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Tidal-induced buoyancy flux and mean transverse circulation 
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(Received 27 September 1984; in revised form 21 May 1985; accepted 30 May 1985) 

Abstract--A weakly nonlinear model is used to examine the mean transverse circulation (cross- 
isobath) driven by tidal-induced buoyancy flux. The mean Eulcrian flows driven by both the 
barotropic and baroclinic tide are presented for a semi-infinite wedge. The mean flow driven by the 
barotropic tide is significant only near the apex where the thickness of the frictional boundary layer 
is comparable to the water depth. The mean flow there is characterized by a single-cell circulation 
with offshore flow near the bottom, and its magnitude can reach a few percentage or a significant 
fraction of the tidal velocity in oceanic applications. The mean flow driven by the baroclinic tide, on 
the other hand, is characterized by pairs of half-open (on the seaward side) counter-rotating cells, 
the number of which equals the vertical mode number. For a baroclinic tide propagating onshore, 
the mean flow near the top and bottom surfaces is always directed offshore and its magnitude can 
reach a large fraction of the tidal velocity. Taken together, the model thus predicts a mean offshore 
flow near the bottom while higher up in the water column the mean flow direction is less definite 
due to the contribution from different tidal components. The model results are consistent with 
some current measurements over the Georges Bank. 

1. INTRODUCTION 

IN MOST studies of the tidal rectification (e.g. ZIMMERMAN, 1980; LODER, 1980), the 
nonlinear momentum transfer is provided by the Reynolds stress, the spatial inhomoge- 
neity of which drives the residual flow. In a stratified ocean, the tides can also generate a 
buoyancy flux and conceivably the spatial inhomogeneity of this flux can induce a mean 
vertical motion and, through mass continuity and kinematic boundary constraint, a mean 
circulation. For a shelf geometry that is uniform in the alongshelf direction, this circulation 
occurs on a plane perpendicular to the isobaths and hence will be referred to as the 
transverse circulation. 

The concept of a mean flow driven by buoyancy fluxes is not new, and has been explored 
to some extent in the context of internal waves (e.g. CHARNEY and DRAZIN, 1961; 
BRETHERTON, 1969; WUNSCH, 1971; MCINTYRE, 1977). We will however apply the theory 
specifically to the tidal problem and to address two practical questions: What is the 
structure of the mean transverse circulation? And what is its magnitude? 

Since under the present mechanism, the transverse circulation is driven solely by the 
buoyancy flux, it is independent of the momentum balance. On the other hand, the 
Coriolis force acting on this transverse circulation provides a source term in the alongshelf 
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momentum balance and can drive a residual flow alortg isobaths. Not certain about the 
structure and the magnitude of this circulation, researchers in the past have frequently 
neglected this Coriolis term in the mean momentum balance, sometimes without sufficient 
j~tstification. The model results would enable some assessment of this term and in 
particm.lar its effect on the vertical structure of the residual flow along isobaths. 

The problem we are considering is weakly nonlinear in that tides, to the first approxima- 
tion, satisfy the linearized equations, and the terms quadratic in tidal amplitude (buoyancy 
flux in our case) drive the mean flow of the next order. The formulation that relates the 
mean circulation to the tides is presented in Section 2, and the mean flows driven by the 
barotropic and baroclinic tide are considered separately in Sections 3 and 4. The model 
results are compared with observations over Georges Bank in Section 5. 

2. T H E  T H E O R Y  

Let us consider an idealized shelf geometry that varies only in one spatial coordinate (y), 
as schematically shown in Fig. 1. Assuming a spatial homogeneity in x of all the field 
variables and an ocean that is vertically stratified, the buoyancy balance in a Boussinesq, 
adiabatic fluid is governed by the equation 

N 2 
p, + Vpy + w p z - - -  w = 0, (2.1) 

g 

where p is the density perturbation of the reference state, v and w are the velocity 
components along they and z axis, respectively, g is the gravitational acceleration, and Nis 
the Brunt-V/iis/il/i frequency, assumed to be a function of z only. In accordance with the 
common usage, subscripts are used throughout this paper to indicate partial derivatives. 
For an imcompressible fluid, the mass continuity states that 

Vy + wz = 0, (2.2) 

which, when combined with (2.1), leads to 

N 2 
Pt + (Vp)y + ( w p )  z - -  W = 0 ,  (2.3) 

g 

7 

Fig. 1. A schematic of the model geometry. 
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Assuming that the tides satisfy the linearized equation 

N 2 
p , - -  w = 0, (2.4) 

g 

then the mean buoyancy balance, averaged over the tidal period (denoted by an overbar), 
satisfies the next order equation 

N 2 
(Vp)y  + ( W p ) z  = - -  I~'. ( 2 . 5 )  

g 

Since w and P are in quadrature according to (2.4), the vertical buoyancy flux vanishes, and 
the equation (2.5) reduces to 

N 2 
(vp)y = - -  ~, (2.6) 

g 

i .e.  only the cross-shelf buoyancy flux contributes to the mean vertical motion. 
Take the time mean of (2.2) yields 

fy + g'z = 0, (2.7) 

from which a mean stream function (4) can be defined 

0 = - ~z, (2.8) 

= by. (2.9) 

Combining (2.6) and (2.9), and integrating in y, yields 

g 
_ _  

f¢ = ~ vp  + F ( z ) ,  (2.10) 
pc" 

where F is an arbitrary function of z that can be further specified as follows: along a rigid 
bottom, the kinematic boundary condition dictates that v and w be 180 ° out of phase and, 
on account of the fact that w and p are in quadrature, ~ vanishes. Since ~t also vanishes at 
the bottom, (2.10) implies that F must vanish at any z that intersects the sloping bottom. 
For a shelf geometry in which the bottom shoals to the surface, F must then vanish 
identically and (2.10) reduces to 

g 
_ _  

= ~ vp. (2.11) 
Pc" 

For a submarine bank, (2.11) applies only below the sill depth, as any 0 (but constant in y) 
can be added to the mean field above the sill depth without violating either the buoyancy 
balance or the kinematic boundary constraints. Other physical considerations beyond the 
scope of the present paper, such as symmetry requirements or momentum balance, are 
needed to remove this degeneracy. 

For a uniformly stratified fluid, (2.11) thus implies that the mean stream lines coincide 
with the contours of the lateral buoyancy flux. With a time dependence of e -i°' for the tide 
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where a is the tidal frequency, (2.11) becomes, upon substitution from (2.4) 

1 
= - v • i w .  (2.12) 

Using this formula, the mean stream function can be calculated straightforwardly given 
any tidal field. 

It is interesting to notice that (2.12) does not contain the stratification parameter; i.e. for 
a given tidal field, the mean stream function is independent of the stratification. Physically, 
this is because a varying stratification, although changes the magnitude of the buoyancy 
flux for given tidal flows, also inhibits to a different degree the mean vertical motion. The 
two effects exactly cancel out and the mean motion remains unchanged. The role of the 
stratification, at least in this context, appears to be somewhat similar to that of a linear 
bottom drag in many of the wave-mean flow theories (e.g. Ou and BENNE'rr, 1979). In 
these latter cases, the friction causes the necessary phase shift among the oscillatory 
components to facilitate a non-zero momentum or vorticity transfer from the oscillatory to 
the mean motion, but on the other hand, also provides the bottom stress or torque to 
balance this input. Since the strength of both the source and sink of the mean balance is 
proportional to the frictional coefficient, the resulting mean flow is not very sensitive to the 
magnitude of this coefficient. But as in these latter cases, it is absolutely essential to include 
stratification in the model, without which the buoyancy balance cannot be formulated and 
the mean transverse flow becomes indeterministic. The stratification however does enter 
(2.12) indirectly by modifying the tidal field, as will be seen later in our discussion of the 
baroclinic tide. 

We should emphasize that the mean field given by (2.12) is the Eulerian mean and does 
not necessarily transport any mean property. In fact, it is seen that the LONGUET-HmGINS' 
(1969) expression for the Stokes drift, vs = Oz ( v  f w d t ) ,  gives a mean stream function that 
is equal but opposite in sign to (2.12). Since the Lagrangian mean is the sum of the Eulerian 
mean and the Stokes drift, it must then vanish. Physically, as discussed by WUNSCH (1971), 
fluid particles can only drift along isopycnals in an adiabatic fluid, and in the case when the 
isopycnals intersect the sloping bottom, the Lagrangian mean velocity must vanish 
identically. 

Since the tides are linear, it is conceptually useful to decompose the tides into the 
barotropic and baroclinic component and examine the mean flow driven by the two 
components separately. The decomposition is physically realizable only over a gentle 
topography that is relatively flat compared with the characteristics of the internal tide. 
Since for a semi-diurnal tide at mid-latitude, the latter has a typical slope of the order of 
10 -2 or greater, the above condition is generally satisfied over continental shelves. In the 
next two sections, we will examine the mean flow driven by both the barotropic and 
baroclinic tide. 

3. B A R O T R O P I C  T I D E S  

If the surface displacement is small compared with the water depth change over the 
distance of one tidal excursion, the surface can be treated as rigid (LODER, 1980). For a 
bottom slope of 10 -3 a s  is typical of a continental shelf and a tidal excursion of several tens 
of kilometers, the latter is a few tens of meters. Even in regions closer to shore where the 
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surface cannot be treated as rigid, the mean flow generated by the free surface might still 
be negligible. A free surface allows the generation of the Stokes drift which, according 
to the argument put forth earlier, is balanced by an opposing Eulerian flow of equal 
magnitude. The Stokes drift has a magnitude of the order of v2/cp (LONGUET-HmGXNS, 
1969), where v is the tidal amplitude and Cp is the phase speed of surface gravity waves. The 
magnitude of the mean flow relative to the tidal flow is thus given by the ratio v/cp which is 
generally negligible. But we caution that in the nearshore zone where the free surface 
displacement becomes comparable to the water depth, tides can no longer be considered 
linear and the present theory breaks down. 

With the above qualifications, rigid lid approximation will be used in the following 
discussions. For simplicity, we nondimensionalize (y, z) by some proper scales (L, H) and 
velocities (v,w) by the scales Q/H(1,  H/L) ,  where Q is the amplitude of the volume 
transport per unit alongshelf distance, a constant in y under the rigid lid approximation. 
For an inviscid fluid, the tidal amplitudes are given by 

v = 1/h, (3.1) 

and 

w = zhy/h 2. (3.2) 

Since v and w are 180 ° out of phase, ~ vanishes according to (2.12); the barotropic tide 
therefore does not generate any buoyancy flux or mean transverse circulation in the 
inviscid limit. To incorporate the next order correction due to friction, let us consider a 
momentum balance of the form 

vt = -py + Evz2, (3.3) 

where 

E - 2v/(GH2), (3.4) 

with v being.the coefficient of kinematic eddy viscosity. For simplicity, we have temporar- 
ily left out the Coriolis term, the inclusion of which will be discussed later (Section 3.3). 
With the boundary conditions that 

v = 0 a t z  = -h, (3.5) 

and 

v= = 0 at  z = 0 ,  ( 3 . 6 )  

the vertical structure of the flow can be determined. Subject to the further constraint that 

f ]  vdz = 1, (3.7) 
h 

the solution is given by 

where 

v = f (1- cosh mz/cosh mh) ,  (3.8) 

i 1 
f, = - -~ py = ~ (1 - tanh mh/mh)  -l ,  
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and 

m = (l - i)/V-~. 
The accompanying tidal fields are given by 

and 

[ z tanhrnh(__ ~)sinhmz ] , (3.9) 
~g = -hP 1 + h mh 1 +s inh  

W = hhy O 2 tanh 2 m h  sinh " 

Since the topography enters the problem only parametrically, the above solution applies 
to a general topography, but for the purpose of illustration, we will consider a wedge 
geometry, which also allows for a more direct comparison with the solutions in later 
sections. In Figs 2 to 4, we have plotted the tidal amplitude (solid lines) and phase (dashed 

"~iii]!i%, . 

Fig. 2. The amplitude (solid lines) and phase (dashed lines) of the stream function for a 
barotropic tide in a wedge, with E = 0.01. The shaded area represents the Stokes layer. 

Fig. 3. 
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Same as Fig. 2, but for the velocity component  v. 
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Fig. 4. Same as Fig. 2, but for the velocity component w. 

lines) for the case E = 0.01. The scales have been chosen so that the wedge has a unit slope 
(i.e. H/L = ~¢, ), being the original wedge slope) and that the seaward boundary has a unit 
depth. The shaded area represents the frictional boundary layer, given by the Stokes scale 
E 112. 

Without friction, v would be vertically uniform and w increases linearly toward the 
bottom. Friction, besides reducing both amplitudes to zero at the bottom, also induces an 
upward phase propagation. This feature can be understood by examining (3.3) more 
closely. If we write the solution (3.8) as the sum of the depth-independent component (i.e. 
f) and a frictional correction (v'), then v' satisfies the diffusive equation [i.e. (3.3) without 
the pressure gradient term] with a non-homogeneous boundary condition at the bottom 
(v' -- -P). The signal thus propagates upward, much like the heat waves travelling through 
a conducting rod from an oscillatory heat source applied at one surface (MoRsE and 
FESHBACH, 1953, p. 1580). 

In the far field where the boundary layer is thin relative to the water depth, the only 
relevant scale is the Stokes depth and, as expected, the phase lines are parallel to the 
bottom. But as the boundary layer thickness becomes comparable to the water depth near 
the apex, significant distortion of the phase lines occurs. It will be seen more clearly from 
the asymptotic solution of the next section that the vertical phase differential is reduced as 
the apex is approached, and the reduction is more rapid for the w component due perhaps 
to the stronger constraint imposed by the rigid surface. On account of the exact out of 
phase relation between w and v at the bottom, w thus lags v by < 180 ° higher up in the 
water column. Since w leads p by 90 ° for an adiabatic fluid, the lateral buoyancy flux is thus 
directed down the slope (-~ < 0) or, according to (2.11), a negative ~. 

We have plotted in Fig. 5 the mean stream function ~ which has been scaled according to 
[@] = e[V], where 

Iv] [w] 
8 = - - -  (3.11) 

aL ~H 

is the ratio of the tidal excursion to the horizontal scale, or the ratio of the vertical 
displacement scale to the depth scale (the inverse of which has sometimes been called 
Strouhal's number). The bracket enclosing the variable is used throughout this paper to 
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Fig. 5. The mean stream function driven by the tidal fields shown in Figs 2 to 4. 

indicate the scales. It is seen that # is slightly positive offshore when the frictional 
boundary layer is thin relative to the water depth, but is significant only near the apex 
where the Stokes scale is comparable to the water depth and there the mean flow is 
characterized by a single-cell circulation with offshore flow near the bottom. To examine 
the solution more closely, let us consider its asymptotic limits in the near and far fields in 
the next two subsections. 

3.1 The nearfield (E ve ,> h) 

Expanding the solutions (3.8) and (3.10) in terms of the small parameter rnh, we obtain 

v ~ m  1 -  1 -  (mh) 2 1 - 5  (3.12) 
2h h-~ 6-0 h-2 ' 

and 

3z(z2)[  1 ( z2)] 
w ~ - - ' -  1 -  1 + (mh) 2 1 + 3 (3.13) 

2 h  h " 

To the lowest order, the vertical profiles of the tidal velocities thus approach a universal 
form that depends only on the relative depth within the water column (z/h), and there is no 
frictional correction on the phase. At a fixed z/h, the amplitudes increase toward the apex 
as h -~. Substituting the above solution into (2.12) yields 

qJ ~ 4 - ~  1 - h2] . (3.14) 

It is seen that at a fixed z/h, q? is constant in y despite the increase of the tidal amplitudes as 
the apex is approached. This is because the friction-induced phase shift that causes the net 
buoyancy flux is contained in the higher order terms of (mh) 2 and thus is rapidly 
diminishing toward the apex. Using (2.8) and (3.14), the mean cross-wedge flow f can be 



Tidal-induced buoyancy flux and mean transverse circulation 619 

derived, 

3 I( _zZ~2( z 2) 
17 = - 40---E" h 1 h21 1 - 7 ~ , (3.15) 

which varies as h -1 at fixed z/h, the same rate as that of the tidal velocities. If we rescale 0 by 

[0] = ~ Iv], (3.16) 

then the factor E drops out of the expression (3.15), which is plotted in Fig. 6, together 
with the tidal velocities, as a function of the relative water depth z/h. 

Besides the general properties previously described, the figure shows that the magni- 
tude of the mean cross-wedge flow can reach a few percentage of the maximum tidal 
velocity in the dimensionless unit. To estimate its dimensional magnitude, we rewrite the 
scaling factor (e/E) in (3.16) as Q,f/2v, using the definitions of ~ (equation 3.11) and E 
(equation 3.4). This scaling factor obviously varies greatly over different tidal regimes. For 
a realistic tidal regime with, say, Q ~ 2 × 105 cm 2 s -1 (corresponding to a tidal flow of 
20 cm s -~ over a 100 m water depth), ~, (bottom slope) = 10 -3, v (coefficient of kinematic 
eddy viscosity) = 102 cm 2 s -1, it has the value of one, and can be considerably greater for 
stronger tides or steeper bottom slopes. The mean cross-wedge flow thus can reach a few 
percentage or even a significant fraction of the tidal velocities when friction dominates the 
water column. Notice that the scaling factor is inversely proportional to v. For greater v, 
although the asymptotic solution is valid to greater water depths, the mean flow actually 
decreases due to the diminishing phase shift in the tidal components. 

3.2 The far field (E 1/2 ,~ h) 

To examine the solution in the far field where the frictional boundary layer is thin 
relative to the water depth, we expand the solution (3.8), (3.9) and (3.10) in terms of the 

-i 
Fig. 6. 
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small parameter (mh) -], which yields 

(3.17) 

v ~ ~ 1 + (1 - e-"h;), (3.18) 

1(2) 
w ~ ~ 1 + m h  ( 4 - 1  + e - " h ; ) ,  (3.19) 

where { = 1 + z / h  is the distance above the bottom expressed in terms of the fraction of 
the water depth. Let r I (=  h~/VT) be the same distance expressed in terms of the Stokes 
scale, then to the lowest order, the amplitude and phase of the tidal velocity (3.18) become 

1 
Ivl  = _ [1 - 2e -n cos rl + e-an] u2, 

t /  
(3.20) 

0,, = tan -] [(-e -n sin q)/(1-e -n cos q)], (3.21) 

and the mean cross-wedge flow, obtained from substituting the tidal velocities (3.18) and 
(3.19) into (2.12) and (2.8), is given by 

1 
- 2h 3 e -n [rl sin q + (1 - rl)cos rl - e-n]. (3.22) 

Notice that at a fixed rl, Iv[ decreases offshore as h -I, while ~ decreases at a much faster 
rate of h -3. Setting h = 1, we have plotted both the tidal and mean cross-wedge flow in Fig. 
7. The friction correction to the tidal flow, as expected, is confined to the boundary layer 

Fig. 7. 
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The asymptotic solution in the far field. The ordinate is the distance above the bottom 
expressed in terms of the Stokes scale. 
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where an upward phase propagation is apparent. The total phase lag between the bottom 
and interior is 45 ° , as can be derived from (3.21). The mean cross-wedge flow is significant 
only within the bot tom boundary layer where it is directed primarily onshore. Its 
magnitude reaches about 20% of the tidal velocity in the dimensionless unit. Since the 
scaling factor E is generally one or two orders of magnitude smaller than unity in the far 
field [for a typical tidal regime of, say, Iv]--~ 2 0 c m  s -1, o ~ 2 x 10 -.4 s -1, and 
L ~ 100 km, e is 10-2], the mean cross-wedge flow there is generally negligible. 

3.3 Coriolis effect 

The solution (3.8) can be extended to the case when there is rotation (SVERDRUP, 1926; 
MOFJELD, 1980). The most notable effect of the rotation is the introduction of two instead 
of one frictional scale. With E now denoting the Ekman number and the tidal frequency 
scaled by the inertial frequency, the two frictional depths (scaled by the Ekman depth) are 
given by (1 - (~)-1/2 and (1 + (~)-1/2. We have plotted in Fig. 8 the frictional depths I as a 
function of the tidal frequency ~. It is seen that the thickness of the inner boundary layer is 
rather constant, and that there is a significant split of the two scales only near the inertial 
latitude which, for a semi-diurnal tide, is located near the poles. In Figs 9 and 10 we have 
plotted the mean stream function (solid lines) and the phase lines of the tidal stream 
function (dashed lines) for the two cases o f o  = 1.5 and ~ = 1.1 with E -- 0.01. The inner 
and outer boundary layer are shaded for visual reference. When the two frictional scales 
are comparable (as in Fig. 9), the result is qualitatively similar to the nonrotating case (Figs 
2 and 5), but when there is a significant split of the two frictional scales (as in Fig. 10), there 
is a region within the outer boundary layer that simulates the far field with respect to the 
inner boundary layer, as can be seen by the upward bending of the phase lines near the 
apex just above the inner boundary layer. Drawing comparison with the nonrotating 
solution, this results in a region of positive stream function embedded in regions of 
negative stream function caused by the frictional effect of the two boundary layers. 
Despite this complication, the mean flow is still significant only in the corner region where 
the water depth is comparable to the thickness of the inner boundary layer and where the 
asymptotic solution discussed in Section 3.1 remains valid. 

Fig. 8. 

I I 

,.5 2 2'.5 
The frictional depths 1 (scaled by the Ekman layer depth) as a function of the tidal 

frequency. 
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Fig. 9. The mean stream function (solid lines) and the phase lines of the tidal stream function 
(dashed lines) for the case of  a = 1.5 with E = 0.01. The shaded areas represent the inner and 

outer boundary layers. 
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Fig. 10. Same as Fig. 9, but for a tidal frequency t~ = 1.1. 

3.4 Summary 
We summarize below the main results for the barotropic tide: 

(1) Under the model idealization, the barotropic tide does not generate any buoyancy 
flux or mean transverse circulation in the inviscid limit. 

(2) Friction causes an upward phase propagation in the tidal fields. The relative phase 
shift among different tidal components results in a non-zero buoyancy flux that drives 
the mean flow. 

(3) The mean flow is significant only in the near field where friction dominates the water 
column and is characterized by a single-cell circulation with offshore flow near the 
bottom. 

(4) In the near field, at any fixed relative depth of the water column, the mean flow varies 
as 1/h, the same rate as the tidal velocities, and its magnitude can reach a few 
percentage or a significant fraction of the tidal velocities. 
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(5) As we move offshore out of the near field, the mean flow diminishes at a faster rate 
than the tidal flow. And when the boundary layer is thin relative to the water column, 
the mean flow, significant only in the boundary layer, varies as h -3 at any fixed 
distance above the bottom. Its magnitude is generally negligible compared with tidal 
flows. 

(6) Coriolis force introduces two frictional scales, but the mean flow is significant only 
where the thickness of the inner boundary layer is comparable to the water depth and 
the circulation there is qualitatively similar to that in the nonrotating case. 

4. B A R O C L 1 N I C T I D E S  

WUNSCH (1971) has calculated the mean transverse flow driven by internal waves in a 
wedge filled with uniformly stratified fluid. Although his solution is for a nonrotating case, 
the only modification that needs to be made to accommodate the rotation is to replace his 
expression of c (the slope of the characteristics) by [(0 .2 - f 2 ) / ( N 2  - 0"2)] l/2. So the only new 
elements here are the physical discussions on the buoyance flux and some quantitative 
statements about the magnitude of these mean flows. Wunsch's solution is for inviscid 
modes in a subcritical wedge which can be somewhat justified in the tidal problem by the 
argument that friction correction generally confines to the bottom boundary layer and that 
for a semi-diurnal tide, a typical shelf is almost always subcritical except in polar regions. 

The mean flow simply changes sign between the up- and down-slope propagating 
modes, but in anticipation of later comparison with observation, we will further restrict 
our discussion to the former ones for the following reasons: the internal tides observed on 
the shelf are primarily generated offshore--due to the interaction of the surface tide with 
steep topography--and propagate onto the shelf. Theoretical studies (PRINSENBERG et  al . ,  
1974) have shown that a combination of gentle slope and friction is very efficient in 
absorbing the incoming waves or damping out the reflected waves. And this is further 
corroborated by oceanic observations that generally show a shoreward propagation for the 
internal tides on the shelf (WUNSCH, 1975). 

Since an infinite wedge has no intrinsic length scales, the only independent variable is 
the relative depth within the water column ( z '  - z / h ) ,  and the only external parameter is 
the ratio of the bottom slope to the slope of the characteristics (y' - y/c) .  Wunsch's 
solution for the n th mode (adapted to our notation) is given by 

V = sinF • exp (i0), (4.1) 

where 

1 - y'z' 
F = q l n  _ _  

2 1 + 7'z' ' 

0 = -q(1  - y'2Z'2)In (h2y'-2), 
2 

with 

1 + 7 ' ]  
q = 2nrt/ln \ 1 - y' ] " 
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If we set the horizontal scale L to be H/c, the tidal velocities are given by (setting h to 1) 

where 

and 

1 qT' T,2z,2sin2 i-)lj2 v = --'nn 1 - '~'~z '2 (c°s2 F + exp(i0,,), (4.2) 

1 . qT' (./,2Z, 2 F)I/2 w = --nn 1 -  •'2z'2 cos 2 F + sin 2 exp(i0w), (4.3) 

0,, = 0 - tan-l(7 'z ' tan F), 

0,, = 0 - tan-l(tan F/7 'z ' ) .  

The velocities have been normalized such that their maximum amplitude is 1 when the 
bot tom is flat. Substituting the solution (4.2) and (4.3) into (2.12), one obtains 

1 q2 7,2 
= 4n2 / t  2 1 - "~'2z'2 s i n 2  F, 

accompanied by a mean cross-wedge flow 

1 qa.y,3 
0 = (COS 2F - 7'z'  sin2 F). 

2n2n 2 (1 - 7'2z'2) 2 

We have plotted in Figs 11 to 14 both the tidal amplitudes and the mean field for the first 
mode (n = 1) and for three different values of the relative bottom slope 7'. It is seen that 
the buoyancy flux (which is proportional to the mean stream function) is offshore in the 
lower level, but changes sign above some mid-depth. This can be explained by considering 
an instantaneous tidal field sketched in Fig. 15 where an upward motion is accompanied by 
the convergence of the lateral velocity in the lower level (and the divergence of the lateral 
velocity in the upper level). This upward motion tends to increase the density of the water 
column, which attains a maximum a quarter cycle later, by which time, because of the 
shoreward propagation, the lateral flow in the lower level is onshore (the dashed arrow). 
Similarly, during the next half cycle, the minimum density concurs with an offshore flow in 
the lower layer. This net correlation between the lateral velocity and the density anomaly 

Fig. 11. 
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Velocity amplitude [ v l of the first baroclinic mode (n = 1) for three different values of ¥' 
( the relative bot tom slope with respect to the slope of the characteristics). 
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Fig. 12. 
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Fig. 13. Same as Fig, 11, but for the mean stream function ~. 

Fig. 14. 
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A schematic drawing explaining the tidal-induced buoyancy flux. 
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Fig. 16. A schematic drawing of the mean stream function induced by the first-mode 
baroclinic tide. 

over a tidal period thus results in an offshore buoyancy flux in the lower level. In the upper 
level where the lateral velocity reverses, the buoyancy flux changes sign and is directed 
onshore. Since the boundary flux vanishes along the sloping bottom, the buoyancy deficit 
(surplus) in the lower (upper) level induced by the tidal flux must be accompanied by a 
mean downward (upward) motion in the lower (upper) level. Through mass continuity, 
the mean circulation thus consists of a pair of half-open (on the seaward side), counter- 
rotating cells with shoreward flow at mid-depth and offshore flow both above and below, as 
schematically shown in Fig. 16. For higher modes, the number of pairs increases, being 
equal to the mode number, but, as clear from the above argument, the flow direction 
remains offshore near the top and bottom surface. 

It is also interesting to note that the mean flow is not very sensitive to the variation of the 
external parameter 7' except very near the critical point (i.e. 7' = 1) when it becomes 
infinite near the bottom where the frictional effect must become important. Comparing 
Figs 11 and 14, it is seen that the magnitude of the mean flow is of the same order to that of 
the tidal flow in the dimensionless unit. Since the scaling factor e (as defined in equation 
3.11) is the ratio of the vertical displacement scale to the water depth which can be a 
significant fraction of one for the internal tide, so can the magnitude of the mean cross- 
wedge flow relative to the tidal flows. The linear theory breaks down when e approaches 1. 

5. A P P L I C A T I O N S  

Although the mean cross-wedge flow driven by the barotropic tide or the baroclinic tide 
of different mode number has very different spatial structure, it always points offshore 
near the bottom. Furthermore, its magnitude can reach a significant fraction of the 
barotropic tidal velocities or a large fraction of the baroclinic tidal velocities in realistic 
tidal regimes. Although the model is highly idealized for mathematical simplicity, the 
physical mechanism we have presented is sufficiently general that the above conclusions 
should apply to less idealized geophysical environments. Is there any observational 
evidence for this tidally induced transverse flow? For this, we shall examine the published 
data on Georges Bank which is known for strong tides that typically reach an amplitude 
of several tens of cm s -1. 

BUTMAN et al. (1982) have recently compiled four years (1975 to 1979) of current meter 
data to construct a mean Eulerian flow field over the Bank (their Fig. 4). The most 
noticeable feature is the anticyclonic circulation around the Bank, but a closer examin- 
ation of the mean flow also reveals that, with perhaps two or three possible exceptions out 
of a total of 15 mooring sites around the Bank, the mean flow near the bottom always 
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points off the Bank, and the off-bank flow is particularly strong for mooring sites located 
over steeper slopes, consistent with the model predictions. 

A good evidence that links the off-bank flow to the tides can be found in MAGNELL et al. 
(1980). From analyzing the current meter data over the northern slope of the Bank, they 
found a significant correlation (0.74) between the low-frequency off-bank flow and the 
tidal modulation for the near-bottom measurements. Furthermore, neither variable is 
coherent with the local wind, thus discounting the likelihood that both are simply 
responding to the same wind and hence appear to be correlated. Their analysis strongly 
suggests a tidal origin for the low-frequency variation of the off-bank flow and the flow 
direction agrees with that predicted by the model. The correlation between the low- 
frequency off-bank flow and the tidal modulation rapidly drops to 0.04 at mid-depth (still 
below the sill depth), again consistent with the model results that the mean flow direction 
there is less definite due to contributions from different tidal components. 

As discussed before, the Eulerian mean does not transport any property in this 
simplified model because the Eulerian flux is exactly cancelled out by the tidal flux. The 
Eulerian mean that we have calculated however is important in other respects. Under the 
action of the Coriolis force, it can drive a mean flow along isobaths. Although when 
vertically integrated, the net effect vanishes under the rigid lid assumption, it can play a 
role in determining the vertical structure of the mean along-isobath flow. The observations 
of BUTMAN et al. (1982) and MAGNELL et al. (1980) show a mean off-bank flow of the order 
of a few c m  s - l  which, if not impeded by friction, can accelerate a mean along-isobath flow 
to the same magnitude within an inertial period. 
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