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The generation of topographically bounded internal tides and baroclinic residual currents is discussed for a
linearly stratified fluid in the limit of smali-amplitude topography and weak damping. It is shown that quasi
nonlinear advection by the barotropic tide generates a residual and higher harmonics, besides the ever
present fundamental driVing frequency in the internal motions. At all frequencies the along-isobath currents
and the cross-isobath circulation are bottom intensijled, the intensification being a function of the internal
Rossby deformation radius. For a step topography the weak cross-isobath residual circulation has a
characteristic three-cell structure with a down-slope bottom current at the position of the steepest slope,
which is also the center of the along-isobath residual jet. In contrast to barotropic currents in the quasi
nonlinear regime, the baroclinic currents are exponentially bounded to the topography, rather than
extending over a finite interval, in which the e-folding distance is the internal deformation radius.
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1. INTRODUCTION

In the preceding paper (Maas and Zimmerman, 1988; henceforth referred to as 1) it was
shown that the free modes of a dissipative, stratified, uniformly rotating fluid consist of
damped propagating gravity waves and a non-propagating transient. The latter is
usually neglected, but in problems of a localized forcing, these transients can give rise
to a spatially bounded response; ie. in the present context to topographically trapped
modes. These are the subject of this second part, whereas the gravity waves are dealt
with in Maas and Zimmerman (1989), henceforth referred to as III.

The importance of a nonpropagating transient is well-known in the barotropic
theory of tide-topography interactions, where its presence gives rise to nonlinear
generation of residual currents and overtides (Huthnance, 1973; Zimmerman, 1978,
1980; Loder, 1980). One could expect such phenomena to occur in a stratified fluid as
well, but to our knowledge there exists no theory of baroclinic topographic
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rectification and the associated topographically bounded overtides. For tidally

rectified currents the presence of stratification has only been dealt with in a passive way

by means of its influence on vertical momentum exchange (Loder and Wright, 1985;

Tee, 1985), which in turn influences the vertical structure of residual currents.

Frictionally-induced vertical structure of residual circulation has been given much

attention recently (Wright and Loder, 1985; Tee, 1985; Ou and Maas, 1986; Yasuda

and Zimmerman, 1986). The presence of Ekman-Stokes layers near the bottom gives

rise to vertical shear of the along-isobath velocity and to an often complicated cross

isobath circulation. One of our purposes here is to show that these features also occur

due to baroclinicity. However, instead of the usual increase in strength of a current

from the bottom upwards in the presence of fiction, we find that one of the main

properties of along and cross-isobath baroclinic residual circulation is bottom

trapping. This also applies to the topographically bounded internal tides and

overtides. We are able to separate the influence ofbaroclinicity on the vertical structure

from that of (bottom) fiction, as we are dealing with parametrized damping of

individual vertical modes, as discussed in T. The response of an individual vertical

mode to a topography with a single horizontal wave number is discussed in Section 2

for a quasi-Lagrangian and a Eulerian frame of reference. The resuits are used in

Section 3 for calculating the spectral response of modal cross-isobath stream function,

along-isobath velocity and the pressure distribution (isopycnal elevation field).

Summing the vertical modes in Section 4 gives the vertical structure for these dynamic

field variables for a linearly stratified fluid, showing the phenomenon of bottom

intensification in stratified circumstances and the influence of quasi-nonlinear

advection. These results, finally, are used in Section 5 in an inverse Fourier transform

for a ridge- and steptopography, which gives the complete vertical structure of

baroclinic residual currents and topographically bounded tides and overtides in the

neighbourhood of these topographic features.

2. SPECTRAL RESPONSE OF MODAL VERTICAL VELOCITY

AMPLITUDES

Our starting point is the equation (1; 5.12) for the forcing of vertical normal modes of

the spectral vertical velocity amplitudes for a linearly stratified fluid in a quasi

Lagrangian frame of reference, moving with the basic barotropic tidal current over a

one-dimensional, y-independent, topography, with spectral amplitude I(k):

J’Ê(k,t), (2.1)

where

Ên(k,t)an(k)es1t( +ik cos t+r17)cos t, (2.2)
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with

2 k2 k2
—--

— ikÉ (k)= 2cikJ(k) —. (2.3)
nrc k k

Variables in (2. 1)—(2.3) are non-dimensional, scaled according to the scheme given in
(1; 2.3) except for the topographic wavenumber, k, which is, as discussed in (1; 5),
rescaled with the tidal excursion amplitude, 1 = U/o, where U is the amplitude of the
cross-isobath component of the barotropic tidal current and a its frequency. That is,
k kl0 where k is the dimensional wavenumber, while the “fast” coordinate over
which the topography varies is rescaled simultaneously, i.e. x =x/l0.As both 10 and
the internal wave length scale, 1. = N*Ho/cr (with N the constant Brunt-Vâisâla
frequency and H0 the mean depth) are of the same order this does not affect the
multiple scale analysis in (1; 2), but it makes possible a more transparent comparison of
the resuits given here with those of a purely barotropic situation.

The remaining dimensionless parameters in (2. 1)—(2.3) are: the modal damping
coefficient,

r=E!2+E_n2rc2, (2.4)

dominated by the Ekman-Stokes number due to the anticyclonically rotating current
component:

E 2K
E = = H(1 f)

(2.5)

f, being the dimensional Coriolis frequencyf scaled by the tidal frequency r and K a
constant vertical eddy viscosity. Moreover

k=nrcl0/l. (2.6)

The quasi-Lagrangian modal amplitude of the vertical velocity, W(k, t), is related to
its Eulerian counterpart, i(k,t), by

(k,t) = I7ti(kt)exP[ — iS ku°(t’)dt’ ]= iV,, exp(ik sin t), (2.7)

using u°(t) = cos t for the cross-isobath barotropic velocity component.
The homogeneous part of (2.1) is satisfied by

3

= A. evt, (2.8)

with unspecified amplitudes A.. The three characteristic roots, v, have been
discussed extensively in (T; Sect. 6), where explicit expressions for several limiting
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situations are given, from which we quote the resuits for weak damping, which we

shail also use later:
V1,2= VR ± V1

(k2/k,? +2f2)
VR rn2(k2/k2f2) (2.9a)

k2 1/2
= (f2

+
, (2.9b)

k2/k
=

— r

2 +k2/k
(2.9c)

In combination with the forcing as described in the right-hand side of(2. 1) each of these

roots gives rise to a response. For the complex roots, l’12, this response is in the form of

damped propagating gravity waves that are the subject of III. Here we shall be

concerned with the third root, V3, describing a transient that, in combination with the

forcing, gives rise to topographically bounded nontransient effects, for which the

forced response reads:

ev3i S e3t’Ê(k, t’) dt’ (2.10)

We write the forcing in the right-hand side of (2.1) as

F(k, t) = a(k)eik
= 2

Cq it (2.11)

where

C+1=-, C=C=, (2.12)

and adopt the expansion of exp(ik sin t) in terms of Bessel functions

e1ktmnt= jm(1Z»imt. (2.13)

Then

ev3t CqJm(k)em -
+ ‘dt’ CqJm(k).

1 ei(m +q)t• (2.14)
mq-2- mq-2 l(m+q)V3
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With a shift of indices, (2.14) is equal to

1 { [CqJm q(k)]}eimt. (2.15)im—v3 q—2

With the expressions for the Cq (2.12) and the addition and subtraction rules for the
Bessel functions (Appendix, Eq. (Al)) we evaluate

2

CqJm _q(k) = (r + im)mJm(k)/k. (2.16)
q —2

Substitution of this result in (2.10) finally gives

(l-’i ( _i_• 1 (I imt
ûîi \ n’ 1 n 1 1

fl ‘ ‘T ç 2 f.V1 TVRV3)1im—v3

The quasi-Lagrangian solution shows that a single forcing frequency (m = 1) in the
barotropic current generates all harmonics, m 1, in the internal modes but, for a
small-amplitude topography to this order in the perturbation theory, no Lagrangian
baroclinic residual current (m = 0).

The solution in the Eulerian frame, using (2.7) and (2.13) reads from (2.17):

(k,t)
= q

Cqn(k)et, (2.18)

where

C k
— a,1 -, (r + im)mJm(k)Jm +q(1).

qn( ) 1 L 2 . )
îm—v3

Thus, also in the Eulerian solution, besides the basic frequency, q = ± 1, all
superharmonics are present, as well as a Eulerian residual effect, q =0. This is the same
behaviour as found for barotropic residual circulation (Maas et al., 1987) where, for
the residual circulation related to stretching of planetary vorticity (the “Coriolis
effect”), the quasi-Lagrangian result vanishes, whereas the Eulerian does not. Any
residual circulation in the quasi-Lagrangian frame is then due to differential bottom
friction, a mechanism that is absent for the internal modes in this order of our
perturbation theory. This accords with resuits for barotropic residual circulation for a
finite-amplitude topography (Huthnance, 1973; Loder, 1980), when taking the limit of
a small topographic amplitude. For finite amplitude though, also the Coriolis-effect
gives a nonzero Lagrangian barotropic residual circulation, which one therefore could
expect for internal modes too. However, more definitive statements have to wait for an
analytical treatment of the finite-amplitude case.
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3. SPECTRAL RESPONSE OF MODAL CROSS-ISOBATH STREAM

FUNCTION, ALONG-ISOBATH VELOCITY AND ISOPYCNAL

ELEVATION

For a topography depending only on x, we can assume that y-derivatives vanish. From

(1; 2.45c) we may then define a cross-isobath stream function i,/i such that

w—, u=———, (3.1)
ôx ôz

describing the circulation in the x—z plane normal to the isobaths. This stream function

i/i, together with the along-isobath velocity v and pressure field p (hydrostatically

related to the isopycnal displacements, ) depicts the total perturbation field due to

tide-topography interaction as far as the vorticity wave modes are concerned. The

spectral amplitudes of these variables can easily be related to the spectral velocity

components W (obtained in the Lagrangian frame), given by (2.17), through the

modal equations (1; 5.2). By returning to the Eulerian frame, with the aid of (2.7), we

find:

mJm(k)’1m+q( -iqt (3.2)
q = — m = — cx

Here denotes each of the dynamic variables /i, v and p. The “amplitudes” contain

k and n dependent constants:

r tI1m r
a 1 m

( k v?+(vR—v3)2 im—v3

[13mj

In this paper we will give particular consideration to the most dominant frequencies;

i.e. the residual (q = 0), the fundamental harmonic (q = 1) and the second harmonic

(q = 2). Application of the addition and subtraction rules of the Bessel functions as

given in (Al) allows (3.2) to be rewritten in terms of Bessel functions of order m only:

ifq=0,

E2mJ2 dJ. 1
k
mcost+i_jsmtJ ifq=l,

m[2{(i)J COS 2t + (3.4)

2rndJ 2J) . 1
ifq=2.
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The symmetry property (A -,, = —4) of the squared Bessel functions for odd functions
4,

AJ(k)=O, (3.5)

can be used to reduce the expressions, after substitution of the amplitudes 7m from
(3.3). Here we shali especially consider the limit of weak damping r —* 0, as this allows
us to perform the summations over m analytically [see (A2)]. Since by (2.9) v3 r, the
limit r —*0 also allows, up to O(rj, the interchange of differentiation to k and
summations over m:

m ± v ïi “
(3.6)

Hence we find by substitution of(A2), using the amplitudes (3.3) in (3.4) and using (2.9)
to eliminate 1/[v? + (VR —V3)2], to lowest order in r, for frequencies q:

a 1

k2f2±k2/k,

q=0 ô=
f2+k2/k2

4[_(1_J)], (3.7a)

f2+k2/k2

= [f2±/k2]cost

q =1 ô
= [f2 k2/k2]

2J0J1 sin t, (3.7b)

=
[f2 + k2/k] [k—fJ0J1]sint,

=

f2 +k/k
(r,, +V3)2J0J2cos 2t,

q=2 f2±k2/k2[]2J0J2c052t (3.7c)

f2 +k2/k[]( +2f2J0J2)cos2t,

where the argument of all Bessel functions, J,, is k.
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These solutions have the following properties:

(1) The residual (q = 0) and second harmonic (q = 2) cross-isobath circulations are

weak [O(rj];

(2) The first harmonic pressure and along-isobath velocity oscillation are in

quadrature with the zeroth order tidal current (oc cos t). The cross-isobath

circulation however is in phase with it;

(3) For the second harmonic these three fields are in phase with each other;

(4) The spectral amplitudes of the second harmonic are equivalent to those of the

residual field except for a difference of Bessel functions that describe the influence

of tidal advection;

(5) In the nonrotating case,f =0, the along-isobath velocity vanishes in all harmonics,

particularly in the residual. Residual circulation in the cross-isobath plane, though

dependent on f, does not vanish in that case.

Many of these properties will be discussed in subsequent Sections.

Before now using these vertical modes in assessing the complete vertical structure for

a linearly stratified fluid, we introduce the internal Rossby deformation radius

1 = l/f = NHo/f, (3.8)

in terms of which we define the wavenumber

k’ = kl/l0= kl. (3.9)

This makes possible to factor out in (3.7) those parts that depend on mode number (n)

and stratification (l) and those that depend only on the tidal excursion amplitude (le).
When we substitute

f2
rn+v3=rnf2k2/k2

using (2.9c) and the amplitude a, from (2.3), in (3.7) we get:

2 n2it2k’2 . /1—J(k)
l/Jn_2cnrn(22+kF2)2(lkH)I\ k2

q =0 =2f
fl2+kI2

(_ik1)(’
_J(k))

(3.lOa)

k’2 2/1—J(k)
Pfl2fl2fl2+k,2H[f k2
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k’2
fl=2c22k,21cos t

q= 1 ô=2f n2fl2±k,2H(k)sint (3.lOb)

k’2 2f’2J0(k)J1(k)N1
Pn=2122+k,2 -j-[lf k

)JSlfl t,

= 2cr(n2n2±kF2)2
ikû(2J0.2)cos2t,

q = 2 = 2f 22 k’2
ik(2J0J2)cos2t, (3. lOc)

1 = 2
k’2

+f2(2J0(k)J2(k))]cos

As will become dear in the next section, it are those factors in (3.10) which depend on
the internal Rossby deformation radius that govern the vertical structure of the cross
isobath stream function and the along-isobath velocity component.

4. VERTICAL STRUCTURE OF THE SPECTRAL RESPONSE

The vertical structure of the response to a sinusoidal topography can now be obtained
by adding all vertical modes, i.e.

[i7i(z) 1 [Jn7r sin nn(z +1) 1
(z) = i3 cos nn (z +1) , (4.1)

[(z)J [cosnn(z+1) J
where the eigenfunctions for a linearly stratified fluid have been discussed in Section 3
of 1. For the baroclinic field the summation runs from n = 1 to Using (A4) this
yields, e.g. for the spectral, along-isobath residual (q = 0) current:

i3(k,z) = _ikflf[k’ — i](1 _J(k))
(4.2)

To this we may add the barotropic along-isobath residual flow. In the limit of weak
fiction, using only that part of the residual current that is due to planetary vortex
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stretching, the barotropic component reads (Zimmerman, 1978, 1980; Maas et al.,

1987):

=
— ikflf

(1 _J(k))
(4.3)

Thus the total along-isobath residual current field reads:

k’ cosh k’z f’ 1— J(k)’\
v(k,z)= —ikHf

sinhk’z k )‘
(4.4)

which in the limit k’ —f0 reduces to (4.3).
This limit corresponds to the situation that the external cross-isobath tidal

excursion is much larger than the internal Rossby deformation radius l, as when the

stratification is very weak. Also note that strong stratification (l»l, hence k’—*oo)
inhibits the motions higher up from the bottom and yields an intensified, rectified flow

near the bottom (with factor l/l)

k’oo
= f( - ik1) e’

+ 1)( 1 _J(k))
(4.5)

The cross-isobath stream function is multiplied by nrc sin nrc(z+ 1). Note that the

forced part of the vertical velocity, see (1; 2.45d), is not incorporated in & to

illuminate the free mode circulation. One final remark is needed to perform the

summations over the vertical modes. In the limit of weak damping r approaches a

constant (Ei2); see (2.4). For this reason the index n is dropped: r referring to this

constant damping term (r = E!2).Carrying out these summations, using (AS) and (A6),

we find for the limit of weak damping:

k’ cosh k’z sinh k’zlf’l —J(k)
= r( — ikH)

tanh k’ cosh k’ — sinh k’ J k2

q = 0 = sinh k’
cosh k’z(), (4.6a)

sinh k’
cosh k’z[ _f2(

k2 )]‘
rsinh k’z

= cos tH[
sinh k’

— Z

k’ 2J0(k)J1(k)
q = 1’ = sin tfH . , cosh k z —

(4.6b)
sinhk k

iE! k’ ,
22J0(k)J1(k)

p = sin t!
k sinh k’

cosh k z[1 —f k
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k’ E cosh k’z sinh k’ziji=costr(—ikH) z —

______

tanh k cosh k sinh k

<
(—2.J0(k)J(k)

q=2 \\ k2

z3 = cos 2tf( — ikÊ)
si k

cosh k’z (—2J0(k)J2(k))
(4.6e)

k’ Ei 22J0(k)J2(k)
p = cos 2tH

sinh k’
cosh k z + f k2

It is interesting to observe that all functions have a similar form:

= f(t) T(fl, k)S(k’, z)A(k), (4.7)

where f(t) denotes harmonie time dependence (1, sin t, cos t, cos 2t), T is related to the
topography spectrum, S a stratification function dependent on z and A describes the
influence of quasi-nonlinear adveetion. Note that the stratification funetions S in the
cross-isobath stream funetion obey the bottom and surface boundary condition b =0
at z = 0, — i. The 0(1) fields in (4.6) have the following relationships:

1. Pressure functions consist of two parts. Parts containing f2 are geostrophically
related to the along-isobath flow, i.e. ikj3 = fi (or ôp/ôx = fv), in each of the harmonics
(q=0,i,2).

2. The remaining part of the pressure field (independent of f) of the residual (q = 0)
and second harmonie (q =2) is a dynamie pressure correetion due to adveetion of the
first order (harmonie) flow, u, by the zeroth-order harmonie current u°:

= —u°û.

Here û = — 13ç/13z is related to the first part of the harmonie (q = 1) stream function field
in (4.6b) only, as the second part is compensated by the barotropie part e = zH cos t,
whieh arises due to continuity. This has not been ineorporated in (4.6b) as the
emphasis is on the perturbation field. Thus û as defined here expresses the total
horizontal, perturbation veloeity.
3. The remaining part of the harmonie pressure field (q = 1) is related to the local
aceelerations of the harmonie veloeity field ikj3 = — ôû/ôt, û again referring to the
first part of only.

Limiting situations of the expressions in (4.6) depend on the relative magnitude of
three length seales contained in the stratifleation funetion S, adveetive funetion A and
topography funetion T respeetively:

(1) the baroelinie Rossby deformation radius l,,
(2) the eross-isobath tidal exeursion amplitude l,
(3) the topographie length seale l, present in the speetral topography fi.
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Let us briefly consider the following limits:

(i) 1 c (weak stratification)
As before this implies k’—>O [see (4.4)]. Hence the along-isobath current f’ and the
pressure reduce to their barotropic expressions. The stratification function, S, of the
cross-isobath stream function then tends to

S cc k’2z(z2— 1) =(1/10)2k2z(z2— 1). (4.8)

Thus the cross-isobath circulation is very feeble.
We can interpret i3, & and (0/3x) = ikf, as being proportional to the spectral

topography Pl, weighted by advective functions Aq(k), see Figure 1. The residual field
(q 0) and overtide (q = 2) have a maximum response for scales 0(1), whereas the
fundamental harmonic (q = 1) has maximum response for zero k, as in barotropic
studies (Zimmerman, 1980). This implies that for a sinusoidal topography with wave
length l both limits 10 l, and 10 Ç give a weak response in the residual and overtide,
any appreciable response being restricted to a spacing of the topography of the order of
the cross-isobath tidal excursion amplitude.

(ii) 1 10 (strong stratification).
This limit corresponds to strongly stratified circumstances. The magnitude of the
perturbation fields is now enhanced close to the bottom. To see this, take the limit

k

Figure 1 Advective functions A(k): A0 =( —Jg)/k (—), A1 =2J0J1/k (———), A=2J0J2/k (----).
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k’ -. c. Equations (4.6) then give:

=r(—ikÊ)k’(z+ 1)e1)(10),

q = 0 i3 =f(— ikfI)k’ e_k’ i
(1

2) (4.9a)

=kFe’1)[ _f2(l0)],

i= _cost(e_k’l)+z),

q = 1 = sin tfflk’ e -k’(z
+12J0J1/k, (4.9b)

= sin tik’ e_k’1)[1 22J0J1]

= cos 2tr( — ik)k’(z + 1)e_k’ + 1)( _2oJ2),

q = 2 = cos 2tf(— ik)k’ e_k’ — 2oJ2)
(49c)

= cos 2tÜk’ e -k’(z + 1)[ +f22J0J2J

Evidently all field variables are bottom intensified in this limit. The stratification
functions S(k’,z), implicitly defined by (4.6) and (4.7), are shown in Figure 2 for three
different values of the internal Rossby deformation radius, the largest of which giving
curves that approximate expressions (4.9). Apart from bottom-intensification, these
curves clearly show that the cross-isobath stream function of all harmonic components
increases in amplitude with increasing deformation radius. It should be noted that,
although (4.6) or (4.7) show that small wavenumbers k’ experience a stronger bottom
intensification relative to the barotropic situation, this does not imply that for an
actual topography, consisting of an infinity of wavenumbers, as discussed in the next
section, it is the smallest wavenumbers that dominate the flow near the bottom. In fact
it is the multiplicative effect of stratification and quasi-nonlinear advection that
determines the contribution of a specific topographic wavenumber to the fields in
physical space (x). This can easily be seen in (4.9). At the bottom (z = — 1), for i3 and f,,
the spectral stratification function S increases linearly as a function of k’. The total
contribution of a topographic wavenumber to the field in physical space should then be
considered in product with the spectral topographic amplitude T and the advection
function A. Depending on the relative magnitude of l/l( 1, or 1), k’ may be
rewritten as k(l/lj, where k is defined as k or ki/l0. In the former case it
depends on the relative magnitude l/l, whether or not the flow is intensified at the
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Figure2 Stratification functions Sq(Z,k’) for k’ =0.5 ( ), 1 (———), 5 (—); (a) = q = 1, (b) / = j,, î3;
q=0, 1, 2, (c) ç=/i; q=0,2.

bottom. In the latter case an unambiguous intensification is implied, with
amplification factor l/l.

The latter situation, fl 1 Ç, is therefore the most interesting parameter range,
since both quasi-nonlinear advection as well as bottom intensification are present. In
the next section this will be illustrated for two specific topographies.

5. RESULTS FOR LOCALIZED TOPOGRAPHIES

In order to demonstrate the spatial structure of the topographically bounded fields we
calculate the response in physical space of the dynamic field variables, discussed in the

q=O,1,2

0

- 0.2 Y;q0,2

-0.8

0.1 0.2 0.3 0.4
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0— —— —

sections before, for two localized one-dimensional smali-amplitude topographies given
by:

H1(x)= —Rarctan(x10/lj, (5.1)

H2(x)= —R/[1+(x10/1j2]. (5.2)

These topographies, a step and a ridge, are shown in Figure 3. Obviously H2 is
proportional to the x-derivative of H1. The minus signs are introduced because the
perturbations, H, are given at z = — (1+ 5H) relative to the constant reference depth
H° =1. Here c5 is the perturbation parameter as defined in 1, Equation (2.5). The non
dimensional amplitude of the topography, 1?, is therefore an 0(1) quantity. The
Fourier transformed topography spectrum reads:

11(k)= eHkI1bo (5.3)

Û2(k)=— -eI*/’o (5.4)

Substitution of these expressions in (4.6) and subsequently performing the inverse
Fourier transform,

ç(x,z) = b(k,z)e dk,

Figure 3 Topographies H1(x) and H2(x).

(5.5)
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yields the spatial structure in the cross-isobath plane (x,z) of the dynamic field
variables 4. Since the resulting expressions (4.6) in general have no analytical inverse
Fourier transform we perform this numerically in the next subsection. The most
interesting limit (l l l) though, can be treated analytically as will be discussed in
Section 5.2.

5 . 1 Numerical inverse Fourier transform

The numerical inverse Fourier transform is performed for a number of relative length
scales. This is done at 8 levels in the vertical (including a bottom and surface level) and
by using 1000 points in x-direction —50 <x/l0< 50. The results shown are for the
interval —14< x/l0< 14, which proved to be a convenient domain size.

The results are presented in Figure 4—12 for both topography shapes —H1 (Figures
4,6—12), H2 (Figure 5)—various values of the topographic lengthscales 1,, (1, Figures 4—
7; 0.1 Figures 8—12) and the internal Rossby deformation radius 1 (0.1, Figure 8; 1,
Figures 4—7, 9; 5, Figures 8, 10—12) relative to tidal excursion amplitude l and for the
three harmonic components q = 0 (Figures 4,5,8,9, 10), q = 1 (Figures 6, 11) and q = 2
(Figures 7, 12). In each of the figures we show from the bottom upwards:

(a) a picture of the topography used
(b) the amplitude of the along isobath velocity in the (x,z) plane (positive y direction is

into the paper)
(c) the cross-isobath stream function iji (solid curves) together with the perturbation in

the pressure field in the x, z plane (dashed curves). Arrows indicate the flow
direction (for time-dependent profiles at t = 0, Figures 6, 7, 11, 12).

Dimensional magnitudes of v follow by multiplying nondimensional values, as given
in the figures, by 3fU. Thus a nondimensional value v =1 yields a dimensional along
isobath velocity v, =8 cm s —1, for a velocity amplitude U = 1 m s 1, a ratio of internal
and external length scale ö = 0.1 and a typical midlatitude value of the Coriolis
parameter f = f/a(M2)= 0.8, say. Dimensional stream function values follow by
multiplying i1i with H0U. Its derivatives ôi/i/x and

— ôi/i/8z give the
corresponding dimensional velocities. The interpretation of nondimensional pressure
field values is ambiguous. Formally a dimensional value is obtained by multiplying it
with3H013g, i.e. ö times the hydrostatic head at the sea floor. More often, however,
its values are interpreted in terms of an equivalent sea surface elevation = i-/(g).
Since the scale of : Z = 5H0, this still renders small values of order = = 52p.
Alternatively pressure variations may be due to internal isopycnal deviations

i* =p/(pg)• Since i% 52 (1; 2.5) internal deformations Therefore
nondimensional 0(1) pressure values may also be interpreted as giving interface
deformations of order of magnitude Z.

We start by considering the most balanced situation in which all length scales have
similar magnitudes:

(i) l’=l=l.
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Figure 4 gives the perturbation fields for topography H1(x) for the residual (q = 0)
motion. The residual along-isobath jet (Figure 4b) obtains a maximum value of 0.48 at
the bottom. Especially at the slope the inhibitive effects of stratification are evident, say
for Ix*/1o1 0.6. Outside this region the residual jet is almost vertically uniform. The
residual cross-isobath circulation (Figure 4e) consists of a three cell pattern with down
slope velocities near the bottom of the middle celi. The pressure structure (Figure 4c) is
dominated by the barotropic “Bernoulli head”.

The residual patterns for the topographyH2(x) (Figure 5) are a logical extrapolation
of those obtained for a single slope. The residual jets point in opposite direction on

z

Figure 4 Topography (a), along-îsobath velocity (b) and streamfunction (solid lines) and pressure field
(dashed lines) (c) as a function of x = x/lo and z = z/Ho for the residual component, q = 0, and
‘T = 1/l = 1.0,1. = l/l = 1.0. Ten contours are shown ranging from Vmjn and mjn (label A) to Vmax and‘11max
(label J) in steps È V and t’P. The pressure scale is indicated at the right hand side of the top figure (in
nondimensional values) and its interpretation is discussed in the text. The stream function field shown is
divided by the small damping parameter r.

b

Vmin £V Vmax
0.03 0.05 0.48
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Figure 5 As figure 4, for H2(x).

c

b

both sides of the bank, such that the circulation around isolated banks is anti-cyclonic.
The cross-isobath stream function now consists of four celis, with strong downwelling
above the bank, since the two weaker side celis of the single slope topography have
merged together. The fact that topography H2 is simply the derivative ofH1 is reflected
in the symmetry of the figures with respect to x =0. That is, whenever one of the
topographies gives a symmetric distribution of a field variable, the other topography
gives an anti-symmetric distribution. This means that if the shape of a field variable for
one of the two topographies is given, the shape for the other can simply be inferred.
Thus from hereon we shall only discuss the results for a step topography in more detail.
It should be noted, however, that the (anti)symmetry of the results for a step
topography rests on working in the small topographic amplitude limit. Finite
amplitude effects generally shift the strongest effects to the shallower side of the step as
in the barotropic case (Loder, 1980).
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Results for the fundamental frequency q = 1 are shown in Figure 6. The horizontal
variations in along-isobath velocity should be interpreted as being largely due to the
local depth change. Here also inhibitive stratification effects are concentrated near the
origin. The stream function field (Figure 6c) oscillates in phase with the basic tidal
current. No pressure field is shown for fields oscillating harmonically in time (q = 1),
Figures 6 and 11, as it contains a component increasing linearly with x. This is
associated with a uniform pressure gradient (oscillating in time), which is mirroring
perturbations in tidal velocity amplitude on and off the “shelf” due to (perturbational)
changes in depth.

The second harmonic, M4 say, shown in Figure 7, gives a picture that is quite similar
to that of the residual component as shown in Figure 4, although a little more spreaded
around the step and therefore a little weaker in magnitude.

(ii) l/i 1, 0< l/l <

Although advective factors in the spectral response functions (4.6a,c) give the
strongest response for topographic wavelengths of the order of the tidal excursion, the
response in physical space has a maximum when the topography approaches a real
step, i.e. when l/lo—80 (relative to the tidal excursion amplitude) as has been discussed
by Zimmerman (1981). From hereon we therefore discuss some further results in the

z
0.8

0.6•

04

02

LtJmin tY mox
-0.03 0.005 0.03

c

-10 -6 -2 2 6 10 14

Vmin tV Vmox
-1 0.2

b

Figure 6 As Figure 4, q — 1; eleven (Figure 6b) and thirteen (Figure 6e) contours are shown, labeled
through to K and M respectively.. The stream function field is not divided by r, as for q = 0.
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Figure 7 As Figure 4, q =2.

strongly responsive limit l/l = 0.1. Then the only free parameter left is the internal
Rossby deformation radius l, measuring the influence of stratification. Figures 8—10
show the residual component for a sequence of increasing l. The results corroborate
our earlier conciusions for the spectral amplitudes of the dynamic field variables:
strong bottom-intensification for large values of the deformation radius, both in the
along isobath velocity and in the cross-isobath stream function and a weakening of the
latter when the barotropic limit is approached. In this limit (Figure 8) the along
isobath jet is vertically uniform, being limited exactly to the range Ix*/loI 2, whereas it
has a dimensionless maximum value of 4/ir. This is all in accordance with the results of
Maas et al. (1987) for a step profile. The pressure field, although almost barotropic,

b

Vmin tV Vmax
—0.18 0.02-001
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Figure 8 As Figure 4, l=01,1T=°1

now clearly demonstrates the two parts of which it consists (Maas, 1987):

1. the “global” Bernoulli part mirroring the bottom profile;
2. the “local” geostrophically adjusted trapped part with its characteristic

“discontinuity” at the origin (Gill, 1982).

Also the latter part becomes bottom intensified for strong stratification as Figure 10
clearly shows.

In Figures 11 and 12 we present the resuits for the first, q = 1, and second, q = 2,
harmonic components in the case of strong stratification (l/l = 5). These also show the
now familiar property of bottom trapping, most curiously in Figure 12 where the
along-isobath velocity component of the overtide (M4) has a four-celi structure near

c
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Figure 9 As Figure 4,1T=°1

the bottom and a three-cell structure higher up in the watercolumn. This points to an

effect already mentioned before: different topographic wavenumbers add-up with

different weight depending on the vertical coordinate in the final inverse Fourier

transformation.
In fact the limit considered here, l/l—.0 and l/l—*0, can be evaluated analytically

as is demonstrated in the next subsection.

5.2. Analytical inverse Fourier transform

As pointed out, each expression in (3.10) contains, besides a time-dependent function,

a topographic (ccfi), a stratification (cc k’), and an advective (cc Bessel functions)

function. Most of these spectral functions decay to zero as k approaches infinity. The

spectral function decreasing fastest, however, will determine the response. For a step

topography, (5.1) with l/l—*0 as we will consider here, the spectral slope is given by

b
Vmin Vmax
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Figure 10 As Figure 4, ‘T=°115

[see (5.3)]:

ikfl = lim — exp[
— kll/l0]= —

, (5.6)
-‘

a constant. Similarly the argument, k, of advective functions Aq(k) can be rewritten in
terms of k’ as k =k’l0/l,which, as we consider l/l —*0, approaches zero. Thus from the
asymptotic behaviour (A3) of the Bessel functions, the advective functions also become
constant and stratification functions dominate the response.

For convenience denote the harmonic dependence (q) as a subscript, e.g. p»
referring to the nth vertical mode of the residual (q = 0) pressure field Po• Then, from
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Figure 11 As Figure 4, q= 1, 17-=0.1, l= 5; seventeen (Figure lib) and fifteen (Figure lie) contours are

shown, labeled through to Q and 0 respectively. The stream function field is divided by r, as for q=0.

(3.10) and (5.6), the spatial dependence of Po’ P2 and v1 is given by the same function S

[defined in (5.7)] Po’ P2’ V1 OC

— 7 dk’ +2 cos nn(z+ 1) $ n2n2+k’2
sin k’x’ dk’]

where we used an x-coordinate scaled with the internal Rossby deformation radius:

x’ = x/l =x10/1. The integrals can be evaluated as (Gradshteyn and Ryzhik, 1980, p.

1150):

Po’P2’ v1 —nR sn(x’)[1 +2
n1

e” cos n(z+

which series is summed (Oberhettinger, 1973) as

1 sinh
-(p0,p2,v1)ocs(x,2)m —ir-———--- , (5.7)
H coshx—cosz

in terms of
n(z+1). (5.8)
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Figure 12 As Figure 4, q=2,1T=°1’l= 5.

One may check that this spatial field conforms with those sketched in Figure lOc,
1 lb, 12c for Po’ v1 and P2 respectively. The function s(,) defined in (5.7), has the
following characteristics:

1. at the surface =n (z=O), s(, r)—* —rtanh/2,
2. at middepth = it/2 (z = — 1/2), s(, ir/2)-+ — c tanh ,
3. at the bottom =O (z= —1), s(, O)—* —n/tanh/2,
4, near the origin , —*O (x—÷O, z—÷ — 1),

—x
2lim s = lim 2n -2 -2= — 2ir S(2),

ij-.,o :_.,o X + Z

z
1.0

b
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which indicates a singularity in the residual and second harmonie pressure fields (Po
and P2). From (5.5), applied at x = 0, we conclude that the value of a field at the origin is
finite when its spectrum drops to zero at infinity. The apparent singularity in v1 is
therefore checked by its speetral advective part. The behaviour in Case 2 above is also
goveming the spatial .structure in the far field (II —÷ cc, the finite values of which
express the way the pérturbation analysis is mirroring the perturbation in depth.

The spatial structure of the harmonic pressure field Pi is an integral ofs(, ) given in
(5.7). Thus

Pi ocitfl(1/10)ln[cosh—cos]. (5.9)

In the near field Pi is a logarithmic function of the radial coordinate p (2 + 2)i/2

limp1oclnp.
ij —, 0

which again expresses a perturbative correction to the zeroth order, driving pressure

field.
The spatial structure of the residual and second harmonie along-isobath veloeities

are determined by the horizontal derivative of s

1 1—eosheos
V0,V2QC-7 2

(5.10)
1. (eoshx—eosz)

In the near field v0 and v2 approach

1 -2 -210 Z X
511

1T (2+2)2’

whieh indieates a flow reversal for f > (Figure lOb). Sinee v0 and v2 have a small

eoeffieient, l/l, in front of their spatial strueture funetion this suggests that the flows

are weak, in contradiction with earlier remarks about intensification. This paradox is
resolved by eonsidering that (5.10), or (5.11), have a singularity near the origin, their

true values being determined by their speetral advective parts (negleeted in this
subseetion). This is also suggested by the strueture of v2 at the bottom in Figure 12b.

Bottom intensifieation, as diseussed in Section 4, therefore still holds.
The spatial stream funetion fields /‘ and I’2 can be obtained in the same way:

10 sin .

2 2 [eosh x — cos x — x sinh x]. (5.12)
2l (eoshx—cosz)

In the near field this reduees to

1

_______
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which expresses the three eell structure observed in Figure 10e and 12e and which
satisfies the boundary conditions at =0,it.

The harmonie spatial stream funetion field finally is proportional to

2 / sin \
// cc —sgn(x) — arctan( 1, (5.13)

\\explxl—coszj

whieh may be compared with the pattern in Figure lie. It consists of a very localized
downwelling at the eentre and broad upwelling regions at its sides. This downwelling is
annihilated by direetly foreed vertieal flow, assoeiated with ‘7’e 1 eos t, not
ineluded here, as we verify below.

The speetral harmonie total vertieal veloeity, valid for any value of the eross-isobath
tidal exeursion, is, from (4.6b), given by

sinhk’z
tota1 = Ik/Itotai ik(4’1 + 1Ie 1) = ikH C05 t

sinh k’
(5.14)

whieh, in the limit l/l—*0, reduees to the barotropieally foreed vertieal veloeity

wtotai—*z(dH/dx)eos t = We.

For the step-topography then, vertieal veloeities are very loealized:

Wtotai —itzFÎ5(x)eost. (5.15)

The inverse Fourier transform of (5.14) reads (Gradshteyn and Ryzhik, 1980, p. 1152)

H 10 sin
wtotal:ttfl_eost_ , (5.16)

2 l eoshx—eosz

whieh is everywhere positive (at the initial time t = 0). This demonstrates that the
downwelling at x = 0, of the indueed vertical veloeity is offset by its direetly foreed
eounterpart. As ,

10 / z’ \
Wtotai —+ rcH eos t

— —2 -2 = rcH eos tj
— 2 2lix +z tx +z J

where z’ l/(l0rr). Sinee the braeketed part in this equation isjust one of the definitions
of the Dirae delta funetion, ô(x), as z’—.O, this shows that the vertieal veloeity is
redueing to the externally imposed veloeity at the origin (x, z’ = 0), We(Z = — 1), see
(5.15). In general, however, the vertieal veloeity field (5.16) is much less localized as
eompared to its barotropie eounterpart, (5.15). This is due to the internal geostrophie
adjustment, whieh takes plaee in response to the loealized foreing.
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6. DISCUSSION AND CONCLUSIONS

Although the resuits for a stratified fluid have much in common with those for
topographically bounded motion in a homogeneous, barotropic flow, there are several
remarkable differences that are due to baroclinicity. First there is the phenomenon of
bottom intensification, depending on the internal Rossby deformation radius, i. This
is reminiscent of topographic Rossby waves in a stratiiïed fluid (Rhines, 1970) which
also show bottom trapping depending on 1. Indeed the forced motions discussed here
and the free modes discussed by Rhines (1970) can both be thought of as manifestations
of potential vorticity conservation. Actually the vertical components of relative
vorticity, w, in the present context obeys (for bottom friction dominating internal
friction):

d / dH ôw.\
—w+EI2o=f(—u0--————), (6.1)
dt \ dx 8zj

where
(6.2)

As in the barotropic problem (Zimmerman, 1978, 1980; Huthnance, 1981; Robinson,
1983) relative vertical vorticity is produced by stretching of planetary vortex lines.
However, apart from the depth-independent externally imposed stretching by the
interaction of topography and the barotropic tide (first term in the right-hand side
of (6.1)) there now is the depth-dependent stretching due to the free internal modes
(second term in the right-hand side of (6.1)). It is the latter effect that produces
bottom trapping, as for the topographically bounded internal modes, discussed
here, the vertical structure of the internal motions is exponential rather than
sinusoidal.

A second feature, absent in two-dimensional (vertically averaged) barotropic theory
is the occurrence of cross-isobath circulation, being bottom intensified as well.
Moreover the cross-isobath circulation in contrast to the along-isobath velocity does
not vanish for f—*0. As for frictionally induced vertical structure of barotropic
topographically bounded currents (Zimmerman, 1986), the baroclinic vertical
structure can be discussed in terms of the horizontal vorticity components, cor.,. For a
fluid in hydrostatic balance we have:

— ). (6.3)

In the present context these components obey:

cv —far +E2a)= 0 (6.4)

d
— (6.5)

dt ôx
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whereas

p —
wN2= N2 F(x, z, t). (6.6)

Hence (6.5) can be transformed into

w+f +EI2 = [F—wN2]. (6.7)

The forcing term in the right-hand side of (6.7) describes the solenoidal generation of
horizontal vorticity, a genuine baroclinic effect. Evidently the x-component of
horizontal vorticity, which describes the occurrence of vertical shear in the along
isobath currents, is derived from the y-component of the horizontal vorticity,
describing circulation in the cross-isobath plane, by coupling via the Coriolis
parameter; ie. tilting of planetary vorticity by shear in the cross-isobath flow [see
(6.4)]. That mechanism is absent for f=0, as is the stretching of planetary vorticity
described in (6.1). Hence for f=0 no along-isobath currents occur. However, as (6.7)
shows, in the absence of tilting of planetary vorticity by shear in the along-isobath
current [second term in the left-hand side of (6.7)], there still is the solenoidal
generation of y-vorticity in the right-hand side of (6.7) which does not vanish for f—*0.
Quasi-nonlinear advection may transfer that vorticity in frequency space both to the
residual and the higher harmonics.

It should be interesting to compare the sense of the cross-isobath Eulerian
circulation due to baroclinicity with that due to bottom friction. Unfortunately resuits
for the latter (Wright and Loder, 1985; Tee, 1985; Yasuda and Zimmerman, 1986) are
very sensitive to the parametrization of bottom fiction and to the formulation of the
bottom boundary conditions. For a ridge topography (Figure 5), the induced
downslope residual circulation at the bottom accords with the resuits of Yasuda and
Zimmerman (1986) for a similar topography when f/o-* 1. Thus for a ridge both
mechanisms can be reinforcing. For a step—Figures 4, 8, 9, 10—our resuits show a
downslope residual bottom current at the position of the steepest slope and an upslope
bottom current on the shallower side. However, for an asymmetric topography as a
step, finite-amplitude effects, which shift the cross-isobath circulation to the shallow
side of the step (Tee, 1985), obscure a comparison. Wright and Loder (1985) conclude
for a large variety of parameter ranges that residual cross-isobath circulation has a bias
towards bottom currents going up-slope. It is however hard to construct a cross
isobath circulation pattern for a real step topography from their resuits, since these are
derived as local approximations. However, the results of Tee (1985) for finite amplitude
step-topographies at Georges Bank may be compared with ours, particularly for the
northern section where the along-isobath residual current has ajet-like structure, as in
our smali-amplitude step topography. It is interesting to observe that Tee’s model, as
ours, gives a three-cell structure for the cross-isobath residual circulation. Going from
deep to shallower water, the three ceils have the same circulation sense as in Figures 4,
8, 9, 10, i.e. anticlockwise, clockwise, anticlockwise. An interesting difference is the
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position ofthese celis with respect to the maximum ofthe along-isobath current. In our
pictures, the middie ceil islocated exactly at the along-isobathjet’s axis. In Tee’s (1985)
picture that axis coincides more or less with the boundary between the middie and the
shallower celi. A recent calculation of higher order advective effects (Tang and Tee,
1987) shows that this probably is not a result of an improper representation of
advective effects in a weakly nonlinear model, as these effects only shift the whole
structure to deeper waters. Thus either the difference in location of the cross-isobath
circulation cells is due to a difference in dynamics between bottom-frictionally induced
and baroclinically induced vertical structure, or the difference is due to dealing with a
finite or a small amplitude topography. A downslope cross-isobath Eulerian current is
also observed in a model where the mean flow is driven by a tidally induced buoyancy
flux (Ou and Maas, 1986). In their model stratification acts in a similar way as friction
in the wave-mean flow theories, referred to above, in the sense that its incorporation
(N2 0) provides the necessary phase-shift among oscillating components to produce
a non-zero momentum transfer from the oscillatory to the mean motion. The actual
mean flow however is independent of its precise magnitude. Moreover it again depends
crucially on the frictionally induced vertical phase differences of the driving tidal field,
as in the above theories. This is distinguishing it from the model considered presently,
where the zeroth order tidal field is depth-independent, which implies that the resulting
fields may at times be additive.

Both Wright and Loder (1985) and Tee (1985) observe a strong influence of the
Stokes drift on the Lagrangian cross-isobath residual circulation. The latter can be
much weaker than the former, whereas sometimes the sense of the circulation is
reversed compared to the Eulerian pattern. This is in accordance with our small
amplitude result, which predicts an exact vanishing of the Lagrangian residual
circulation, the Eulerian being completely offset by the Stokes drift.

Finally, the resuits in Figures 9—12 for a sharp step, show that the along-isobath
velocity field (and the other dynamic variables as well) are not confined exactly to a
strip of two times the tidal excursion on both sides of the step, as is the case in the
barotropic situation shown in Figure 8 (Maas et al. , 1987). This is not an artefact of the
numerical procedure for the inverse Fourier transformation or of an approximate
representation of the step-function (l/l = 0.1 and not l—*O), which can be seen as
follows. The occurrence of the along-isobath velocities is due to planetary vortex
stretching by the total vertical motion induced by the topography, as the right-hand
side of (6.7) shows. As (5.14) reveals, the total vertical velocity is exactly confined to the
step in the limit of vanishing stratification. Hence, any vertical vorticity that is
produced by planetary vortex stretching can at most be spread out by advection over a
distance of two times the tidal excursion amplitude, analogously to the situation in the
barotropic case (Maas et al., 1987), to which it effectively reduces. In the other extreme
(l/l 1), however, the total vertical velocity (Wtotai = W + We), Eq. (5.16), has an
exponential distribution, around the step,

limWtotai = nfl cos t exp(
— II)sin .

II1

This describes the geostrophically trapped part of the internal adjustment that takes
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place in response to the forcing. Its effect is not confined exactly to an interval
around the step. In fact, as is the dimensional X scaled with the internal
Rossby deformation radius, it is the internal Rossby deformation radius that
determines the e-folding distance. Thus baroclinic along-isobath currents exhibit
exponential decay around a step and therefore they may be found at greater
distances than their barotropic counterpart.

The final question now is whether there is any observational support for the
existence of topographically bounded, bottom intensified internal tides and residual
currents. Obviously two features should at least be present in observations: bottom
intensification and residual currents and/or higher harmonics, M4 say. To our
knowledge only the data from the continental slope near northwest Africa as discussed
by Gordon (1980) and Huthnance and Baines (1982) meet those criteria. Although no
residuals are reported, the internal tide is bottom intensified and particularly in the
cross-isobath direction, shows the occurrence of overtides, especially M4.
Unfortunately, we certainly are dealing with a finite amplitude topography there.
Bottom intensification of internal tides then may also be explained in terms of the wave
characteristics for internal tides. Whenever the slope of the topography equals that of
the wave characteristic, bottom intensification will occur. Gordon (1980) suggests that
this is indeed the case, both for the M2 and the M4 components, whereas Huthnance
and Baines (1982) support that suggestion only for M4 and remain inconclusive about
the explanation of bottom intensification of the M2 tidal currents. Whether or not the
topographically bounded modes discussed here can explain some of these features is
hard to assess due to the difference in dynamics for small-amplitude and finite
amplitude topographies. We are evidently in need of a (quasi)nonlinear theory for
internal tides over finite-amplitude topographies. For the time being, therefore, the
mechanism we have presented here for bottom intensification of internal tides is just a
concurrent one to other possibilities.
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APPENDIX

Relations for Bessel functions of the first kind, J(k)

1. Addition and subtraction rules

Jmi(k)+Jm+i(k)=2Jm(k),

d
(Al)

2. Infinite series involving Bessel functions

1im
rn2
J21J2(k)

m m +e

lim 2n m2J(k)= k2, (A2)
Omm+ m

m+e’
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3. Asymptotics of products of Bessel functions

lim [1 —Jg(k)]/k2= 1/2,
k—’O 1 (A3)lim2J0(k)J1(k)/k= 1,
k—*O

lim2J0(k)J2(k)/k2= 1/4
k—’O

Fourier synthesis of infinite series used in the main text

sinh

n1n2n2+k’2
cos nn(z +1)

= k’ sinh k’
{cosh k’z

— k’

k!}
(A4)

2rnc 1 Ç — sinhk’z
+1)= <zcoshk’z

(nn2+ k’2)2
sin nn(z

k’ sinh k’ tanh k’ (A5)
n1

1 1

nc nr2+k’2
sinn?r(z+ 1

k’2sinhk’
{sinh k’z—z sinh k’. (A6)
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