the same route as that from (2.10) to
(2.45).

3. VERTICAL NORMAL MODES

One of the advantages of working with a smali-amplitude topography is the possibility
of separation of variables, by which the vertical structure of the internal motions can be
described in terms of orthonormal eigenfunctions associated with the flat-bottom
reference state. The theory is standard (Krauss, 1966) so that it may suffice here to give
only a brief account of what we shail need furtheron.

For a flat bottom, the forcing term in the right-hand side of (2.45d) drops out, as do
the dashed quasi-nonlinear terms in (2.45a,d) in a reference frame moving with the
barotropic current u°(t) in the absence of forcing on the small scale. In the remaining
system we may treat vertical and horizontal propagation separately. The former is
most conveniently described in terms of the w, p fields. Eliminating u and p we have:

(3.1)

( +f2) =V2, (3.2)

where

d 2(z)
N2(z)=

— dz
(3.3)
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and where we have dropped the superscripts. To this we add the boundary conditions

w=0, z=0,—1. (3.4)

Making the separation:

ni
p(x,t)H(z), (3.5)

w= w(x,t)Z(z), (3.6)

leads to the familiar Sturm-Liouville eigenvalue problem for internal waves (Groen,
1948):

1
(3.7)

dz\\N2(z) dz ,) c

z=0,—1, (3.8)
dz

with

dZ
(3.9)

dz

where c is a separation constant. The orthonormal eigenfunctions H and Z,, satisfy:

önm LN2(Z)Zn(Z)Zm(Z)dZCnCm, (3.10)

where 5nm is the Kronecker delta. For the simple situation of N2(z) = constant (and
thus, as we scaled with this constant value, N2 = 1) that we shall use here, the
eigenfunctions are taken as

H=cosnrr(z+ 1), (3.11)

Z=nir sin nrc(z+ 1), (3.12)

with eigenvalues:

1
c=—. (3.13)nrc
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The corresponding horizontal propagation problem is more conveniently described in

terms of the u, fields, where w = ô/ôt. Thus is the elevation of isopycnals with

respect to their horizontal equilibrium level. With

u= u(x,t)H(z), (3.14)

ni

(x,t)Z(z), (3.15)

elimination of p and p from the reduced set (2.45) gives:

+fjxu+V=tO, (3.16)

(3.17)

formally equivalent to the equations for the barotropic mode (2.3 1; 2.32). The

incorporation of the barotropic mode (n =0) itself in the expansion in vertical

eigenfunctions will sometimes be necessary, particularly in the discussion of damping

and of residual currents. The incorporation has been discussed by Gili and Clarke

(1974). For the barotropic mode we have

H=1, Z=z+1 (3.18)

with c0 =
, being given by (2.5).

4. PARAMETRIZATION OF MODAL DAMPING

The inclusion of frictional damping mechanisms in the discussion of baroclinic

motions in the quasi-nonlinear “continental shelf regime” is necessary for two reasons.

First in shallow water, with a strong barotropic tidal current present, internal waves

are propagating in a dissipative medium, primarily due to the turbulence generated by

the barotropic tide. Hence the energy source of the internal waves at the same time

creates their sink, which can be so strong that the e-folding distance can just be a few

times the internal wave length. In an area with a complicated source topography this

may lead to strongly incoherent internal wave signals at different positions. Secondly,

in the case of barotropic tidal currents, it has been shown that the generation of

residual currents depends in a subtle way on the inclusion of bottom fiction

(Huthnance, 1973, 1981; Zimmerman, 1980). Although the rectified current is

strongest in the limit of weak friction, no rectification is obtained when friction is

omitted in the basic equations ab initio. This may be expected to apply to baroclinic

residual currents, as well.
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The incorporation of (turbulent) viscous effects in the baroclinic shallow water
equations faces two problems: First, the proper expression of the frictional force and
the boundary condition to be applied at the seabed and secondly, the coupling of
different vertical modes due to fiction, which threatens to destroy the advantage of
working in the “small amplitude” limit. We shall adopt the simplest possible way that
effectively keeps the vertical modes uncoupled, but yet retains the basic feature of the
damping of an individual mode, viz. that the damping rate depends both on the
internal shear of the mode as on the shear induced by the collective movements of all
modes near the bottom. In this, our approach for a continuous stratification resembles
those of Rattray (1957) and Martinsen and Weber (1981) for a two-layer flow,
particular as the relative strength ofbottom versus internal friction is concerned. It also
accords with the results of LeBlond (1966) and Crampin and Doré (1969) for a
continuously stratified fluid, but instead of expanding the dispersion relation directly
in the Ekman (or Stokes) number as these authors do, we first pose part of the vertical
mode coupling problem in full, showing that the coupling vanishes in the limit of a
small Ekman-number.

4.1. Mode-dependent fiction

As to the turbulent viscous effects on the motion, we shall assume that only the
divergence of the vertical turbulent momentum flux is of importance, hence a term
&r/z must enter (2.45a), where t is the vertical flux of horizontal momentum, which
has to be specified. For this we assume that in the interior of the fluid, dimensionally,

0u
(4.1)

ôz

or nondimensionally,

Eôu 2K
.=—! E=— (4

S 2’2 ôz rH0

where K is an, in general depth-dependent, eddy viscosity and E5 is the Stokes
number. Near the bottom a strong shear layer is to be expected where K decreases
rapidly. In order to work with a constant-K in the interior later on, and refraining
from an explicit representation of the bottom shear layer we adopt a stress
boundary condition at the seabed:

ôu
= K ——-— = CdIU*U* z = — (4.3)

with r = r(JuJ), or non-dimensionally:

z= —1—H1, (4.4)ôz
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with

s=---. (45)

The quadratic friction law in (4.3) stresses the turbulent character of the bottom

boundary layer. Its linearization with the linear friction coefficient r, being

approximately a function only of the amplitude of the barotropic tidal velocity

amplitude, expresses the fact that the internal motions are thought to be of a smaller

amplitude, so that the turbulent intensity in the boundary layer is primarily due to the

barotropic tide. The parameter s in (4.5) measures the relative influence of bottom and

internal fiction. For s = 0 bottom friction is absent and vertical modes become
frictionally uncoupled for a specific expression of K(z), to be discussed furtheron.

Unfortunately observations by Maas and van Haren (1987) shows to be of order 10

in a typical shelf sea, which suggests that the limit s—* is more appropriate. In order

to keep a finite stress at the bottom this means that a (mathematically more

convenient) no-slip condition can be applied:

u=0, z= —1—5H1. (4.6)

This, in principle, produces vertical mode coupling.
Projecting the stress-divergence, t/ôz, on the vertical normal modes as discussed in

Section 3, using (4.2), we obtain the mode-dependent damping terms:

S H(z) dz -[sz dz

T=
‘ Z m 1 1 Z Z

(4.7)

H,?(z) dz
11

H dz

The orthonormality of the modes, (3.10), and (3.7) guarantee that this projection

produces no mode-coupling provided

E(z)N2(z)= constant,

or (4.8)

K(z)N(z) = constant,

as has been observed by Fjeldstad (1964). Equation (4.8) is of course trivially satisfied

for a linearly stratified fluid (N = 1) if we suppose the eddy viscosity to be a function of

the Brunt-Viisiihi frequency only, as we shali do here. Then (4.7) reads:

E N2 2it2
=

— E
= = E, (4.9)

with c, given by (3.13). In subsequent sections we derive the damping coefficients for

internal modes in the flat bottom reference state.
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4.2. The slipping velocity modes

Incorporating (4.9) in the modal equations (3.16) and (3.17) we have

+fj x u + V + Eu = 0, (4.10)

+cVu=0. (4.11)

Introduce the complex (rotary) velocity vectors (Prandle, 1982)

u±,z=u,iVfl (4.12)

and assume u,,, cc exp( — it). Then from (4.10) and (4.11) we obtain the slipping
velocity modes:

1
V, (4.13)

2i(o, —f)

u=
1

VJ, (4.14)
2i(o +f)

where

ô a
V—+i——; V_——i—-, (4.15)a ay

and

cr=1+iE. (4.16)

4.3. The no-slip velocityfield

The modal solutions (4.13) and (4.14) together with their vertical eigenfunctions as
given by (3.11—3.12) obey the boundary conditions at the surface, ôp/ôt= w, u/ôz=0,
as well as w=0 at the bottom, but not the no-slip condition u=0 at z= — 1. That is,
they trigger a second velocity field, u’, that adapts the vertical profile to the no-slip
condition. This field can be dealt with as in Sverdrup (1927) for the barotropic flow. At
the bottom, the field given by (4.13—4.14) gives

u(— 1)= uH(— 1) = (4.17)

where we have incorporated the barotropic mode n =0, given by (3.18). The adaptive



20 L. R. M. MAAS and J. T. F. ZIMMERMAN

field, then, is the solution of

ôu’ E ô2u’
-—-I-fjxu’=-j -- (4.18)

with boundary conditions

u’(— 1)= —u(— 1)= (4.19)

z=0. (4.20)
ôz

The solution reads:

= — u±F+(z), (4.21)
n0

where

F(z)=
cosh

(4.22)
- cosh

±=:
E=--, (4.23)

where we have adopted the same rotary decomposition for the adaptive field as in
(4.12).

4.4. Mode-coupling

The total velocity field reads for each rotary component:

-

2z(a,±f)

1f this is substituted in the continuity equation

V±u_+V u+=0, (4.25)

together with

(4.26)



TIDE-TOPOGRAPHY INTERACTIONS 1 21

weget

nO + 2i nO

v2Ql[’

+
0. (4.27)

Now suppose ocexp(ik x), and project (4.27) on each of the eigenmodes Hm(Z) as
given by (3.11) and (3.18). Then we have

-
+

f)Cm+
+

(4.28)

where

F÷ (Z)Hm(Z)dZ

F±m
-1

(4.29)

$ H(z)dz

From (3.11) and (4.22) this is evaluated as

(4.30)
—

where

F0=
tanh

(4.31)

being given by (4.23). Also

im2n2E
2(1+f)

(4.32)

In (4.28), where ic2 = k, all modes are coupled due to the third term, which vanishes
for E 0, in which case the familiar dispersion relation for undamped waves is
recovered. The coupling means that due to frictional modification we need in principle
all vertical modes to give a complete description of the velocity profile, no matter
whether only a single mode is resonantly forced. However, the vertical modes due to
frictional adaptation will not in general obey the dispersion relation for free waves, 50

that the coupling will not produce resonantly forced modes itself. The projection of the
frictional forcing function F(z) on the first four eigenmodes is shown in Figure 1 as a
function of the Ekman-Stokes number, E = E/(1 ± f). Apart from the vertically
uniform mode, n = 0, the projection, and thereby the mode-coupling term, is
significant, in comparison to the other terms in (4.28), only in an intermediate range of
values ofE. For the limit E -÷0(weak bottom fiction) this means a decoupling of the
modes.
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Figure 1 Real (——) and imaginary (———) parts of the projection of the forcing function F±(z) on the first

four eigenmodes (n =0,1,2,3), as a function of the Ekman-Stokes number E = E,/(1 ±f).

4.5. Dispersion relation

Dividing by K2, (4.28) constitutes a matrix equation

(4.34)

where

1 1/F_—1 F—1\
+ 1, i=j,

CK 2\o—f o+fj
(4.35)

1fF_
lj.

Equation (4.34) is satisfied once

detA=O. (4.36)

Now for small Ekman-Stokes numbers one may discard the off-diagonal terms of A. in

solving (4.36), which gives effectively a decoupling of the vertical modes, analogously

to the decoupling of spherical eigenfunctions in the damping of barotropic tidal waves

on a rotating globe in the limit of weak dissipation (Miles, 1986). That the off-diagonal

terms may be discarded can be justified by looking at (4.35) for E —O, so that

F ± E. The products of off-diagonal terms are then always of a higher order in E ±

than those contained in the diagonal terms. The formal proof of the validity of this

approach, for a nonrotating fluid, is given by Maas (1987), showing that the result is

equal to an exact evaluation of the determinant equation upon which the limitE3—*O is

applied a posteriori.

1.0

0 Es
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Using only the diagonal terms of (4.35) in (4.36) gives the roots for K2 as follows

(4.37)

which in the limit E—*O reduces to

K 42(1 _f)[1 +(1 +i)E2+ —E +O(E!2)]. (4.38)

This is the dispersion relation, showing that the damping rate, represented by the
imaginary part of K, can be split-up in two parts which behave differently as a function
of Ekman-Stokes number (eddy viscosity) and mode number. The damping rate due to
internal fiction is linear in the Ekman-Stokes number and increases quadratically with
mode number. The damping rate due to bottom-friction is proportional to the square
root of the Ekman-Stokes number and is independent of the mode number. Evidently
for higher mode numbers internal fiction will be dominant but for the usually more
important lower modes bottom fiction is the principal damping agency. These resuits
accord with those of LeBlond (1966) and Crampin and Doré (1969).

The result given in (4.38) implies a very suitable parametrization of modal damping.
1f we write the divergence of vertical flux of horizontal momentum as

=_Ei2u+ (4.39)

this leads, upon projection on the vertical modes and substitution of (4.39) in the right
hand side of the modal equation, (3.16), to the proper damping rate for the individual
modes without having to care of the no-slip boundary condition. That is, as long as we
are only interested in that part of the vertical structure of tidal currents that is due only
to baroclinic effects, and not in the part due to bottom friction, (4.39) is the proper
parametrization of the damping processes that accounts implicitly for the effects of
bottom friction on the internal baroclinic modes via the first term in the right-hand
side. Of course, the Rayleigh damping term in (4.39) should not be interpreted as to
apply in a physically strict sense. It is not meant that locally in a velocity profile the
frictional force is proportional to the local velocity, but only that the very localized
effects of bottom friction can be parametrized as a Rayleigh damping term for each of
the vertical modes.

5. FORCING EQUATIONS FOR INTERNAL TIDES

When (4.39) is substituted in the right-hand side of (2.45a), the set of equations (2.45),
together with the boundary conditions (2.46), describes the generation of internal tides
by the interaction of the barotropic tidal current and the bottom topography,
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including the effects of quasi-nonlinear advection and frictional damping. The actual
no-slip condition for the horizontal velocity at the sea bed has been removed by
parametrizing its effect as a Rayleigh damping term in (4.39), at the expense of loosing
any vertical structure of the tidal currents due to bottom friction. The removal of the
no-slip condition makes it possible to expand all dependent variables in the vertical
modes given by (3.11) and (3.12). Eliminating the density from the equations,
introducing the total derivative:

(5.1)

the modal amplitudes obey

Lu+fjxu+Vp= —ru, (5.2a)

dp
Wn+Wen, (5.2b)

w+cVu=O. (5.2e)

These equations can be combined into one equation for the vertical velocity w:

[(d
+ rn)2+ f2]fl

— + rn)V2(Wn + Wen) = o. (5.3)

Here

j 22

c2———— —E112 E 54
fl 22’ “ — —

2

whereas the projection of the forcing Wen is given by

S WeZn(Z)dZ
2

Wen =
—1

= _(u(°L V)H
—---,

(5.5)

5Zdz
fl7C

the last equality following from (2.43). (Note that we have dropped all super- and
subscripts in (2.45) except for We and u°.)

Equation (5.3) is our starting point for the response of a stratified fluid to forcing
over a small amplitude topography. For such a topography a horizontal Fourier
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transformation of (5.3) is suitable. Defining,

= $ w(x)e dx, (5.6a)

I(k)=
-

$ H(x)e -ikx dx, (5.6b)
2n

the total derivative (5.1) reads

+ ik ii(°), (5.7)

as (O) is independent of x, being a variable dependent on the slow coordinate only, and

‘en(1o)= —ik.u(°4Û(k), (5.8)

where k is the topographic wave number vector.
Both from a physical and mathematical point of view it is convenient to introduce a

quasi-Lagrangian reference frame, moving with the barotropic oscillatory current
u°(t) (Bel!, 1975; Maas et al., 1987). Defining

t) = i3’(k, t)exP[
—

i$ k u°(t’) dt’] (5.9)

JI’(k, t) is the modal Fourier component of the vertical velocity as seen by an observer
moving with the velocity u°(t). In terms of W(k,t) the Fourier transformed eq. (5.3)
reads:

[(+rn)2+f2]W+cJkI2( +rn)n

_clk2exp{i$k. u° dt}[ + i(k . u°) + rn]i.’en P,jk, t). (5.10)

Note that the transformation (5.9) has removed the quasi-nonlinear advective terms at
the expense of a complicated forcing function F(k,t), in the absence of which the left
hand side of (5.10) just describes the free, frictionally damped, internal modes in a
moving frame of reference.

From hereon we shall assume that the perturbations in topography, H(x), vary only
in a single direction, x, whence k = (k,0). For the externally imposed barotropic tidal
current u°(t) we assume a simple elliptically polarized vector

u°(t) = [cos t, e cos(t + 4ij], (5.11)
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where the ellipticity, e 1 and 4 is an arbitrary phase angle. Note that in the x

direction &°(t) has an amplitude l0/lj in dimensionless form as explained in Section 2

[above (2.10)]. It is convenient to absorb this length scale ratio by rescaling

wavenumber k to k = klo and simultaneously the “fast” coordinate x to x = x/lo. The

ratio l0/li is then reappeanng only in the eigen wavenumber k,3, defined below. On these

assumptions (5.10) finally reads

ô / k2”ô k21

[— +2r—+f2+r+}- +rJW

=a(k)eik s1nt( +ik cos t+rn)cos tÊ(k,t), (5.12)

where

kn7cf’- (5.13)

is the ratio of the excursion amplitude 1 to the wavelength of the internal tide of mode

n: (l/nt). The amplitudes a(k) of the forcing Ê are given by:

2 . k2 2 k2
a(k)= —-—-zkH--- =2c ikH—-. (5.14)

nrc k k

In the absence of friction and rotation (5.12) is equivalent to Beu’s (1975) equation for

the generation of internal waves in a semi-infinite medium, with which it shares the

complicated forcing function Ê(k,t), that gives rise to the occurrence of super

harmonics of the basic driving tidal frequency. Moreover, in the limit of a gently

sloping topography, k—*0, in the absence of friction, (5.12) is equivalent to the basic

equation of Cox and Sandstrom (1962), for which we have the linear undamped

solution

W(k,T) = a(k)
2_:k2/k2’

(5.15)

where, in this limit, l(k) is equivalent to (k) and superharmonics are absent. The

vanishing of the denominator, then, gives the dispersion relation for the resonantly

forced internal gravity wave modes.
Although our basic equation thus encompasses those from previous studies, we

stress here that the inciusion of the three processes: quasi-nonlinear advection,

frictional damping and rotation, together is necessary in order to derive the full

information about internal tidal features, particularly the occurrence of

topographically bounded modes of which baroclinic residual currents are a part.
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6. FREE MODES

The solution of (5.12) gives the internal response of the fluid to perturbations in
topography at wavenumber k. By inverse Fourier transformation, then, the response of
a topography of any shape can be constructed. The spectral Lagrangian response
function ÇP(k, t) can be obtained in a standard way once we know the solution of the
homogeneous part of (5.12), which actually describes the free modes of the fluid, albeit
in an oscillating frame of reference.

The homogeneous part of (5.12), setting F = 0, is solved by substituting
= exp(vt). Then v must satisfy the cubic

v3 + 2rv2+ (f2 + r, +k2/k)v +rk2/k= 0. (6.1)

This cubic is a particular case of the one derived by LeBlond (1966), who included heat-,
salt- and anisotropic momentum diffusion. He calculated the dependence of damping
rates of the propagating inertio-gravity waves on these diffusion coeffients and
wavenumber. Scaling

=v/r, J=f/r, iZ=k/r, (6.2)

transforms (6.1) into

3+22+(1+J2+îZ2/k+IZ2/k,=0. (6.3)

The two remaining independent parameters J and iZ/k express the ratios of the inertial
frequency to the damping frequency and the eigenfrequency to the damping frequency
respectively.

Together they determine the nature of the three roots. Equation (6.3) can be written
as:

z3—3(1—x---y)z+(3y--6x—2)=O, (6.4)

with auxiliary variables

z3î+2, x3J2, y32/k,, (6.5)

not to be confused with the coordinate axes.
Now for any cubic z3 — az + b =0, with a <0, there exists always only one real

solution z and two complex conjugates. However, if a >0, z3 — az has two relative
extrema, which allows the possibility of three real roots. The two complex conjugated
roots in the first case belong to the internal gravity waves. 1f these roots become real,
the waves are overcritically damped. The real third root is a transient, whose
continuous presence can only be sustained by a persistent forcing. The region
determined by a <0, a being implicitly defined by (6.4), is given by

x+y>1, (6.6)
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3y—6x—2•
F=

(1—x—y)312

y = 3
n

8/9

1” X3

xi-y=1
(0=0)

Figure 2 Parameter space of the cubic (6.4), summarizing the dispersion relations. Here x = 3f2/r, and

y =3k2/kr. The line x + y = 1 separates the region where always two complex conjugated roots exist.,

together with a real root, from that where three real roots are possible. The actual region of three real roots is

the hatched area. For a given first mode (n = 1) at specific values of the parameters—dot labeled by 1—the

higher modes are given by the dots labeled 1/2, 1/3 etc. and are seen to consist of a set of points that contract

towards the x-axis. For weak fiction these dots are approximately situated on a line x = constant. When

friction, r, increases, all other parameters held fixed, the dots move 50 as to distort the line into a parabola

due to an increase of the damping rate with mode number.

see Figure 2. Defining z’ = z/a112 transforms the cubic into

z’3—3z’+F==0, (6.7)

with

(6.8)

Three real roots exist when 1Fl 2; this corresponds to the hatched region in Figure 2.

The interpretation of this figure is facilitated when we assume first that the damping
coefficient is independent of mode number. From (5.4) this assumption implies that
E_ —+0. Then, for a given f (or x), the set of ‘eigenfrequencies’ [k/k = k/(nk1)] will
consist of a set of points in parameter space, which contract for increasing mode
number n towards the x-axis (the dots in Figure 2). Hence the higher modes reduce to
pure inertial oscillations. For finite E - the n-dependence of the damping coefficient r,
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X = 0.05 X = 0.10 X =1.00

1 ib ib o

X=3.00 X=5.00

:,

08i

Figure 3 Behaviour of the real root v3 and the real, Vr, and imaginary, v1, parts of the complex conjugated
roots, V1,2,as a function of y =3k2/kr for a few special values of x = 3f2/r. For x = 0.05 and 0.1 these roots
apply only in the region outside the area hatched in Figure 2.

with which the variables are scaled, assures that for increasing n contraction not only
proceeds towards the x-axis ( 1/n6), but also towards the y-axis (‘=. 1/nj and thus to
the origin. This is because the scaling on both axes is different for different mode
numbers. The mode-number dependence of this contraction causes the original
connection of a chosen set of points (dashed in Figure 2) to deform from a straight to a
curved line. 1f, on contraction, any of the points enters the hatched area all three roots
will be real, corresponding to an overdamping of the gravity wave modes.

For a few special values of x the behaviour of the roots as a function of y has been
determined numerically and plotted in Figure 3. Apart from showing the possibility of
three real roots for x < 1/9, it also reveals the asymptotic behaviour of the roots, as will
be discussed analytically now.

There are a few interesting limits:

1. lim, corresponding to strong damping, or weak stratification such that the
y-’O

topography scale (as we may interpret k -1 presently) is large compared with the
internal wave length scale (k 1), a situation particularly met for high modes (n-.oo).
Equation (6.4) reduces to

z3 — 3(1 — x)z — 2(1 + 3x) = (z —2) (z2 + 2z + 1+ 3x) = 0,
which yields

z1,2=—1±i{3x}112—.v1,2=—r±if,z3=2--*v3=0. (6.9)
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The higher mode gravity waves deform to the damped inertial oscillations referred to

above, whereas the vorticity mode degenerates into a steady (geostrophic) current.

2. lim , corresponding to a short spin-down time compared with the inertial time scale
x—’O

(or to f—÷0). (6.4) reduces to

z3—3(1 —y)z+3y—2=(z+ 1)(z2—z—2+3y)=0,

which yields

1±i(12y—9)112
2

—÷v1,2—1/2r±zk/k,

(6.10)

z3= —1---v3=—ru,

of which the expression for v1,2 is valid for y 3/4, as when the damping is weak, or the

topographic wave length scale is small compared with the intemal wave length scale.

This is a set of two damped gravity modes, plus a third decaying transient. Ofcourse, in

the absence of frame rotation no geostrophic current results. Notice that the square

root term inz12 guarantees that, in this limit, there are at most a finite number of freely

propagating internal wave modes restricted by the criterion

y> 3/4—*k/k1> nrj2.

The modes then represent evanescent gravity ‘waves’. Alternatively this condition may

be interpreted as providing a low-wavenumber cut-off (LeBlond, 1966). Curiously, as

can be seen in Figure 2, for x-values increasing from 0 to 1/9, the low-frequency cut-off

is shrinking. Moreover, it reduces to a spectral (k) band (via y), below and above which

free waves exist. This band therefore acts as a filter in wavenumber domain, separating

gravity from inertial waves.

3. lim , corresponding to lim (weak friction). This limit can be directly discussed
x,y—’oo r—O

from eq. (6.1) by expanding the roots v(j = 1,2,3) in the small parameter r:

(6.11)

Then from (6.1) we find to zeroth order in r

+f2 +k2/k) = 0.

Hence
(0) —

V1,2 _lj /
‘ 6 12

the complex pair representing the usual dispersion relation for internal gravity waves.
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The order r correction follows from

V(1)[3V()2+f2+k2/k] +2v°2+k2/k,=0,

which shows that

(1) —

—(k2/k+2f2)
<0

2(k2/k+f2)
(6.13)

j,2/&2
(1)__ / “ <0

— f2+k2/k

Hence we find up to order r:

(,2/j 2-,ç2

— + ‘2--k2’k2’12—r ‘ / “ “
‘l2 —J / fl’ “2(k2/k2+f2)

(6.14)
k2/k,? 2=

— r
2 +k2/k,

+ O(r).

These roots qualitatively agree with the graphs in Figure 3, expecially for x 3, or
f r i.e. for inertial frequencies exceeding the damping frequency, and also reduce to
expression (6.9) and (6.10) when appropriate limits are taken.

The two complex roots, representing damped propagating inertio-gravity waves are
of a quite different character, physically, compared with the third root, which
represents an evanescent mode. The latter in combination with the forcing term in
(5.12) gives rise to topographically bounded internal modes, in particular to baroclinic
residual currents. These arise from quasi-nonlinear vorticity advection by the
barotropic current once vorticity is produced by its interaction with the topography. It
is in fact this single root which appears in barotropic rectification studies (Zimmerman,
1978; Maas et al., 1987). Such “vorticity modes’ are the subject of II, whereas the
gravity waves are dealt with separately in III.

7. CONCLUSIONS

The equations governing motions in a stratified shelf sea in response to tidal flow over
topography have been derived using a multiple-scale analysis. This approach utilizes
the vast difference between barotropic wave length scale (L) compared with both the
internal wave length scale, l, as well as the tidal excursion amplitude l. It is the ratio of
the resulting two small parameters c5 = l/L and i =10/L, which determines the nature of
the tidal regime one is considering. Quasi-nonlinear advective effects become
important when = 0(5), as on continental shelves, which parameter regime has
therefore been termed the “continental shelf regime”. Advection can be neglected when
= O(52), referred to as the “deep-sea regime”. Finite amplitude topographies, treated
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in literaturefor the latter regime almost exclusively, require an extra rescaling of the
vertical velocity, effectively leading to a non-trivial bottom boundary condition for the
free intemal motions. The rigid-lid approximation, frequently applied in this context,
is identified as the natural result of a mismatch of horizontal length scales.

In shallow shelf seas the ambient stratification often invites one to use a modal
description of internal wave propagation. Any realistic description of wave motions, a
study on tidal rectification in particular, requires taking proper account of frictional
effects. Unfortunately, inclusion of bottom friction (as well as internal friction, once
one does not adopt an idealized eddy-viscosity profile) in principle leads to a (non
resonant) coupling of all vertical modes. However, in the limit of weak friction, as when
the Ekman-Stokes depth of the anticyclonic current component is small in comparison
with the water depth, this coupling vanishes. Moreover we may adopt a simple
parametrization of the stress-divergence, which, upon projection on the vertical
modes, correctly yields a mode-independent damping rate due to bottom fiction,
concurrent with a mode-dependent damping term due to internal fiction by the
shear in the velocity modes.

Adding the parametrization of stress-divergence to the equations of motion and
projection on the vertical and horizontal spectral modes leads to an evolution equation
for the modal, spectral vertical velocity component in a co-oscillating, Lagrangian
frame. The homogençous part of this equation determines the free modes present in
this model, which can in general (i.e. in the limit of weak damping) be identified as a set
of damped, propagating inertio-gravity waves in conjunction with a (transient)
geostrophic current. The response of these modes to the applied forcing is discussed in
accompanying papers II and III.
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Appendix: Glossary of notations and symbols

dimensional variable q
average

G.A.FD.--B
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varying part of 4)
4, vector 4)
Î’ spectral amplitude in Eulerian () and Lagrangian (Î) frame
(n) perturbation variable 4) of order n
&,cFn decomposition of 4) into a horizontal-temporal fluctuating part & and

vertical eigenfunctions T,
frequencies, rescaled with rn (section 6)
externally forced and internal free modes respectively
modal forcing amplitudes

Cd drag coefficient
nondimensional eigen frequencies

e ellipticity
E Stokes number
E Ekman-Stokes number of (anti-)cyclonic rotating current vector

f Coriolis parameter
F function describing vertical current structure due to friction
g acceleration of gravity
H,H0 actual depth profile and constant reference depth

imaginary unit
j vertical unit vector
k wavenumber (of topography)
K eddy viscosity
10 tidal excursion amplitude (U _1)

1. internal wave length scale
L external wave length scale
N Brunt—Vâisihi frequency

P’Pa pressure, atmospheric pressure
r bottom friction coefficient
s stress parameter expressing ratio of bottom and internal friction
t time

modal damping terms
(anti-) cyclonic velocity component

U scale of horizontal velocity
u,v,w velocity components in x,y,z directions
Wf,Ws vertical velocity varying on “fast” and “slow” scale
x,y,z orthogonal cartesian coordinate frame (“fast” scale)
X,Y large (“slow”) scale horizontal coordinates
Zn vertical eigenfunctions of vertical velocity modes

5nm Kronecker delta
ö perturbation parameter; ratio of internal and external wave length scale

ratio of tidal excursion amplitude and external length scale

4) phase angle
magnitude of wavenumber vector

v frequency
vertical eigenfunctions for pressure and velocity modes



TIDE—TOPOGRAPHY INTERACTIONS 1 35

p density
tidal frequency

o± nondimensional complex frequency, containing damping term as imaginary
part
sea level elevation; internal elevation field.

w w




