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A study of inertial gyroscopic waves in a rotating homogeneous fluid is undertaken
both theoretically and numerically. A novel approach is presented to construct a semi-
analytical solution of a linear three-dimensional fluid flow in a rotating rectangular
parallelepiped bounded by solid walls. The three-dimensional solution is expanded
in vertical modes to reduce the dynamics to the horizontal plane. On this horizontal
plane, the two dimensional solution is constructed via superposition of “inertial”
analogs of surface Poincaré and Kelvin waves reflecting from the walls. The infinite
sum of inertial Poincaré waves has to cancel the normal flow of two inertial Kelvin
waves near the boundaries. The wave system corresponding to every vertical mode
results in an eigenvalue problem. Corresponding computations for rotationally modi-
fied surface gravity waves are in agreement with numerical values obtained by Taylor
[“Tidal oscillations in gulfs and basins,” Proc. London Math. Soc., Ser. 2 XX, 148–
181 (1921)], Rao [“Free gravitational oscillations in rotating rectangular basins,” J.
Fluid Mech. 25, 523–555 (1966)] and also, for inertial waves, by Maas [“On the
amphidromic structure of inertial waves in a rectangular parallelepiped,” Fluid Dyn.
Res. 33, 373–401 (2003)] upon truncation of an infinite matrix. The present approach
enhances the currently available, structurally concise modal solution introduced by
Maas. In contrast to Maas’ approach, our solution does not have any convergence
issues in the interior and does not suffer from Gibbs phenomenon at the bound-
aries. Additionally, an alternative finite element method is used to contrast these
two semi-analytical solutions with a purely numerical one. The main differences are
discussed for a particular example and one eigenfrequency. C© 2013 AIP Publishing
LLC. [http://dx.doi.org/10.1063/1.4837576]

I. INTRODUCTION

Fluid phenomena on Earth involve rotation to a greater or lesser extent. There are flows in
which rotation is an absolutely essential factor. Waves that are appearing in a closed rotating con-
tainer filled with a homogeneous fluid became a subject of interest to the scientific community
at the end of the 19th century and beginning of the 20th century. Taylor1 derived and presented
the first complete linear solutions (valid for any angular frequency) for free surface oscillations in
a rotating rectangular parallelepiped. Before Taylor, Rayleigh2 discussed the problem of the free
tidal oscillations of a rectangular sea of uniform depth, when the vertical component of the Earth’s
rotation period is large compared with the periods of the oscillations. Later, the subject was studied
by Proudman,3, 4 who also corrected some inaccuracies and errors in Rayleigh’s works. A large
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amount of research has been focused on rotationally modified surface gravity waves as a major
representative of the low-frequency waves in a homogeneous rotating fluid. In oceanography these
are referred to as Poincaré and Kelvin waves, depending on whether the waves display a strictly
sinusoidal or partially exponential spatial dependence (e.g., LeBlond and Mysak5). However, there
is a class of inertial (gyroscopic) waves that are possible within the interior of homogeneous rotating
fluids. Unlike the surface gravity waves, they have their maximum displacement in the interior of
the domain, vanish at the free or solid surface, and are not affected by gravity. The frequencies
of these waves are below the inertial frequency, f = 2�, of the rotating domain, and they exist
solely due to restoring Coriolis forces. No gravity effects are present in contrast to the case for
surface gravity waves. Pure inertial waves were initially discovered theoretically by Kelvin6 in a
cylindrical domain. The axial spheroid was the next geometry where the hyperbolic equation gov-
erning the flow was solved by exactly satisfying the no-normal flow boundary conditions (Bryan7).
Later, Maas8 presented a semi-analytical structural solution in a rectangular parallelepiped with
straight walls. Due to their symmetrical shape all three containers do not have any net focussing
which inertial waves are otherwise prone to develop (Maas9). The axial spheroid has a symmet-
ric structure, and thus compensates every reflected focussing wave with a reflected defocussing
wave. In the case of an axial cylinder or a rectangular parallelepiped, the walls are either parallel
or perpendicular to the rotation axis, therefore such walls possess a local reflectional symmetry.
A simple tilt of one of the walls immediately results in symmetry breaking and hence in wave
focussing and defocussing, such that due to dominance of the former, wave attractors may appear
(e.g., Maas9).

All the above mentioned theoretical solutions have also been observed experimentally. Inertial
waves were identified in a rotating axial cylinder by Fultz,10 McEwan,11 Manasseh,12, 13 Kobine,14

in a slightly tilted free surface cylinder by Thompson,15 in a sphere by Aldridge and Toomre,16 in a
tilted spheroid (tilt of its axis of rotation with respect to the axis of the cavity) by Malkus,17 Vanyo
et al.,18 in a (truncated) cone by Beardsley,19 in a rectangular parallelepiped by Bewley et al.,20

Lamriben et al.,21 Boisson et al.,22 and in a trapezoid by Maas,9 Manders and Maas.23

From the theoretical point of view, the solutions for the inertial waves presented by Maas8 have
a precise structure (revealed by use of the so-called Proudman-Rao method). The no-normal flow
boundary conditions are satisfied exactly, by construction. Nevertheless, the solution is practically
unusable, due to its poor convergence and Gibbs phenomenon at the boundaries, as shown in
Sec. II. We substitute the solution back into the linear Euler equations governing the flow and
calculate the residues. It appears that the residues of the momentum equations are not exactly zero,
and moreover, their convergence to zero is very slow: with more than 200 Fourier modes, the residue
still is only of order 10−1 of the maximum flow. The convergence of the residue is faster in the
interior, in comparison to the boundaries, which is caused by the extra Gibbs phenomenon at the
boundaries.

In this work, we present an enhanced solution for the free inertial waves of a rotating planar-
rectangular parallelepiped, whose walls are parallel or perpendicular to the rotation axis. In Sec. II,
we are presenting a detailed description of a new algorithm for the construction of this solution.
As in Maas,8 the three-dimensional solution is reduced to a two-dimensional one, by assuming a
standing mode structure in the vertical direction. Thus, for every vertical mode, the problem reduces
to the horizontal plane, where the techniques introduced by Taylor1 for rotationally modified surface
gravity waves are used. The solution is sought as a superposition of inertial Poincaré (IP) and inertial
Kelvin (IK) waves in the rectangular parallelepiped, the strictly rotational internal counterparts of
the rotationally modified external gravity waves (Maas8). Two IK waves are chosen as a “base”
or particular solutions for the flow in the horizontal plane. The IK waves are assumed to have no
motion in the x-direction (u = 0, v = v(x, y)), and thus they satisfy the no-normal flow boundary
conditions at x-walls, x = constant, automatically. IK waves grow exponentially in the along-wall,
y-direction and are thus useful only when two opposite walls exist, excluding the unbounded growth
that appears on infinite planes. Near the y-walls, the normal flow of these IK waves is compensated
by addition of an infinite sum of IP waves. In other words, we are searching a superposition of IK and
IP waves such that the flow governed by them will not be disturbed by the presence of the solid walls
of the domain. The described algorithm (further called Taylor’s method) results in an eigenvalue
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problem for an infinite matrix, the finite truncation of which identifies the eigenfrequencies. The
present algorithm has better convergence behaviour in the interior than the Proudman-Rao approach
given by Maas:8 the residues of the momentum equations are exactly zero (up to machine precision).
Results are discussed by comparing solutions of one particular eigenfrequency.

Nonetheless, the convergence of the solution is slow near the boundaries. Therefore, in
Sec. III, the problem is tackled purely from a numerical perspective by implementing a Finite
Element (FEM) discretisation of the governing linear Euler equations on the horizontal plane. The
calculated numerical eigenfrequencies exactly coincide with the results of the above discussed
semi-analytical models. The differences between the numerical and the semi-analytical solutions
are analysed for one particular eigenfrequency. The numerical results verify the new semi-analytical
and FEM based methods. Conclusions are drawn in Sec. IV.

II. SEMI-ANALYTICAL INERTIAL WAVES IN A RECTANGULAR PARALLELEPIPED

A. 3D-to-2D reduction of governing equations

We consider a wave-tank (rectangular parallelepiped) with solid body rotation. The wave-tank
has fixed solid walls, is filled with an incompressible, homogenous fluid, and is rotating about a
vertical axis z∗ with a constant angular velocity �∗, perpendicular to two of its side walls. Below,
asterisks denote dimensional quantities. We closely follow the notation of Maas.8 Small-amplitude
monochromatic waves appearing in the homogenous fluid on a rotating f∗-plane (f∗ = 2�∗) are
governed by the linearised, inviscid equations of motion

∂u∗
∂t∗

− f∗v∗ = − 1

ρ∗

∂ p∗
∂x∗

, (1a)

∂v∗
∂t∗

+ f∗u∗ = − 1

ρ∗

∂ p∗
∂ y∗

, (1b)

∂w∗
∂t∗

= − 1

ρ∗

∂ p∗
∂z∗

, (1c)

∂u∗
∂x∗

+ ∂v∗
∂ y∗

+ ∂w∗
∂z∗

= 0, (1d)

where (u∗, v∗, w∗) are the three-dimensional velocity components in the corresponding Cartesian
directions (x∗, y∗, z∗), p∗ is the linearised reduced pressure and ρ∗ is the density.

As in Maas,8 we consider standing modes in the vertical direction to make w∗ vanish at the
rigid bottom z∗ = −H∗ and top surface z∗ = 0, i.e.,

w∗ =
∞∑

n=1

∂ζn∗
∂t∗

sin
nπ z∗

H∗
, (2a)

(u∗, v∗, p∗) =
∞∑

n=1

(un∗, vn∗, pn∗) cos
nπ z∗

H∗
, (2b)

where subscript n refers to the nth vertical mode, and where we discarded the degenerate
(geostrophic) mode with n = 0, and hence w∗ = 0. The amplitude of the nth internal vertical
elevation mode is denoted by ζ n∗. The presence of a solid wall at the top effectively eliminates the
gravitational restoring forces and external gravity waves. Substitution of (2) into (1) modifies the
governing equations in the following way:

∂un∗
∂t∗

− f∗vn∗ = −Hn∗
∂3ζn∗
∂x∗∂t2∗

, (3a)
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∂vn∗
∂t∗

+ f∗un∗ = −Hn∗
∂3ζn∗
∂ y∗∂t2∗

, (3b)

∂ζn∗
∂t∗

+ Hn∗

(
∂u∗
∂x∗

+ ∂v∗
∂ y∗

)
= 0, (3c)

with Hn∗ ≡ H∗/(nπ ) and pn∗ = ρ∗ Hn∗(∂2ζn∗/∂t2
∗ ). For a specific nth vertical mode, (3) can be non-

dimensionalised with Hn∗ and f −1
∗ as length and time scales as follows (u, v) = (un∗, vn∗)/(Hn∗ f∗):

ζ = ζ n∗/Hn∗, t = t∗f∗ and (x, y) = (x∗, y∗)/Hn∗. The dimensionless version of system (3) is

∂u

∂t
− v = − ∂3ζ

∂x∂t2
, (4a)

∂v

∂t
+ u = − ∂3ζ

∂y∂t2
, (4b)

∂ζ

∂t
+ ∂u

∂x
+ ∂v

∂y
= 0. (4c)

After substitution of (u, v, ζ ) ∝ exp(−iσ t), system (4) becomes

(� + κ2)(u, v, ζ ) = 0, (5)

where σ is the frequency of monochromatic waves, κ is defined by κ2 = 1/σ 2 − 1, and the Laplacian
is the following � = ∂xx + ∂yy. Thus, the horizontal spatial structure of monochromatic waves is
determined by the Helmholtz equation (5).

After choosing the ansatz (2), the three-dimensional problem for resolving the flow (u, v, w, p)
transforms into a two-dimensional (u, v, ζ ) problem in the two-dimensional container, defined in
the region 0 ≤ x ≤ L, −Y ≤ y ≤ Y. Therefore, we are looking for a solution which will satisfy (5)
with no-normal flow boundary conditions at the four walls: u = 0 at x = 0 and x = L, and v = 0 at
y = −Y and y = Y. Recall that, because of the mode (n) dependent scaling, the boundary sizes, L =
nπL∗/H∗ and Y = nπY∗/H∗ also depend on this mode number.

As was already mentioned before, the solution provided via the Proudman-Rao method in Maas8

satisfies the boundary conditions by construction, but suffers from poor convergence in the interior
and Gibbs phenomenon at the boundaries. While some of the eigenfrequencies have indeed been
obtained experimentally (Bewley et al.20 and Lamriben et al.21) validating the precise shape of the
corresponding eigenmodes has been more cumbersome (Boisson et al.22). This may of course be
partially due to viscous boundary layers modifying the flow field near the boundaries, but may also
partly be due to this convergence problem. The latter suggests that the development of a more precise
method is desirable.

B. Taylor’s method

We will present an alternative solution for determining the horizontal flow of the nth vertical
mode in a rectangular parallelepiped. The method of Taylor is using a combination of results
discussed in Maas8 concerning inertial Poincaré waves and inertial Kelvin waves. Thus, the algorithm
is applicable to semi-infinite as well as finite rectangular regions. The idea is as follows: we
search for analytic solutions of the Helmholtz equations (5), which do not or only partially satisfy
impermeability conditions at the boundary, but the superposition of which will meet the requirements
at the boundaries. To construct the final solution, we use a combination of two IK and numerous IP
waves defined in a finite meridional channel, available from Maas.8 The IK wave solution of (4) for
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a finite meridional channel is given by

u = 0, (6a)

v = V exp

[
−y + i

x − L/2

σ
− iσ t

]
, (6b)

ζ = i
v

σ
. (6c)

Obviously, the latter wave satisfies no-normal flow boundary condition only in the x-direction.
Meanwhile, IP waves with quantised wave-numbers {km = mπ /L}, m ∈ {1, 2, 3, ...} are given by

u = vmikm
σ 3

1 − σ 2

[
1 +

(
lm

σkm

)2
]

sin km x exp i(lm y − σ t), (7a)

v = vm

(
−lmσ cos km x + 1

km
sin km x

)
exp i(lm y − σ t), (7b)

ζ = vm(cos km x + lm

σkm
sin km x) exp i(lm y − σ t), (7c)

where km = (km, lm) is the two-dimensional wave number vector and lm = ±(σ−2 − σ−2
m )1/2

≡ −ism is determined by frequency σ , wave number km and σm = (1 + k2
m)−1/2. These waves,

however, do not satisfy the boundary conditions v = 0 at y = ±Y, but by contrast do satisfy u = 0
at x = 0, L.

After dropping the common factor exp(−iσ t), a solution of the Helmholtz equation (5), ex-
pressed in terms of the meridional velocity v, is now supposed to consist of two IK waves that are
trapped at the walls y = ±Y, and of an infinite sum of channel IP waves, a finite number of which
are free to propagate in the y-direction:

2v = v+exp(i(x − L/2)/σ − y) + v−exp(−i(x − L/2)/σ + y) +
+∞∑

m=−∞,m �=0

vm(ismσ cos km x + 1

km
sin km x)exp(sm y). (8)

In view of the definition of σ m, we find: 1 > σ 1 > σ 2 > . . . . Now, if our frequency σ lies in between
two of these eigenfrequencies: σ M > σ > σ M + 1, then the sm are imaginary for all m ≤ M, while they
are real for m > M. This implies that the first M modes have real lm. Since lm represent wave numbers,
this implies M propagating modes, while all modes having m > M are trapped (real sm). For negative
m, we define s−m = −sm and k−m = km. Positive m refers either to energy propagation in positive
y-direction, or trapping to y = Y (depending on whether σ is larger or smaller than σ m). Negative m
refers to energy propagation in negative y-direction, or trapping to y = −Y. When we look for waves
that are symmetric under reflection in the centre, (x, y) → (L − x, −y), the expression for v has to be
invariant under this transformation. This requires v− = v+ ≡ v0, v2m = −v−2m , v2m+1 = v−(2m+1).
When we look for antisymmetric velocity fields v, these relations should reverse parity (v− = −v+,
etc.). Consider now v-symmetric solutions and adopt a Cartesian coordinate frame ξ , y, whose origin
is at the centre of the rectangle, where

ξ = πx

L
− π

2
. (9)

The container is now restricted to ξ ∈ [−π /2, π /2]. Then, with

α ≡ L

πσ
, (10)
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the v-velocity can be expressed

v = cosh y cos αξ − i sinh y sin αξ +
L

π

∞∑
m odd

(−1)
m−1

2 vm(−i
sm

α
sin mξ sinh sm y + 1

m
cos mξ cosh sm y) +

L

π

∞∑
m even

(−1)
m
2 vm(i

sm

α
cos mξ cosh sm y + 1

m
sin mξ sinh sm y), (11)

where the amplitude v0 has been arbitrarily set equal to one. Here and in the following all integers
occurring in summations are strictly positive. Notice the point symmetry of (11) as it is invariant
under the transformation (ξ , y) → (−ξ , −y). The IK waves (the first two terms in (11)) provide
a coupling between the IP waves, but numbers α should be non-integer, as the IK-waves would
otherwise be exactly annihilated by one of the IP-waves (having sm = 1). Eigenfrequencies and
amplitudes of each of the terms in (11) follow by rewriting this expression and by application of the
boundary condition at y = ±Y.

The IK waves, possessing non-integer α, yield only the cosine of even and the sine of odd
multiples of ξ in their Fourier representations, as in the case of reflecting Kelvin waves (Taylor1):

cos αξ = 4α

π
sin

(απ

2

) [
1

2α2
+

∑
m even

(−1)
m
2

α2 − m2
cos mξ

]
, (12a)

sin αξ = −4α

π
cos

(απ

2

) ∑
m odd

(−1)
m−1

2

α2 − m2
sin mξ . (12b)

These are, therefore, unable to match the cosine of odd and sine of even multiples of ξ , also oc-
curring in (11). Now, we directly expand the terms cos αξ and sin αξ in (11) using (12) in cosine
of even and sine of odd multiples of ξ , respectively, and require the coefficients of each of the
trigonometric terms to vanish separately at y = Y. The same conditions are obtained by applica-
tion of the boundary condition at the opposing boundary y = −Y. However, this direct approach
yields an unwieldy matrix equation. Probably for this reason, Taylor extended (12a) with odd and
(12b) with even multiplies ξ . The cosine expansion in (12a), for instance, is extended with cos sξ
(s odd), while each such term is counterbalanced by subtracting its even Fourier expansion (in
another application of (12a) to odd integers such that in effects zeroes are added). Each such odd
multiple and its counterbalancing Fourier expansion has an undetermined magnitude βs (s odd).
For the sine expansion similar terms are added yielding undetermined magnitude γ s (s even). These
undetermined magnitudes βs and γ s can be obtained from the requirement that the total velocity
field v vanishes at y = ±Y. The total velocity at y = Y reads

v(ξ, Y ) = 4α

π
cosh Y sin

(απ

2

)[
1

2α2
+

∞∑
m even

(−1)
m
2

α2 − m2
cos mξ

+
∞∑

s odd

βs

(
(−1)

s−1
2

π

4s
cos sξ −

( 1

2s2
+

∞∑
j even

(−1)
j
2

s2 − j2
cos jξ

))]

+ i
4α

π
sinh Y cos

(απ

2

)
[ ∞∑

m odd

(−1)
m−1

2

α2 − m2
sin mξ +

∞∑
s even

γs

(
(−1)

s
2
π

4s
sin sξ +

∞∑
j odd

(−1)
j−1
2

s2 − j2
sin jξ

)]
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+ L

π

∞∑
m odd

(−1)
m−1

2 vm(−i
sm

α
sin mξ sinh smY + 1

m
cos mξ cosh smY )

+ L

π

∞∑
m even

(−1)
m
2 vm(i

sm

α
cos mξ cosh smY + 1

m
sin mξ sinh smY ). (13)

Vanishing of this expression requires the separate vanishing of the coefficients of cos mξ or sin mξ .
For m odd, vanishing of the coefficient of cos mξ requires

vm = −απ

L

cosh Y

cosh smY
sin

(απ

2

)
βm . (14)

On the other hand, vanishing of the coefficient of sin mξ requires

vm = 4α2

sm L

sinh Y

sinh smY
cos

(απ

2

) [
1

α2 − m2
−

∞∑
s even

γs

m2 − s2

]
. (15)

The equality of these two expressions for vm determines βm in terms of γ s,

1

m2 − α2
+

∞∑
s even

γs

m2 − s2
+ βmλm = 0, (16)

where

λm = − smπ

4α
coth Y tan

(απ

2

)
tanh(smY ). (17)

For m even, we similarly find that vanishing of the coefficient of sin mξ requires

vm = −i
απ

L

sinh Y

sinh smY
cos

(απ

2

)
γm . (18)

Dividing this by the expression for vm obtained from vanishing of the coefficient of cos mξ one finds

− 1

m2 − α2
+

∞∑
s odd

βs

m2 − s2
+ γmμm = 0, (19)

where

μm = smπ

4α
tanh Y cot

(απ

2

)
coth(smY ). (20)

If we define μ0 = 0, (19) also includes, for m = 0, the extra requirement that the constant term in
(13) vanishes. Note that in the expressions for λm and μm, sm occurs in product with either tanh smy
or coth sm y. The replacement sm = ilm when σ < σ m, and the property tanh iz = itanh z (for real
z), therefore leaves these expressions real, regardless of whether sm is real or imaginary, making a
cumbersome sign-distinction (as in Taylor1) unnecessary. It also guarantees λm and μm (and therefore
the eigenfrequencies) to be real. Interpreting each first term of (16) and (19) as multiplying a quantity
γ 0(= 1), the set of equations forms a system of infinite matrix equations Ac = 0, where A is as follows

A =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1
α2

−1
12 0 −1

32 0 ...

1
12−α2 λ1

1
12−22 0 1

12−42 ...

−1
22−α2

1
22−12 μ2

1
22−32 0 ...

1
32−α2 0 1

32−22 λ3
1

32−42 ...

.

.

.

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(21)

and column vector c = (γ 0, β1, γ 2, β3, ...)T, where superscript T means transpose. Matrix A is
twice as big as the matrix obtained when directly expanding the terms in (11), alluded to above, but
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is much simpler to handle. Apart from differences in the definitions of the diagonal terms λm and
μm, together with the fact that our α is a function of frequency, (10), the matrix equation exactly
conforms with Taylor’s. Nontrivial solutions result only when its determinant vanishes, detA = 0,
which (through α) can be regarded as an equation establishing eigenfrequencies σ . Amplitudes βm

(m is odd) and γ m (m is even), for any particular σ j, j = 1, 2... can be determined by the inversion
of the reduced matrix that can be obtained from (16) and (19), where we now exclude the first row,
corresponding to m = 0, and bring the first column to the right of the equation, which can now
be regarded as known. With these amplitudes, from (15) and (18), also the amplitudes vm in the
expansion of v, Eq. (11), are determined, and the solution is in essence complete. We also note that
similar expressions can be obtained for antisymmetric solutions, where

λm = − smπ

4α
tanh Y tan

(απ

2

)
coth(smY ), (22a)

μm = smπ

4α
coth Y cot

(απ

2

)
tanh(smY ) (22b)

and making similar replacements, sinh Y ⇐⇒−cosh Y and sinh smY ⇐⇒ cosh smY, in coefficients
vm and again, but with regards to the y-dependence, in fields u, v, and ζ .

For each eigenvalue and corresponding set of amplitudes vm , the velocity and elevation fields
are now determined. Hence, the u velocity component of infinite sum of IP waves (7), with their
corresponding eigenvalue and set of amplitudes vm , reads

u =
∞∑

m odd

i(−1)
m−1

2 vm

( α

m
− m

α

)
cos mξ cosh sm y

+
∞∑

m even

i(−1)
m
2 vm

( α

m
− m

α

)
sin mξ sinh sm y. (23)

The vertical elevation field then follows from the continuity equation

ζ = −σ−1

(
∂u

∂x
+ ∂v

∂y

)
= −iσ−1(π L−1uξ + vy) = −σ−1(i sinh y cos αξ + cosh y sin αξ )

−
∞∑

m odd

i(−1)
m−1

2 vm

(
sin mξ cosh sm y + iαsm

m
cos mξ sinh sm y

)

+
∞∑

m even

i(−1)
m
2 vm

(
cos mξ sinh sm y − iαsm

m
sin mξ cosh sm y

)
. (24)

The eigenfrequencies are determined by truncating the infinite matrix to include just N rows and
columns. Finding the roots of the resulting determinant numerically, and observing convergence
of these roots upon increase of the number of rows, the set of eigenfrequencies σ j, j = 1, 2... is
determined (approximately).

C. Comparison of two methods: Taylor’s method vs. Proudman-Rao method

Next, this novel Taylor’s method for a construction of semi-analytical solutions for the lin-
earised Euler equations in a rectangular parallelepiped is tested and verified from a numerical
perspective. First a few eigenfrequencies are determined in a given [π × 2π ] rectangle, see
Figure 1. Also, an independent verification is performed by comparing the latter eigenfrequencies
to the frequencies for a [2π × π ] rectangle in Figure 1. The eigenfrequency of the first symmetric
mode is σ ∗

1 = L/πα1 ≈ 0.657, which corresponds to the first root in Figure 1(a), at α1 ≈ 1.522.
The next two eigenfrequencies of symmetric velocity modes are σ ∗

2 = L/πα1 ≈ 0.477, α2 ≈ 2.095
and σ ∗

3 = L/πα1 ≈ 0.398, α3 ≈ 2.513. Numerical computations for the frequencies and modal
structures are assessed for several antisymmetric and symmetric modes. The eigenfrequencies and
eigenmodes computed in this manner for the rotationally modified surface gravity modes are in
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FIG. 1. (a) Det A as a function of α for L = Y = π for a mode whose v-velocity is symmetric. Hence, L × 2Y = π × 2π .
Intersections with the horizontal line give the eigenfrequencies. The vertical lines represent asymptotes whose intersections
with the horizontal axis should be disregarded. (b) Det A (for clarity multiplied by 103) as a function of α for L = 2π , Y
= π /2, which represents a 2π × π rectangle. Since the present rectangle has a width L twice that in (a), and σ = L/πα,
eigenfrequencies will be the same when the zeroes are now found at α’s twice that obtained in (a), which we verify by
inspection.

agreement with numerical values obtained many years ago by Taylor1 and later by Rao24 and for
the inertial modes with those computed in Maas.8 It is also worth to mention that the Proudman-
Rao method is much faster in converging to the modal eigenfrequencies compared to Taylor’s
method.

Furthermore, close agreement in the eigenfrequencies of the modes enables a comparison be-
tween corresponding velocity fields of semi-analytical inertial waves constructed by the present
Taylor’s method to the previously employed Proudman-Rao method. The semi-analytical solu-
tions are assessed according to the following criteria: (i) satisfaction of governing equations,
(ii) satisfaction of the boundary conditions, and (iii) speed of convergence. In both cases, so-
lutions have the same standing mode structure in the vertical z-direction. Thus, the comparison is
performed only on the horizontal plane. For a fair comparison in the calculations the same number of
“basis functions” are used: IP waves in Taylor’s method and Fourier modes in the Proudman-Rao
method.

The comparison is performed on a [2π × π ] domain for the highest mode σ ≈ 0.657 of the an-
tisymmetric velocity field. In Figure 2, the horizontal u and v velocity fields constructed via Taylor’s
method are presented. For the first comparison the constructed modal solutions were substituted into
the linear Euler equations and the residues are calculated. Obviously, due to the construction, in both
algorithms the continuity equation and third momentum equation are satisfied exactly. Thus, in Fig-
ures 3 and 4 only the residues for the u and v momentum equations are presented. It is apparent from
Figure 3 that the Proudman-Rao method performs very poorly near the boundaries, which is explained
by the Gibbs phenomenon. Also, the convergence is poor in the interior of the domain. By contrast,
Figure 4 shows that in Taylor’s method the rotating Euler equations are satisfied up to machine
precision. The latter indicates that Taylor’s method is preferable to Proudman-Rao, in this context.
The differences between the constructed solutions are given in Figure 5. According to Figure 5,
the main differences between the solutions are near the boundaries (y-wall for the u-component and
x-wall for the v-component of the velocity). Near these boundaries the Proudman-Rao method suffers
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FIG. 2. Antisymmetric horizontal velocity fields on the x − y plane for mode σ ≈ 0.657 constructed via Taylor’s method,
(a) and (b) subfigures are u(x, y) and v(x, y), respectively. The domain is rotating anti-clockwise and 20 IP waves were used.
(a) u profile; (b) v profile.

from a Gibbs phenomenon. In spite of its advantages, Taylor’s method still has its flaws. The essence
of the method is in “filling” the solution with numerous IP-waves, to compensate the IK-waves mo-
tion near the boundaries in order to satisfy the no-normal flow boundary conditions. Thus, the more
IP-waves are taken, the less no-normal flow will be registered near the appropriate boundaries. As
can be noticed from Figure 2, the convergence is poor: non-zero flow is present near the x-boundary
for the v-component of the velocity field and similarly near the y-boundary for the u-component. The
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FIG. 3. Antisymmetric horizontal velocity fields in the x–y plane for a mode with frequency sigma σ ≈ 0.657 were substituted
in the linearised Euler equations. (a) and (b) subfigures are the residues for velocities u and v in their respective momentum
equations, as produced by the Proudman-Rao method.

nature of the convergence near the boundaries can be observed more closely in Figure 6. It shows that
when the number of IP waves exceeds 100, the curve nearly stops decreasing. The latter suggests
that despite the satisfaction of the Euler equations up to machine precision, the velocities con-
structed by Taylor’s method, are not satisfying the boundary conditions exactly. Therefore, Taylor’s
method fails the second comparison test, namely, satisfaction of the boundary conditions; whereas
the satisfaction of the boundary conditions in the Proudman-Rao method was embedded in the
construction.
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FIG. 4. As Figure 3 using Taylor’s method.

Due to the problems mentioned both methods globally fail the third assessment criterion.
Nevertheless, it is worth to mention that the Proudman-Rao method is faster in convergence of
the eigenfrequencies, whereas convergence of the velocity field of Taylor’s method is high in the
interior of the domain, but quite slow at the boundaries. Finally, if one of these two semi-analytical
solutions has to be chosen, it remains which property is preferred: satisfaction of boundary conditions
(Proudman-Rao method) or satisfaction of governing equations (Taylor’s method) up to machine
precision.
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FIG. 5. Antisymmetric horizontal velocity fields in the x–y plane for a mode with frequency sigma σ ≈ 0.657 are constructed
with two alternative algorithms. (a) and (b) subfigures give the differences between the results produced by the Proudman-Rao
and Taylor’s methods for the u and v velocity components, respectively.

III. FEM SOLUTION OF LINEAR INERTIAL WAVES

In Sec. II, it was shown that both semi-analytical solutions for linear inertial waves have at
least one major disadvantage. Therefore, next we present a purely numerical FEM solution for the
inertial wave problem. First, the same vertical standing mode decomposition is considered to reduce
the inertial wave problem from 3D to 2D. Second, a FEM discretisation of the 2D boundary value
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FIG. 6. The maximum (numerical) speed v normal to the East-West boundaries is plotted against the number of IP waves
used in Taylor’s method.

problem given by the system (4) is constructed, with the mandatory satisfaction of the no-normal
flow boundary conditions in a weak sense.

A. Weak formulation and resulting eigenvalue problem

The 2D boundary value problem is given on a rectangular domain � = {0 ≤ x ≤ L; −Y ≤ y
≤ Y} by the following partial differential equations:

∂u

∂t
− v = −∂x p, (25a)

∂v

∂t
+ u = −∂y p, (25b)

− q + ∂x u + ∂yv = 0, (25c)

∂q

∂t
= −p (25d)

and no-flow boundary conditions at the walls ∂� = ∪�i.
The latter system is derived from (4), when the pressure is taken to be p = ∂2ζ /∂t2. The system

introduced above is energy conserving, where the energy functional is given by

H = 1

2

∫
�

(u2 + v2 + q2) d�. (26)

Multiplication of (25) with u, v, p, and q, respectively, integration over the domain followed by a
summation and use of the boundary condition u · n = 0 with outward normal n, results in energy
conservation of the system: Ḣ ≡ dH/dt = 0, where the dot represents a time derivative.

A weak formulation of (25) is given by∫
�

(
∂u
∂t

+ u⊥
)

φ d� = −
∫

�

(∇ p)φ d�, (27a)

∫
�

(−q)φ d� −
∫

�

∇φ · u d� = −
∫

∂�

u · nφ dS, (27b)

∫
�

∂q

∂t
φ d� = −

∫
�

pφ d�, (27c)
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where the velocity field is given in terms of the two-dimensional vector u = (u, v)T , the perpendicular
velocity vector is u⊥ = (−v, u)T , the two-dimensional differential operator is ∇ = (∂/∂x, ∂/∂y)T

and φ is a test function taken from H 1
0 (�). Hence, the function spaces are chosen to be

H 1
0 (�) = {v ∈ H 1(�) : v = 0 on ∂�}, with (28a)

H 1(�) = {v ∈ L2(�) :
∂v

∂x
,
∂v

∂y
∈ L2(�)}, (28b)

where L2 is a space of square integrable functions.
Note that after multiplication with a test function φ, we only do integration by parts in the

continuity equation, and skip the integration by parts in the momentum equation, which is a slight
modification of a classical FEM weak formulation. This way we ensure the conservation of the
energy on the discrete level, as shown later. The latter is crucial for an accurate and robust numerical
scheme.

After taking into an account no flow boundary conditions u · n = 0 at ∂�, (27) becomes∫
�

(
∂u
∂t

+ u⊥
)

φ d� = −
∫

�

(∇ p)φ d�, (29a)

∫
�

(−q)φ d� −
∫

�

∇φ · u d� = 0, (29b)

∫
�

∂q

∂t
φ d� = −

∫
�

pφ d�. (29c)

Given a tessellation Ih of the domain �, we search for a weak solution of system (29) in

Vh = {v : v is continuous on �, v|K ∈ Pd (K ) ∀K ∈ Ih} ⊂ H 1(�), (30)

with Pd (K ) the space of polynomials of at most degree d on K ∈ Ih , where d ≥ 0. Variables u, v, p,
q are represented via their expansions in terms of basis functions

u = uiφi , p = piφi , q = qiφi , (31)

where φi ∈ Vh and ui , pi, qi are expansion coefficients. We note that, here and hereafter, we use the
Einstein convention implying summation over repeated indices. Incorporation of (31) into the weak
formulation (29) results in

Mi j u̇ j + Mi j u⊥
j = −Si j p j , (32a)

Mi j q j + S j i · u j = 0, (32b)

Mi j q̇ j = −Mi j p j , (32c)

where Mi j = ∫
Ih

φiφ j dx, Si j = (Sx
i j , Sy

i j )
T = ∫

Ih
φi∇φ j dx. If we multiply the discrete momentum

equation with ui , the continuity equation with pi, (32c) with qi and sum over all nodes, we will
obtain the following equation

d

dt

(1

2

(
Mi j ui · u j + Mi j qi q j

) )
= 0, (33)

which ensures the conservation of a discrete energy functional in time, in addition to the conservation
at the continuous level.

The unknowns pj and qj can be eliminated from (32): when a time derivative of (32b) is taken
and the results are substituted into (32a) while using (32c), we obtain

Mi j u̇ j + Sx
il M−1

lk Sx
jk u̇ j + Sx

il M−1
lk Sy

jk v̇ j = Mi jv j , (34a)

Mi j v̇ j + Sy
il M−1

lk Sx
jk u̇ j + Sy

il M−1
lk Sy

jk v̇ j = −Mi j u j . (34b)
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FIG. 7. Tessellation Ih of the domain � with its four boundaries �1, . . . , �4.

After incorporation of the ansatz (u, v) ∝ exp(−iσ t) into (34), we arrive at the following global
generalised eigenvalue problem

iσ

[
Mi j + Sx

il M−1
lk Sx

jk Sx
il M−1

lk Sy
jk

Sy
il M−1

lk Sy
jk Mi j + Sy

il M−1
lk Sx

jk

] [
u j

v j

]
=

[
0 − Mi j

Mi j 0

][
u j

v j

]
. (35)

B. Numerical eigenfrequencies and tests against semi-analytical solutions

In this section, a numerical solution of the generalised eigenvalue problem (35) is discussed.
For the particular simulation two-dimensional linear Bernstein polynomials were chosen as a set
of basis functions for the FEM problem given on the rectangular tessellation Ih of the continuous
domain �, see Figure 7.

For a given n ∈ N/{0}, the corresponding Bernstein polynomials of degree n are defined by

Bn
k (x) =

(n

k

)
xk(1 − x)n−k, ∀x ∈ [0, 1], k = 0, 1, ..., n, (36)

where
( n

k

)
is a binomial coefficient and N is the set of natural numbers. Bernstein polynomials

are linearly independent and span the space of polynomials of degree n. Bernstein polynomials are
invariant under affine transformations, and all the terms of the Bernstein basis are positive on the
interval where they are defined, and their sum equals to one. Additionally, a Bernstein polynomial is
always better conditioned than a polynomial of power form for the determination of simple roots on
the unit interval [0, 1]. The latter properties justify our choice of Bernstein polynomials to represent
the polynomial space in the definition of Vh in (30).

The solution of the generalised eigenvalue problem (35) emerges in pairs of eigenvalues and
corresponding eigenvectors. The set of eigenvalues is compared to the eigenvalues calculated from
the semi-analytical solutions of the same problem, as discussed in Sec. II. Unfortunately, alongside
the acceptable eigenvalues, the method produces high frequency noise. Nevertheless, it appears
that numerical, “noisy” eigenvalues are not consistent for different runs, with different mesh sizes,
which enable us to construct a simple algorithm for identifying the acceptable eigenvalues from
the numerical noise. The numerical implementation of (35) is initialised consequently with four
different meshes, four different tessellations of a domain � = [2π × π ] into 20 × 10, 40 × 20, 80
× 40, and 160 × 80 elements. The latter results in four sets of eigenvalues. From these four sets
of eigenvalues, we notice that acceptable eigenvalues are converging. By contrast, the numerical
noise eigenvalues are appearing and disappearing in the different runs. The latter suggests a simple
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FIG. 8. Four different sets of eigenvalues are plotted here. Black squares, red circles, blue crosses, and green diamonds
correspond to the set of eigenvalues from simulations with mesh-sizes 160 × 80, 80 × 40, 40 × 20, and 20 × 10, respectively.
The first four highest eigenfrequencies are highlighted.

“decision algorithm”: stationary (one has to allow convergence shifts, of course) eigenvalues for
different runs and mesh-size are considered acceptable, and the rest is numerical noise. In other
words, in the scale, which corresponds to the densest mesh size, the presence of four converging
eigenvalues (from different sets) is identifying the numerical eigenvalue as acceptable, otherwise it
is considered numerical noise. In Figure 8, we present a graphical interpretation of the suggested
“decision algorithm.” The spots that are overlaid from all four sets of eigenvalues on the densest
mesh scale (�x ≈ 0.006) are acceptable. We note that eigenvalues which are close and/or converge
to 1 can be neglected, because the eigenfrequency we search for needs to be smaller than one. Also,
substantial numerical noise is noticeable near 0, but this behaviour is expected for any solution of
a numerical eigenvalue problem. Thus, following the latter “decision algorithm,” we are able to
reproduce every eigenfrequency found by the semi-analytical methods.

After the exact matching of numerical eigenfrequencies with semi-analytical eigenfrequencies,
we proceed to compare the corresponding velocity fields, through the comparison of the eigenvectors.
In Sec. II C, the discussion revolved around the comparison of two semi-analytical solutions for the
velocity field of the highest eigenfrequency in a [2π × π ] domain. Hence, here too, we consider the
velocity field corresponding to the same σ ≈ 0.657 eigenfrequency. In Figure 9, both components of
the numerical two-dimensional velocity field corresponding to the eigenvalue σ ≈ 0.657 are depicted.
The numerical velocity field is a result of a simulation on a mesh with 80 × 40 elements. Flow
near the normal boundaries is nearly absent. It is apparent that the equations and the corresponding
boundary conditions are satisfied up to FEM accuracy.
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FIG. 9. u and v components of the numerical horizontal velocity for mode σ ≈ 0.657 are presented in (a) and (b) subplots,
respectively. An 80 × 40-element mesh is used for the simulations in a domain which is rotating anti-clockwise. (a) u profile;
(b) v profile.

Results discussed in the previous section justify a comparison plot of the numerical solution
against just Taylor’s semi-analytical solution. Hence, in Figure 10 we introduce a comparison plot
of the two velocity vectors. The comparison is fair, due to the comparability in sizes of the resulting
eigenvalue problems in both the numerical and semi-analytical cases. As was expected, the difference
is noticeable near the normal boundaries, where Taylor’s method has slow convergence.
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FIG. 10. (a) and (b) subfigures give the difference between the numerical FEM solution and Taylor’s semi-analytical solution
in the u and v velocity components, respectively. An 80 × 40-element mesh is used for the FEM simulation.
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IV. SUMMARY AND CONCLUSIONS

We have shown numerically that the Proudman-Rao method for deriving modal solutions of
the linear, rotating incompressible Euler equations in a (planar) rectangular parallelepiped bounded
with solid walls suffers from poor convergence in the interior of the fluid domain as well as a Gibbs
phenomenon at the boundaries. Despite the concise structural construction, the solution is practically
unusable. Therefore, an alternative mode decomposition solution (Taylor’s method) was presented.
The three-dimensional problem was reduced to a two-dimensional problem by using the ansatz of
vertical modes in the z-direction, exactly repeating the arguments from Maas.8 By scaling the depth
of the tank with H∗/nπ for the vertical mode n, we remove all references to the vertical and the
problem can be solved for each vertical mode strictly in the horizontal plane (whose size is fixed
except for an n-dependent rescaling of the basin’s size). The resulting two-dimensional problem in
the horizontal plane was solved by employing ideas and results that Taylor1 used to determine the
rotational effects on long surface gravity waves. As in the Proudman-Rao method, Taylor’s method
also leads to an infinite matrix eigenvalue problem, whose solution upon truncation gives similar
results. The novel mode solutions satisfy the linear Euler equations exactly, thus they are considered
to be an improvement over those obtained with the Proudman-Rao method. Nevertheless, the novel
semi-analytical solution has its own flaws. The mode solutions are, by construction, a superposition
of inertial analogs of surface Kelvin and Poincaré wave solutions, which converge to solutions that
satisfy the solid-wall boundary conditions. Unfortunately, the latter convergence is also slow. By
contrast, the Proudman-Rao solution satisfies the no-normal flow boundary conditions exactly.

The latter motivated us to apply a continuous FEM discretisation to the reduced two-dimensional
problem (based on using a standing wave in the vertical of the original three-dimensional problem) in
order to obtain numerical mode solutions that (weakly) satisfy no-normal flow boundary conditions
by construction. A modified FEM discretisation is proven to be symmetric and energy conserving on a
discrete level, which plays an essential role in the stability and accuracy of this scheme (e.g., Bokhove
and Johnson25). The resulting discrete system is solved via a generalised eigenvalue solver, which
unfortunately produces a substantial amount of numerical noise. Nevertheless, a simple “decision
algorithm” is suggested to separate acceptable numerical eigenfrequencies from numerical noise.
Finally, this numerical solution is tested against the semi-analytical solution.

Extensive comparison between the two semi-analytical and numerical solutions enables one
to adopt the most appropriate method for resolving the inertial waves. The Proudman-Rao method
facilitates fast convergence of eigenfrequencies and the determination of semi-analytical solutions
that satisfy the boundary conditions exactly because this is embedded in the construction algorithm.
However, this method displays a Gibbs phenomenon at the boundaries. Unlike the Proudman-
Rao method, Taylor’s method enables a semi-analytical solution exactly satisfying the governing
equations in the interior, but with slow convergence near the boundaries. The numerical solution,
based on a modified FEM discretisation, implements a very accurate but relatively slow method,
which requires an extra step to separate the acceptable eigenfrequencies from numerical noise.
Depending on one’s needs one might choose one of the suggested methods.

The solutions we have presented have been used to verify the novel numerical technique
developed in Nurijanyan et al.26 for the initial-value problem of three-dimensional inertial waves in
arbitrarily shaped domains. This method is geared to investigate whether wave attractors (Maas,9

Manders and Maas,23 and Rieutord et al.27) and complex eigenmodes (such as in Bokhove and
Ambati28) emerge in domain shapes of sufficient geometric complexity.

Additionally, we note that solutions of the Euler equations, by default inviscid, presented above
are also relevant in the viscous case (Navier-Stokes equations), which is not intuitive at first glance.
In experiments like those in Fultz,10 McEwan,11 Manasseh,12, 13 Kobine,14 Thompson,15 Aldridge
and Toomre,16 Malkus,17 Vanyo et al.,18 Beardsley,19 Bewley et al.,20 Lamriben et al.,21 Boisson
et al.,22 and Manders and Maas,23 a variety of forcing mechanisms and geometries have been applied.
In some cases forcing occurs by pumping through viscous boundary layers, e.g., either on convex
(outer) or concave (inner) parts of spherical shells; in other studies by means of the Euler force
(using libration). Experiments performed in square domains (Bewley et al.,20 Lamriben et al.,21 and
Boisson et al.22) seem to show that inviscid eigenmodes derived above are relevant in the sense that
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energy spectra display peaks at inviscid eigenfrequencies of some of the larger scale eigenmodes.
In two experiments (Bewley et al.20 and Lamriben et al.21) forcing arises by pulling a grid through
the fluid, leaving a set of waves behind. In another experiment with a libration (Boisson et al.22),
forcing occurs through Ekman-layer convergence, lending the spatial structure of the response much
more of a beam-like character. Note, however, that due to the degeneracy discussed in Maas8 (near-
degeneracy for numerical results) internal (gravity) and inertial waves have a much more flexible
(“chameleonic”) spatial structure than that of the eigenmodes of elliptic problems (like surface
waves). Indeed, in general one observes that the inviscid response (in combination with any spatial
structure in the forcing) is determining the field’s spatial structure, slaving the viscous (boundary
layer) response, and not the other way around.
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