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Abstract

A synthetic seismogram is a predicted seismogram, based on an assumed Earth model. Synthetic
seismograms are a valuable tool for investigating the Earth’s interior, because synthetics can be
compared with real data. The misfit between real data and synthetics contains information about the
errors in the Earth model.
In this study, the theory of the free oscillations of a spherically symmetric, non-rotating, elastic and
isotropic Earth (SNREI) model is discussed, followed by a derivation of an expression for a synthetic
seismogram, by using a normal mode summation. A point source approximation is used, in which
force components as well as (not necessarily symmetric) moment tensor components are included.
The main research question is how well the synthetics coincide with the real data.
To address this question, a synthetic seismogram is calculated for the 9.0 MW earthquake on 11-03-
2011 near the east coast of Honshu, Japan. This synthetic seismogram is compared to real data and
the accuracy of the synthetic seismogram is discussed.
It turns out that the synthetics resemble the data, but several mismatches can be identified: the
amplitude of the synthetic seismogram is large compared to the real data and the arrival time of
the surface waves is slightly different. The reason for these mismatches could be the failure of the
point source approximation for large earthquakes as the 9.0 MW earthquake in Japan and the lateral
heterogeneity of the Earth’s lithosphere respectively.
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1 Introduction

The energy released by an earthquake of magnitude 8 is comparable to the energy released by the
detonation of approximately thousand Hiroshima atomic bombs [3]. This energy is converted into
fracturing, heat and seismic waves radiating from the earthquake location.

The seismic waves radiating from a source can be seen as a sum of of standing elastic-gravitational
waves of the whole Earth. Just like a string or a drum, the boundary conditions allow only for distinct
eigenfrequencies for these oscillations in the solid parts of the Earth.

Seismograms measured routinely all around the world, contain valuable data that can be used to
probe the Earth’s interior. It is essential for any seismological study of the Earth’s interior to be able
to calculate theoretical (also called synthetical) seismograms for a given earthquake. By examining
the differences between synthetic seismograms and real data, algorithms can be developed to update
the Earth model to obtain a better correspondence between synthetics and reality.

This study focuses on the calculation of a synthetic seismogram for a spherically symmetric, non-
rotating, elastic and isotropic Earth model. To address this question, first the displacement field of
the free oscillations of the Earth and their eigenfrequencies have to be found. Then a representation
of the source must be given and a way has to be found to calculate the relative contributions of each
mode to the seismogram. If all these questions are resolved, a synthetic seismogram will be calcu-
lated and compared with a real seismogram. Subsequently, the accuracy of the result will be discussed.

Before we start with the theory of the normal modes of a spherically symmetric Earth, first a short
historical introduction in the subject will be given.

The history of the research of the Earth’s normal modes can be divided in two periods: from 1828
to 1960 and from 1960 until now. In the first period, observations of the spectrum of normal mode
frequencies of the Earth were not available. Hence all studies were purely theoretical. In the second
period, it became possible to measure the long-period free oscilations of the Earth. Also, computers
capable of Fourier-transforming long time series just became available. This was the beginning of the
observational period.

The theoretical research in the normal modes of the Earth was initiated by the French mathematician
Poisson. In 1828 he developed a general theory of deformation for solid materials and applied it to
determine the frequencies of the purely radial oscillations of a homogeneous, non-gravitating sphere
[4]. Since Poisson was not directly interested in the normal modes of oscillation of the Earth, he
did not calculate a frequency for a sphere with the dimensions and density of the Earth. However,
together with his contemporaries Navier and Cauchy he laid the foundations for the modern theory
of linear elasticity.

In 1863, Lord Kelvin was the first person to make a numerical estimate of a vibrational eigenfre-
quency of the Earth [5]. For a self-gravitating fluid Earth he found a period of 94 minutes for this
mode. He obtained this result by means of a dynamical analysis of a homogeneous, incompressible
(κ =∞) fluid (µ = 0) sphere, where κ is the incompressibility and µ is the rigidity [6]. The mode he
investigated is now designated 0S2. For a solid Earth with the same rigidity as steel, he stated that
the period would be approximately 69 minutes. This estimate was obtained by calculating the time
required for a shear wave to cross the entire Earth.

Lamb was the first person to give a complete description of the free oscillations of a non-gravitating
sphere in 1882 [7]. He distinguished two the types of modes: spheroidal and toroidal modes; which he
called ‘vibrations of the first and second class’. He concluded that the period of the 0S2 mode for a
steel sphere the size of the Earth should be 65 minutes in the case κ =∞.

The implementation of gravitation led to a problem that confounded researchers at that time: the
classical theory of elasticity dealt with deformations away from an unstressed and unstrained equi-
librium configuration. However, the total stress exerted by gravity was far too great to be related to
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an infinitesimal strain by Hooke’s law. Lord Rayleigh proposed a solution to this problem in 1906
[8]. He decomposed the total stress into a large initial stress, balanced by the self gravitation, and an
incremental stress related to the strain by Hooke’s law.

Love [9] used Rayleigh’s idea to derive a system of equations in 1907, but he failed to distinguish
between the incremental stress at a fixed point in space and the incremental stress experienced by
a material particle. He realized his error and derived and solved the correct system of equations in
1911 [10]. He found a period almost exactly 60 minutes for the 0S2 mode for a homogeneous, self-
gravitating Poisson-solid with the rigidity of steel. Love’s equations were for a homogeneous sphere
only, although the correct equations for radially variable density and elastic parameters are not fun-
damentally different from his equations.

The general equations were stated first explicitly by Hoskins in 1920 [11]. Up until this point, the
normal modes of oscillations of the Earth were not related to seismology. Jeans [12] was the first per-
son in 1927 to show that the superposition of free oscillations excited by an earthquake source could
represent a seismogram, and hence that a theoretical or synthetic seismogram can be constructed by
performing a sum over normal modes.

The laws governing the free oscillations of the Earth can be stated as a variational principle, known
as Hamilton’s principle in the time domain. The first correct variational determination of the eigen-
frequencies of a radially variable, realistic, self gravitating Earth model were done independently and
simultaneously by Jobert [13], [14], [15], Pekeris and Jarosch [16] and Takeuchi [17] in the period from
1956 to 1961. The period of the 0S2 mode was found to be approximately 52 minutes.

As soon as modern computational techniques came widely available, in 1959, Alterman, Jarosch
and Pekeris [18] reformulated the second order differential equations governing the normal mode os-
cillations of the Earth into sets of first order differential equations, which were easier to solve with
numerical integration. The Runge-Kutta method was used to calculate the eigenfrequencies and eigen-
functions of a couple of modes. They found a period of 53.7 minutes for the 0S2 mode, in very good
agreement with modern determinations.

In 1960 on May 22, the largest earthquake of the 20th century took place. At that moment, technology
was advanced enough to be able to record the frequencies of the long period free oscillations of the
Earth. Seismologists from Caltech and UCLA managed to obtain frequencies of many fundamental
modes of the Earth barely two months later. Pekeris, Alterman and Jarosch [19] showed that the
observations agreed with theoretical calculations for a realistic Earth model in 1961.

In the two decades after these measurements, observations of fundamental modes and their over-
tones were made. Gilbert and Dziewonski made a set of 1064 measured eigenfrequencies of the free
oscillations in 1975 [20]. This was approximately 60 percent of all modes with periods longer than 80
seconds.

As soon as observations could be done more precisely and routinely, the study of geophysical inverse
problems became more prominent. These studies focused on the determination of the Earth’s internal
structure and the determination of the earthquake source mechanism. The Preliminary Reference
Earth Model (PREM, see figure 1), developed by Dziewonski and Anderson in 1981 was the culmina-
tion of the research to the internal structure of the Earth by using free oscillations [21].

Gilbert [22] and Kostrov [23] introduced the concept of a seismic moment tensor independently in
1970, to represent the earthquake source. Gilbert and Dziewonski [20] were able to reconstruct the
moment tensor for two events in 1975. Dziewonski, Chou and Woodhouse [24] generalized the moment-
tensor analysis allowing a spatial and temporal shift in the location of the point source, since the point
of initiation of the earthquake is not necessarily the point which represents the earthquake best. This
study stood at the beginning of the Harvard centroid-moment tensor project, which now automat-
ically determines the source mechanisms of sufficiently strong earthquakes, which happens two or
three times a day. The resulting global source catalogue accumulated from 1977 up to the present is,
together with the PREM model, one of the most widely used results of normal mode studies.
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(a) The density as a function of radial coordinate r.
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(b) Lamé’s elasticity parameters λ (blue) and µ (red).

Figure 1: The parameters of the PREM model.

In the mean time, attention was also given to the fact that the Earth is in fact not spherically
symmetric. Effects of rotation, ellipticity, anisotropy and lateral heterogeneity were studied. Modern
seismological studies since 1980 focus not only on the resolution of the three dimensional structure of
the interior Earth, but also on the geodynamical and compositional causes of heterogeneity.

In recent history, the research focus is mainly on the non-spherically symmetric properties of the
Earth. This is less relevant for the study presented here, which is about the spherically symmetric
Earth. In the next chapter, an expression for a synthetic seismogram on a simple Earth model will
be derived from first principles.

2 Theory

The main goal of this chapter is to derive an expression for a theoretical seismogram at any point on
a spherically symmetric, elastic, non-rotating and isotropic Earth model due to a point source term,
such as an earthquake, which generates mechanical waves small compared to the dimensions of the
Earth.

The approach I will use, is to find the normal modes of vibration of the Earth model. Subsequently,
the theoretical seismogram can be found by performing a normal mode sum. The coefficients of the
individual modes in the sum depend on their excitation by the point source.

Hence the outline of this chapter will be as follows: first the conventions and notation will be stated
and the characteristics of the Earth model will be specified. Then the equations governing the Earth’s
free oscillations will be derived from first principles and a (necessarily) numerical way to obtain the
solutions to these equations for the Earth model will be discussed. Finally a mathematical description
of a point source and an expression of the theoretical seismogram will be derived.

2.1 Notation

Before a discussion of the theory of standing waves on the Earth is given, some notation will be
introduced here.

Any vector, denoted by ~v or its components vi will be represented by an array. Any second, third or
fourth order tensor will be represented by a matrix of the form Tij , Tijk and Tijkl respectively.

To denote a position, a vector ~r or ri is used, which points to the position from the origin. The
Earth has a certain equilibrium state or initial state at t = 0, in which there is no relative motion
between the particles constituting the Earth. Every material particle in the Earth is labeled uniquely
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by its position ~x0 in the equilibrium state. As soon as this equilibrium state is disturbed (for example
by an earthquake), deformation takes place and the material particles initially at ~x0 move to a new
position which is given by ~r

(
~x0, t

)
= ~x0 + ~s

(
~x0, t

)
, where ~s

(
~x0, t

)
is the displacement of a material

particle initially at ~x0.

Now a very important notational convention will be introduced: if a certain property ζ is evalu-
ated for a material particle initially in ~x0 at a certain time t, it will be denoted by ζ

(
~x0, t

)
. Thus

ζ
(
~x0, t

)
is the state of the property ζ for particle ~x0 at time t. If the property is evaluated not for a

material particle but for an arbitrary position ~r in space, it will be denoted by ζ (~r, t). For example,
~s
(
~x0, t

)
is the total displacement experienced by a material particle at time t, with respect to its

initial position ~x0. The displacement field (not necessarily of a particle) at a certain position ~r in the
Earth model is given by ~s (~r, t).

A superscript zero will be used to denote that a certain model parameter (scalar, vector or ten-
sor) is evaluated in equilibrium, as a function of initial position ~x0. For example, the density scalar
field at point ~x0 in the Earth in equilibrium is denoted by ρ0

(
~x0, 0

)
or simply ρ0.

If the equilibrium state is disturbed, the model parameter fields are perturbed. The delta-notation
will be used for a perturbation. For example, if the scalar field of the density is perturbed from
the equilibrium state, we get that the density field in the perturbed state is the density field in the
equilibrium state plus a perturbation δρ: ρ (~r, t) = ρ (~r, 0) + δρ (~r, t). Note that this is a perturbation
at an arbitrary point in space, not necessarily at a material particle. One can also have a pertur-
bation at a material particle: ρ

(
~x0, t

)
= ρ0 +δρ

(
~x0, t

)
. Both perturbations will have a different value.

The gradient operator will be denoted by ∂µ, or sometimes ~∇. The gradient is always taken with
respect to the corresponding spatial coordinates. Hence, ∂µϕ

0 is a gradient with respect to ~x0, and
∂µϕ(~r, t) is a gradient with respect to ~r. The Einstein summation convention will be used throughout,
unless stated otherwise. For example, the divergence of a vector field ~v is given by ∂µvµ. The trace
of a second order tensor Tij is given by Tkk. For the Laplacian operator ∂µ∂µ, the shorthand ∇2 will
be used.

The difference D between the value of a function ϕ (~r) just above and below a surface S will be
denoted by [ϕ (~r)]

+
− = D on S. If a function is continuous on S, D will be zero. It will also occur that

[ϕ (~r)]
+
− on S is integrated over a surface S. This will be denoted by

∫
S

[ϕ (~r)]
+
− dS.

Fourier transformation in time for a function g (t) is defined as:

F (g) (ω) =
1

2π

∫ ∞
−∞

e−iωtg (t) dt (1)

where F (g) (ω) is the Fourier transform of g (t). The Fourier transformed function F (g) (ω) will be
denoted by g̃.

2.2 SNREI Earth model

The Earth model considered here is a mechanical representation of the Earth. It gives the shape,
symmetries, mechanical properties, constitutive equations, initial conditions and boundary conditions
of the Earth. The real Earth has a complex geometry and its mechanical properties, such as the
density, have a complicated dependence on location. However, an Earth model closely resembling the
real Earth can be obtained if a few assumptions are made.

For example, the shape of the Earth is approximately spherical, therefore the shape of the Earth
is taken as a sphere in most models, which allows the usage of the spherical harmonics as a basis
for the solutions. The radial variation of all properties of the Earth is much larger than the lateral
variation, which is the main reason that most Earth models are spherically symmetric. In reality,
non-hydrostatic initial stress exists, but because the hydrostatic stress arising due to the overburden
of material at a point in the Earth predominates the initial stress, in most models the initial stress is
simply taken to be hydrostatic.
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We are now about to introduce an Earth model which satisfies the following conditions:

(i) The Earth model is spherically symmetric and non-rotating in its equilibrium state.

(ii) The material particles of the Earth form a continuum.

(iii) The material particles behave linearly and isotropically, which means that the relationship be-
tween applied stress on the material particle and deformation is linear and directionally inde-
pendent: the material does not have a preferential direction of deformation.

(iv) The initial stress is a hydrostatic pressure p0 due to the force of gravity. Atmospheric pressure
is neglected, hence the outer surface of the Earth model is stress free.

(v) In its initial state, the Earth model is in equilibrium under self-gravitation alone. The gravita-
tional influence of other astronomical bodies, such as the sun and moon, is hence neglected.

An Earth model satisfying these conditions is called a SNREI (spherical, non-rotating, elastic, isotropic)
Earth model. Obviously, the real Earth does not satisfy these conditions, but since the deviation of
the real Earth from these conditions is not very large, the standing waves of the real Earth do not
differ greatly from the standing waves of the SNREI model.

Now let us interpret the model conditions mathematically.

(i) The first condition implies that all model parameters in the initial state are dependent on the
radial coordinate r only. However, the spherical symmetry does not exclude radial discontinuities
for model parameters. If the Earth is non-rotating, it is in an inertial frame of reference, hence
there are no fictitious forces present, such as the Coriolis force.

(ii) The second condition allows the introduction of tensor fields to describe the mechanical be-
haviour of the Earth model, such as the deformation tensor, the stress tensor and strain tensor.
I will only give the definitions here, a more thorough discussion can be found in [25].

The deformation tensor relates the current and initial positions of particles. Two particles
initially located at ~x0 and ~x0 + d~x0 move to ~r

(
~x0, t

)
and ~r

(
~x0, t

)
+ d~r at time t. The relative

current and initial position vectors d~r and d~x0 are related by:

dri = ∂jri(~x
0, t)dx0

j (2)

where ∂jri(~x
0, t) = Fij(~x

0, t) or simply Fij is the deformation tensor, or in mathematical terms
the Jacobian matrix of the transformation from initial coordinates to current coordinates.

The second order stress tensor is a measure of the average force per unit area of a surface
within a continuum. It has six independent components, because the tensor is symmetric. The
strain tensor describes deformation: it gives the relative displacement of material particles in in
any direction in a continuum. This tensor is symmetric as well. In the equilibrium configuration,
there is an equilibrium stress distribution T 0

ij . The equilibrium situation is taken as a reference
for the strain tensor, hence the strain tensor is zero in equilibrium. The strain tensor for small
deformations is defined as:

eij(~x
0, t) =

1

2

(
∂jsi(~x

0, t) + ∂isj(~x
0, t)

)
(3)

As soon as the equilibrium is disturbed, the stress at a material particle changes from an initial
stress T 0

ij to a new stress Tij
(
~x0, t

)
. This change is called the incremental stress, and is given

by the incremental stress tensor δTij
(
~x0, t

)
. This is the total change in stress experienced by

the material particle during deformation. Compared to the equilibrium state, there is relative
motion between material particles, hence the strain tensor becomes non-zero as well.
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(iii) The third condition implies that there is a linear relationship between the incremental stress ten-
sor and strain tensor at a material particle, this means that there is a fourth order tensor, called
the elasticity tensor cijkl relating incremental stress to strain: δTij

(
~x0, t

)
= cijkl

(
~x0, t

)
ekl
(
~x0, t

)
.

Since the relationship between applied stress on the material particle and deformation is direc-
tionally independent, cijkl

(
~x0, t

)
should be the same tensor in each orthogonal basis you choose

at the material particle. It turns out that the most general tensor satisfying this property is
cijkl = λδijδkl + µδikδjl + νδilδjk, where cijkl, λ, µ, and ν are scalar functions of ~x0 and t. [26]
Because the strain tensor is symmetric, we can interchange indices k and l, giving the possibility
to redefine the elasticity tensor as cijkl = λδijδkl + 2µδikδjl. Hence we can give the following
relation between stress increment and strain:

δTij
(
~x0, t

)
= λ

(
~x0, t

)
ekk
(
~x0, t

)
δij + 2µ

(
~x0, t

)
eij
(
~x0, t

)
(4)

where λ and µ are called Lamé parameters and ekk is the trace of the strain tensor, which is the
relative volume change during deformation. This relation is the continuum analogue of Hooke’s
Law for a spring, which gives a linear dependence between extension and load of a spring. Note
that the position ~x0 in this equation is the position of a material particle.

(iv) The fourth condition gives a diagonal initial stress tensor:

T 0
ij = −p0δij (5)

where δij is the Kronecker delta. The minus sign arises because compression (a pressure opposed
to the radial unit vector) is defined to be negative.

(v) The fifth condition implies that the difference in force induced by pressure between the top and
the bottom of a thin spherical shell centered around the origin must equal the gravity force on
this shell, since the sum of all forces is zero in equilibrium:

−∂ip0 = ρ0∂iϕ
0 (6)

where ρ0 is the density and ϕ0 is the gravitational potential, which satisfies Poisson’s equation:

∇2ϕ0 = 4πGρ0 (7)

where G = 6.673 · 10−11 m3 kg−1 s−2 is the gravitational constant. Equations (6) and (7)
are subject to the boundary conditions that ϕ0, ∂rϕ

0 and p0 are continuous, even if ρ0 is
discontinuous. Hence:[

ϕ0
]+
− = 0,

[
∂rϕ

0
]+
− = 0,

[
p0
]+
− = 0 for every surface. (8)

The continuity of ∂rϕ
0 follows from integrating equation (7) over the volume of a thin disc and

applying Gauss’s theorem on the left hand side of the equation.

Further, p0 = 0 at the outer surface of the Earth and ϕ0 and g0 vanish as r approaches in-
finity. Under these conditions, we can find ϕ0, g0 and p0 in terms of ρ0 by integration. Hence
ϕ0, g0 and p0 are no independent model parameters. They can be calculated once the density
distribution is known.

Hence the total number of independent model parameter functions is three: the density ρ0 and the
Lamé parameters λ and µ. Often, µ is called the shear modulus, since it governs the relation between
shear stress and shear strain.

Since the Earth has internal boundaries or interfaces, such as the boundary between the core and
the mantle, the value of the parameters λ, µ and ρ0 can be discontinuous across these boundaries. We
therefore divide the model into a set of regions {V1, V2, ..., Vn} together with Vn+1, which is the space
not occupied by the model. The boundaries Σi between the regions are spherical surfaces. There are
three kinds of boundaries:
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(i) The outer surface of the Earth, which we will call the free surface Σn.

(ii) Welded boundaries Σss, these are boundaries between two solid regions.

(iii) Fluid-solid boundaries Σfs, these are boundaries between a fluid and a solid region.

The union of all surfaces will be called Σ, the whole of space not occupied by Σ will be called the
volume V . In fluid regions, the shear modulus µ vanishes, because a fluid does not support shear stress.

There is one major problem with the model introduced so far. It will remain in equilibrium for-
ever if no force acts upon it. We will now see what happens if the equilibrium situation is disturbed.

2.3 Free oscillations

The equations of motion of a system describe the motion of a system as a function of time. If the
equilibrium situation of the Earth model is disturbed by a displacement field ~s, particles change their
position accordingly. The goal of this section is to derive linear differential equations for non-driven
oscillations of the Earth, for displacements which are small compared to the size of the Earth, which
is the case for the displacement caused by earthquakes. Non-driven oscillations of an object are called
free oscillations.

Because the oscillations are relatively small, all terms containing second order perturbations can
be neglected. Hence terms containing products of perturbations, a product of a perturbation and the
displacement field ~s, or terms that are of second order in ~s can be ignored.

2.3.1 Description of motion

When analyzing the deformation of solids such as the Earth, it is necessary to describe the evolution
of the position and the physical properties (such as the velocity or the density) of the particles. There
are two ways of doing this: one could label all particles uniquely with their equilibrium position ~x0

and follow their position in time, while determining the properties at the material location. This is
typically the approach in rigid body mechanics and in seismology, since a seismometer is attached to
the particles in motion and measures the properties (such as the displacement) at a material parti-
cle. This is the so called Lagrangian description of motion. This corresponds to the notation of any
arbitrary parameter ζ as a function of initial position and time: ζ(~x0, t). Lagrangian perturbations
δζ(~x0, t) are changes at the material particle. We need this description because many properties of
the system are inherently Lagrangian. For example the relationship between stress and strain is most
naturally given in the Lagrangian description: the strain caused to a material particle is related to
the incremental stress at the same material particle. In fact, we already have used the notation for
this description for the incremental stress at a material particle, which was denoted by δTij

(
~x0, t

)
.

In normal mode theory, the Lagrangian description leads to a problem: gravity depends on the den-
sity distribution, and it is not straightforward to give a Lagrangian description of Poisson’s equation,
since in the deformed state the density in this equation is not a function of the position of a material
particle. There is another approach which leads to a straightforward treatment of the density, which
is the so called Eulerian approach. Then the particles are not followed individually, but the properties
of the particles will be given as a field which is a function of position ~r, not necessarily the position of a
material particle. The density then simply becomes a function of space and time, and we do not have
to bother with the density at a material particle anymore. This corresponds to the notation of any
arbitrary parameter ζ as a function of fixed position and time: ζ(~r, t). Hence Eulerian perturbations
δζ(~r, t) are changes at a certain position, not necessarily the particle position. Thus, Eulerian and
Lagrangian perturbations are not equal in general.

2.3.2 Area and volume

To obtain equations of motion it turns out that expressions are needed relating volume and surface
elements in the deformed and initial state. A volume element in the initial state dV 0 will be rotated
and deformed into a new volume element dV because particles move according to a mapping from
~x0 to ~x0 + s(~x0, t). The ratio between the deformed and undeformed volume element is given by the

10



Jacobian determinant J of this mapping. Hence dV = JdV 0.

Now we consider an infinitesimal surface area element in the initial configuration: n̂0dΣ0; and in
the deformed state: n̂dΣ = n̂(~x0, t)dΣ(~x0, t). The relationship between these surface elements can be
obtained by considering the surface of a deformed and undeformed parallellogram, since any arbitrary
surface can be built up from infinitesimally small parallellograms. Take an undeformed parallel-
logram with sides d~x0 and δ~x0 which deforms into a parallellogram with sides d~r = d~r(d~x0, t) and
δ~r = δ~r(δ~x0, t). Then we have:

n̂0dΣ0 = d~x0 × δ~x0 (9)

n̂dΣ = d~r × δ~r (10)

Writing the cross products with the Levi-Civita symbol we obtain:

n̂0
i dΣ0 = εijkdx

0
jδx

0
k (11)

n̂idΣ = εijkdrjδrk (12)

where dx0
k, δx0

k, drk and δrk are the Cartesian components of the vectors. By using the inverse defor-
mation tensor the initial parallellogram sides d~x0 and δ~x0 can be related to the current parallellogram
sides d~r and δ~r.

dx0
j = F−1

jmdrm (13)

δx0
k = F−1

kn δrn (14)

Upon substituting these expressions into the expression of the undeformed surface element, we obtain:

n̂0
i dΣ0 = εijkF

−1
jmF

−1
kn drmδrn (15)

Both sides of this equation are multiplied with F−1
il and the identity J = detF = 1

6εijkεlmnFilFjmFkn
is used, together with the identity εijkεijk = 6. Then one obtains:

F−1
il n̂

0
i dΣ0 = J−1εlmndrmδrn = J−1n̂ldΣ (16)

and hence the relationship between deformed and undeformed surface area elements is:

n̂jdΣ = JdΣ0n̂0
iF
−1
ij (17)

2.3.3 Conservation of mass

Suppose we take an arbitrary volume in the initial configuration of the model and follow this volume
in time. Then the total mass within this volume is conserved, since there is no flux of material in or
out this volume. Hence:∫

V

ρ(~x0, t)dV =

∫
V 0

ρ0dV 0 (18)

But the integral on the left can also be transformed into an integral in the initial coordinate system:∫
V

ρ(~x0, t)dV =

∫
V 0

ρ(~x0, t)JdV 0 (19)

Hence ρ0 = Jρ(~x0, t) is the mathematical formulation of the conservation of mass in the Lagrangian
description of motion.

2.3.4 Equations of motion

The main goal of this section is to obtain linear differential equations determining the time evolution
of the free oscillations of the SNREI model. Linearization is possible, because the displacements are
small compared to the size of the Earth. A linear differential equation for the displacement ~s of the
form

Li (~s) = ρ0
(
~x0, t

) ∂2si
(
~x0, t

)
∂t2

(20)

11



will be derived, where Li (~s) is a linear operator acting on ~s
(
~x0, t

)
, depending only on known model

parameters. The right hand side of the equation is the net force density on a material particle.

To get the equation of motion, we take an arbitrary volume V with boundary Σ in a continuum
at time t and apply Newton’s second law on it. The result we will obtain is known as Cauchy’s
equation of motion for a continuum.

Two types of forces act on the volume: forces acting on all particles in the volume V and forces
acting on the boundary Σ of the volume. These forces are called body forces and surface forces re-
spectively. In the case of the Earth, gravity acts as a body force. The gravitational acceleration gi
can be given as the derivative of a potential field: gi = −∂iϕ

(
~x0, t

)
. All surface forces on a surface

with normal n̂ are given by the traction vector ~τ , which is related to the normal n̂ through the stress
tensor: τi = Tijnj .

Hence in this case Newton’s second law gives:

∂

∂t

∫
V

ρ(~x0, t)vi(~x
0, t)dV =

∫
Σ

Tij(~x
0, t)n̂j(~x

0, t)dΣ−
∫
V

ρ(~x0, t)∂iϕ(~x0, t)dV (21)

where ~v is the particle velocity.

To proceed and obtain the equations of motions, the idea is to transform the volume and surface
integrals in the expression above to the initial coordinate system ~x0 and to approximate the terms for
small displacements. By using the expressions derived in the section 2.3.2 on area and volume, one
obtains:

∂

∂t

∫
V 0

ρ(~x0, t)Jvk(~x0, t)dV 0 =

∫
Σ0

Tij(~x
0, t)Jn̂0

k(~x0, t)F−1
kj dΣ0 −

∫
V 0

ρ(~x0, t)J∂iϕ(~x0, t)dV 0

Now conservation of mass can be used:

∂

∂t

∫
V 0

ρ0vk(~x0, t)dV 0 =

∫
Σ0

Tij(~x
0, t)Jn̂0

k(~x0, t)F−1
kj dΣ0 −

∫
V 0

ρ0∂iϕ(~x0, t)dV 0 (22)

Now the definition of the first Piola-Kirchhoff stress tensor can be recognized. The definition of this
tensor is given on page 35 of [27]. The first Piola-Kirchhoff stress tensor gives the force in the deformed
state per unit area in the equilibrium state. The Piola-Kirchhoff stress will be denoted by T ij and it’s
definition is T ij = JTikF

−1
kj . Hence, using Gauss’s theorem for the first term on the right hand side

of equation (22), this equation can be rewritten as:

∂

∂t

∫
V 0

ρ0vi(~x
0, t)dV 0 =

∫
V 0

∂jT ij(~x
0, t)dV 0 −

∫
V 0

ρ0∂iϕ(~x0, t)dV 0 (23)

The differential operator on the left can be flipped with the integral operator, since there is no time
dependence in the integration bounds, because they are given in the initial coordinate system. Because
this equation holds for any arbitrary initial volume V 0, we might as well drop the integral signs and
we obtain:

ρ0 ∂
2si(~x

0, t)

∂t2
= ∂jT ij(~x

0, t)− ρ0∂iϕ(~x0, t) (24)

Now this equation is approximated for small displacements by discarding all second order pertur-
bation terms. Hence the first Piola-Kirchhoff stress tensor and gravitational potential have to be
approximated to first order. Starting with the Piola-Kirchhoff stress tensor, notice that because
~r
(
~x0, t

)
= ~x0 +~s

(
~x0, t

)
the deformation tensor has the form Fij = δij +∂jsi(~x

0, t) and its inverse can

be approximated to first order in ~s with F−1
ij = δij − ∂jsi(~x0, t). The relative volume change J is, to

first order in ~s, equal to 1 + ∂isi(~x
0, t). Hence the first Piola-Kirchhoff stress tensor approximated to

first order becomes:

T ij(~x
0, t) = Tij(~x

0, t)
(
1 + ∂ksk(~x0, t)

)
− Tik∂jsk(~x0, t) (25)

The gradient of the gravitational potential at a material particle in the deformed state can be ap-
proximated by expressing it in terms of the gradient of the potential in the initial state ∂iϕ

0 plus the
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total change experienced by the material particle during deformation δ∂iϕ
(
~x0, t

)
. The latter term

consists of two parts: a change due to movement through the initial potential gradient field and a
local perturbation due to the change in density distribution caused by the deformation. Hence:

∂iϕ
(
~x0, t

)
= ∂iϕ

0 + δ∂iϕ
(
~x0, t

)
(26)

= ∂iϕ
0 + sj(~x

0, t)∂j∂iϕ
0 + δ∂iϕ(~r, t) (27)

where the first term gives the initial field at t = 0, the second term gives the change due to the
movement through the initial field by using a linear Taylor approximation. The last term gives
the change in the field at time t at the current position of the particle ~r = ~r(~x0, t), relative to
the value of the field in the initial situation at the same spatial coordinate. Hence δ∂iϕ(~r, t) is an
Eulerian perturbation (see the beginning of section 2.3.1 on page 10). Hence we obtain the following
approximation for the potential gradient field:

∂iϕ
(
~x0, t

)
= ∂iϕ

0 + sj(~x
0, t)∂j∂iϕ

0 + ∂iδϕ(~r, t) (28)

Finally, the Cauchy stress tensor can be rewritten as the sum of the initial stress and incremental
stress at the material particle:

Tij
(
~x0, t

)
= −p0δij + δTij

(
~x0, t

)
(29)

Hence the first Piola-Kirchhoff stress tensor can be rewritten as

T ij = −p0δij + δT ij
(
~x0, t

)
(30)

where

δT ij
(
~x0, t

)
= p0∂isj

(
~x0, t

)
− p0∂ksk(~x0, t)δij + δTij

(
~x0, t

)
(31)

is the incremental first Piola-Kirchhoff stress tensor. If we apply all these approximations in the
general equation of motion, we obtain:

ρ0 ∂
2si
∂t2

= −∂jp0δij + ∂jδT ij − ρ0
(
∂iϕ

0 + sj∂j∂iϕ
0 + ∂iδϕ(~r, t)

)
(32)

Note that the dependence (~x0, t) is omitted from now on to make the equations more readable. All
quantities without a superscript zero or other explicitly given dependence, are dependent of (~x0, t).
Because of the equilibrium equation (6), the first and third term of the right hand side of the equation
vanish, and one obtains:

ρ0 ∂
2si
∂t2

= ∂jδT ij − ρ0
(
sj∂j∂iϕ

0 + ∂iδϕ(~r, t)
)

(33)

This differential equation contains the divergence of the incremental first Piola-Kirchhoff stress. In
order to find its relationship to the displacement, the divergence term is calculated explicitly:

∂jδT ij = ∂jδTij + ∂jp
0∂isj + p0∂i (∂jsj)− ∂ip0 (∂ksk)− p0∂i (∂ksk)

= ∂jδTij − ρ0∂jϕ
0∂isj + ρ0∂iϕ

0 (∂ksk)

= ∂jδTij − ρ0∂i
(
sj∂jϕ

0
)

+ ρ0sj∂i∂jϕ
0 + ρ0∂iϕ

0 (∂ksk) (34)

where we have used the equilibrium equation (6). If we plug this into the differential equation (33),
we get:

ρ0 ∂
2si
∂t2

= ∂jδTij − ρ0∂i
(
sj∂jϕ

0
)

+ ρ0∂iϕ
0 (∂ksk)− ρ0∂iδϕ(~r, t) (35)

This equation contains the Lagrangian incremental stress tensor, which is related to ~s through the
strain tensor. To have an explicit dependence on ~s, it will be convenient to write:

δTij = γijkl∂ksl (36)

where γijkl = µ (δikδjl + δilδjk) + λδijδkl.

Hence we obtain:

ρ0 ∂
2si
∂t2

= ∂jγijkl∂ksl − ρ0∂i
(
sj∂jϕ

0
)

+ ρ0∂iϕ
0 (∂ksk)− ρ0∂iδϕ(~r, t) (37)
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Now three differential equations have been obtained for four unknown functions: the three components
of the displacement and the gravitational potential perturbation. Hence one more equation is needed.
The density perturbation δρ (~r, t) can be expressed in terms of ~s. Consider a volume V , fixed in space.
The increase in mass within V is equal to the influx of mass through the surface ∂V enclosing V :∫

V

ρ (~r, t) dV =

∫
V

ρ0(~r, 0)dV −
∫
∂V

(
ρ0(~r, 0) + δρ (~r, t)

)
sk (~r, t)nk (~r, t) dS (38)

where nk is a unit normal vector on the surface element dS. If we consider this equation in first order,
the product between δρ and sk can be neglected, and by using the divergence theorem (and dropping
the volume integral since the equation is valid for an arbitrary volume) we find:

δρ (~r, t) = −∂j
(
ρ0 (~r, 0) sj (~r, t)

)
(39)

The potential field of gravity ϕ0 is governed by Poisson’s equation. Let us see how this equation is
affected by the disturbance ~s. The incremental Poisson’s equation is satisfied by δϕ:

∇2δϕ(~r, t) = 4πGδρ(~r, t) = −4πG∂j
(
ρ0 (~r, 0) sj(~r, t)

)
(40)

In this equation, sj(~r, t) can be replaced by sj(~x
0, t) = sj , since their difference is of second order in ~s.

The density ρ0 (~r, 0) can also be replaced by ρ0
(
~x0, 0

)
= ρ0 since this replacement only has a second

order effect on the equation. Hence:

∇2δϕ(~r, t) = 4πGδρ(~r, t) = −4πG∂j
(
ρ0sj

)
(41)

Now we are in the situation to be able to write down a system of differential equations for ~s and
δϕ(~r, t), in terms of the known initial model parameters ρ0, λ and µ:

ρ0∂2
t si = ρ0

[
(∂ksk) ∂iϕ

0 − ∂iδϕ(~r, t)− ∂i
(
sk∂kϕ

0
)]

+ ∂j (γijkl∂ksl)

∇2δϕ(~r, t) = −4πG∂j
(
ρ0sj

) }
(42)

For theoretical purposes, it would be nice if we could write the system of equations (42) as a single
linear differential equation for ~s. This is possible if we see that δφ can be solved uniquely through the
second equation in (42), with appropriate boundary conditions (49) which will be derived in the next
section. Further, the differential equation for δφ is linear in ~s, hence we can write:

δφ = δΦ (~s) (43)

where δΦ is a linear operator on ~s.

Now we can define a linear operator Li acting on a displacement field ~s which helps us to summarize
the system of differential equations (42):

Li (~s) = ρ0
[
(∂ksk) ∂iφ

0 − ∂iδΦ (~s)− ∂i
(
sk∂kφ

0
)]

+ ∂j (γijkl∂ksl) (44)

This operator depends on known model parameters only. The system of differential equations can
now be reduced to the desired form given in the beginning of this section, namely as a single linear
vector differential equation:

Li (~s) = ρ0∂2
t si (45)

2.3.5 Boundary conditions

As we discussed, the Earth model is composed of layers with possible discontinuities in density and
elastic parameters on the boundaries. To solve the differential equations derived in the previous sec-
tion, we need conditions for ~s and δϕ on the boundaries.

Firstly, the potential perturbation δϕ is continuous. But if there is a density jump on a bound-
ary, the slope of δϕ changes at the boundary, thus ∂iδϕ is not necessarily continuous on a boundary.
We therefore seek a quantity related to ∂iδϕ, which is continuous. The incremental Poisson equation,
which is the second of our system of equations (42), can be rewritten as:

∂i
(
∂iδϕ− 4πGρ0si

)
= 0 (46)
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since the Laplacian operator ∇2 is the same as ∂i∂i. Remember that we derived the continuity of
g0 by integrating the Poisson equation over a thin spherical shell in section 2.2 on page 9. We will
now use a similar argument. If we integrate equation (46) over the volume of a thin disc containing
a piece of the interface between two regions in the model and apply Gauss’s theorem, we find that(
∂iδϕ− 4πGρ0si

)
n̂i must be the same on either side of the deformed interface, where n̂i = n̂i(~x

0, t)
is the unit normal vector on the deformed interface. This is our second constraint on δϕ.

In this constraint, the unit normal to the deformed interface is n̂i, which is slightly changed with
respect to the unit normal n̂0

i in the equilibrium state. The influence of the deflection of the unit
normal vector on the constraint is an effect of second order in ~s, since the constraint in the unde-
formed state only consists of terms of first order. Therefore, we can replace the unit normal in the
deformed state with the unit normal in the undeformed state. Hence from now on, the unit normal
in the deformed state is equal to the unit normal in the undeformed state.

At this point it is convenient to use a spherical polar coordinate system (r, θ, φ) where r is the radius,
θ is the colatitude and φ is the longitude. Hence any vector is denoted by vi or ~v and any tensor is
denoted by Tij in the following way:

~v = r̂ vr + θ̂ vθ + φ̂ vφ = vi = (vr, vθ, vφ) (47)

Tij =

 Trr Trθ Trφ
Tθr Tθθ Tθφ
Tφr Tφθ Tφφ

 (48)

Hence the indices i, j can be r, θ or φ.
In spherical polar coordinates, the unit normal on the interface is simply r̂. Summarizing:

[δϕ]
+
− = 0,

[
∂rδϕ− 4πGρ0sr

]+
− = 0 on Σ (49)

Because φ and φ0 vanish at infinity, δϕ must vanish at infinity as well.

The boundary conditions on ~s are different for different kinds of interfaces. On the free surface,
the force per unit area, also called the traction, is zero. Hence:

δTijnj = γijkl∂kslnj = 0 on Σn (50)

At fluid-solid boundaries, the traction is continuous. Continuity of traction is a fundamental result
in continuum mechanics. [25] The traction is also normal to the boundary since on the fluid side, no
shear stress is allowed.

Because of the continuity of traction, shear stress is zero on the solid side of the boundary as well.

The displacement normal to the boundary is also continuous, since the neighbouring regions do not
separate or interpenetrate during deformation. If we again use that the deflection of the unit normal
due to the displacement has no first order influence on the conditions, we get:

[δTir]
+
− = 0, [sr]

+
− = 0 on Σfs (51)

Note that there can be a discontinuity of displacement perpendicular to the boundary, since the fluid
can flow freely across the boundary and the particles are not attached to each other. This is not the
case if we consider a solid-solid boundary.

At solid-solid boundaries, the traction and displacement are continuous, hence:

[δTir]
+
− = 0, [si]

+
− = 0 on Σss (52)

Now we have a set of differential equations with the needed boundary conditions to determine the
displacement ~s due to a given force field ~f .
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2.3.6 Statement of the mathematical problem for free oscillations

We define a set of vector fields S which consists of all vector fields ~s satisfying the boundary conditions
discussed in the previous section:

[sr]
+
− = 0 on Σfs (53)

[si]
+
− = 0 on Σss (54)

Now we can state the problem of determining the displacement field of Earth normal modes as follows:

Find the displacement field ~s
(
~x0, t

)
∈ S, for each fixed t, which satisfies:

Li (~s) = ρ0∂2
t si (55)

[γijkl∂ksl]
+
− = 0 on all boundaries (56)

Note that the free surface condition is included in these equations by defining γijkl = 0 outside the
Earth model. The fluid-solid boundary condition of no shear stress is included by setting µ = 0 in the
fluid.

2.4 Solution of the equations of motion for free oscillations

The mathematical problem stated in the previous section is a differential equation. Fourier analysis
can be used to transform this differential equation into algebraic equations. By Fourier transforming
(55) the following algebraic equations are obtained:

Li
(
~̃s
)

+ ρ0ω2s̃i = 0 (57)

where the tilde denotes Fourier transformation. The standard way of solving these kind of problems
is to find the eigenvalues and eigenfunctions of the operator Li.

~L (~sk) + ρ0ω2
k~sk = 0 (58)

where ~sk = ~sk
(
~x0, ωk

)
is an eigenfunction of ~L, ω2

k is the corresponding eigenvalue and k is an index
labeling the eigenfunctions.

A solution of the mathematical problem for the displacement (55) is given by ~s = eiωkt~sk.

To solve the eigenvalue equation, first some properties of the operator Li will be derived, which
will lead to the conclusion that Li is a self-adjoint operator on the space of all possible displacement
fields obeying the boundary conditions. Then the mathematical problem for the displacement (55)
will be written as a set of scalar equations in spherical coordinates, expanded into spherical harmonics.
This will yield a set of scalar differential equations dependent on the radius r only. Finally, methods
of solution of these radial equations will be discussed.

2.4.1 Properties of the operator Li
The main goal of this chapter is to prove certain useful facts about the operator Li, which will lead
to a proof in the following chapter that the operator L is self adjoint, if S is endowed with a suitable
inner product. The derivation of the properties Li satisfies is slightly simplified if the operator Li is
written in terms of the first Piola-Kirchhoff stress tensor δT ij . The simplification of the derivation is
because the operator Li takes a more concise form if we use this definition. Note that δT ij is not a
symmetric tensor.

The first Piola-Kirchhoff stress tensor can be written as:

δT ij = dijkl∂lsk (59)

where dijkl = γijkl + p0 (δilδkj − δijδkl). Note that this gives the symmetry dijkl = dklij , a fact we
need later on.
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Therefore the operator Li can be written as:

Li (~s) = ∂j (dijkl∂lsk)− ρ0
(
∂iδΦ (~s) + sj∂j∂iϕ

0
)

(60)

Now three results will be proven, which will lead to the proof that Li is self-adjoint.

2.4.1.1 Result 1 For any two displacement fields ~s and ~s′ with associated gravitational potentials
δϕ = δΦ (~s) and δϕ′ = δΦ (~s′)

s′iLi (~s) = ∂j

[
s′iδT ij + δϕ′

(
1

4πG
∂jδϕ+ ρ0sj

)]
−
[
δT ij∂js

′
i + ρ0s′i∂iδϕ+ ρ0si∂iδϕ

′ + ρ0sis
′
j∂i∂jϕ

0 +
1

4πG
∂iδϕ∂iδϕ

′
]

(61)

Proof
From (60):

s′iLi (~s) = s′i∂jδT ij − ρ0s′i∂iδϕ− ρ0s′isj∂i∂jδϕ
0

−ρ0si∂iδϕ
′ + ρ0si∂iδϕ

′ (62)

where the same term is first subtracted and then added on the last line. The first term on the right
hand side of (62) is:

s′i∂jδT ij = ∂j
(
s′iδT ij

)
− δT ij∂js′i (63)

and the last term is:

ρ0si∂iδϕ
′ = ∂i

(
ρ0siδϕ

′)− δϕ′∂i (ρ0si
)

= ∂i
(
ρ0siδϕ

′)+ δϕ′δρ

= ∂i
(
ρ0siδϕ

′)+ δϕ′
1

4πG
∇2δϕ

= ∂i

(
ρ0siδϕ

′ +
1

4πG
δϕ′∂iδϕ

)
− 1

4πG
∂iδϕ

′∂iδϕ (64)

Using (63) and (64) in (62) gives (61) and this completes the proof of Result 1.

2.4.1.2 Result 2 For any two displacement fields ~s and ~s′ with associated gravitational potentials
δϕ = δΦ (~s) and δϕ′ = δΦ (~s′)

s′iLi (~s)−siLi (~s′) = ∂j

[
s′iδT ij − siδT

′
ij + δϕ′

(
1

4πG
∂jδϕ+ ρ0sj

)
− δϕ

(
1

4πG
∂jδϕ

′ + ρ0s′j

)]
(65)

where δT ij = dijkl∂lsk and δT
′
ij = dijkl∂ls

′
k.

Proof
The term δT ij∂js

′
i occurring in the second bracket of Result 1 is given by δT ij∂js

′
i = dijkl∂lsk∂js

′
i.

Because of the symmetry property of dijkl we have:

dijkl∂lsk∂js
′
i = dklij∂lsk∂js

′
i = dijkl∂ls

′
k∂jsi (66)

hence this term is unaffected if ~s and ~s′ are swapped. The rest of the terms in the second bracket of
Result 1 are also unchanged by this operation, which gives us Result 2.
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2.4.1.3 Result 3 For any two vector fields ~s and ~s′∫
V

s′i · Li (~s) dV +

∫
Σ

[s′iδTir]
+
− dΣ =

∫
V

si · Li (~s′) dV +

∫
Σ

[siδT
′
ir]

+
− dΣ (67)

where V and Σ are the same volume and surface we defined in section 2.2.

Proof
To obtain this result, we have to integrate Result 2 over all of V and apply Gauss’s theorem to obtain
surface integrals over Σ. To make the proof easy to follow, first two lemmas will be proved. The first
lemma is a more general form of Gauss’s theorem. Since we have a discontinuous displacement field,
we need a form of Gauss’s theorem which is also valid for discontinuous fields.

Lemma 1, alternate form of Gauss’s theorem
For any vector field ~u (~r) we have∫

V

∂jujdV = −
∫

Σ

[ur]
+
− dΣ (68)

where nj is the unit normal vector on Σ and the discontinuity [ur]
+
− is u+

r − u−r , where the
positive contribution is from the displacement furthest from the origin. Recall that the union
of all surfaces of discontinuity is called Σ.

Proof. For any vector field ~u (~r) we have∫
V

∂jujdV =

n+1∑
k=1

∫
Vk

∂jujdV (69)

and if we apply Gauss’s theorem on each spherical shell Vk we obtain∫
V

∂jujdV =

n+1∑
k=1

∫
Sk

ujn
(k)
j dV (70)

where Sk is the boundary surface of Vk and n
(k)
j is the outward normal on Sk. The surface

Sk consists of the inner spherical boundary Σk−1 and the outer spherical boundary Σk. The
outward normal on Σk−1 is −r̂ and on Σk it is r̂. Note that in the right hand side of equation
(70) the limit of uj on the boundary has to be taken approaching from the inside of the volume
Vk. Therefore we obtain:∫

V

∂jujdV = −
n∑
k=1

∫
Σk

[ur]
+
− dS (71)

where [uj ]
+
− denotes the discontinuity in uj across Σk, the positive contribution arising from

the side of Σk farthest from the origin. Thus we obtain∫
V

∂jujdV = −
∫

Σ

[ur]
+
− dΣ (72)

which proves Lemma 1.
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Lemma 2, Tangential derivative
The tangential derivative operator ~∇t is defined as

~∇t = ~∇− r̂
(
r̂ · ~∇

)
= ∂i − r̂∂r (73)

=
1

r

(
θ̂
∂

∂θ
+ csc θφ̂

∂

∂φ

)
(74)

thus for any quantity η, ~∇tη is simply the projection of the gradient onto a spherical surface
with normal ~r. The lemma which will be proven is:

For any vector field ~u, defined and differentiable on the spherical surface Σ∫
Σ

(
~∇t · ~u

)
dΣ =

∫
Σ

2ur
r
dΣ (75)

Proof. From the definition of ~∇t (74) we have

~∇t · ~u = ~∇ · ~u− ∂rur (76)

since ∂r r̂ = 0. If we now use the standard expression for the divergence of a vector field in
spherical polar coordinates and integrate over a spherical surface, we obtain∫

Σ

(
~∇t · ~u

)
dΣ =

∫
Σ

2ur
r
dΣ +

∫ 2π

0

∫ π

0

r2 sin θ

(
∂θ (sin θuθ)

r sin θ
+

∂φuφ
r sin θ

)
dθdφ (77)

The last integral can be integrated directly and gives zero, which proves Lemma 2.

Now we can proceed with the proof of result 3. If we integrate result 2 over the volume V and use
Lemma 1, we get∫

V

[s′iLi (~s)− siLi (~s′)] dV

= −
∫

Σ

[
s′iδT ir − siδT

′
ir + δϕ′

(
1

4πG
∂rδϕ+ ρ0sr

)
− δϕ

(
1

4πG
∂rδϕ

′ + ρ0s′r

)]+

−
dΣ (78)

The last two terms in this integral are zero because of the boundary conditions (49) for δϕ, since the
product of two continuous functions is continuous as well. Hence if we use δT ij = δTij + p0∂isj −
p0δij (∂ksk) and its equivalent for δT

′
ij , we obtain∫

V

[s′iLi (~s)− siLi (~s′)] dV

= −
∫

Σ

[
s′i
(
δTir + p0∂isr − p0δir (∂ksk)

)
− si

(
δT ′ir + p0∂is

′
r − p0δir (∂ks

′
k)
)]+
− dΣ

= −
∫

Σ

[s′iδTir − siδT ′ir]
+
− dΣ−

∫
Σ

[
s′ip

0∂isr − s′rp0 (∂ksk)− sip0∂is
′
r + srp

0 (∂ks
′
k)
]+
− dΣ(79)

To prove Result 3 we have to show that the last surface integral on the right is zero. To do this, we
rewrite first two terms of the last integral in terms of the surface integral definition (74).∫

Σ

[
s′ip

0∂isr − s′rp0 (∂ksk)
]+
− dΣ

=

∫
Σ

[
s′ip

0∇tisr + s′rp
0∂rsr − s′rp0 (∇ksk)− s′rp0 (∂rsr)

]+
− dΣ

=

∫
Σ

[
s′ip

0∇tisr − s′rp0 (∇ksk)
]+
− dΣ (80)
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Using the result above and the corresponding result with ~s and ~s′ interchanged, the last integral of
equation (79) becomes∫

Σ

[
s′ip

0∂isr − s′rp0 (∂ksk)
]+
− dΣ =

∫
Σ

[
s′ip

0∇tisr − s′rp0 (∇ksk)− s′ip0∇tisr + s′rp
0 (∇ksk)

]+
− dΣ

=

∫
Σ

∇ti
[
s′ip

0sr − sip0s′r
]+
− dΣ (81)

where we used the product rule for the gradient in the last step, together with the fact that the initial
pressure gradient has only a radial component, which makes the tangential derivative zero. If we now
use Lemma 2, we get∫

Σ

[
s′ip

0∂isr − s′rp0 (∂ksk)
]+
− dΣ =

∫
Σ

2

r

[
s′rp

0sr − srp0s′r
]+
− dΣ = 0 (82)

which completes the proof.

2.4.2 Properties of eigenfunctions and eigenvalues

Previously, the vector space S was defined, containing all the vector fields ~s satisfying the boundary
conditions governing the continuity of displacement. Now a subspace J of S is defined, containing
the vector fields which also obey the traction conditions, namely:

[γijkl∂ksl]
+
− = 0 on all boundaries (83)

Hence a displacement field ~s ∈ J simply satisfies all the boundary conditions appropriate for a
displacement field. Suppose we take two displacement fields ~s and ~s ′, both in J . Then result 3,
equation (67), becomes:∫

V

s′i · Li (~s) dV =

∫
V

si · Li (~s ′) dV (84)

Thus L is a self adjoint operator on J . Now we will prove two important properties of self-adjoint
operators, namely that its eigenvalues are real and its eigenfunctions orthogonal.

Take two eigenfunctions ~sk and ~sk′ with eigenvalues ω2
k and ω2

k′ :

L (~sk) = −ρ0ω2
k~sk (85)

L (~sk′) = −ρ0ω2
k′~sk′ (86)

Taking the complex conjugate of (86) one finds:

L (~s ∗k′) = −ρ0ω2 ∗
k′ ~s

∗
k′ (87)

since L is a real operator. Because the eigenfunctions satisfy all boundary conditions, we can use the
self-adjointness of L:∫

V

~s ∗k′ · ~L (~sk) dV =

∫
V

~sk · ~L (~s ∗k′) dV (88)

Hence one obtains:(
ω2
k − ω2 ∗

k′
) ∫

V

ρ0~s ∗k′ · ~skdV = 0 (89)

If the eigenfunctions are identical, ω2
k = ω2 ∗

k′ and hence the eigenvalues ω2
k are all real. If the eigenvalues

ω2
k and ω2 ∗

k′ are different, the eigenfunctions have to be orthogonal in the sense that∫
V

ρ0~s ∗k′ · ~skdV = 0 (90)
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2.4.3 Scalar equations in spherical coordinates

If the differential equations (57) and the incremental Poisson equation for the Fourier transformed
gravity field are given in the spherical coordinate system, three equations are obtained. The tilde
arising from the Fourier transformation has been omitted in this section for clarity:

−ρ0ω2sr = −ρ0 ∂δϕ

∂r
+ ρ0∆

∂ϕ0

∂r
− ρ0 ∂

∂r

(
sr
∂ϕ0

∂r

)
+ tr (91)

−ρ0ω2sθ =
1

r

(
−ρ0 ∂δϕ

∂θ
− ρ0 ∂

∂θ

(
sr
∂ϕ0

∂r

))
+ tθ (92)

−ρ0ω2sφ =
1

r sin θ

(
−ρ0 ∂δϕ

∂φ
− ρ0 ∂

∂φ

(
sr
∂ϕ0

∂r

))
+ tφ (93)

0 =

(
r̂
∂

∂r
+ ~∇t

)
·
(
r̂
∂δϕ

∂r
+ ~∇tδϕ+ 4πGρ0~s

)
(94)

where ti = ∂jTij is the divergence of the stress tensor, Tij = 2µeij +λ∆δij is the relationship between
stress and strain, ∆ = ∇ · ~s is the dilation and eij = 1

2 (∂isj + ∂jsi) is the strain tensor. I used the
alternative version of the Poisson equation, given in equation (46).

To reduce these equations completely into spherical coordinates, the quantities defined above (strain
tensor, dilation and divergence of the stress tensor) have to be given explicitly in terms of sr, sθ and
sφ. To avoid needless lengthy calculations, I will just state the results here. A derivation can be
found in appendix A of [27], equation A.139 for the strain tensor, A.140 for the dilation and A.144
for the divergence of the stress tensor. When deriving the expressions, the most important fact to be
considered is that the direction of the unit vectors depends on their position, hence their derivative is
generally nonzero.

The strain tensor has the components:

err =
∂sr
∂r

(95)

eθθ =
1

r

∂sθ
∂θ

+
sr
r

(96)

eφφ =
1

r sin θ

∂sφ
∂φ

+
sr
r

+
sθ cot θ

r
(97)

erθ =
1

2

(
∂sθ
∂r

+
1

r

∂sr
∂θ
− sθ

r

)
(98)

erφ =
1

2

(
sφ
∂r

+
1

r sin θ

∂sr
∂φ
− sφ

r

)
(99)

eθφ =
1

2

(
1

r

∂sφ
∂θ

+
1

r sin θ

∂sθ
∂φ
− sφ cot θ

r

)
(100)

The dilation is the trace of the strain tensor, hence:

∆ =
1

r2

∂
(
r2sr

)
∂r

+
1

r sin θ

(
∂ (sin θsθ)

∂θ
+
∂sφ
∂φ

)
(101)

The divergence of the stress tensor is:

tr =
∂Trr
∂r

+
1

r sin θ

∂Tφr
∂φ

+
1

r

(
∂Tθr
∂θ

+ 2Trr − Tθθ − Tφφ + Tθr cot θ

)
(102)

tθ =
∂Trθ
∂r

+
1

r sin θ

∂Tφθ
∂φ

+
1

r

(
∂Tθθ
∂θ

+ (Tθθ − Tφφ) cot θ + 3Trθ

)
(103)

tφ =
∂Trφ
∂r

+
1

r sin θ

∂Tφφ
∂φ

+
1

r

(
∂Tθφ
∂θ

+ 3Trφ + 2Tθφ cot θ

)
(104)
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For Poisson’s equation, the brackets have to be worked out. This gives:

0 =

(
r̂
∂

∂r
+ ~∇t

)
·
(
r̂
∂δϕ

∂r
+ ~∇tδϕ+ 4πGρ0~s

)
(105)

=
∂

∂r

(
∂δϕ

∂r
+ 4πGρ0sr

)
+
(
~∇t · r̂

) ∂δϕ
∂r

+ ~∇t ·
(
4πGρ0~s

)
+∇2

t δφ (106)

=
∂

∂r

(
∂δϕ

∂r
+ 4πGρ0sr

)
+

2

r

∂δϕ

∂r
+ 4πGρ0

(
∇ · ~s− ∂sr

∂r

)
+∇2

t δϕ (107)

Using these expressions together with the relation between stress and strain, the equations of motion
in spherical coordinates are obtained:

−ρ0ω2sr = ρ0

(
∆
∂ϕ0

∂r
− ∂δϕ

∂r
− ∂r

(
∂ϕ0

∂r
sr

))
+ ∂r (λ∆ + 2µerr)

+
2µ

r

(eθr
∂θ

+ 2err − eθθ − eφφ + cot θeθr

)
+

2µ

r sin θ

∂eφr
∂φ

(108)

−ρ0ω2sθ = −ρ
0

r

∂δϕ

∂θ
+

1

r

∂

∂θ

(
−srρ0 ∂ϕ

0

∂r
+ 2µeθθ + λ∆

)
+
∂ (2µerθ)

∂r

+
2µ

r
((eθθ − eφφ) cot θ + 3erθ) +

2µ

r sin θ

∂eφθ
∂φ

(109)

−ρ0ω2sφ = − ρ0

r sin θ

∂δϕ

∂φ
+

1

r sin θ

∂

∂φ

(
−srρ0 ∂ϕ

0

∂r
+ 2µeφφ + λ∆

)
+
∂ (2µerφ)

∂r

+
2µ

r

(
∂eθφ
∂θ

+ 3erφ + 2eθφ cot θ

)
(110)

0 =
∂

∂r

(
∂δϕ

∂r
+ 4πGρ0sr

)
+

2

r

∂δϕ

∂r
+ 4πGρ0

(
∇ · ~s− ∂sr

∂r

)
+∇2

t δϕ (111)

where the relations between the dilation and the strain tensor and the displacement field are given in
expressions (95-101).

2.4.4 Spherical harmonic expansion of the equations of motion and boundary conditions

The differential equations for the Fourier transform of ~s that have been derived, prove to be solved in
an efficient way if the solution is expanded in spherical harmonics. Spherical harmonics are the angular
part of the solution to Laplace’s equation in spherical coordinates. In the following two paragraphs
the differential equations and their boundary conditions will be expanded in spherical harmonics.
This will result in a set of differential equations and boundary conditions for the spherical harmonic
expansion coefficients.

2.4.4.1 Spherical harmonic representation of the equations of motion

Now that we have obtained the equations of motion in spherical coordinates, the displacement ~̃s shall
be expanded into vector spherical harmonics ~Pml (θ, φ), ~Bml (θ, φ), ~Cml (θ, φ), defined by:

~Pml (θ, φ) = r̂Y ml (θ, φ) (112)

~Bml (θ, φ) = ~∇t1Y ml (θ, φ) (113)

~Cml (θ, φ) = −r̂ × ~∇t1Y ml (θ, φ) (114)

where ~∇t1 is the tangential derivative operator on the unit sphere (r = 1) and Y ml (θ, φ) is a scalar
spherical harmonic, defined by:

Y ml (θ, φ) = (−)m

√
(2l + 1)(l −m)!

4π(l +m)!
Pml (cos θ)eimφ (115)
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The Fourier transform of the displacement field can be expanded into vector spherical harmonics [28]
as

~̃s =

∞∑
l=0

l∑
m=−l

Uml (r)~Pml (θ, φ) + V ml (r) ~Bml (θ, φ) +Wm
l (r)~Cml (θ, φ) (116)

Or, alternatively

~̃s = Ur̂ + ~∇t1V − (r̂ × ~∇t1)W (117)

where

U =

∞∑
l=0

l∑
m=−l

Uml (r)Y ml (θ, φ) (118)

V =

∞∑
l=0

l∑
m=−l

V ml (r)Y ml (θ, φ) (119)

W =

∞∑
l=0

l∑
m=−l

Wm
l (r)Y ml (θ, φ) (120)

Working out equation (117) in spherical coordinates:

s̃r = U (121)

s̃θ =
∂V

∂θ
+ csc θ

∂W

∂φ
(122)

s̃φ = csc θ
∂V

∂φ
− ∂W

∂θ
(123)

By substituting these vector spherical harmonic expansions into the differential equations, ordinary
differential equations for U , V and W can be found. First the Fourier transform of the strain tensor
and dilation in terms of U , V and W have to be determined.

ẽrr =
∂U

∂r
(124)

ẽθθ =
1

r

(
∂2V

∂θ2
− cot θ csc θ

∂W

∂φ
+ csc θ

∂2W

∂φ∂θ
+ U

)
(125)

ẽφφ =
1

r

(
csc2 θ

∂2V

∂φ2
− csc θ

∂2W

∂φ∂θ
+ U + cot θ

∂V

∂θ
+ cot θ csc θ

∂W

∂φ

)
(126)

ẽrθ =
1

2

(
∂2V

∂θ∂r
+ csc θ

∂2W

∂φ∂r
+

1

r

(
∂U

∂θ
− ∂V

∂θ
− csc θ

∂W

∂φ

))
(127)

ẽrφ =
1

2

(
csc θ

∂2V

∂φ∂r
− ∂2W

∂θ∂r
+

1

r

(
csc θ

∂U

∂φ
− csc θ

∂V

∂φ
+
∂W

∂θ

))
(128)

ẽθφ =
1

2r

(
2 csc θ

∂2W

∂φ∂θ
− 2 cot θ csc θ

∂V

∂φ
− ∂2W

∂θ2
+ csc2 θ

∂2W

∂φ2
+ cot θ

∂W

∂θ

)
(129)

The dilation is the trace of the strain tensor and becomes:

∆̃ =
∂U

∂r
+

1

r

(
∇2
t1V + 2U

)
(130)

where ∇2
t1 = ∂2

∂θ2 +cot θ ∂∂θ +csc2 θ ∂2

∂φ2 is the surface Laplacian on the unit sphere: ∇2
t1 =

[
~∇t · ~∇t

]
r=1

.

The Fourier transform of the perturbation in the gravitational potential δϕ̃ will be expanded in
ordinary spherical harmonics:

δϕ̃ =
∑
l

∑
m

δϕml Y
m
l (θ, φ) (131)
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Substituting the spherical harmonic representations into the equations of motion, after simplifying
algebraically, the following equations are obtained:

− ρ0ω2U = ρ0

(
∆̃
∂ϕ0

∂r
− ∂δϕ

∂r
− ∂

∂r

(
∂ϕ0

∂r
U

))
+

∂

∂r

(
λ∆̃ + 2µ

∂U

∂r

)
+
µ

r2

(
r∇2

t1

∂V

∂r
+∇2

t (U − 3V ) + 4r
∂U

∂r
− 4U

)
(132)

~∇t1

{
ρ0

(
ω2V − δϕ

r
− ∂ϕ0

∂r

U

r

)
+
λ∆̃

r
+

∂

∂r

(
µ

(
∂V

∂r
+
U − V
r

))
+
µ

r2

(
2∇2

t1V + 5U − V + 3r
∂V

∂r

)}
− r̂ × ~∇t1

{
ρ0ω2W +

∂

∂r

(
µ

(
∂W

∂r
− W

r

))
+
µ

r2

(
∇2
t1W + 3r

∂W

∂r
−W

)}
= 0 (133)

∂

∂r

(
∂δϕ̃

∂r
+ 4πGρ0U

)
= −2

r

∂δϕ̃

∂r
− 4πGρ0

r

(
2U +∇2

t1V
)
−
∇2
t1δϕ̃

r2
δϕ̃ (134)

Since ∇2
t1Y

m
l (θ, φ) = −l(l + 1)Y ml (θ, φ) equations (132) and (134) are sums over spherical harmonics

and equation (133) is a sum over vector spherical harmonics of the form (116), with Uml (r), V ml (r) and
Wm
l (r) as coefficients. Because of the uniqueness of the (vector) spherical harmonic representations,

equations (132), (133) and (134) are valid for the coefficients as well. In other words: if a (vector)
spherical harmonic expansion of a (vector) field is zero, it must be the zero (vector) field.

Hence now equations for each coefficient can be obtained. For clarity the coefficients will be de-
noted by U = Uml (r), V = V ml (r), W = Wm

l (r) and δϕ = δϕml . Now, using Poisson’s equation for
ϕ0 in spherical coordinates and using the fact that ∇2

t1Y
m
l (θ, φ) = −l(l + 1)Y ml (θ, φ), we obtain the

system of equations for the spherical harmonic coefficients.

∂

∂r

(
λ∆̃ + 2µ

∂U

∂r

)
= ρ0

(
4πGρ0 − 2

r

∂ϕ0

∂r
− ω2

)
U + ρ0

(
∂ϕ0

∂r

∂U

∂r
+
∂δϕ

∂r
− ∆̃

∂ϕ

∂r

)
+

µ

r2

(
4U − 4r

∂U

∂r
+ l(l + 1)

(
U − 3V + r

∂V

∂r

))
(135)

∂

∂r

(
µ

(
∂V

∂r
+
U − V
r

))
= −ρ0ω2V +

ρ0

r

(
∂δϕ

∂r
+ U

∂ϕ0

∂r

)
− λ∆̃

r

+
µ

r2

(
V − 5U − 3r

∂V

∂r
+ 2l(l + 1)V

)
(136)

∂

∂r

(
µ

(
∂W

∂r
− W

r

))
= −ρ0ω2W +

µ

r2

(
W − 3r

∂W

∂r
+ l(l + 1)W

)
(137)

∂

∂r

(
∂δϕ

∂r
+ 4πGρ0U

)
= −2

r

∂δϕ

∂r
− 4πGρ0

r
(2U − l(l + 1)V ) +

l(l + 1)

r2
δϕ (138)

2.4.4.2 Spherical harmonic representation of the boundary conditions

The boundary conditions valid for solutions of the differential equations are continuous traction on all
interfaces, continuous displacement on all solid-solid boundaries and continuous radial displacement
on all fluid-solid boundaries. Traction is zero at the free surface, and there is no shear stress at a
fluid-solid boundary. Furthermore, on all interfaces, the boundary conditions for the perturbation of
the gravitational field are:

[δφ]
+
− = 0,

[
∂rδφ− 4πGρ0sr

]+
− = 0 (139)

The Fourier transform of the traction vector field ~τr on a surface with normal r̂ can also be expanded
into vector spherical harmonics. First, using the stress-strain relationship and the spherical harmonic
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representation of the strain tensor given in equations (124-129) we obtain:

~̃τr = T̃rr r̂ + T̃rθ θ̂ + T̃rφφ̂ (140)

=

(
λ∆̃ + 2µ

∂U

∂r

)
r̂ + µ

(
~∇t1

(
∂V

∂r
+
U − V
r

)
− r̂ × ~∇t1

(
∂W

∂r
− W

r

))
(141)

Using the stress-strain relationship and the spherical harmonic representation of the strain tensor
given in equations (124-129) we obtain:

~̃τr =

∞∑
l=0

l∑
m=−l

Pml (r)~Pml (θ, φ) + Sml (r) ~Bml (θ, φ) + Tml (r)~Cml (θ, φ) (142)

where P = Pml (r), S = Sml (r) and T = Tml (r) are related to U = Uml , V = V ml and W = Wm
l by:

P = λ∆̃ + 2µ
∂U

∂r
(143)

S = µ

(
∂V

∂r
+
U − V
r

)
(144)

T = µ

(
∂W

∂r
− W

r

)
(145)

Since the traction is continuous throughout the model, P , S and T must be continuous across all
surfaces of discontinuity and be zero on the free surface.

The boundary conditions for the gravitational potential perturbation also hold for each spherical
harmonic component seperately. Since δϕ = δϕml vanishes at r =∞ and satisfies Laplace’s equation
outside the Earth-model, it takes the form

δϕ = Ar−l−1 (146)

outside the model, where A is a constant. Thus

∂δϕ

∂r
+ (l + 1)

δϕ

r
= 0 (147)

outside the model. Thus we can define

δψ =
∂δϕ

∂r
+ (l + 1)

δϕ

r
+ 4πGρ0U (148)

and by virtue of the boundary conditions on δϕ and equation (147) δψ is continuous and zero at the
free surface.

To summarize, all boundary conditions in terms of spherical harmonics will be given now. These
conditions hold for each mode (n, l,m) separately. At the free surface:

P = S = T = δψ = 0 (149)

At a solid-solid boundary:

[P ]
+
− = 0, [S]

+
− = 0, [T ]

+
− = 0, [δψ]

+
− = 0, [U ]

+
− = 0, [V ]

+
− = 0, [W ]

+
− = 0, [δϕ]

+
− = 0 (150)

At a fluid-solid boundary:

S = T = 0 and [P ]
+
− = 0, [δψ]

+
− = 0, [U ]

+
− = 0, [δϕ]

+
− = 0 (151)
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2.4.5 Classification of eigenfunctions

Three important observations can be made regarding the system of ordinary differential equations that
have been derived for the spherical harmonic coefficients or mode shapes U , V , W and δϕ. Firstly
every spherical harmonic coefficient belonging to (l,m) is completely decoupled from every other.
Hence it is a fundamental property of a SNREI Earth that no mode coupling takes place. Further,
the differential equations are independent of m.

Finally, the equations for (U, V ) are completely decoupled from the equations for W . Hence there are
two types of modes, one governed by U and V and the other determined by W . If W = 0 a mode
is called spheroidal or poloidal, if U = V = δϕ = 0 then a mode is called toroidal. Spheroidal and
toroidal modes are the normal mode equivalent of Rayleigh waves and Love waves respectively.

The eigenvalues ω2 of the differential equations (135-138) are the squared angular frequencies of
the oscillations subject to the boundary conditions (149-151). For some fixed l the eigenfrequencies
will be denoted by nωl, where n ∈ N0 labels the eigenfrequencies for fixed l in increasing order. The
fundamental mode is designated by n = 0, overtones have n > 0. For each pair (n, l) there are 2l + 1
vector eigenfuncties n~s

m
l , where m goes in integer steps from −l to l. Tho specify an eigenfunction,

(n, l,m) has to be specified, known as the radial, angular and azimuthal order respectively.

For fixed (n, l) the 2l+1 eigenfunctions form a multiplet and the eigenvalue is (2l+1)-fold degenerate.

To get an overview of the displacement patterns of the modes, a very good source are animations
of the modes, which can be found on the internet page of the nanomaterials department of the Labo-
ratoire Interdisciplinaire Carnot de Bourgogne ??.

2.4.5.1 Toroidal modes

Toroidal oscillations are characterized by motion perpendicular to straight lines through the center of
the Earth. Hence they exhibit no radial motion. There is no volume change, because ∇·~s = 0. Hence
the density distribution is not perturbed and there are no gravitational effects. There are no toroidal
modes of angular order l = 0. The modes of angular order l = 1 and m = −1, 0, 1 represent rigid
body rotations about the x̂, ẑ and ŷ axes respectively. The displacement vector of an eigenfunction
with arbitrary l and m is given by:

n~s
m
l = −nWl(r)

(
r̂ × ~∇t1

)
Y ml (θ, φ) (152)

or explicitly, in terms of the sr, sθ and sφ components of the eigenfunction:

sr = 0 (153)

sθ = nWl(r) csc θ
∂Y ml (θ, φ)

∂φ
(154)

sφ = −nWl(r)
∂Y ml (θ, φ)

∂θ
(155)

2.4.5.2 Spheroidal modes

In general, spheroidal modes exhibit both radial and tangential motion. If the angular order l = 0 the
motion is purely radial. Spheroidal modes can be characterized by the fact that ~∇× ~s has no radial
component. The modes angular order l = 1 and m = −1, 0, 1 represent rigid body translations along
the x̂, ẑ and ŷ axes respectively. The displacement vector of an eigenfunction with arbitrary l and m
is given by:

n~s
m
l =n Ul(r)r̂Y

m
l (θ, φ) +n Vl(r)~∇t1Y ml (θ, φ) (156)
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or explicitly, in terms of the sr, sθ and sφ components of the eigenfunction:

sr = nUl(r)Y
m
l (θ, φ) (157)

sθ = nVl(r)
∂Y ml (θ, φ)

∂θ
(158)

sφ = nVl(r) csc θ
∂Y ml (θ, φ)

∂φ
(159)

2.4.6 Calculation of eigenfunctions

The initial value problem for the mode shapes U , V , W and δϕ is now completely specified. We
shall now briefly discuss how this initial value problem can be solved. The differential equations are
of second order. It is most convenient to replace this second order problem with an equivalent cou-
pled first order inital value problem, since there are many numerical techniques for solving coupled
first order differential equations, for example Runge-Kutta methods or the propagator matrix method.

Since all differential equations are of second order, there are two linearly independent solutions for
each mode shape. However, it appears that one of these solutions is singular at the Earth’s origin and
hence does not obey the boundary conditions.

The outline of this section will be to derive the coupled first order initial value problems for the
mode shapes and to give a ‘walk-through’ of the numerical solution process.

For toroidal modes, equations (145) and (137) are used to derive the coupled first order initial value
problem:

∂W

∂r
= r−1W + µ−1T (160)

∂T

∂r
=

(
µr−2(l − 1)(l + 2)− ρ0ω2

)
W − 3r−1T (161)

In the fluid outer core of the Earth toroidal modes do not exist. Hence the inner core and the mantle
have independent toroidal oscillations. Since there is no known way of exciting or observing inner
core modes, these are commonly left out of the set of normal modes of the Earth. Hence by nTl only
the toroidal modes of the mantle are labeled. The stress T = 0 at the inner core boundary and at the
free surface, T and W must be continuous across the mantle.

Equations (160) and (161) may be written as a single matrix-vector equation as:

d

dr

[
W
T

]
=

[
r−1 µ−1

µr−2(l − 1)(l + 2)− ρ0ω2 −3r−1

] [
W
T

]
(162)

At the core-mantle interface the vector

[
W
T

]
is proportional to the vector

[
1
0

]
since the stress

is zero at this boundary. Because the eigenfunction is defined up to a normalization factor, we can
choose this normalization to be one at the core-mantle boundary. Thus the solution can be obtained

by choosing some trial value for ω and set

[
W
T

]
=

[
1
0

]
at the core-mantle interface. Then equation

(162) can be integrated up to the surface. Generally, T will be non-zero there, so ω is varied and
a root-finding algorithm is used until a value of ω is found for which T = 0. This value of ω is an
eigenvalue and the corresponding W (r) is the scalar eigenfunction. In this way all eigenfunctions

nWl(r) can be found, for each fixed l.
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To find the eigenfrequencies and eigenfunctions for spheroidal equations is more involved than for
toroidal modes. There are three independent solution vectors of equation (163) that are regular at
the origin. These can be found by examining the exact solutions of equation (163) for a homogeneous
Earth, which can be found in chapter 8 of [27].

Using each of these three vectors as an initial value, equation (163) can be integrated to the inner-
outer core boundary. Since V is not linearly independent from U , P and δϕ there, only two linear
combinations of these three vectors will satisfy the boundary condition S = 0 at this boundary, say(
U1 P1 δϕ1 δψ1

)
and

(
U2 P2 δϕ2 δψ2

)
.

These two linear combinations are used as initial value for the solution of equation (165) in the
outer core and integrated up to the mantle, leading to two vectors

(
U3 0 P3 0 δϕ3 δψ3

)
and(

U4 0 P4 0 δϕ4 δψ4

)
at the mantle bottom. A linearly independent third starting condition

can be given by
(

0 1 0 0 0 0
)
, since in the mantle, V is linearly independent. The third

starting condition allows tangential slip at the core-mantle boundary.

Integrating equation (163) three times through the mantle up to the free surface, three linearly inde-
pendent solutions at the surface are now obtained, say

(
U5 V5 P5 S5 δϕ5 δψ5

)
,(

U6 V6 P6 S6 δϕ6 δψ6

)
and

(
U7 V7 P7 S7 δϕ7 δψ7

)
. A linear combination of these

vectors obeying the free traction condition at the surface gives the solution for the mode shapes. Hence:

det

 P5 P6 P7

S5 S6 S7

ψ5 ψ6 ψ7

 = 0 (166)

In general, this will not hold, hence, as with the toroidal modes, this process must be repeated
for different ω using a root finding algorithm. The solution value of ω is an eigenfrequency and the
corresponding linear combinations of the solution vectors in the various regions yield the corresponding
eigenfunctions U , V and δϕ, using equation (164) in the fluid core.

2.5 The excitation problem

2.5.1 Seismic source representation

Earthquakes and other driving forces of the oscillations of the Earth are all characterized by a perma-
nent deformation of the Earth at the region where the driving force acts. This means that the linear
elastic relationship between stress and strain fails locally and transiently. This idea was introduced
by Backus and Mulcahy in 1976. [29]

The failure of the consitutive equations can be represented by a tensor quantity Γij = Γij(~x
0, t).

This tensor is called the ‘stress glut’ and is the difference between the model stress given by the
constitutive equation and the real stress in the source region. Both stresses are symmetric hence the
stress glut Γij is symmetric as well.

The stress glut vanishes outside the source area, is zero at times before the earthquake and is constant
at times after the source has ceased to act. This means that the stress glut rate Γ̇ij is zero outside
the region and time interval of the source.

These considerations lead to a change in the source region of equation (55) to:

ρ0

[
∂2si
∂t2

+ ∂i
(
δϕ(~r, t) + sk∂kϕ

0
)
− (∂ksk)∂iϕ

0

]
= ∂j (γijkl∂ksl − Γij) (167)

where we have used the definition (44) of the operator Li. This means Γij is symmetric and

ρ0 ∂
2si
∂t2
− Li (~s) = −∂j (Γij) (168)

Hence the source term can be represented by −∂jΓij . For a point source in space and time the stress
glut rate is simply a delta function in space and time:

Γ̇ij = Mijδ(~x
0 − ~xS)δ(t) (169)
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where Mij is the moment tensor and ~xS is the source point and the source acts at time t = 0. Note
that since Γij is symmetric, Mij is symmetric as well. Hence 9 independent parameters are needed to
describe a source which is caused by failure of the constitutive equations, six for the moment tensor
and three for the location. This means that the source term representation −∂jΓij becomes:

−∂jΓij = −Mij∂jδ(~x
0 − ~xS)H(t) (170)

where H(t) is the Heaviside step function.

Failure of the constitutive equation is a process which takes place within the earth, hence no ex-
ternal forces play a role. If external forces are taken into account, Γij is not necessarily symmetric
anymore, since there are additional, external force terms making up the difference between real stress
and model stress. An example of an external force causing an earthquake is a meteorite striking the
Earth. For theoretical purposes, the seismogram due to an external force is important, because it
allows the calculation of Green’s functions which are of fundamental interest for many seismological
problems. Hence a more general source representation, taking into account external point forces is:

−∂jΓij = (fi −Mij∂j)δ(~x
0 − ~xS)H(t) (171)

where Mij is not necessarily symmetric. Equation (168) now becomes:

ρ0 ∂
2si
∂t2
− Li (~s) = qiδ(~x

0 − ~xS)H(t) (172)

where qi = qi(~x
0, t) = (fi −Mij∂j).

The extra force terms represent a net force acting on the Earth, a non-symmetric moment tensor
represents an external torque, as can be seen on page 149-150 in [27]. Now 15 parameters are needed
to specify this source term, three for the location, three force components and nine moment tensor
components. This is the most general point source exerting a net force and torque on the Earth. We
regard the forces and torques applied on the Earth small enough to be able to neglect the effects of
rotation caused by the source. In the next section the synthetic seismogram for this point source will
be calculated.

2.5.2 Synthetic seismograms

The main goal of this chapter is to derive an expression for a synthetic seismogram of the form:

~s
(
~x0, t

)
=
∑
k

1− eαkt cos(ωkt)

ω2
k

∑
m

Ekm~s
m
k

(
~x0
)

(173)

where k is an index incorporating n and l, αk is a parameter governing the attenuation of a mode
k and Ekm are excitation coefficients of a mode (k,m), dependent on the source parameters. As
defined earlier, ωk is the angular eigenfrequency of mode k and ~smk is an eigenfunction corresponding
to eigenfrequency ωk.

As we have seen in chapter 2.5.1 on the source the seismic displacement ~s at the material particle ~x0

at time t is governed by:

ρ0 ∂
2si
∂t2
− Li (~s) = qiδ(~x

0 − ~xS)H(t) (174)

satisfying boundary conditions (56). In this equation, ρ0 is the unperturbed density distribution, the
terms on the right hand size represent a seismic source and L is a linear, self adjoint operator defined
in equation (60) having real eigenvalues and orthogonal eigenfunctions in the sense:∫

V 0

ρ0~s ∗k′ · ~skdV 0 = δkk′ (175)

One could object that not all eigenfunctions necessarily have to be orthogonal, since for each l there
are 2l+ 1 degenerate eigenfunctions. Luckily, the eigenfunctions are expanded into (vector) spherical
harmonics, which are orthogonal in the sense:∫ 2π

0

∫ π

0

Y ml (θ, φ)Y m
′

l′ (θ, φ) sin θ dθdφ = δll′δmm′ (176)
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This means that equation (175) certainly holds for all eigenfunctions.

Now a solution of equation (174) is sought in terms of an eigenfunction expansion:

~s(~x0, t) =
∑
k,m

amk (t)~smk
(
~x0
)

(177)

This is possible because the eigenfunctions of Li form a complete set of basis functions for the dis-
placement. We will not prove this fact here, but it stems from the completeness of the vector spherical
harmonic expansion. Substituting (177) in differential equation (174) we find:∑

k,m

ρ0

(
∂2amk
∂t2

+ ω2amk

)
~smk (~x0) = ~qδ(~x0 − ~xS)H(t) (178)

Taking the inner product with ~s ∗k and integrating over V 0, making use of the orthonormality (175)
we get:

∂2amk
∂t2

+ ω2
ka
m
k = Fmk (179)

where

Fmk = Fmk (t) =

∫
V 0

(
~s ∗mk · ~qδ(~x0 − ~xS)H(t)

)
dV 0 (180)

Equation (179) is a differential equation which can be solved by standard methods, for example Laplace
transformation. Its solution is:

amk (t) =
1

ωk

∫ t

−∞
sin (ωk(t− t′))Fmk (t′)dt′ (181)

assuming that Fmk (t) = amk (t) = 0 for sufficiently small t. Integrating by parts yields:

amk (t) =
1

ω2
k

∫ t

−∞
(1− cos (ωk(t− t′)) Ḟmk (t′) dt′ (182)

This form is more convenient since Ḟmk (t) = 0 if the source is inactive. Thus, after the force has ceased
to act:

amk (t) =
1

ω2
k

∫ ∞
−∞

hk(t− t′)Ḟmk (t′) dt′ (183)

where hk(t) = 1 − cos (ωk(t− t′)). Because attenuation takes place for each mode seperately, these
results have to be modified to take this effect into account. It appears [22] that it is necessary to
replace hk(t) by:

hk(t) = 1− e−αkt cos(ωkt) (184)

where αk is a decay constant characteristic of mode k. When αk, the eigenfunctions sk and their
corresponding eigenfrequencies ωk are known and the source parameters are known, equation (177)
and (183) completely specify the seismogram.

Now let us work out equation (180):

Fmk =

∫
V 0

(
~s ∗mk · ~qδ(~x0 − ~xS)H(t)

)
dV 0

= ~s ∗mk (~xS) · ~qH(t) (185)

Hence Ḟmk is:

Ḟmk = ~s ∗mk (~xS) · ~q δ(t) (186)

If this result is used in equation (183) amk (t) becomes:

amk (t) =
hk(t)

ω2
k

~q · ~s ∗mk (~xS) (187)
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Using this result in the normal mode expansion (177) we obtain the following expression for the
seismogram:

~s(~x0, t) =
∑
k,m

hk(t)

ω2
k

~q · ~s ∗mk (~xS)~smk
(
~x0
)

(188)

Note that this is essentially equation (173) from the beginning of this chapter, where ~q · ~s ∗mk (~x0
s) are

the excitation coefficients Ekm. Hence if the excitation coefficients are obtained explicitly in spherical
polar coordinates we will have an explicit formula to calculate seismograms. The remainder of this
chapter is exactly about this subject.

Let us start working out the excitation coefficients. In this derivation ~s ∗ = ~s ∗mk (~xS) to avoid un-
clear expressions. For the expression Mij∂js

∗
i we need the expression for the gradient of a vector field

in spherical polar coordinates. A straight forward calculation of the gradient of a vector field can be
found in [27] appendix A, equation (A.138).

Ekm = ~q · ~s ∗ (189)

= frs
∗
r + fθs

∗
θ + fφs

∗
φ

−Mrr
∂s ∗r
∂r
− Mrθ

r

(
∂s ∗r
∂θ
− s ∗θ

)
− Mrφ

r

(
csc θ

∂s ∗r
∂φ
− s ∗φ

)
−Mθr

∂s ∗θ
∂r
− Mθθ

r

(
∂s ∗θ
∂θ

+ s ∗r

)
− Mθφ

r

(
csc θ

∂s ∗θ
∂φ
− s ∗φ cot θ

)
−Mφr

∂s ∗φ
∂r
− Mφθ

r

∂s ∗φ
∂θ
− Mφφ

r

(
cot θ

∂s ∗φ
∂φ

+ s ∗r + s ∗θ cot θ

)
(190)

The next step is to express the eigenfunction ~s ∗mk (~xS) in terms of the eigenfunctions U , V and W
and spherical harmonics, all evaluated at the source. We can combine the results for spheroidal and
toroidal modes if we add for ~s ∗mk equations (153)-(155) with equations (157)-(159) and obtain:

sr(~x) = nUl(r)Y
m
l (θ, φ) (191)

sθ(~x) = nVl(r)
∂Y ml (θ, φ)

∂θ
+nWl(r) csc θ

∂Y ml (θ, φ)

∂φ
(192)

sφ(~x) = nVl(r) csc θ
∂Y ml (θ, φ)

∂φ
−nWl(r)

∂Y ml (θ, φ)

∂θ
(193)

where if the excitation coefficients are to be evaluated for a toroidal mode, U and V have to be put to
zero. For a spheroidal mode W = 0. Substituting this expression for ~s ∗mk (~xS) into the expression for
the excitation coefficients and writing U = nUl(rS), V = nVl(rS), W = nWl(rS), Y = Y ml (θS , φS),

Y ′ =
[
∂Y
∂θ

]
(θ,φ)=(θS ,φS)

, using the fact that ∂Y ∗

∂φ = −imY ∗ and the fact that Y satisfies Legendre’s

equation Y ′′ = − cot θY ′ −
(
l(l + 1)−m2 csc2 θ

)
Y to eliminate Y ′′ and denoting a partial derivative

of U , V , W with respect to r with an overhead dot we obtain:

Ekm = frUY
∗ + fθ (V Y ′∗ − im csc θWY ∗)− fφ (im csc θV Y ∗ +WY ′∗)

−MrrU̇Y
∗ − Mrθ

r
((U − V )Y ′∗ + im csc θWY ∗)

− Mrφ

r
(im csc θ (V − U)Y ∗ +WY ′∗)− Mθr

(
V̇ Y ′∗ − im csc θẆY ∗

)
− Mθθ

r

(
V
(
m2 csc2 θ − l(l + 1)

)
Y ∗ − V cot θY ′∗ + im csc θW (cot θY ∗ − Y ′∗) + UY ∗

)
− Mθφ

r

(
−im csc θV Y ′∗ −m2 csc2WY ∗ + im cot θ csc θV Y ∗ + cot θWY ′∗

)
+ Mφr

(
im csc θV̇ Y ∗ + ẆY ′∗

)
− Mφθ

r

(
im cot θ csc θV Y ∗ − im csc θV Y ′∗ +W

(
cot θY ′∗ +

(
l(l + 1)−m2 csc2 θ

)
Y ∗
))

− Mφφ

r

(
cot θ

(
−m2 csc θV Y ∗ + imWY ′∗ + V Y ′∗ − im csc θWY ∗

)
+ UY ∗

)
(194)
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Rearranging terms, we obtain:

Ekm = Y ∗
(
frU −MrrU̇ + l(l + 1)

Mθθ

r
V − Mθθ +Mφφ

r
U − Mφθ

r
l(l + 1)W

)
+
(
cot θY ′∗ −m2 csc2 θY ∗

)(Mθθ

r
V − Mθφ +Mφθ

r
W

)
+ cot θ

(
m2 csc θY ∗ − Y ′∗

)Mφφ

r
V

+ Y ′∗
(
fθV − fφW −

Mrθ

r
(U − V )− Mrφ

r
W −MθrV̇ +MφrẆ

)
− im csc θY ∗

(
fθW + fφV +

Mrθ

r
W +

Mrφ

r
(V − U)−MθrẆ −MφrV̇

)
− im csc θ (cot θY ∗ − Y ′∗)

(
Mθθ

r
W +

Mθφ +Mφθ

r
V

)
− im cot θ (Y ′∗ − csc θY ∗)

Mφφ

r
W (195)

The idea is now to put the source in the north pole (θS = 0). This will simplify the expression for
Ekm greatly. Since we have a non-rotating Earth, where the poles are on the axis of rotation, this is
not a problem. To do this, we take the limit of the expression above as the source point approaches
the pole along the meridian φ = 0. It is important to define a meridian along which we approach the
pole, because the unit vector φ̂ will tend to different limits allong different meridians. This all stems
from the fact that the unit vectors θ̂ and φ̂ are not well defined at the pole.

Now we take the limits of the terms depending on the angular coordinates, for φS = 0. This means
that the unit vectors (r̂, θ̂, φ̂) and the source direction (in the components of the force vector fi and
moment tensor Mij), point in the directions (up, south, east):

lim
θS→0

Y ∗ =

 ν if m = 0
0 if m = ±1
0 if m = ±2

(196)

lim
θS→0

(
cot θY ′∗ −m2 csc2 θY ∗

)
=


−νζ2/2 if m = 0
0 if m = ±1

−νζ
√
ζ2 − 2/4 if m = ±2

(197)

lim
θS→0

cot θ
(
m2 csc θY ∗ − Y ′∗

)
=


νζ2/2 if m = 0
0 if m = ±1

νζ
√
ζ2 − 2/4 if m = ±2

(198)

lim
θS→0

Y ′∗ =

 0 if m = 0
∓νζ/2 if m = ±1
0 if m = ±2

(199)

lim
θS→0

−im csc θY ∗ =

 0 if m = 0
iνζ/2 if m = ±1
0 if m = ±2

(200)

lim
θS→0

−im csc θ (cot θY ∗ − Y ′∗) =


0 if m = 0
0 if m = ±1

±iνζ
√
ζ2 − 2/4 if m = ±2

(201)

lim
θS→0

−im cot θ (Y ′∗ − csc θY ∗) =


0 if m = 0
0 if m = ±1

∓iνζ
√
ζ2 − 2/4 if m = ±2

(202)

In these expressions, ν =
√

2l+1
4π and ζ2 = l(l + 1). For |m| > 2 all limits tend to zero, hence if the

limits are put into the expression for the spherical harmonic coefficients, we obtain after reworking
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some terms:

Ekm =



ν
(
frUk −MrrU̇k +

(
(V ζ2 − 2U)/2rS

)
(Mθθ +Mφφ)

+
(
Wζ2/2rS

)
(Mθφ −Mφθ)

)
if m = 0

νζ
2

(
(V ∓ iW )(∓fθ + ifφ) + (V̇ ∓ iẆ )(±Mθr − iMφr)

+ (U − V ± iW )(±Mrθ − iMrφ)/rS

)
if m = ±1

νζ
√
ζ2−2

4rS
(V ∓ iW )(Mφφ −Mθθ ± iMθφ ± iMφθ) if m = ±2

(203)

In this expression, the θ-direction corresponds to the south, the φ-direction is east, because we chose
φ = 0 as our approaching meridian.

Of course, for practical reasons, it is not really useful to have an expression for a seismogram with
the source at the North pole, since you want to be able to produce a seismogram with an arbitrary
source location. The easiest way to solve this problem is to define a new spherical polar coordinate
system, the epicentral coordinate system, with the source location as the north pole. The colatitude
then becomes the angular epicentral distance between the source and receiver, the longitude is the
azimuth to the receiver, measured in counterclockwise sense from due south at the source. More
about the epicentral coordinate system can be found in [27], Chapter 10.1. I will now state the results
expressing the epicentral distance Θ and azimuth Φ in terms of the source location (rS , θS , φS) and
receiver location (r, θ, φ) in ordinary spherical polar coordinates.

cos Θ = sin θS sin θ cos(φS − φ) + cos θS cos θ
cos Φ = csc Θ (cos θS sin θ cos(φ− φS)− sin θS cos θ)
sin Φ = csc Θ sin θ sin(φ− φS)

(204)

The seismograms sΘ and sΦ produced with this coordinate system are in the longitudinal and trans-
verse direction respectively. If we want to calculate seismograms in the northern and eastern direction
we just have to apply a rotation to the results:

sN = −sΘ cos ξ − sΦ sin ξ (205)

sE = −sΘ sin ξ + sΦ cos ξ (206)

where subscripts N and E refer to the components in the directions North and East and where ξ is
the conventional azimuth of the source from the receiver:

cos ξ = csc Θ (cos θS sin θ − sin θS cos θ cos(φ− φS))
sin ξ = csc Θ sin θS sin(φS − φ)

(207)

Now all ingredients for the calculation of a synthetic seismogram on a SNREI earth have been assem-
bled. In the Results chapter the computational procedure is discussed and one example calculation
is presented and will be compared to real data and other synthetic seismograms in the Discussion
section.

3 Results

In this chapter, a description of the numerical procedure used to calculate synthetic seismograms is
given, together with the resulting synthetic seismograms and real data acquired from the seismograph
at Fort Hoofddijk, Utrecht to be able to make a comparison between the theory and reality.

To do this, one particular event is analyzed, the 9.0 MW earthquake on 11-03-2011 near the east
coast of Honshu, Japan has been chosen. This event, which had a very destructive impact on Japan,
caused maximum displacements in the Netherlands of approximately 1 centimeter.

Many moment tensor inversions have been performed for this earthquake, I use the USGS Centroid
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moment tensor inversion. [30] It gives the following earthquake parameters:
depth = 10 km latitude = 38.308◦

longitude = 142.383◦

Mrr = 2.03 · 1022 Nm Mθθ = −0.16 · 1022 Nm
Mφφ = −1.87 · 1022 Nm Mrθ = 2.06 · 1022 Nm
Mrφ = 3.49 · 1022 Nm Mθφ = −0.60 · 1022 Nm

(208)

The moment tensor is symmetric and the force terms are zero, since an earthquake does not apply a
net force or torque on the Earth.

With all earthquake parameters known, two more things have to be known to be able to calcu-
late a seismogram: the model parameters and the receiver location.

For the model parameters, I use the PREM Earth model [21]. The eigenfrequencies and mode shapes
for the PREM model have been previously calculated using the standard code for this type of cal-
culation MINEOS [32]. These are regarded as input for this calculation. The receiver location is
(latitude, longitude) = (52.088◦, 5.172◦)

The numerical procedure to calculate synthetic seismograms is as follows:
First the eigenfrequencies and mode shapes for the PREM model are read in from a file. Then the
program reads in the source parameters, source and receiver location are read in from an input file.
Then the excitation coefficients Ekm from equation (203) are calculated for each mode.
Then the actual seismogram can be calculated. For this, the epicentral coordinates (204) of the re-
ceiver are calculated first.
Then, within a sum over k containing the time dependent part 1−eαkt cos(ωkt)

ω2
k

, the sum over m in

equation (173) is calculated, where the eigenfunctions ~smk
(
~x0
)

are calculated at the receiver in the
epicentral coordinate system. Then, rotation (207) is applied and all seismograms are filtered with a
tapered cosine window with a pass band from 3-29 mHz and a cutoff frequency of 32 mHz.

The resulting synthetic seismograms can be found in figure 2. As a comparison, the ground mo-
tion measured at Fort Hoofddijk, Utrecht, is presented in figure 3. The vertical displacement is
parallel to the unit vector r̂. The longitudinal displacement is parallel to Θ̂, in the direction of the
source-receiver great circle. The transverse displacement is parallel to Φ̂, perpendicular to the vertical
and longitudinal directions. The raw data has been convolved with the instrument response and fil-
tered for low frequencies with a tapered cosine window with a pass band from 3-29 mHz and a cutoff
frequency of 32 mHz. This is done to make it possible to compare the synthetic seismograms with the
data, since the synthetic seismogram uses normal modes with a frequency up to 32 mHz.

Roughly speaking, a seismogram consists of three important arrivals: the P-wave arrival, which is the
first wave to reach the seismograph; the S-wave, which is the second arrival; and the surface waves,
which have the largest amplitude. The most obvious difference between synthetics and data is their
mismatch in amplitude. The second, third, fourth and fifth arrival of the surface waves (a surface wave
has multiple arrival times because it stays on the surface, which is closed) is also clearly visible, both
in the data and the synthetics. To see the other differences more clearly, a renormalized synthetic
seismogram has been made so that the amplitudes match. A shorter time period is chosen as well.
Both the synthetic and the real seismograms can be found in figure 4. It can be seen that the P-wave
arrival of data and synthetics coincide almost precisely. The surface waves in the synthetics arrive
significantly earlier than in the real data. After the first surface wave arrival, the data is more ‘messy’
than the synthetic signal. The possible reasons for these discrepancies will be discussed in the next
section.
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(c) Transverse displacement

Figure 2: Synthetic displacement at Fort Hoofddijk, Utrecht in meters. The time at the origin is the
time of the event.
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(c) Transverse displacement

Figure 3: Displacement at Fort Hoofddijk, Utrecht in meters. The time at the origin is the time of
the event.
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(c) Transverse displacement

Figure 4: Displacement at Fort Hoofddijk, Utrecht in meters. The time at the origin is the time of
the event.
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4 Discussion

The outline of this section is as follows. First a very short description of this study will be given,
followed with a discussion of the results. Then the importance of synthetic seismograms will be dis-
cussed, and directions of further research will be given.

The main goal of this study is to give an introduction into the theory of normal mode seismology
from first principles. For this, the free oscillations of a spherically symmetric, non-rotating, elastic
and isotropic earth are obtained. The excitation problem is also discussed and an expression for a
theoretical seismogram for a point source is derived. As an application, this expression is used to
generate a synthetic seismogram for the 9.0 MW earthquake on 11-03-2011 near the east coast of
Honshu, Japan. This synthetic seismogram is compared with real data.

The main difference between synthetics and data is their amplitude. The amplitude of the syn-
thetics is approximately 6 times bigger than the amplitude of the data. The wave form is much better
in agreement, the P-wave arrival at 1300 seconds is however better in agreement than the surface
wave arrival, for which the arrival time in the theoretical seismogram is earlier, at 2400 seconds. The
real data show an arrival time of the surface waves at approximately 2550 seconds. The theoretical
seismogram is also less noisy after the surface wave arrival.

The difference in amplitude is something you would not expect, since the moment tensor compo-
nents are determined with an inversion technique using similar expressions for the seismogram as the
one used in this study. It might have something to do with the specific earthquake chosen. Because
the event was very big, it might be that the point source approximation is not valid anymore. Now all
energy emerges from one point, it might very well be that the amplitude of the synthetic seismogram
would be lower if the earthquake energy was spread over a larger source area by taking for example
more point sources in the earthquake region replacing the single point source used in this study.

It is quite certain that the mismatch in amplitude is not a numerical issue, since another program
exists (apsyn) [33], doing the same calculation, giving the same amplitude. This can be seen in figure
5. The reason the signal obtained from apsyn is more noisy and has a bigger amplitude is that the
signal obtained from this study has been filtered more. But most importantly, the amplitudes are in
the same order of magnitude.

A possible explanation for the difference in P-wave arrival match with the surface wave match is the
SNREI model: it is not laterally heterogeneous. Since the surface waves are trapped on the Earth’s
surface, which is not homogeneous at all, differences with the mean homogeneous earth occur quickly.
The surface waves arriving in the Netherlands from Japan mostly travel through continental litho-
sphere, in which the surface wave speed is lower than in oceanic lithosphere, because of the lower
density of the continental lithosphere. The P-waves travel through the deeper mantle, which is less
heterogeneous than the crust and therefore the arrival times match better.

A reason for other differences between the real data and the synthetics is the fact that after the
Japan earthquake many strong aftershocks took place, which were significantly lower in magnitude,
but which could be the explanation for the noise in the data, which lacks in the synthetic seismogram.

The importance of synthetic seismograms for seismology is its application in the solution of inverse
problems. By comparing synthetic seismograms with real data, the misfit between the two originates
from deviations of the model and source parameters from the real Earth situation. The misfit can
be defined in several ways. One could define the misfit in the frequency domain for the eigenfre-
quencies of the Earth. Another common way of defining misfit is to take the difference between the
synthetic seismogram and the real data, square it and integrate it over the entire seismogram. Of-
ten, certain portions of the seismogram are taken. For example, one can take the mismatch of the
P-wave arrival times, S-wave arrival times, amplitude or surface waves. As soon as the misfit is de-
fined, the challenge is to find an inverse operation which can be performed on the misfit to obtain the
model which minimalizes the misfit. An example of the solution of such a problem can be found in [34].
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Figure 5: Synthetic acceleration at Fort Hoofddijk, Utrecht in meters. The black signal is from apsyn,
the red signal is from this study. The time at the origin is the time of the event.

40



The main direction of further research is the application of normal mode synthetic seismograms in
inverse problems, to obtain a more detailed picture of the Earth’s interior. Because nowadays more
advanced codes exist for calculating synthetic seismograms, this relatively simple way of calculating
synthetics for a SNREI Earth can be used as a starting point in the development of an inverse method,
since calculations can be done quickly. A more specific research direction is to find out why such a big
amplitude difference between data and synthetics exists in this particular study. The same comparison
has to be made for a smaller and less powerful source to see whether the cause is indeed the failure of
the point source approximation.

Regarding the calculation of synthetic seismograms, of course it is possible to do better than the
result presented in this study. Important effects that are neglected such as the rotation and ellipticity
of the Earth, which causes splitting in de 2l+ 1 modes corresponding to each set of modes (n, l). Lat-
eral heterogeneity and non hydrostatic initial stress will also change the results, as well as anisotropy.
There are codes currently available taking this into account, but a discussion of the theory behind
these codes was not the aim of this study.

5 Conclusions

The conclusions of this study can be split in two categories: conclusions regarding the theory of the
normal modes of oscillation of the Earth and the theoretical expression of a seismogram and conclu-
sions about the application of the expression of a seismogram on the 9.0 MW earthquake on 11-03-2011
near the east coast of Honshu, Japan.

To find the normal modes of oscillation of the Earth, the normal modes of a spherically symmetric, non-
rotating, elastic and isotropic Earth model (SNREI) are discussed. A linear differential equation for
free oscillations with small displacements ~s is derived which has the form Li (~s) = ρ0

(
~x0, t

)
∂2
t si
(
~x0, t

)
,

where Li is a linear, self adjoint operator acting on the displacement field ~s, depending only on known
model parameters. The equilibrium density distribution is given by ρ0, ∂2

t denotes the second partial
derivative with respect to time.

This equation is solved in spherical coordinates, with a vector spherical harmonic expansion of the
displacement, under boundary conditions of continuous traction on all interfaces of the model and
zero traction on the surface. Displacement is continuous everywhere, except at fluid-solid boundaries
where displacement tangential to the boundary can be discontinuous.

The differential equations allow two types of normal modes: toroidal oscillations in which the motion
is perpendicular to straight lines through the center of the Earth. The other type of oscillations are
called spheroical oscillations in which both radial and tangential motion exists. All separate modes
are completely decoupled from each other.

If all normal modes of the Earth have been determined, any seismogram can be obtained by per-
forming a normal mode sum in which the coefficient for each mode is determined by the seismic
source. The seismic source can be represented by a force fi and a moment tensor Mij in the case of
a point source. For an earthquake, fi = 0 and Mij is symmetric. The expression for a seismogram is:

~s
(
~x0, t

)
=
∑
k

1− eαkt cos(ωkt)

ω2
k

∑
m

Ekm~s
m
k

(
~x0
)

(209)

where ~s(~x0, t) is the displacement as a function of the position of a particle initially at ~x0 at time t.
Indices k and m are numbers identifying separate modes, αk is a constant determining the decay of a
mode (k,m). The eigenfrequency of mode (k,m) is given by ωk. The excitation coefficient for a mode
(k,m) is given by Ekm and is determined by the source. The displacement of a normal mode (k,m)
is given by ~smk .

The synthetic seismogram calculated for the earthquake in Japan has generally the same waveform
as the real data. There are however some remarkable differences. The amplitude of the theoretical
seismogram is approximately 6 times bigger than the amplitude of the data. The arrival time of the
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surface waves is earlier in the theoretical seismogram, but the P-wave arrival times coincide.

Possible explanations for these differences are the scale of the event and the heterogeneity of the
lithosphere. Because the Japan earthquake was an event which did not occur at a point, but in a
larger region, the point source approximation might not be valid. This is why the equivalent point
source might produce such large amplitudes, because all the energy is released at one instant and at
one point. The path between Japan and the Netherlands consists mostly of continental lithosphere.
In continental lithosphere, the surface wavespeed is relatively slow, which explains the late arrival
time of the real surface wave signal relative to the synthetics. Because P-waves travel through the
mantle, which is less heterogeneous than the crust, the P-wave arrival time misfit is small.

The normal modes of the Earth can be used to tackle inverse problems regarding the structure of
the Earth or the description of an earthquake source. Programs are available to calculate more pre-
cise synthetic seismograms which take into account more Earth model features, such as rotation,
ellipticity and lateral heterogeneity, but these are impractical if a new inverse technique is developed
because of the long calculation time. Synthetic seismograms calculated with the expressions in this
study have as main advantage that a relatively accurate synthetic seismogram can be generated in a
couple of seconds. Besides, the theory presented in this study is a good introduction in normal mode
seismology and prepares for the next step in the theory: the breaking of the spherical symmetry of
the Earth.
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[13] N. Jobert, 1956, Évaluation de la période d’oscillation d’une sphère hétèrogene, par application
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